Abstract

We examine the Goos-Hänchen (G-H) shift of a Gaussian beam reflected on a thin slab of Ag/TiO2 hyperbolic multilayer metamaterial (HMM). The HMM is modeled using the effective medium theory which yields the anisotropic dielectric functions of the HMM. The G-H shifts can be very large on the surface of the HMM. It can be about 40 µm which are far bigger than the G-H shifts on the usual materials like metals and dielectrics. The enhancement is due to the excitation of the Brewster modes in HMM. Such Brewster modes in HMM have a well-defined frequency-dependent line shape. We relate the the half width at half maximum of the G-H shift to the imaginary part of the complex frequency of the Brewster mode. Moreover, we also present results for the Imbert-Fedorov shifts as well as the spin Hall effect of light on the surface of a thin HMM slab. We show that the spin Hall effect on the HMM slab is much more pronounced than that on the surface of metal. Thus a thin HMM slab can be used to enhance the lateral displacements, which can have many interesting applications for optical devices.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Hyperbolic metamaterials: beyond the effective medium theory

Tengfei Li and Jacob B. Khurgin
Optica 3(12) 1388-1396 (2016)

Optical absorption of hyperbolic metamaterial with stochastic surfaces

Jingjing Liu, Gururaj V. Naik, Satoshi Ishii, Clayton DeVault, Alexandra Boltasseva, Vladimir M. Shalaev, and Evgenii Narimanov
Opt. Express 22(8) 8893-8901 (2014)

All-optical switching of nonlinear hyperbolic metamaterials in visible and near-infrared regions

Maziar Shoaei, Mohammad Kazem Moravvej-Farshi, and Leila Yousefi
J. Opt. Soc. Am. B 32(11) 2358-2365 (2015)

References

  • View by:
  • |
  • |
  • |

  1. F. Goos and H. Hänchen, “Ein neuer und fundamentaler Versuch zur Totalreflexion,” Ann. Phys. (Berlin) 436(7–8), 333–346 (1947).
    [Crossref]
  2. F. I. Fedorov, “K teorii polnovo otrazenija,” Dokl. Akad. Nauk. SSR 105, 465 (1955).
  3. C. Imbert, “Calculation and experimental proof of the transverse shift Induced by total internal reflection of a circularly polarized light beam,” Phys. Rev. D Part. Fields 5(4), 787–796 (1972).
    [Crossref]
  4. L. G. Wang, H. Chen, and S. Y. Zhu, “Large negative Goos-Hänchen shift from a weakly absorbing dielectric slab,” Opt. Lett. 30(21), 2936–2938 (2005).
    [Crossref] [PubMed]
  5. P. T. Leung, C. W. Chen, and H. -P. Chiang, “Large negative Goos-Hänchen shift at metal surfaces,” Opt. Commun. 281(5), 1312–1313 (2008).
    [Crossref]
  6. T. Paul, C. Rockstuhl, C. Menzel, and F. Lederer, “Resonant Goos-Hänchen and Imbert-Fedorov shifts at photonic crystal slabs,” Phys. Rev. A 77(5), 053802 (2008).
    [Crossref]
  7. F. Liu, J. Xu, G. Song, and Y. Yang, “Goos-Hänchen and Imbert-Fedorov shifts at the interface of ordinary dielectric and topological insulator,” J. Opt. Soc. Am. B 30(5), 1167–1172 (2013).
    [Crossref]
  8. S. Asiri, J. Xu, M. Al-Amri, and M. S. Zubairy, “Controlling the Goos-Hänchen and Imbert-Fedorov shifts via pump and driving fields,” Phys. Rev. A 93(1), 013821 (2016).
    [Crossref]
  9. M. Merano, A. Aiello, G.W. ’t Hooft, M. P. van Exter, E. R. Eliel, and J. P. Woerdman, “Observation of Goos-Hänchen shifts in metallic reflection,” Opt. Express 15(24), 15928–15934 (2007).
    [Crossref] [PubMed]
  10. V. J. Yallapragada, A. P. Ravishankar, G. L. Mulay, G. S. Agarwal, and V. G. Achanta, “Observation of giant Goos-Hänchen and angular shifts at designed metasurfaces,” Sci. Rep. 6, 19319 (2016).
    [Crossref]
  11. C. Li and X. Yang, “Thin-film enhanced Goos-Hänchen shift in total internal reflection,” Chin. Phys. Lett. 21(3), 485–488 (2004).
    [Crossref]
  12. I. V. Shadrivov, A. A. Zharov, and Y. S. Kivshar, “Giant Goos-Hänchen effect at the reflection from left-handed metamaterials,” Appl. Phys. Lett. 83(13), 2713–2715 (2003).
    [Crossref]
  13. G. Jayaswal, G. Mistura, and M. Merano, “Weak measurement of the Goos-Hänchen shift,” Opt. Lett. 38(8), 1232–1234 (2013).
    [Crossref] [PubMed]
  14. S. Goswami, M. Pal, A. Nandi, P. K. Panigrahi, and N. Ghosh, “Simultaneous weak value amplification of angular Goos-Hänchen and Imbert-Fedorov shifts in partial reflection,” Opt. Lett. 39(21), 6229–6232 (2014).
    [Crossref] [PubMed]
  15. M. R. Dennis and Jörg B Götte, “The analogy between optical beam shifts and quantum weak measurements,” New J. Phys. 14(7), 073013 (2012).
    [Crossref]
  16. X. Yin and L. Hesselink, “Goos-Hänchen shift surface plasmon resonance sensor,” Appl. Phys. Lett. 89, 261108 (2006).
    [Crossref]
  17. Y. Wan, Z. Zheng, W. Kong, X. Zhao, and J. Liu, “Fiber-to-fiber optical switching based on gigantic Bloch-surface-wave-induced Goos-Hänchen shifts,” J. Photon. 5(1), 7200107 (2013).
    [Crossref]
  18. K. Y. Bliokh and Y. P. Bliokh, “Conservation of angular momentum, transverse shift, and spin Hall effect in reflection and refraction of an electromagnetic wave packet,” Phys. Rev. Lett. 96(7), 073903 (2006).
    [Crossref] [PubMed]
  19. H. Luo, S. Wen, W. Shu, Z. Tang, Y. Zou, and D. Fan, “Spin Hall effect of a light beam in left-handed materials,” Phys. Rev. A 80(4), 043810 (2009).
    [Crossref]
  20. O. Hosten and P. Kwiat, “Observation of the spin Hall effect of light via weak measurements,” Science 319(5864), 787–790 (2008).
    [Crossref] [PubMed]
  21. Y. Gorodetski, A. Niv, V. Kleiner, and E. Hasman, “Observation of the spin-based plasmonic effect in nanoscale structures,” Phys. Rev. Lett. 101(4), 043903 (2008).
    [Crossref] [PubMed]
  22. N. Hermosa, A. M. Nugrowati, A. Aiello, and J. P. Woerdman, “Spin Hall effect of light in metallic reflection,” Opt. Lett. 36(16), 3200–3202 (2011).
    [Crossref] [PubMed]
  23. L. Ferrari, C. Wu, D. Lepage, X. Zhang, and Z. Liu, “Hyperbolic metamaterials and their applications,” Prog. Quantum Electron. 40, 1–40 (2015).
    [Crossref]
  24. A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6(12), 946–950 (2007).
    [Crossref] [PubMed]
  25. Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Optical hyperlens: Far-field imaging beyond the diffraction limit,” Opt. Express 14(18), 8247–8256 (2006).
    [Crossref] [PubMed]
  26. Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
    [Crossref] [PubMed]
  27. A. A. Govyadinov and V. A. Podolskiy, “Metamaterial photonic funnels for subdiffraction light compression and propagation,” Phys. Rev. B 73(15), 155108 (2006).
    [Crossref]
  28. J. Yao, X. Yang, X. Yin, G. Bartal, and X. Zhang, “Three-dimensional nanometer-scale optical cavities of indefinite medium,” Proc. Natl. Acad. Sci. 108(28), 11327 (2011).
    [Crossref] [PubMed]
  29. Y. Guo, C. L. Cortes, S. Molesky, and Z. Jacob, “Broadband super-Planckian thermal emission from hyperbolic metamaterials,” Appl. Phys. Lett. 101(13), 131106 (2012).
    [Crossref]
  30. S-A. Biehs, M. Tschikin, and P. Ben-Abdallah, “Hyperbolic metamaterials as an analog of a blackbody in the near field,” Phys. Rev. Lett. 109(10), 104301 (2012).
    [Crossref] [PubMed]
  31. I. S. Nefedov and C. R. Simovski, “Giant radiation heat transfer through micron gaps,” Phys. Rev. B 84(19), 195459 (2011).
    [Crossref]
  32. H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological transitions in metamaterials,” Science 336, 205–209 (2012).
    [Crossref] [PubMed]
  33. C. R. Simovski, P. A. Belov, A. V. Atrashchenko, and Y. S. Kivshar, “Wire metamaterials: Physics and applications,” Adv. Mater. 24(31), 4229–4248 (2012).
    [Crossref] [PubMed]
  34. J. Zhao, H. Zhang, X. Zhang, D. Li, H. Lu, and M. Xu, “Abnormal behaviors of Goos-Hänchen shift in hyperbolic metamaterials made of aluminum zinc oxide materials,” Photon. Res. 1(4), 160–163 (2013).
    [Crossref]
  35. C. Chen, T. Bian, H. Chiang, and P. T. Leung, “Nonlocal optical effects on the Goos-Hänchen shifts at multilayered hyperbolic metamaterials,” J. Opt. 18(2), 025104 (2016).
    [Crossref]
  36. S. Rytov, “Electromagnetic properties of a finely stratified medium,” Sov. Phys. JETP 2, 466–475 (1956).
  37. B. Wood, J. B. Pendry, and D. P. Tsai, “Directed subwavelength imaging using a layered metal-dielectric system,” Phys. Rev. B 74(11), 115116 (2006).
    [Crossref]
  38. S.-A. Biehs, V. M. Menon, and G. S. Agarwal, “Long-range dipole-dipole interaction and anomalous Förster energy transfer across a hyperbolic metamaterial,” Phys. Rev. B 93(24), 245439 (2016).
    [Crossref]
  39. J. R. Devore, “Refractive indices of rutile and sphalerite,” J. Opt. Soc. Am. 41(6), 416 (1951).
    [Crossref]
  40. C. Li, “Unified theory for Goos-Hänchen and Imbert-Fedorov effects,” Phys. Rev. A 76(1), 013811 (2007).
    [Crossref]
  41. M. Merano, N. Hermosa, A. Aiello, and J. P. Woerdman, “Demonstration of a quasi-scalar angular Goos-Hänchen effect,” Opt. Lett. 35(21), 3562–3564 (2010).
    [Crossref] [PubMed]
  42. G. S. Agarwal, “New method in the theory of surface polaritons,” Phys. Rev. B 8(10), 4768 (1973).
    [Crossref]
  43. Z. Liu, L. Hu, and Z. Lin, “Enhancing photon tunnelling by a slab of uniaxially anisotropic left-handed material,” Phys. Lett. A. 308(4), 294–301 (2003).
    [Crossref]
  44. Y. Qin, Y. Li, X. Feng, Z. Liu, H. He, Y. Xiao, and Q. Gong, “Spin Hall effect of reflected light at the air-uniaxial crystal interface,” Opt. Express 18(16), 16832–16839 (2010).
    [Crossref] [PubMed]
  45. X. Zhou, Z. Xiao, H. Luo, and S. Wen, “Experimental observation of the spin Hall effect of light on a nanometal film via weak measurements,” Phys. Rev. A 85(4), 043809 (2012).
    [Crossref]

2016 (4)

S. Asiri, J. Xu, M. Al-Amri, and M. S. Zubairy, “Controlling the Goos-Hänchen and Imbert-Fedorov shifts via pump and driving fields,” Phys. Rev. A 93(1), 013821 (2016).
[Crossref]

V. J. Yallapragada, A. P. Ravishankar, G. L. Mulay, G. S. Agarwal, and V. G. Achanta, “Observation of giant Goos-Hänchen and angular shifts at designed metasurfaces,” Sci. Rep. 6, 19319 (2016).
[Crossref]

S.-A. Biehs, V. M. Menon, and G. S. Agarwal, “Long-range dipole-dipole interaction and anomalous Förster energy transfer across a hyperbolic metamaterial,” Phys. Rev. B 93(24), 245439 (2016).
[Crossref]

C. Chen, T. Bian, H. Chiang, and P. T. Leung, “Nonlocal optical effects on the Goos-Hänchen shifts at multilayered hyperbolic metamaterials,” J. Opt. 18(2), 025104 (2016).
[Crossref]

2015 (1)

L. Ferrari, C. Wu, D. Lepage, X. Zhang, and Z. Liu, “Hyperbolic metamaterials and their applications,” Prog. Quantum Electron. 40, 1–40 (2015).
[Crossref]

2014 (1)

2013 (4)

2012 (6)

M. R. Dennis and Jörg B Götte, “The analogy between optical beam shifts and quantum weak measurements,” New J. Phys. 14(7), 073013 (2012).
[Crossref]

Y. Guo, C. L. Cortes, S. Molesky, and Z. Jacob, “Broadband super-Planckian thermal emission from hyperbolic metamaterials,” Appl. Phys. Lett. 101(13), 131106 (2012).
[Crossref]

S-A. Biehs, M. Tschikin, and P. Ben-Abdallah, “Hyperbolic metamaterials as an analog of a blackbody in the near field,” Phys. Rev. Lett. 109(10), 104301 (2012).
[Crossref] [PubMed]

H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological transitions in metamaterials,” Science 336, 205–209 (2012).
[Crossref] [PubMed]

C. R. Simovski, P. A. Belov, A. V. Atrashchenko, and Y. S. Kivshar, “Wire metamaterials: Physics and applications,” Adv. Mater. 24(31), 4229–4248 (2012).
[Crossref] [PubMed]

X. Zhou, Z. Xiao, H. Luo, and S. Wen, “Experimental observation of the spin Hall effect of light on a nanometal film via weak measurements,” Phys. Rev. A 85(4), 043809 (2012).
[Crossref]

2011 (3)

I. S. Nefedov and C. R. Simovski, “Giant radiation heat transfer through micron gaps,” Phys. Rev. B 84(19), 195459 (2011).
[Crossref]

J. Yao, X. Yang, X. Yin, G. Bartal, and X. Zhang, “Three-dimensional nanometer-scale optical cavities of indefinite medium,” Proc. Natl. Acad. Sci. 108(28), 11327 (2011).
[Crossref] [PubMed]

N. Hermosa, A. M. Nugrowati, A. Aiello, and J. P. Woerdman, “Spin Hall effect of light in metallic reflection,” Opt. Lett. 36(16), 3200–3202 (2011).
[Crossref] [PubMed]

2010 (2)

2009 (1)

H. Luo, S. Wen, W. Shu, Z. Tang, Y. Zou, and D. Fan, “Spin Hall effect of a light beam in left-handed materials,” Phys. Rev. A 80(4), 043810 (2009).
[Crossref]

2008 (4)

O. Hosten and P. Kwiat, “Observation of the spin Hall effect of light via weak measurements,” Science 319(5864), 787–790 (2008).
[Crossref] [PubMed]

Y. Gorodetski, A. Niv, V. Kleiner, and E. Hasman, “Observation of the spin-based plasmonic effect in nanoscale structures,” Phys. Rev. Lett. 101(4), 043903 (2008).
[Crossref] [PubMed]

P. T. Leung, C. W. Chen, and H. -P. Chiang, “Large negative Goos-Hänchen shift at metal surfaces,” Opt. Commun. 281(5), 1312–1313 (2008).
[Crossref]

T. Paul, C. Rockstuhl, C. Menzel, and F. Lederer, “Resonant Goos-Hänchen and Imbert-Fedorov shifts at photonic crystal slabs,” Phys. Rev. A 77(5), 053802 (2008).
[Crossref]

2007 (4)

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[Crossref] [PubMed]

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6(12), 946–950 (2007).
[Crossref] [PubMed]

C. Li, “Unified theory for Goos-Hänchen and Imbert-Fedorov effects,” Phys. Rev. A 76(1), 013811 (2007).
[Crossref]

M. Merano, A. Aiello, G.W. ’t Hooft, M. P. van Exter, E. R. Eliel, and J. P. Woerdman, “Observation of Goos-Hänchen shifts in metallic reflection,” Opt. Express 15(24), 15928–15934 (2007).
[Crossref] [PubMed]

2006 (5)

Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Optical hyperlens: Far-field imaging beyond the diffraction limit,” Opt. Express 14(18), 8247–8256 (2006).
[Crossref] [PubMed]

B. Wood, J. B. Pendry, and D. P. Tsai, “Directed subwavelength imaging using a layered metal-dielectric system,” Phys. Rev. B 74(11), 115116 (2006).
[Crossref]

A. A. Govyadinov and V. A. Podolskiy, “Metamaterial photonic funnels for subdiffraction light compression and propagation,” Phys. Rev. B 73(15), 155108 (2006).
[Crossref]

X. Yin and L. Hesselink, “Goos-Hänchen shift surface plasmon resonance sensor,” Appl. Phys. Lett. 89, 261108 (2006).
[Crossref]

K. Y. Bliokh and Y. P. Bliokh, “Conservation of angular momentum, transverse shift, and spin Hall effect in reflection and refraction of an electromagnetic wave packet,” Phys. Rev. Lett. 96(7), 073903 (2006).
[Crossref] [PubMed]

2005 (1)

2004 (1)

C. Li and X. Yang, “Thin-film enhanced Goos-Hänchen shift in total internal reflection,” Chin. Phys. Lett. 21(3), 485–488 (2004).
[Crossref]

2003 (2)

I. V. Shadrivov, A. A. Zharov, and Y. S. Kivshar, “Giant Goos-Hänchen effect at the reflection from left-handed metamaterials,” Appl. Phys. Lett. 83(13), 2713–2715 (2003).
[Crossref]

Z. Liu, L. Hu, and Z. Lin, “Enhancing photon tunnelling by a slab of uniaxially anisotropic left-handed material,” Phys. Lett. A. 308(4), 294–301 (2003).
[Crossref]

1973 (1)

G. S. Agarwal, “New method in the theory of surface polaritons,” Phys. Rev. B 8(10), 4768 (1973).
[Crossref]

1972 (1)

C. Imbert, “Calculation and experimental proof of the transverse shift Induced by total internal reflection of a circularly polarized light beam,” Phys. Rev. D Part. Fields 5(4), 787–796 (1972).
[Crossref]

1956 (1)

S. Rytov, “Electromagnetic properties of a finely stratified medium,” Sov. Phys. JETP 2, 466–475 (1956).

1955 (1)

F. I. Fedorov, “K teorii polnovo otrazenija,” Dokl. Akad. Nauk. SSR 105, 465 (1955).

1951 (1)

1947 (1)

F. Goos and H. Hänchen, “Ein neuer und fundamentaler Versuch zur Totalreflexion,” Ann. Phys. (Berlin) 436(7–8), 333–346 (1947).
[Crossref]

’t Hooft, G.W.

Achanta, V. G.

V. J. Yallapragada, A. P. Ravishankar, G. L. Mulay, G. S. Agarwal, and V. G. Achanta, “Observation of giant Goos-Hänchen and angular shifts at designed metasurfaces,” Sci. Rep. 6, 19319 (2016).
[Crossref]

Agarwal, G. S.

V. J. Yallapragada, A. P. Ravishankar, G. L. Mulay, G. S. Agarwal, and V. G. Achanta, “Observation of giant Goos-Hänchen and angular shifts at designed metasurfaces,” Sci. Rep. 6, 19319 (2016).
[Crossref]

S.-A. Biehs, V. M. Menon, and G. S. Agarwal, “Long-range dipole-dipole interaction and anomalous Förster energy transfer across a hyperbolic metamaterial,” Phys. Rev. B 93(24), 245439 (2016).
[Crossref]

G. S. Agarwal, “New method in the theory of surface polaritons,” Phys. Rev. B 8(10), 4768 (1973).
[Crossref]

Aiello, A.

Al-Amri, M.

S. Asiri, J. Xu, M. Al-Amri, and M. S. Zubairy, “Controlling the Goos-Hänchen and Imbert-Fedorov shifts via pump and driving fields,” Phys. Rev. A 93(1), 013821 (2016).
[Crossref]

Alekseyev, L.

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6(12), 946–950 (2007).
[Crossref] [PubMed]

Alekseyev, L. V.

Asiri, S.

S. Asiri, J. Xu, M. Al-Amri, and M. S. Zubairy, “Controlling the Goos-Hänchen and Imbert-Fedorov shifts via pump and driving fields,” Phys. Rev. A 93(1), 013821 (2016).
[Crossref]

Atrashchenko, A. V.

C. R. Simovski, P. A. Belov, A. V. Atrashchenko, and Y. S. Kivshar, “Wire metamaterials: Physics and applications,” Adv. Mater. 24(31), 4229–4248 (2012).
[Crossref] [PubMed]

Bartal, G.

J. Yao, X. Yang, X. Yin, G. Bartal, and X. Zhang, “Three-dimensional nanometer-scale optical cavities of indefinite medium,” Proc. Natl. Acad. Sci. 108(28), 11327 (2011).
[Crossref] [PubMed]

Belov, P. A.

C. R. Simovski, P. A. Belov, A. V. Atrashchenko, and Y. S. Kivshar, “Wire metamaterials: Physics and applications,” Adv. Mater. 24(31), 4229–4248 (2012).
[Crossref] [PubMed]

Ben-Abdallah, P.

S-A. Biehs, M. Tschikin, and P. Ben-Abdallah, “Hyperbolic metamaterials as an analog of a blackbody in the near field,” Phys. Rev. Lett. 109(10), 104301 (2012).
[Crossref] [PubMed]

Bian, T.

C. Chen, T. Bian, H. Chiang, and P. T. Leung, “Nonlocal optical effects on the Goos-Hänchen shifts at multilayered hyperbolic metamaterials,” J. Opt. 18(2), 025104 (2016).
[Crossref]

Biehs, S.-A.

S.-A. Biehs, V. M. Menon, and G. S. Agarwal, “Long-range dipole-dipole interaction and anomalous Förster energy transfer across a hyperbolic metamaterial,” Phys. Rev. B 93(24), 245439 (2016).
[Crossref]

Biehs, S-A.

S-A. Biehs, M. Tschikin, and P. Ben-Abdallah, “Hyperbolic metamaterials as an analog of a blackbody in the near field,” Phys. Rev. Lett. 109(10), 104301 (2012).
[Crossref] [PubMed]

Bliokh, K. Y.

K. Y. Bliokh and Y. P. Bliokh, “Conservation of angular momentum, transverse shift, and spin Hall effect in reflection and refraction of an electromagnetic wave packet,” Phys. Rev. Lett. 96(7), 073903 (2006).
[Crossref] [PubMed]

Bliokh, Y. P.

K. Y. Bliokh and Y. P. Bliokh, “Conservation of angular momentum, transverse shift, and spin Hall effect in reflection and refraction of an electromagnetic wave packet,” Phys. Rev. Lett. 96(7), 073903 (2006).
[Crossref] [PubMed]

Chen, C.

C. Chen, T. Bian, H. Chiang, and P. T. Leung, “Nonlocal optical effects on the Goos-Hänchen shifts at multilayered hyperbolic metamaterials,” J. Opt. 18(2), 025104 (2016).
[Crossref]

Chen, C. W.

P. T. Leung, C. W. Chen, and H. -P. Chiang, “Large negative Goos-Hänchen shift at metal surfaces,” Opt. Commun. 281(5), 1312–1313 (2008).
[Crossref]

Chen, H.

Chiang, H.

C. Chen, T. Bian, H. Chiang, and P. T. Leung, “Nonlocal optical effects on the Goos-Hänchen shifts at multilayered hyperbolic metamaterials,” J. Opt. 18(2), 025104 (2016).
[Crossref]

Chiang, H. -P.

P. T. Leung, C. W. Chen, and H. -P. Chiang, “Large negative Goos-Hänchen shift at metal surfaces,” Opt. Commun. 281(5), 1312–1313 (2008).
[Crossref]

Cortes, C. L.

Y. Guo, C. L. Cortes, S. Molesky, and Z. Jacob, “Broadband super-Planckian thermal emission from hyperbolic metamaterials,” Appl. Phys. Lett. 101(13), 131106 (2012).
[Crossref]

Dennis, M. R.

M. R. Dennis and Jörg B Götte, “The analogy between optical beam shifts and quantum weak measurements,” New J. Phys. 14(7), 073013 (2012).
[Crossref]

Devore, J. R.

Eliel, E. R.

Fan, D.

H. Luo, S. Wen, W. Shu, Z. Tang, Y. Zou, and D. Fan, “Spin Hall effect of a light beam in left-handed materials,” Phys. Rev. A 80(4), 043810 (2009).
[Crossref]

Fedorov, F. I.

F. I. Fedorov, “K teorii polnovo otrazenija,” Dokl. Akad. Nauk. SSR 105, 465 (1955).

Feng, X.

Ferrari, L.

L. Ferrari, C. Wu, D. Lepage, X. Zhang, and Z. Liu, “Hyperbolic metamaterials and their applications,” Prog. Quantum Electron. 40, 1–40 (2015).
[Crossref]

Franz, K. J.

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6(12), 946–950 (2007).
[Crossref] [PubMed]

Ghosh, N.

Gmachl, C.

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6(12), 946–950 (2007).
[Crossref] [PubMed]

Gong, Q.

Goos, F.

F. Goos and H. Hänchen, “Ein neuer und fundamentaler Versuch zur Totalreflexion,” Ann. Phys. (Berlin) 436(7–8), 333–346 (1947).
[Crossref]

Gorodetski, Y.

Y. Gorodetski, A. Niv, V. Kleiner, and E. Hasman, “Observation of the spin-based plasmonic effect in nanoscale structures,” Phys. Rev. Lett. 101(4), 043903 (2008).
[Crossref] [PubMed]

Goswami, S.

Götte, Jörg B

M. R. Dennis and Jörg B Götte, “The analogy between optical beam shifts and quantum weak measurements,” New J. Phys. 14(7), 073013 (2012).
[Crossref]

Govyadinov, A. A.

A. A. Govyadinov and V. A. Podolskiy, “Metamaterial photonic funnels for subdiffraction light compression and propagation,” Phys. Rev. B 73(15), 155108 (2006).
[Crossref]

Guo, Y.

Y. Guo, C. L. Cortes, S. Molesky, and Z. Jacob, “Broadband super-Planckian thermal emission from hyperbolic metamaterials,” Appl. Phys. Lett. 101(13), 131106 (2012).
[Crossref]

Hänchen, H.

F. Goos and H. Hänchen, “Ein neuer und fundamentaler Versuch zur Totalreflexion,” Ann. Phys. (Berlin) 436(7–8), 333–346 (1947).
[Crossref]

Hasman, E.

Y. Gorodetski, A. Niv, V. Kleiner, and E. Hasman, “Observation of the spin-based plasmonic effect in nanoscale structures,” Phys. Rev. Lett. 101(4), 043903 (2008).
[Crossref] [PubMed]

He, H.

Hermosa, N.

Hesselink, L.

X. Yin and L. Hesselink, “Goos-Hänchen shift surface plasmon resonance sensor,” Appl. Phys. Lett. 89, 261108 (2006).
[Crossref]

Hoffman, A. J.

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6(12), 946–950 (2007).
[Crossref] [PubMed]

Hosten, O.

O. Hosten and P. Kwiat, “Observation of the spin Hall effect of light via weak measurements,” Science 319(5864), 787–790 (2008).
[Crossref] [PubMed]

Howard, S. S.

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6(12), 946–950 (2007).
[Crossref] [PubMed]

Hu, L.

Z. Liu, L. Hu, and Z. Lin, “Enhancing photon tunnelling by a slab of uniaxially anisotropic left-handed material,” Phys. Lett. A. 308(4), 294–301 (2003).
[Crossref]

Imbert, C.

C. Imbert, “Calculation and experimental proof of the transverse shift Induced by total internal reflection of a circularly polarized light beam,” Phys. Rev. D Part. Fields 5(4), 787–796 (1972).
[Crossref]

Jacob, Z.

Y. Guo, C. L. Cortes, S. Molesky, and Z. Jacob, “Broadband super-Planckian thermal emission from hyperbolic metamaterials,” Appl. Phys. Lett. 101(13), 131106 (2012).
[Crossref]

H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological transitions in metamaterials,” Science 336, 205–209 (2012).
[Crossref] [PubMed]

Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Optical hyperlens: Far-field imaging beyond the diffraction limit,” Opt. Express 14(18), 8247–8256 (2006).
[Crossref] [PubMed]

Jayaswal, G.

Kivshar, Y. S.

C. R. Simovski, P. A. Belov, A. V. Atrashchenko, and Y. S. Kivshar, “Wire metamaterials: Physics and applications,” Adv. Mater. 24(31), 4229–4248 (2012).
[Crossref] [PubMed]

I. V. Shadrivov, A. A. Zharov, and Y. S. Kivshar, “Giant Goos-Hänchen effect at the reflection from left-handed metamaterials,” Appl. Phys. Lett. 83(13), 2713–2715 (2003).
[Crossref]

Kleiner, V.

Y. Gorodetski, A. Niv, V. Kleiner, and E. Hasman, “Observation of the spin-based plasmonic effect in nanoscale structures,” Phys. Rev. Lett. 101(4), 043903 (2008).
[Crossref] [PubMed]

Kong, W.

Y. Wan, Z. Zheng, W. Kong, X. Zhao, and J. Liu, “Fiber-to-fiber optical switching based on gigantic Bloch-surface-wave-induced Goos-Hänchen shifts,” J. Photon. 5(1), 7200107 (2013).
[Crossref]

Kretzschmar, I.

H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological transitions in metamaterials,” Science 336, 205–209 (2012).
[Crossref] [PubMed]

Krishnamoorthy, H. N. S.

H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological transitions in metamaterials,” Science 336, 205–209 (2012).
[Crossref] [PubMed]

Kwiat, P.

O. Hosten and P. Kwiat, “Observation of the spin Hall effect of light via weak measurements,” Science 319(5864), 787–790 (2008).
[Crossref] [PubMed]

Lederer, F.

T. Paul, C. Rockstuhl, C. Menzel, and F. Lederer, “Resonant Goos-Hänchen and Imbert-Fedorov shifts at photonic crystal slabs,” Phys. Rev. A 77(5), 053802 (2008).
[Crossref]

Lee, H.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[Crossref] [PubMed]

Lepage, D.

L. Ferrari, C. Wu, D. Lepage, X. Zhang, and Z. Liu, “Hyperbolic metamaterials and their applications,” Prog. Quantum Electron. 40, 1–40 (2015).
[Crossref]

Leung, P. T.

C. Chen, T. Bian, H. Chiang, and P. T. Leung, “Nonlocal optical effects on the Goos-Hänchen shifts at multilayered hyperbolic metamaterials,” J. Opt. 18(2), 025104 (2016).
[Crossref]

P. T. Leung, C. W. Chen, and H. -P. Chiang, “Large negative Goos-Hänchen shift at metal surfaces,” Opt. Commun. 281(5), 1312–1313 (2008).
[Crossref]

Li, C.

C. Li, “Unified theory for Goos-Hänchen and Imbert-Fedorov effects,” Phys. Rev. A 76(1), 013811 (2007).
[Crossref]

C. Li and X. Yang, “Thin-film enhanced Goos-Hänchen shift in total internal reflection,” Chin. Phys. Lett. 21(3), 485–488 (2004).
[Crossref]

Li, D.

Li, Y.

Lin, Z.

Z. Liu, L. Hu, and Z. Lin, “Enhancing photon tunnelling by a slab of uniaxially anisotropic left-handed material,” Phys. Lett. A. 308(4), 294–301 (2003).
[Crossref]

Liu, F.

Liu, J.

Y. Wan, Z. Zheng, W. Kong, X. Zhao, and J. Liu, “Fiber-to-fiber optical switching based on gigantic Bloch-surface-wave-induced Goos-Hänchen shifts,” J. Photon. 5(1), 7200107 (2013).
[Crossref]

Liu, Z.

L. Ferrari, C. Wu, D. Lepage, X. Zhang, and Z. Liu, “Hyperbolic metamaterials and their applications,” Prog. Quantum Electron. 40, 1–40 (2015).
[Crossref]

Y. Qin, Y. Li, X. Feng, Z. Liu, H. He, Y. Xiao, and Q. Gong, “Spin Hall effect of reflected light at the air-uniaxial crystal interface,” Opt. Express 18(16), 16832–16839 (2010).
[Crossref] [PubMed]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[Crossref] [PubMed]

Z. Liu, L. Hu, and Z. Lin, “Enhancing photon tunnelling by a slab of uniaxially anisotropic left-handed material,” Phys. Lett. A. 308(4), 294–301 (2003).
[Crossref]

Lu, H.

Luo, H.

X. Zhou, Z. Xiao, H. Luo, and S. Wen, “Experimental observation of the spin Hall effect of light on a nanometal film via weak measurements,” Phys. Rev. A 85(4), 043809 (2012).
[Crossref]

H. Luo, S. Wen, W. Shu, Z. Tang, Y. Zou, and D. Fan, “Spin Hall effect of a light beam in left-handed materials,” Phys. Rev. A 80(4), 043810 (2009).
[Crossref]

Menon, V. M.

S.-A. Biehs, V. M. Menon, and G. S. Agarwal, “Long-range dipole-dipole interaction and anomalous Förster energy transfer across a hyperbolic metamaterial,” Phys. Rev. B 93(24), 245439 (2016).
[Crossref]

H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological transitions in metamaterials,” Science 336, 205–209 (2012).
[Crossref] [PubMed]

Menzel, C.

T. Paul, C. Rockstuhl, C. Menzel, and F. Lederer, “Resonant Goos-Hänchen and Imbert-Fedorov shifts at photonic crystal slabs,” Phys. Rev. A 77(5), 053802 (2008).
[Crossref]

Merano, M.

Mistura, G.

Molesky, S.

Y. Guo, C. L. Cortes, S. Molesky, and Z. Jacob, “Broadband super-Planckian thermal emission from hyperbolic metamaterials,” Appl. Phys. Lett. 101(13), 131106 (2012).
[Crossref]

Mulay, G. L.

V. J. Yallapragada, A. P. Ravishankar, G. L. Mulay, G. S. Agarwal, and V. G. Achanta, “Observation of giant Goos-Hänchen and angular shifts at designed metasurfaces,” Sci. Rep. 6, 19319 (2016).
[Crossref]

Nandi, A.

Narimanov, E.

H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological transitions in metamaterials,” Science 336, 205–209 (2012).
[Crossref] [PubMed]

Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Optical hyperlens: Far-field imaging beyond the diffraction limit,” Opt. Express 14(18), 8247–8256 (2006).
[Crossref] [PubMed]

Narimanov, E. E.

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6(12), 946–950 (2007).
[Crossref] [PubMed]

Nefedov, I. S.

I. S. Nefedov and C. R. Simovski, “Giant radiation heat transfer through micron gaps,” Phys. Rev. B 84(19), 195459 (2011).
[Crossref]

Niv, A.

Y. Gorodetski, A. Niv, V. Kleiner, and E. Hasman, “Observation of the spin-based plasmonic effect in nanoscale structures,” Phys. Rev. Lett. 101(4), 043903 (2008).
[Crossref] [PubMed]

Nugrowati, A. M.

Pal, M.

Panigrahi, P. K.

Paul, T.

T. Paul, C. Rockstuhl, C. Menzel, and F. Lederer, “Resonant Goos-Hänchen and Imbert-Fedorov shifts at photonic crystal slabs,” Phys. Rev. A 77(5), 053802 (2008).
[Crossref]

Pendry, J. B.

B. Wood, J. B. Pendry, and D. P. Tsai, “Directed subwavelength imaging using a layered metal-dielectric system,” Phys. Rev. B 74(11), 115116 (2006).
[Crossref]

Podolskiy, V. A.

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6(12), 946–950 (2007).
[Crossref] [PubMed]

A. A. Govyadinov and V. A. Podolskiy, “Metamaterial photonic funnels for subdiffraction light compression and propagation,” Phys. Rev. B 73(15), 155108 (2006).
[Crossref]

Qin, Y.

Ravishankar, A. P.

V. J. Yallapragada, A. P. Ravishankar, G. L. Mulay, G. S. Agarwal, and V. G. Achanta, “Observation of giant Goos-Hänchen and angular shifts at designed metasurfaces,” Sci. Rep. 6, 19319 (2016).
[Crossref]

Rockstuhl, C.

T. Paul, C. Rockstuhl, C. Menzel, and F. Lederer, “Resonant Goos-Hänchen and Imbert-Fedorov shifts at photonic crystal slabs,” Phys. Rev. A 77(5), 053802 (2008).
[Crossref]

Rytov, S.

S. Rytov, “Electromagnetic properties of a finely stratified medium,” Sov. Phys. JETP 2, 466–475 (1956).

Shadrivov, I. V.

I. V. Shadrivov, A. A. Zharov, and Y. S. Kivshar, “Giant Goos-Hänchen effect at the reflection from left-handed metamaterials,” Appl. Phys. Lett. 83(13), 2713–2715 (2003).
[Crossref]

Shu, W.

H. Luo, S. Wen, W. Shu, Z. Tang, Y. Zou, and D. Fan, “Spin Hall effect of a light beam in left-handed materials,” Phys. Rev. A 80(4), 043810 (2009).
[Crossref]

Simovski, C. R.

C. R. Simovski, P. A. Belov, A. V. Atrashchenko, and Y. S. Kivshar, “Wire metamaterials: Physics and applications,” Adv. Mater. 24(31), 4229–4248 (2012).
[Crossref] [PubMed]

I. S. Nefedov and C. R. Simovski, “Giant radiation heat transfer through micron gaps,” Phys. Rev. B 84(19), 195459 (2011).
[Crossref]

Sivco, D. L.

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6(12), 946–950 (2007).
[Crossref] [PubMed]

Song, G.

Sun, C.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[Crossref] [PubMed]

Tang, Z.

H. Luo, S. Wen, W. Shu, Z. Tang, Y. Zou, and D. Fan, “Spin Hall effect of a light beam in left-handed materials,” Phys. Rev. A 80(4), 043810 (2009).
[Crossref]

Tsai, D. P.

B. Wood, J. B. Pendry, and D. P. Tsai, “Directed subwavelength imaging using a layered metal-dielectric system,” Phys. Rev. B 74(11), 115116 (2006).
[Crossref]

Tschikin, M.

S-A. Biehs, M. Tschikin, and P. Ben-Abdallah, “Hyperbolic metamaterials as an analog of a blackbody in the near field,” Phys. Rev. Lett. 109(10), 104301 (2012).
[Crossref] [PubMed]

van Exter, M. P.

Wan, Y.

Y. Wan, Z. Zheng, W. Kong, X. Zhao, and J. Liu, “Fiber-to-fiber optical switching based on gigantic Bloch-surface-wave-induced Goos-Hänchen shifts,” J. Photon. 5(1), 7200107 (2013).
[Crossref]

Wang, L. G.

Wasserman, D.

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6(12), 946–950 (2007).
[Crossref] [PubMed]

Wen, S.

X. Zhou, Z. Xiao, H. Luo, and S. Wen, “Experimental observation of the spin Hall effect of light on a nanometal film via weak measurements,” Phys. Rev. A 85(4), 043809 (2012).
[Crossref]

H. Luo, S. Wen, W. Shu, Z. Tang, Y. Zou, and D. Fan, “Spin Hall effect of a light beam in left-handed materials,” Phys. Rev. A 80(4), 043810 (2009).
[Crossref]

Woerdman, J. P.

Wood, B.

B. Wood, J. B. Pendry, and D. P. Tsai, “Directed subwavelength imaging using a layered metal-dielectric system,” Phys. Rev. B 74(11), 115116 (2006).
[Crossref]

Wu, C.

L. Ferrari, C. Wu, D. Lepage, X. Zhang, and Z. Liu, “Hyperbolic metamaterials and their applications,” Prog. Quantum Electron. 40, 1–40 (2015).
[Crossref]

Xiao, Y.

Xiao, Z.

X. Zhou, Z. Xiao, H. Luo, and S. Wen, “Experimental observation of the spin Hall effect of light on a nanometal film via weak measurements,” Phys. Rev. A 85(4), 043809 (2012).
[Crossref]

Xiong, Y.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[Crossref] [PubMed]

Xu, J.

S. Asiri, J. Xu, M. Al-Amri, and M. S. Zubairy, “Controlling the Goos-Hänchen and Imbert-Fedorov shifts via pump and driving fields,” Phys. Rev. A 93(1), 013821 (2016).
[Crossref]

F. Liu, J. Xu, G. Song, and Y. Yang, “Goos-Hänchen and Imbert-Fedorov shifts at the interface of ordinary dielectric and topological insulator,” J. Opt. Soc. Am. B 30(5), 1167–1172 (2013).
[Crossref]

Xu, M.

Yallapragada, V. J.

V. J. Yallapragada, A. P. Ravishankar, G. L. Mulay, G. S. Agarwal, and V. G. Achanta, “Observation of giant Goos-Hänchen and angular shifts at designed metasurfaces,” Sci. Rep. 6, 19319 (2016).
[Crossref]

Yang, X.

J. Yao, X. Yang, X. Yin, G. Bartal, and X. Zhang, “Three-dimensional nanometer-scale optical cavities of indefinite medium,” Proc. Natl. Acad. Sci. 108(28), 11327 (2011).
[Crossref] [PubMed]

C. Li and X. Yang, “Thin-film enhanced Goos-Hänchen shift in total internal reflection,” Chin. Phys. Lett. 21(3), 485–488 (2004).
[Crossref]

Yang, Y.

Yao, J.

J. Yao, X. Yang, X. Yin, G. Bartal, and X. Zhang, “Three-dimensional nanometer-scale optical cavities of indefinite medium,” Proc. Natl. Acad. Sci. 108(28), 11327 (2011).
[Crossref] [PubMed]

Yin, X.

J. Yao, X. Yang, X. Yin, G. Bartal, and X. Zhang, “Three-dimensional nanometer-scale optical cavities of indefinite medium,” Proc. Natl. Acad. Sci. 108(28), 11327 (2011).
[Crossref] [PubMed]

X. Yin and L. Hesselink, “Goos-Hänchen shift surface plasmon resonance sensor,” Appl. Phys. Lett. 89, 261108 (2006).
[Crossref]

Zhang, H.

Zhang, X.

L. Ferrari, C. Wu, D. Lepage, X. Zhang, and Z. Liu, “Hyperbolic metamaterials and their applications,” Prog. Quantum Electron. 40, 1–40 (2015).
[Crossref]

J. Zhao, H. Zhang, X. Zhang, D. Li, H. Lu, and M. Xu, “Abnormal behaviors of Goos-Hänchen shift in hyperbolic metamaterials made of aluminum zinc oxide materials,” Photon. Res. 1(4), 160–163 (2013).
[Crossref]

J. Yao, X. Yang, X. Yin, G. Bartal, and X. Zhang, “Three-dimensional nanometer-scale optical cavities of indefinite medium,” Proc. Natl. Acad. Sci. 108(28), 11327 (2011).
[Crossref] [PubMed]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[Crossref] [PubMed]

Zhao, J.

Zhao, X.

Y. Wan, Z. Zheng, W. Kong, X. Zhao, and J. Liu, “Fiber-to-fiber optical switching based on gigantic Bloch-surface-wave-induced Goos-Hänchen shifts,” J. Photon. 5(1), 7200107 (2013).
[Crossref]

Zharov, A. A.

I. V. Shadrivov, A. A. Zharov, and Y. S. Kivshar, “Giant Goos-Hänchen effect at the reflection from left-handed metamaterials,” Appl. Phys. Lett. 83(13), 2713–2715 (2003).
[Crossref]

Zheng, Z.

Y. Wan, Z. Zheng, W. Kong, X. Zhao, and J. Liu, “Fiber-to-fiber optical switching based on gigantic Bloch-surface-wave-induced Goos-Hänchen shifts,” J. Photon. 5(1), 7200107 (2013).
[Crossref]

Zhou, X.

X. Zhou, Z. Xiao, H. Luo, and S. Wen, “Experimental observation of the spin Hall effect of light on a nanometal film via weak measurements,” Phys. Rev. A 85(4), 043809 (2012).
[Crossref]

Zhu, S. Y.

Zou, Y.

H. Luo, S. Wen, W. Shu, Z. Tang, Y. Zou, and D. Fan, “Spin Hall effect of a light beam in left-handed materials,” Phys. Rev. A 80(4), 043810 (2009).
[Crossref]

Zubairy, M. S.

S. Asiri, J. Xu, M. Al-Amri, and M. S. Zubairy, “Controlling the Goos-Hänchen and Imbert-Fedorov shifts via pump and driving fields,” Phys. Rev. A 93(1), 013821 (2016).
[Crossref]

Adv. Mater. (1)

C. R. Simovski, P. A. Belov, A. V. Atrashchenko, and Y. S. Kivshar, “Wire metamaterials: Physics and applications,” Adv. Mater. 24(31), 4229–4248 (2012).
[Crossref] [PubMed]

Ann. Phys. (Berlin) (1)

F. Goos and H. Hänchen, “Ein neuer und fundamentaler Versuch zur Totalreflexion,” Ann. Phys. (Berlin) 436(7–8), 333–346 (1947).
[Crossref]

Appl. Phys. Lett. (3)

X. Yin and L. Hesselink, “Goos-Hänchen shift surface plasmon resonance sensor,” Appl. Phys. Lett. 89, 261108 (2006).
[Crossref]

Y. Guo, C. L. Cortes, S. Molesky, and Z. Jacob, “Broadband super-Planckian thermal emission from hyperbolic metamaterials,” Appl. Phys. Lett. 101(13), 131106 (2012).
[Crossref]

I. V. Shadrivov, A. A. Zharov, and Y. S. Kivshar, “Giant Goos-Hänchen effect at the reflection from left-handed metamaterials,” Appl. Phys. Lett. 83(13), 2713–2715 (2003).
[Crossref]

Chin. Phys. Lett. (1)

C. Li and X. Yang, “Thin-film enhanced Goos-Hänchen shift in total internal reflection,” Chin. Phys. Lett. 21(3), 485–488 (2004).
[Crossref]

Dokl. Akad. Nauk. SSR (1)

F. I. Fedorov, “K teorii polnovo otrazenija,” Dokl. Akad. Nauk. SSR 105, 465 (1955).

J. Opt. (1)

C. Chen, T. Bian, H. Chiang, and P. T. Leung, “Nonlocal optical effects on the Goos-Hänchen shifts at multilayered hyperbolic metamaterials,” J. Opt. 18(2), 025104 (2016).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (1)

J. Photon. (1)

Y. Wan, Z. Zheng, W. Kong, X. Zhao, and J. Liu, “Fiber-to-fiber optical switching based on gigantic Bloch-surface-wave-induced Goos-Hänchen shifts,” J. Photon. 5(1), 7200107 (2013).
[Crossref]

Nat. Mater. (1)

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6(12), 946–950 (2007).
[Crossref] [PubMed]

New J. Phys. (1)

M. R. Dennis and Jörg B Götte, “The analogy between optical beam shifts and quantum weak measurements,” New J. Phys. 14(7), 073013 (2012).
[Crossref]

Opt. Commun. (1)

P. T. Leung, C. W. Chen, and H. -P. Chiang, “Large negative Goos-Hänchen shift at metal surfaces,” Opt. Commun. 281(5), 1312–1313 (2008).
[Crossref]

Opt. Express (3)

Opt. Lett. (5)

Photon. Res. (1)

Phys. Lett. A. (1)

Z. Liu, L. Hu, and Z. Lin, “Enhancing photon tunnelling by a slab of uniaxially anisotropic left-handed material,” Phys. Lett. A. 308(4), 294–301 (2003).
[Crossref]

Phys. Rev. A (5)

X. Zhou, Z. Xiao, H. Luo, and S. Wen, “Experimental observation of the spin Hall effect of light on a nanometal film via weak measurements,” Phys. Rev. A 85(4), 043809 (2012).
[Crossref]

C. Li, “Unified theory for Goos-Hänchen and Imbert-Fedorov effects,” Phys. Rev. A 76(1), 013811 (2007).
[Crossref]

T. Paul, C. Rockstuhl, C. Menzel, and F. Lederer, “Resonant Goos-Hänchen and Imbert-Fedorov shifts at photonic crystal slabs,” Phys. Rev. A 77(5), 053802 (2008).
[Crossref]

S. Asiri, J. Xu, M. Al-Amri, and M. S. Zubairy, “Controlling the Goos-Hänchen and Imbert-Fedorov shifts via pump and driving fields,” Phys. Rev. A 93(1), 013821 (2016).
[Crossref]

H. Luo, S. Wen, W. Shu, Z. Tang, Y. Zou, and D. Fan, “Spin Hall effect of a light beam in left-handed materials,” Phys. Rev. A 80(4), 043810 (2009).
[Crossref]

Phys. Rev. B (5)

I. S. Nefedov and C. R. Simovski, “Giant radiation heat transfer through micron gaps,” Phys. Rev. B 84(19), 195459 (2011).
[Crossref]

A. A. Govyadinov and V. A. Podolskiy, “Metamaterial photonic funnels for subdiffraction light compression and propagation,” Phys. Rev. B 73(15), 155108 (2006).
[Crossref]

G. S. Agarwal, “New method in the theory of surface polaritons,” Phys. Rev. B 8(10), 4768 (1973).
[Crossref]

B. Wood, J. B. Pendry, and D. P. Tsai, “Directed subwavelength imaging using a layered metal-dielectric system,” Phys. Rev. B 74(11), 115116 (2006).
[Crossref]

S.-A. Biehs, V. M. Menon, and G. S. Agarwal, “Long-range dipole-dipole interaction and anomalous Förster energy transfer across a hyperbolic metamaterial,” Phys. Rev. B 93(24), 245439 (2016).
[Crossref]

Phys. Rev. D Part. Fields (1)

C. Imbert, “Calculation and experimental proof of the transverse shift Induced by total internal reflection of a circularly polarized light beam,” Phys. Rev. D Part. Fields 5(4), 787–796 (1972).
[Crossref]

Phys. Rev. Lett. (3)

K. Y. Bliokh and Y. P. Bliokh, “Conservation of angular momentum, transverse shift, and spin Hall effect in reflection and refraction of an electromagnetic wave packet,” Phys. Rev. Lett. 96(7), 073903 (2006).
[Crossref] [PubMed]

Y. Gorodetski, A. Niv, V. Kleiner, and E. Hasman, “Observation of the spin-based plasmonic effect in nanoscale structures,” Phys. Rev. Lett. 101(4), 043903 (2008).
[Crossref] [PubMed]

S-A. Biehs, M. Tschikin, and P. Ben-Abdallah, “Hyperbolic metamaterials as an analog of a blackbody in the near field,” Phys. Rev. Lett. 109(10), 104301 (2012).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. (1)

J. Yao, X. Yang, X. Yin, G. Bartal, and X. Zhang, “Three-dimensional nanometer-scale optical cavities of indefinite medium,” Proc. Natl. Acad. Sci. 108(28), 11327 (2011).
[Crossref] [PubMed]

Prog. Quantum Electron. (1)

L. Ferrari, C. Wu, D. Lepage, X. Zhang, and Z. Liu, “Hyperbolic metamaterials and their applications,” Prog. Quantum Electron. 40, 1–40 (2015).
[Crossref]

Sci. Rep. (1)

V. J. Yallapragada, A. P. Ravishankar, G. L. Mulay, G. S. Agarwal, and V. G. Achanta, “Observation of giant Goos-Hänchen and angular shifts at designed metasurfaces,” Sci. Rep. 6, 19319 (2016).
[Crossref]

Science (3)

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[Crossref] [PubMed]

H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological transitions in metamaterials,” Science 336, 205–209 (2012).
[Crossref] [PubMed]

O. Hosten and P. Kwiat, “Observation of the spin Hall effect of light via weak measurements,” Science 319(5864), 787–790 (2008).
[Crossref] [PubMed]

Sov. Phys. JETP (1)

S. Rytov, “Electromagnetic properties of a finely stratified medium,” Sov. Phys. JETP 2, 466–475 (1956).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Illustration of a multilayer HMM; (b)-(d) describe the effective permittivities ϵ and ϵ for a Ag/TiO2 multilayer HMM with a silver filling fraction of f = 0.35. (b) plots the real part of ϵ and ϵ; (c) and (d) plot the imaginary part of ϵ and ϵ, respectively. The red and blue lines correspond to ϵ and ϵ, respectively.
Fig. 2
Fig. 2 (a) Geometry of the beam reflection at the surface of a slab made of HMM. The reflected beam will undergo a longitudinal shift δGH and transverse shift δIF. (b), (c) and (d) show the G-H shift δGH at the surface of a slab made of Ag/TiO2 multilayer HMM, Ag and TiO2, respectively. The slabs have the same thickness of 120 nm.
Fig. 3
Fig. 3 (a) plots the G-H shifts calculated using the exact (solid) and approximate (dashed) results at the surface of HMM near the Brewster angle for 345 nm. (b) plots the values of |rp|, and (c) plots the relative phases φ.
Fig. 4
Fig. 4 (a), (b) and (c) show the I-F shift δIF at the surface of a slab made of Ag/TiO2 multilayer HMM, Ag and TiO2, respectively. The slabs have the same thickness of 120 nm. The black, red, green and blue lines denote the wavelengths of 350 nm, 400 nm, 500 nm and 600 nm, respectively.
Fig. 5
Fig. 5 (a) Scheme of the SHEL on a HMM slab. (b) and (c) show the δ | + H at the slab of HMM and Ag, respectively; (d), (e) and (f) show the δ | + V at the slab of HMM, Ag and TiO2, respectively. The black, red, green and blue curves denote the wavelengths of 350 nm, 400 nm, 500 nm and 600nm, respectively.

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

ϵ = f ϵ Ag + ( 1 f ) ϵ TiO 2 ,
ϵ = ϵ Ag ϵ TiO 2 f ϵ TiO 2 + ( 1 f ) ϵ Ag ,
E I ( r , ω ) = d 2 κ e i ( k x x + k y y ) + i w ( k x , k y ) z E I ( κ , ω ) .
E I ( k x , k y ) = E 0 2 σ x σ y π exp [ σ x 2 ( k x k x 0 ) 2 4 ] exp [ σ y 2 k y 2 4 ] .
E R ( r , ω ) = d 2 κ e i ( k x x + k y y ) i w ( k x , k y ) z E R ( κ , ω ) .
δ GH = i d 2 κ E R ( k x , k y ) k x E R ( k x , k y ) d 2 κ E R ( k x , k y ) E R ( k x , k y ) λ 2 π φ θ .
r p = ( k e z ϵ k 0 z ) ( k e z + ϵ k 0 z ) ( k e z ϵ k 0 z ) ( k e z + ϵ k 0 z ) e 2 i k e z d ( k e z + ϵ k 0 z ) ( k e z + ϵ k 0 z ) ( k e z ϵ k 0 z ) ( k e z ϵ k 0 z ) e 2 i k e z d ,
H ^ = p ^ w k y k x k s ^ 2 1 + ( w k y k x k ) 2 ,
V ^ = s ^ + w k y k x k p ^ 2 1 + ( w k y k x k ) 2 .
δ IF = i d 2 κ E R ( k x , k y ) k y E R ( k x , k y ) d 2 κ E R ( k x , k y ) E R ( k x , k y ) .
δ IF = cot θ k [ 1 + 2 cos ( φ s φ p ) | r p | | r s | | r p | 2 + | r s | 2 ] ,
| H r p + i w k y k x k r s 1 i w k y k x k | + 2 + r p i w k y k x k r s 1 + i w k y k x k | 2
| V i r s + w k y k x k r p 1 i w k y k x k | + 2 + i r s w k y k x k r p 1 + i w k y k x k | 2
| H r p 2 [ exp ( i k y δ | + H ) | + + exp ( i k y δ | H ) | ] ,
| V i r s 2 [ exp ( i k y δ | + V ) | + exp ( i k y δ | V ) | ] .
δ | ± H = λ 2 π [ 1 + | r s | | r p | cos ( φ s φ p ) ] cot θ ,
δ | ± V = λ 2 π [ 1 + | r p | | r s | cos ( φ p φ s ) ] cot θ .

Metrics