Abstract

We proposed and experimentally demonstrated a high temperature fiber sensor using a hetero-structured cladding solid-core photonic bandgap fiber (HCSC-PBGF) for the first time to our knowledge. A hetero-structured cladding solid-core photonic bandgap fiber is designed and fabricated that supports vibrant core mode and cladding mode transmission. Then, an all fiber M-Z interference sensor is constructed by splicing single mode fiber at both ends of HCSC-PBGF without any other micromachining. The transmission characteristics of HCSC-PBGF are analyzed with a full-vector beam propagation method and a full-vector finite element method, and the simulation results are consistent with experiment results. The sensitivity of this fiber sensor is as high as 0.09 nm/°C when operating from room temperature to 1000 °C, and the fringe contrast keeps stable and clear. It is obvious that this all fiber sensor will have great application prospects in fiber sensing with the advantages of a compact structure, high sensitivity, and cost-effectiveness.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Design and fabrication of a heterostructured cladding solid-core photonic bandgap fiber for construction of Mach-Zehnder interferometer and high sensitive curvature sensor

Xiongwei Hu, Jinggang Peng, Lvyun Yang, Jinyan Li, Haiqin Li, and Nengli Dai
Opt. Express 26(6) 7005-7012 (2018)

Sensitivity-enhanced high-temperature sensing using all-solid photonic bandgap fiber modal interference

Youfu Geng, Xuejin Li, Xiaoling Tan, Yuanlong Deng, and Yongqin Yu
Appl. Opt. 50(4) 468-472 (2011)

V-groove all-fiber core-cladding intermodal interferometer for high-temperature sensing

Zhen Yin, Youfu Geng, Xuejin Li, Xiaoling Tan, and Rong Gao
Appl. Opt. 54(2) 319-323 (2015)

References

  • View by:
  • |
  • |
  • |

  1. J. Zhou, L. Xia, R. Cheng, Y. Wen, and J. Rohollahnejad, “Radio-frequency unbalanced M-Z interferometer for wavelength interrogation of fiber Bragg grating sensors,” Opt. Lett. 41(2), 313–316 (2016).
    [Crossref] [PubMed]
  2. Y. Huang, Z. Tian, L. P. Sun, D. Sun, J. Li, Y. Ran, and B. O. Guan, “High-sensitivity DNA biosensor based on optical fiber taper interferometer coated with conjugated polymer tentacle,” Opt. Express 23(21), 26962–26968 (2015).
    [Crossref] [PubMed]
  3. Z. Wu, P. P. Shum, X. Shao, H. Zhang, N. Zhang, T. Huang, G. Humbert, J. L. Auguste, F. Gérome, J. M. Blondy, and X. Q. Dinh, “Temperature- and strain-insensitive curvature sensor based on ring-core modes in dual-concentric-core fiber,” Opt. Lett. 41(2), 380–383 (2016).
    [Crossref] [PubMed]
  4. H. Luo, Q. Sun, X. Li, Z. Yan, Y. Li, D. Liu, and L. Zhang, “Refractive index sensitivity characteristics near the dispersion turning point of the multimode microfiber-based Mach-Zehnder interferometer,” Opt. Lett. 40(21), 5042–5045 (2015).
    [Crossref] [PubMed]
  5. H. Wang, S. Pu, N. Wang, S. Dong, and J. Huang, “Magnetic field sensing based on singlemode-multimode-singlemode fiber structures using magnetic fluids as cladding,” Opt. Lett. 38(19), 3765–3768 (2013).
    [Crossref] [PubMed]
  6. L. Yang, L. Xue, D. Che, and J. Qian, “Guided-mode-leaky-mode-guided-mode fiber structure and its application to high refractive index sensing,” Opt. Lett. 37(4), 587–589 (2012).
    [Crossref] [PubMed]
  7. O. Frazão, J. Viegas, P. Caldas, J. L. Santos, F. M. Araújo, L. A. Ferreira, and F. Farahi, “All-fiber Mach-Zehnder curvature sensor based on multimode interference combined with a long-period grating,” Opt. Lett. 32(21), 3074–3076 (2007).
    [Crossref] [PubMed]
  8. J. H. Lim, H. S. Jang, K. S. Lee, J. C. Kim, and B. H. Lee, “Mach-Zehnder interferometer formed in a photonic crystal fiber based on a pair of long-period fiber gratings,” Opt. Lett. 29(4), 346–348 (2004).
    [Crossref] [PubMed]
  9. Y. Tan, L. P. Sun, L. Jin, J. Li, and B. O. Guan, “Microfiber Mach-Zehnder interferometer based on long period grating for sensing applications,” Opt. Express 21(1), 154–164 (2013).
    [Crossref] [PubMed]
  10. Y. G. Han, X. Dong, J. H. Lee, and S. B. Lee, “Simultaneous measurement of bending and temperature based on a single sampled chirped fiber Bragg grating embedded on a flexible cantilever beam,” Opt. Lett. 31(19), 2839–2841 (2006).
    [Crossref] [PubMed]
  11. S. Zhang, W. Zhang, S. Gao, P. Geng, and X. Xue, “Fiber-optic bending vector sensor based on Mach-Zehnder interferometer exploiting lateral-offset and up-taper,” Opt. Lett. 37(21), 4480–4482 (2012).
    [Crossref] [PubMed]
  12. D. Monzon-Hernandez, A. Martinez-Rios, I. Torres-Gomez, and G. Salceda-Delgado, “Compact optical fiber curvature sensor based on concatenating two tapers,” Opt. Lett. 36(22), 4380–4382 (2011).
    [Crossref] [PubMed]
  13. J. Villatoro, A. Van Newkirk, E. Antonio-Lopez, J. Zubia, A. Schülzgen, and R. Amezcua-Correa, “Ultrasensitive vector bending sensor based on multicore optical fiber,” Opt. Lett. 41(4), 832–835 (2016).
    [Crossref] [PubMed]
  14. G. Salceda-Delgado, A. Van Newkirk, J. E. Antonio-Lopez, A. Martinez-Rios, A. Schülzgen, and R. Amezcua Correa, “Compact fiber-optic curvature sensor based on super-mode interference in a seven-core fiber,” Opt. Lett. 40(7), 1468–1471 (2015).
    [Crossref] [PubMed]
  15. Z. Ou, Y. Yu, P. Yan, J. Wang, Q. Huang, X. Chen, C. Du, and H. Wei, “Ambient refractive index-independent bending vector sensor based on seven-core photonic crystal fiber using lateral offset splicing,” Opt. Express 21(20), 23812–23821 (2013).
    [Crossref] [PubMed]
  16. B. Zhang and M. Kahrizi, “High-Temperature Resistance Fiber Bragg Grating Temperature Sensor Fabrication,” IEEE Sens. J. 7(4), 586–591 (2007).
    [Crossref]
  17. T. Habisreuther, T. Elsmann, Z. Pan, A. Graf, R. Willsch, and M. A. Schmidt, “Sapphire fiber Bragg gratings for high temperature and dynamic temperature diagnostics,” Appl. Therm. Eng. 91, 860–865 (2015).
    [Crossref]
  18. G. Rego, O. Okhotnikov, E. Dianov, and V. Sulimov, “High-Temperature Stability of Long-Period Fiber Gratings Produced Using an Electric Arc,” J. Lightwave Technol. 19(10), 1574–1579 (2001).
    [Crossref]
  19. C. Wu, H. Y. Fu, K. K. Qureshi, B. O. Guan, and H. Y. Tam, “High-pressure and high-temperature characteristics of a Fabry-Perot interferometer based on photonic crystal fiber,” Opt. Lett. 36(3), 412–414 (2011).
    [Crossref] [PubMed]
  20. L. V. Nguyen, S. C. Warren-Smith, H. Ebendorff-Heidepriem, and T. M. Monro, “Interferometric high temperature sensor using suspended-core optical fibers,” Opt. Express 24(8), 8967–8977 (2016).
    [Crossref] [PubMed]
  21. Y. Liu, S. Qu, and Y. Li, “Single microchannel high-temperature fiber sensor by femtosecond laser-induced water breakdown,” Opt. Lett. 38(3), 335–337 (2013).
    [Crossref] [PubMed]
  22. J. Wang, B. Dong, E. Lally, J. Gong, M. Han, and A. Wang, “Multiplexed high temperature sensing with sapphire fiber air gap-based extrinsic Fabry-Perot interferometers,” Opt. Lett. 35(5), 619–621 (2010).
    [Crossref] [PubMed]
  23. H. Y. Choi, K. S. Park, S. J. Park, U. C. Paek, B. H. Lee, and E. S. Choi, “Miniature fiber-optic high temperature sensor based on a hybrid structured Fabry-Perot interferometer,” Opt. Lett. 33(21), 2455–2457 (2008).
    [Crossref] [PubMed]
  24. L. Jiang, J. Yang, S. Wang, B. Li, and M. Wang, “Fiber Mach-Zehnder interferometer based on microcavities for high-temperature sensing with high sensitivity,” Opt. Lett. 36(19), 3753–3755 (2011).
    [Crossref] [PubMed]
  25. P. Steinvurzel, C. M. Sterke, M. J. Steel, B. T. Kuhlmey, and B. J. Eggleton, “Single scatterer Fano resonances in solid core photonic band gap fibers,” Opt. Express 14(19), 8797–8811 (2006).
    [Crossref] [PubMed]
  26. N. M. Litchinitser, S. C. Dunn, B. Usner, B. J. Eggleton, T. P. White, R. C. McPhedran, and C. M. de Sterke, “Resonances in microstructured optical waveguides,” Opt. Express 11(10), 1243–1251 (2003).
    [Crossref] [PubMed]
  27. L. Huang, M. Hu, X. Fang, Y. Li, L. Chai, H. Wei, W. Tong, J. Luo, and C. Wang, “Intermodal Cherenkov radiation between two transmission bandgaps in an all-solid PBG fiber,” IEEE Photonics Technol. Lett. 26(19), 1968–1971 (2014).
    [Crossref]
  28. G. Coviello, V. Finazzi, J. Villatoro, and V. Pruneri, “Thermally stabilized PCF-based sensor for temperature measurements up to 1000ºC,” Opt. Express 17(24), 21551–21559 (2009).
    [Crossref] [PubMed]

2016 (4)

2015 (4)

2014 (1)

L. Huang, M. Hu, X. Fang, Y. Li, L. Chai, H. Wei, W. Tong, J. Luo, and C. Wang, “Intermodal Cherenkov radiation between two transmission bandgaps in an all-solid PBG fiber,” IEEE Photonics Technol. Lett. 26(19), 1968–1971 (2014).
[Crossref]

2013 (4)

2012 (2)

2011 (3)

2010 (1)

2009 (1)

2008 (1)

2007 (2)

2006 (2)

2004 (1)

2003 (1)

2001 (1)

Amezcua Correa, R.

Amezcua-Correa, R.

Antonio-Lopez, E.

Antonio-Lopez, J. E.

Araújo, F. M.

Auguste, J. L.

Blondy, J. M.

Caldas, P.

Chai, L.

L. Huang, M. Hu, X. Fang, Y. Li, L. Chai, H. Wei, W. Tong, J. Luo, and C. Wang, “Intermodal Cherenkov radiation between two transmission bandgaps in an all-solid PBG fiber,” IEEE Photonics Technol. Lett. 26(19), 1968–1971 (2014).
[Crossref]

Che, D.

Chen, X.

Cheng, R.

Choi, E. S.

Choi, H. Y.

Coviello, G.

de Sterke, C. M.

Dianov, E.

Dinh, X. Q.

Dong, B.

Dong, S.

Dong, X.

Du, C.

Dunn, S. C.

Ebendorff-Heidepriem, H.

Eggleton, B. J.

Elsmann, T.

T. Habisreuther, T. Elsmann, Z. Pan, A. Graf, R. Willsch, and M. A. Schmidt, “Sapphire fiber Bragg gratings for high temperature and dynamic temperature diagnostics,” Appl. Therm. Eng. 91, 860–865 (2015).
[Crossref]

Fang, X.

L. Huang, M. Hu, X. Fang, Y. Li, L. Chai, H. Wei, W. Tong, J. Luo, and C. Wang, “Intermodal Cherenkov radiation between two transmission bandgaps in an all-solid PBG fiber,” IEEE Photonics Technol. Lett. 26(19), 1968–1971 (2014).
[Crossref]

Farahi, F.

Ferreira, L. A.

Finazzi, V.

Frazão, O.

Fu, H. Y.

Gao, S.

Geng, P.

Gérome, F.

Gong, J.

Graf, A.

T. Habisreuther, T. Elsmann, Z. Pan, A. Graf, R. Willsch, and M. A. Schmidt, “Sapphire fiber Bragg gratings for high temperature and dynamic temperature diagnostics,” Appl. Therm. Eng. 91, 860–865 (2015).
[Crossref]

Guan, B. O.

Habisreuther, T.

T. Habisreuther, T. Elsmann, Z. Pan, A. Graf, R. Willsch, and M. A. Schmidt, “Sapphire fiber Bragg gratings for high temperature and dynamic temperature diagnostics,” Appl. Therm. Eng. 91, 860–865 (2015).
[Crossref]

Han, M.

Han, Y. G.

Hu, M.

L. Huang, M. Hu, X. Fang, Y. Li, L. Chai, H. Wei, W. Tong, J. Luo, and C. Wang, “Intermodal Cherenkov radiation between two transmission bandgaps in an all-solid PBG fiber,” IEEE Photonics Technol. Lett. 26(19), 1968–1971 (2014).
[Crossref]

Huang, J.

Huang, L.

L. Huang, M. Hu, X. Fang, Y. Li, L. Chai, H. Wei, W. Tong, J. Luo, and C. Wang, “Intermodal Cherenkov radiation between two transmission bandgaps in an all-solid PBG fiber,” IEEE Photonics Technol. Lett. 26(19), 1968–1971 (2014).
[Crossref]

Huang, Q.

Huang, T.

Huang, Y.

Humbert, G.

Jang, H. S.

Jiang, L.

Jin, L.

Kahrizi, M.

B. Zhang and M. Kahrizi, “High-Temperature Resistance Fiber Bragg Grating Temperature Sensor Fabrication,” IEEE Sens. J. 7(4), 586–591 (2007).
[Crossref]

Kim, J. C.

Kuhlmey, B. T.

Lally, E.

Lee, B. H.

Lee, J. H.

Lee, K. S.

Lee, S. B.

Li, B.

Li, J.

Li, X.

Li, Y.

Lim, J. H.

Litchinitser, N. M.

Liu, D.

Liu, Y.

Luo, H.

Luo, J.

L. Huang, M. Hu, X. Fang, Y. Li, L. Chai, H. Wei, W. Tong, J. Luo, and C. Wang, “Intermodal Cherenkov radiation between two transmission bandgaps in an all-solid PBG fiber,” IEEE Photonics Technol. Lett. 26(19), 1968–1971 (2014).
[Crossref]

Martinez-Rios, A.

McPhedran, R. C.

Monro, T. M.

Monzon-Hernandez, D.

Nguyen, L. V.

Okhotnikov, O.

Ou, Z.

Paek, U. C.

Pan, Z.

T. Habisreuther, T. Elsmann, Z. Pan, A. Graf, R. Willsch, and M. A. Schmidt, “Sapphire fiber Bragg gratings for high temperature and dynamic temperature diagnostics,” Appl. Therm. Eng. 91, 860–865 (2015).
[Crossref]

Park, K. S.

Park, S. J.

Pruneri, V.

Pu, S.

Qian, J.

Qu, S.

Qureshi, K. K.

Ran, Y.

Rego, G.

Rohollahnejad, J.

Salceda-Delgado, G.

Santos, J. L.

Schmidt, M. A.

T. Habisreuther, T. Elsmann, Z. Pan, A. Graf, R. Willsch, and M. A. Schmidt, “Sapphire fiber Bragg gratings for high temperature and dynamic temperature diagnostics,” Appl. Therm. Eng. 91, 860–865 (2015).
[Crossref]

Schülzgen, A.

Shao, X.

Shum, P. P.

Steel, M. J.

Steinvurzel, P.

Sterke, C. M.

Sulimov, V.

Sun, D.

Sun, L. P.

Sun, Q.

Tam, H. Y.

Tan, Y.

Tian, Z.

Tong, W.

L. Huang, M. Hu, X. Fang, Y. Li, L. Chai, H. Wei, W. Tong, J. Luo, and C. Wang, “Intermodal Cherenkov radiation between two transmission bandgaps in an all-solid PBG fiber,” IEEE Photonics Technol. Lett. 26(19), 1968–1971 (2014).
[Crossref]

Torres-Gomez, I.

Usner, B.

Van Newkirk, A.

Viegas, J.

Villatoro, J.

Wang, A.

Wang, C.

L. Huang, M. Hu, X. Fang, Y. Li, L. Chai, H. Wei, W. Tong, J. Luo, and C. Wang, “Intermodal Cherenkov radiation between two transmission bandgaps in an all-solid PBG fiber,” IEEE Photonics Technol. Lett. 26(19), 1968–1971 (2014).
[Crossref]

Wang, H.

Wang, J.

Wang, M.

Wang, N.

Wang, S.

Warren-Smith, S. C.

Wei, H.

L. Huang, M. Hu, X. Fang, Y. Li, L. Chai, H. Wei, W. Tong, J. Luo, and C. Wang, “Intermodal Cherenkov radiation between two transmission bandgaps in an all-solid PBG fiber,” IEEE Photonics Technol. Lett. 26(19), 1968–1971 (2014).
[Crossref]

Z. Ou, Y. Yu, P. Yan, J. Wang, Q. Huang, X. Chen, C. Du, and H. Wei, “Ambient refractive index-independent bending vector sensor based on seven-core photonic crystal fiber using lateral offset splicing,” Opt. Express 21(20), 23812–23821 (2013).
[Crossref] [PubMed]

Wen, Y.

White, T. P.

Willsch, R.

T. Habisreuther, T. Elsmann, Z. Pan, A. Graf, R. Willsch, and M. A. Schmidt, “Sapphire fiber Bragg gratings for high temperature and dynamic temperature diagnostics,” Appl. Therm. Eng. 91, 860–865 (2015).
[Crossref]

Wu, C.

Wu, Z.

Xia, L.

Xue, L.

Xue, X.

Yan, P.

Yan, Z.

Yang, J.

Yang, L.

Yu, Y.

Zhang, B.

B. Zhang and M. Kahrizi, “High-Temperature Resistance Fiber Bragg Grating Temperature Sensor Fabrication,” IEEE Sens. J. 7(4), 586–591 (2007).
[Crossref]

Zhang, H.

Zhang, L.

Zhang, N.

Zhang, S.

Zhang, W.

Zhou, J.

Zubia, J.

Appl. Therm. Eng. (1)

T. Habisreuther, T. Elsmann, Z. Pan, A. Graf, R. Willsch, and M. A. Schmidt, “Sapphire fiber Bragg gratings for high temperature and dynamic temperature diagnostics,” Appl. Therm. Eng. 91, 860–865 (2015).
[Crossref]

IEEE Photonics Technol. Lett. (1)

L. Huang, M. Hu, X. Fang, Y. Li, L. Chai, H. Wei, W. Tong, J. Luo, and C. Wang, “Intermodal Cherenkov radiation between two transmission bandgaps in an all-solid PBG fiber,” IEEE Photonics Technol. Lett. 26(19), 1968–1971 (2014).
[Crossref]

IEEE Sens. J. (1)

B. Zhang and M. Kahrizi, “High-Temperature Resistance Fiber Bragg Grating Temperature Sensor Fabrication,” IEEE Sens. J. 7(4), 586–591 (2007).
[Crossref]

J. Lightwave Technol. (1)

Opt. Express (7)

Z. Ou, Y. Yu, P. Yan, J. Wang, Q. Huang, X. Chen, C. Du, and H. Wei, “Ambient refractive index-independent bending vector sensor based on seven-core photonic crystal fiber using lateral offset splicing,” Opt. Express 21(20), 23812–23821 (2013).
[Crossref] [PubMed]

L. V. Nguyen, S. C. Warren-Smith, H. Ebendorff-Heidepriem, and T. M. Monro, “Interferometric high temperature sensor using suspended-core optical fibers,” Opt. Express 24(8), 8967–8977 (2016).
[Crossref] [PubMed]

Y. Huang, Z. Tian, L. P. Sun, D. Sun, J. Li, Y. Ran, and B. O. Guan, “High-sensitivity DNA biosensor based on optical fiber taper interferometer coated with conjugated polymer tentacle,” Opt. Express 23(21), 26962–26968 (2015).
[Crossref] [PubMed]

Y. Tan, L. P. Sun, L. Jin, J. Li, and B. O. Guan, “Microfiber Mach-Zehnder interferometer based on long period grating for sensing applications,” Opt. Express 21(1), 154–164 (2013).
[Crossref] [PubMed]

G. Coviello, V. Finazzi, J. Villatoro, and V. Pruneri, “Thermally stabilized PCF-based sensor for temperature measurements up to 1000ºC,” Opt. Express 17(24), 21551–21559 (2009).
[Crossref] [PubMed]

P. Steinvurzel, C. M. Sterke, M. J. Steel, B. T. Kuhlmey, and B. J. Eggleton, “Single scatterer Fano resonances in solid core photonic band gap fibers,” Opt. Express 14(19), 8797–8811 (2006).
[Crossref] [PubMed]

N. M. Litchinitser, S. C. Dunn, B. Usner, B. J. Eggleton, T. P. White, R. C. McPhedran, and C. M. de Sterke, “Resonances in microstructured optical waveguides,” Opt. Express 11(10), 1243–1251 (2003).
[Crossref] [PubMed]

Opt. Lett. (17)

Y. G. Han, X. Dong, J. H. Lee, and S. B. Lee, “Simultaneous measurement of bending and temperature based on a single sampled chirped fiber Bragg grating embedded on a flexible cantilever beam,” Opt. Lett. 31(19), 2839–2841 (2006).
[Crossref] [PubMed]

S. Zhang, W. Zhang, S. Gao, P. Geng, and X. Xue, “Fiber-optic bending vector sensor based on Mach-Zehnder interferometer exploiting lateral-offset and up-taper,” Opt. Lett. 37(21), 4480–4482 (2012).
[Crossref] [PubMed]

D. Monzon-Hernandez, A. Martinez-Rios, I. Torres-Gomez, and G. Salceda-Delgado, “Compact optical fiber curvature sensor based on concatenating two tapers,” Opt. Lett. 36(22), 4380–4382 (2011).
[Crossref] [PubMed]

J. Villatoro, A. Van Newkirk, E. Antonio-Lopez, J. Zubia, A. Schülzgen, and R. Amezcua-Correa, “Ultrasensitive vector bending sensor based on multicore optical fiber,” Opt. Lett. 41(4), 832–835 (2016).
[Crossref] [PubMed]

G. Salceda-Delgado, A. Van Newkirk, J. E. Antonio-Lopez, A. Martinez-Rios, A. Schülzgen, and R. Amezcua Correa, “Compact fiber-optic curvature sensor based on super-mode interference in a seven-core fiber,” Opt. Lett. 40(7), 1468–1471 (2015).
[Crossref] [PubMed]

Z. Wu, P. P. Shum, X. Shao, H. Zhang, N. Zhang, T. Huang, G. Humbert, J. L. Auguste, F. Gérome, J. M. Blondy, and X. Q. Dinh, “Temperature- and strain-insensitive curvature sensor based on ring-core modes in dual-concentric-core fiber,” Opt. Lett. 41(2), 380–383 (2016).
[Crossref] [PubMed]

H. Luo, Q. Sun, X. Li, Z. Yan, Y. Li, D. Liu, and L. Zhang, “Refractive index sensitivity characteristics near the dispersion turning point of the multimode microfiber-based Mach-Zehnder interferometer,” Opt. Lett. 40(21), 5042–5045 (2015).
[Crossref] [PubMed]

H. Wang, S. Pu, N. Wang, S. Dong, and J. Huang, “Magnetic field sensing based on singlemode-multimode-singlemode fiber structures using magnetic fluids as cladding,” Opt. Lett. 38(19), 3765–3768 (2013).
[Crossref] [PubMed]

L. Yang, L. Xue, D. Che, and J. Qian, “Guided-mode-leaky-mode-guided-mode fiber structure and its application to high refractive index sensing,” Opt. Lett. 37(4), 587–589 (2012).
[Crossref] [PubMed]

O. Frazão, J. Viegas, P. Caldas, J. L. Santos, F. M. Araújo, L. A. Ferreira, and F. Farahi, “All-fiber Mach-Zehnder curvature sensor based on multimode interference combined with a long-period grating,” Opt. Lett. 32(21), 3074–3076 (2007).
[Crossref] [PubMed]

J. H. Lim, H. S. Jang, K. S. Lee, J. C. Kim, and B. H. Lee, “Mach-Zehnder interferometer formed in a photonic crystal fiber based on a pair of long-period fiber gratings,” Opt. Lett. 29(4), 346–348 (2004).
[Crossref] [PubMed]

Y. Liu, S. Qu, and Y. Li, “Single microchannel high-temperature fiber sensor by femtosecond laser-induced water breakdown,” Opt. Lett. 38(3), 335–337 (2013).
[Crossref] [PubMed]

J. Wang, B. Dong, E. Lally, J. Gong, M. Han, and A. Wang, “Multiplexed high temperature sensing with sapphire fiber air gap-based extrinsic Fabry-Perot interferometers,” Opt. Lett. 35(5), 619–621 (2010).
[Crossref] [PubMed]

H. Y. Choi, K. S. Park, S. J. Park, U. C. Paek, B. H. Lee, and E. S. Choi, “Miniature fiber-optic high temperature sensor based on a hybrid structured Fabry-Perot interferometer,” Opt. Lett. 33(21), 2455–2457 (2008).
[Crossref] [PubMed]

L. Jiang, J. Yang, S. Wang, B. Li, and M. Wang, “Fiber Mach-Zehnder interferometer based on microcavities for high-temperature sensing with high sensitivity,” Opt. Lett. 36(19), 3753–3755 (2011).
[Crossref] [PubMed]

J. Zhou, L. Xia, R. Cheng, Y. Wen, and J. Rohollahnejad, “Radio-frequency unbalanced M-Z interferometer for wavelength interrogation of fiber Bragg grating sensors,” Opt. Lett. 41(2), 313–316 (2016).
[Crossref] [PubMed]

C. Wu, H. Y. Fu, K. K. Qureshi, B. O. Guan, and H. Y. Tam, “High-pressure and high-temperature characteristics of a Fabry-Perot interferometer based on photonic crystal fiber,” Opt. Lett. 36(3), 412–414 (2011).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) The micrograph shows the cross section of the HCSC-PBGF. (b) Schematic diagram and operation of the MZI. (c)- (d) Microscopic images of the fusion splicing joints.
Fig. 2
Fig. 2 (a) Transmission spectrum of the MZI with 10 cm long HCSC-PBGF. (b) Beam propagation simulation of the MZI at the wavelength of 1562.97 nm and 1587.26 nm, respectively.
Fig. 3
Fig. 3 Interference spectrum of MZI with different lengths of HCSC-PBGF (L = 45 cm, 37cm, 22.5 cm).
Fig. 4
Fig. 4 (a) The effective refractive indices of core mode and cladding mode. (b)-(c) The intensity profiles of core mode and cladding mode calculated by full-vector finite element. (d) Spatial frequency spectrum by taking the FFT for MZI with the length of HCSC-PBGF is 45 cm, 37 cm and 22.5 cm.
Fig. 5
Fig. 5 (a) Response to high temperature for the HCSC-PBGF-based MZI. (b) Interference spectra at 29 °C, 200 °C, 400 °C, 600 °C, 800 °C, 1000 °C.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

I total = I core + I clad +2 I core I clad cosΦ
Φ= 2π( n core,eff n clad,eff )L λ
FSR= λ 2 Δ n eff L
Δ n eff (T)Δ n eff +ΔT Δ n eff T
L(T)L+ΔT L T
Δλ= λ dip ( 1 Δ n eff Δ n eff T + 1 L L T )ΔT

Metrics