Abstract

Optical background noise and second-order nonlinear distortions are two main challenges faced by indoor high-speed VLC system. In this paper, a novel phase shifted Manchester (PS-Manchester) coding based on PAM-8 is proposed and experimentally demonstrated to mitigate these noise and distortions. With the aid of PS-Manchester coding and WDM, a total data rate of 3.375-Gb/s can be successfully achieved in the RGB-LED based VLC system. The BER is under 7% HD-FEC limit of 3.8x10−3 after 1-m indoor free space transmission. To the best of our knowledge, this is the highest data rate ever achieved in PAM VLC systems.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
4.5-Gb/s RGB-LED based WDM visible light communication system employing CAP modulation and RLS based adaptive equalization

Yiguang Wang, Xingxing Huang, Li Tao, Jianyang Shi, and Nan Chi
Opt. Express 23(10) 13626-13633 (2015)

Spectrally efficient multi-band visible light communication system based on Nyquist PAM-8 modulation

Nan Chi, Mengjie Zhang, Jianyang Shi, and Yiheng Zhao
Photon. Res. 5(6) 588-597 (2017)

References

  • View by:
  • |
  • |
  • |

  1. D. O’Brien, H. L. Minh, L. Zeng, G. Faulkner, K. Lee, D. Jung, Y. Oh, and E. T. Won, “Indoor visible light communications: challenges and prospects,” Proc. SPIE 7091, 709106 (2008).
    [Crossref]
  2. Y. Wang, N. Chi, Y. Wang, R. Li, X. Huang, C. Yang, and Z. Zhang, “High-speed quasi-balanced detection OFDM in visible light communication,” Opt. Express 21(23), 27558–27564 (2013).
    [Crossref] [PubMed]
  3. Y. Wang, X. Huang, L. Tao, J. Shi, and N. Chi, “4.5-Gb/s RGB-LED based WDM visible light communication system employing CAP modulation and RLS based adaptive equalization,” Opt. Express 23(10), 13626–13633 (2015).
    [Crossref] [PubMed]
  4. Y. Wang, Y. Wang, N. Chi, J. Yu, and H. Shang, “Demonstration of 575-Mb/s downlink and 225-Mb/s uplink bi-directional SCM-WDM visible light communication using RGB LED and phosphor-based LED,” Opt. Express 21(1), 1203–1208 (2013).
    [Crossref] [PubMed]
  5. G. Cossu, A. Wajahat, R. Corsini, and E. Ciaramella, “5.6Gbit/s downlink and 1.5Gbit/s uplink optical wireless transmission at indoor distances (≥1.5m),” in European Conference on Optical Communication (ECOC), Amsterdam, Netherlands, 2014, We.3.6.4.
  6. G. Stepniak, L. Maksymiuk, and J. Siuzdak, “1.1Gbit/s white lighting LED-based visible light link with pulse amplitude modulation and volterra DFE equalization,” Microw. Opt. Technol. Lett. 57(7), 1620–1622 (2015).
    [Crossref]
  7. G. Stepniak, J. Siuzdak, and P. Zwierko, “Compensation of a VLC phosphorescent white LED nonlinearity by means of Volterra DFE,” IEEE Photonics Technol. Lett. 25(16), 1597–1600 (2013).
    [Crossref]
  8. W. Martin, “Photodetector responsivity” in Computer Science and Communications Dictionary (Academic, 2001), pp. 1268.
  9. A. M. Cailean, B. Cagneau, L. Chassagne, V. Popa, and M. Dimian, “Evaluation of the noise effects on Visible Light Communications using Manchester and Miller coding,” in IEEE International Conference on Development and Application Systems (DAS, 2014), pp. 85–89.
    [Crossref]
  10. C. Chow, C. Yeh, Y. Liu, and P. Huang, “‘Mitigation of optical background noise in light-emitting diode (LED) optical wireless communication systems,” IEEE Photonics J. 5(1), 7900307 (2013).
    [Crossref]
  11. M. Zhang, Y. Wang, Z. Wang, J. Zhao, and N. Chi, “A novel scalar MCMMA blind equalization utilized in 8-PAM LED based visible light communication system,” presented at IEEE International Conference on Communications, Kuala Lumpur, Malaysia, 23–27 May, 2016.
  12. A. Leven, F. Vacondio, L. Schmalen, S. Brink, and W. Idler, “Estimation of soft FEC performance in optical transmission experiments,” IEEE Photonics Technol. Lett. 23(20), 1547–1549 (2011).
    [Crossref]
  13. K. Zhong, X. Zhou, T. Gui, L. Tao, Y. Gao, W. Chen, J. Man, L. Zeng, A. P. T. Lau, and C. Lu, “Experimental study of PAM-4, CAP-16, and DMT for 100 Gb/s short reach optical transmission systems,” Opt. Express 23(2), 1176–1189 (2015).
    [Crossref] [PubMed]
  14. G. Stepniak, L. Maksymiuk, and J. Siuzdak, “Experimental comparison of PAM, CAP and DMT modulations in phosphorescent white LED transmission link,” IEEE Photonics J. 7(3), 7901708 (2015).
    [Crossref]
  15. X. Huang, J. Shi, J. Li, Y. Wang, Y. Wang, and N. Chi, “750Mbit/s Visible Light Communications employing 64QAM-OFDM Based on Amplitude Equalization Circuit,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2015), paper Tu2G.1.1385–1391 (2003).
    [Crossref]
  16. I. Takai, S. Ito, K. Yasutomi, K. Kagawa, M. Andoh, and S. Kawahito, “LED and CMOS image sensor based optical wireless communication system for automotive applications,” IEEE Photonics J. 5(5), 6801418 (2013).
    [Crossref]
  17. J. S. Youn, M. J. Lee, K. Y. Park, and W. Y. Choi, “10-Gb/s 850-nm CMOS OEIC receiver with a silicon avalanche photodetector,” IEEE J. Quantum. Elec. J. 48(2), 229–236 (2012).
    [Crossref]
  18. B. Analui, D. Guckenberger, D. Kucharski, and A. Narasimha, “A fully integrated 20-gb/s optoelectronic transceiver implemented in a standard 0.13-cmos soi technology,” IEEE J. Solid-St Circ 41(12), 2945–2955 (2006).
    [Crossref]
  19. Y. Wang, Y. Wang, N. Chi, J. Yu, and H. Shang, “Demonstration of 575-Mb/s downlink and 225-Mb/s uplink bi-directional SCM-WDM visible light communication using RGB LED and phosphor-based LED,” Opt. Express 21(1), 1203–1208 (2013).
    [Crossref] [PubMed]

2015 (4)

Y. Wang, X. Huang, L. Tao, J. Shi, and N. Chi, “4.5-Gb/s RGB-LED based WDM visible light communication system employing CAP modulation and RLS based adaptive equalization,” Opt. Express 23(10), 13626–13633 (2015).
[Crossref] [PubMed]

G. Stepniak, L. Maksymiuk, and J. Siuzdak, “1.1Gbit/s white lighting LED-based visible light link with pulse amplitude modulation and volterra DFE equalization,” Microw. Opt. Technol. Lett. 57(7), 1620–1622 (2015).
[Crossref]

K. Zhong, X. Zhou, T. Gui, L. Tao, Y. Gao, W. Chen, J. Man, L. Zeng, A. P. T. Lau, and C. Lu, “Experimental study of PAM-4, CAP-16, and DMT for 100 Gb/s short reach optical transmission systems,” Opt. Express 23(2), 1176–1189 (2015).
[Crossref] [PubMed]

G. Stepniak, L. Maksymiuk, and J. Siuzdak, “Experimental comparison of PAM, CAP and DMT modulations in phosphorescent white LED transmission link,” IEEE Photonics J. 7(3), 7901708 (2015).
[Crossref]

2013 (6)

I. Takai, S. Ito, K. Yasutomi, K. Kagawa, M. Andoh, and S. Kawahito, “LED and CMOS image sensor based optical wireless communication system for automotive applications,” IEEE Photonics J. 5(5), 6801418 (2013).
[Crossref]

Y. Wang, Y. Wang, N. Chi, J. Yu, and H. Shang, “Demonstration of 575-Mb/s downlink and 225-Mb/s uplink bi-directional SCM-WDM visible light communication using RGB LED and phosphor-based LED,” Opt. Express 21(1), 1203–1208 (2013).
[Crossref] [PubMed]

G. Stepniak, J. Siuzdak, and P. Zwierko, “Compensation of a VLC phosphorescent white LED nonlinearity by means of Volterra DFE,” IEEE Photonics Technol. Lett. 25(16), 1597–1600 (2013).
[Crossref]

C. Chow, C. Yeh, Y. Liu, and P. Huang, “‘Mitigation of optical background noise in light-emitting diode (LED) optical wireless communication systems,” IEEE Photonics J. 5(1), 7900307 (2013).
[Crossref]

Y. Wang, Y. Wang, N. Chi, J. Yu, and H. Shang, “Demonstration of 575-Mb/s downlink and 225-Mb/s uplink bi-directional SCM-WDM visible light communication using RGB LED and phosphor-based LED,” Opt. Express 21(1), 1203–1208 (2013).
[Crossref] [PubMed]

Y. Wang, N. Chi, Y. Wang, R. Li, X. Huang, C. Yang, and Z. Zhang, “High-speed quasi-balanced detection OFDM in visible light communication,” Opt. Express 21(23), 27558–27564 (2013).
[Crossref] [PubMed]

2012 (1)

J. S. Youn, M. J. Lee, K. Y. Park, and W. Y. Choi, “10-Gb/s 850-nm CMOS OEIC receiver with a silicon avalanche photodetector,” IEEE J. Quantum. Elec. J. 48(2), 229–236 (2012).
[Crossref]

2011 (1)

A. Leven, F. Vacondio, L. Schmalen, S. Brink, and W. Idler, “Estimation of soft FEC performance in optical transmission experiments,” IEEE Photonics Technol. Lett. 23(20), 1547–1549 (2011).
[Crossref]

2008 (1)

D. O’Brien, H. L. Minh, L. Zeng, G. Faulkner, K. Lee, D. Jung, Y. Oh, and E. T. Won, “Indoor visible light communications: challenges and prospects,” Proc. SPIE 7091, 709106 (2008).
[Crossref]

2006 (1)

B. Analui, D. Guckenberger, D. Kucharski, and A. Narasimha, “A fully integrated 20-gb/s optoelectronic transceiver implemented in a standard 0.13-cmos soi technology,” IEEE J. Solid-St Circ 41(12), 2945–2955 (2006).
[Crossref]

Analui, B.

B. Analui, D. Guckenberger, D. Kucharski, and A. Narasimha, “A fully integrated 20-gb/s optoelectronic transceiver implemented in a standard 0.13-cmos soi technology,” IEEE J. Solid-St Circ 41(12), 2945–2955 (2006).
[Crossref]

Andoh, M.

I. Takai, S. Ito, K. Yasutomi, K. Kagawa, M. Andoh, and S. Kawahito, “LED and CMOS image sensor based optical wireless communication system for automotive applications,” IEEE Photonics J. 5(5), 6801418 (2013).
[Crossref]

Brink, S.

A. Leven, F. Vacondio, L. Schmalen, S. Brink, and W. Idler, “Estimation of soft FEC performance in optical transmission experiments,” IEEE Photonics Technol. Lett. 23(20), 1547–1549 (2011).
[Crossref]

Chen, W.

Chi, N.

Choi, W. Y.

J. S. Youn, M. J. Lee, K. Y. Park, and W. Y. Choi, “10-Gb/s 850-nm CMOS OEIC receiver with a silicon avalanche photodetector,” IEEE J. Quantum. Elec. J. 48(2), 229–236 (2012).
[Crossref]

Chow, C.

C. Chow, C. Yeh, Y. Liu, and P. Huang, “‘Mitigation of optical background noise in light-emitting diode (LED) optical wireless communication systems,” IEEE Photonics J. 5(1), 7900307 (2013).
[Crossref]

Ciaramella, E.

G. Cossu, A. Wajahat, R. Corsini, and E. Ciaramella, “5.6Gbit/s downlink and 1.5Gbit/s uplink optical wireless transmission at indoor distances (≥1.5m),” in European Conference on Optical Communication (ECOC), Amsterdam, Netherlands, 2014, We.3.6.4.

Corsini, R.

G. Cossu, A. Wajahat, R. Corsini, and E. Ciaramella, “5.6Gbit/s downlink and 1.5Gbit/s uplink optical wireless transmission at indoor distances (≥1.5m),” in European Conference on Optical Communication (ECOC), Amsterdam, Netherlands, 2014, We.3.6.4.

Cossu, G.

G. Cossu, A. Wajahat, R. Corsini, and E. Ciaramella, “5.6Gbit/s downlink and 1.5Gbit/s uplink optical wireless transmission at indoor distances (≥1.5m),” in European Conference on Optical Communication (ECOC), Amsterdam, Netherlands, 2014, We.3.6.4.

Faulkner, G.

D. O’Brien, H. L. Minh, L. Zeng, G. Faulkner, K. Lee, D. Jung, Y. Oh, and E. T. Won, “Indoor visible light communications: challenges and prospects,” Proc. SPIE 7091, 709106 (2008).
[Crossref]

Gao, Y.

Guckenberger, D.

B. Analui, D. Guckenberger, D. Kucharski, and A. Narasimha, “A fully integrated 20-gb/s optoelectronic transceiver implemented in a standard 0.13-cmos soi technology,” IEEE J. Solid-St Circ 41(12), 2945–2955 (2006).
[Crossref]

Gui, T.

Huang, P.

C. Chow, C. Yeh, Y. Liu, and P. Huang, “‘Mitigation of optical background noise in light-emitting diode (LED) optical wireless communication systems,” IEEE Photonics J. 5(1), 7900307 (2013).
[Crossref]

Huang, X.

Idler, W.

A. Leven, F. Vacondio, L. Schmalen, S. Brink, and W. Idler, “Estimation of soft FEC performance in optical transmission experiments,” IEEE Photonics Technol. Lett. 23(20), 1547–1549 (2011).
[Crossref]

Ito, S.

I. Takai, S. Ito, K. Yasutomi, K. Kagawa, M. Andoh, and S. Kawahito, “LED and CMOS image sensor based optical wireless communication system for automotive applications,” IEEE Photonics J. 5(5), 6801418 (2013).
[Crossref]

Jung, D.

D. O’Brien, H. L. Minh, L. Zeng, G. Faulkner, K. Lee, D. Jung, Y. Oh, and E. T. Won, “Indoor visible light communications: challenges and prospects,” Proc. SPIE 7091, 709106 (2008).
[Crossref]

Kagawa, K.

I. Takai, S. Ito, K. Yasutomi, K. Kagawa, M. Andoh, and S. Kawahito, “LED and CMOS image sensor based optical wireless communication system for automotive applications,” IEEE Photonics J. 5(5), 6801418 (2013).
[Crossref]

Kawahito, S.

I. Takai, S. Ito, K. Yasutomi, K. Kagawa, M. Andoh, and S. Kawahito, “LED and CMOS image sensor based optical wireless communication system for automotive applications,” IEEE Photonics J. 5(5), 6801418 (2013).
[Crossref]

Kucharski, D.

B. Analui, D. Guckenberger, D. Kucharski, and A. Narasimha, “A fully integrated 20-gb/s optoelectronic transceiver implemented in a standard 0.13-cmos soi technology,” IEEE J. Solid-St Circ 41(12), 2945–2955 (2006).
[Crossref]

Lau, A. P. T.

Lee, K.

D. O’Brien, H. L. Minh, L. Zeng, G. Faulkner, K. Lee, D. Jung, Y. Oh, and E. T. Won, “Indoor visible light communications: challenges and prospects,” Proc. SPIE 7091, 709106 (2008).
[Crossref]

Lee, M. J.

J. S. Youn, M. J. Lee, K. Y. Park, and W. Y. Choi, “10-Gb/s 850-nm CMOS OEIC receiver with a silicon avalanche photodetector,” IEEE J. Quantum. Elec. J. 48(2), 229–236 (2012).
[Crossref]

Leven, A.

A. Leven, F. Vacondio, L. Schmalen, S. Brink, and W. Idler, “Estimation of soft FEC performance in optical transmission experiments,” IEEE Photonics Technol. Lett. 23(20), 1547–1549 (2011).
[Crossref]

Li, R.

Liu, Y.

C. Chow, C. Yeh, Y. Liu, and P. Huang, “‘Mitigation of optical background noise in light-emitting diode (LED) optical wireless communication systems,” IEEE Photonics J. 5(1), 7900307 (2013).
[Crossref]

Lu, C.

Maksymiuk, L.

G. Stepniak, L. Maksymiuk, and J. Siuzdak, “1.1Gbit/s white lighting LED-based visible light link with pulse amplitude modulation and volterra DFE equalization,” Microw. Opt. Technol. Lett. 57(7), 1620–1622 (2015).
[Crossref]

G. Stepniak, L. Maksymiuk, and J. Siuzdak, “Experimental comparison of PAM, CAP and DMT modulations in phosphorescent white LED transmission link,” IEEE Photonics J. 7(3), 7901708 (2015).
[Crossref]

Man, J.

Minh, H. L.

D. O’Brien, H. L. Minh, L. Zeng, G. Faulkner, K. Lee, D. Jung, Y. Oh, and E. T. Won, “Indoor visible light communications: challenges and prospects,” Proc. SPIE 7091, 709106 (2008).
[Crossref]

Narasimha, A.

B. Analui, D. Guckenberger, D. Kucharski, and A. Narasimha, “A fully integrated 20-gb/s optoelectronic transceiver implemented in a standard 0.13-cmos soi technology,” IEEE J. Solid-St Circ 41(12), 2945–2955 (2006).
[Crossref]

O’Brien, D.

D. O’Brien, H. L. Minh, L. Zeng, G. Faulkner, K. Lee, D. Jung, Y. Oh, and E. T. Won, “Indoor visible light communications: challenges and prospects,” Proc. SPIE 7091, 709106 (2008).
[Crossref]

Oh, Y.

D. O’Brien, H. L. Minh, L. Zeng, G. Faulkner, K. Lee, D. Jung, Y. Oh, and E. T. Won, “Indoor visible light communications: challenges and prospects,” Proc. SPIE 7091, 709106 (2008).
[Crossref]

Park, K. Y.

J. S. Youn, M. J. Lee, K. Y. Park, and W. Y. Choi, “10-Gb/s 850-nm CMOS OEIC receiver with a silicon avalanche photodetector,” IEEE J. Quantum. Elec. J. 48(2), 229–236 (2012).
[Crossref]

Schmalen, L.

A. Leven, F. Vacondio, L. Schmalen, S. Brink, and W. Idler, “Estimation of soft FEC performance in optical transmission experiments,” IEEE Photonics Technol. Lett. 23(20), 1547–1549 (2011).
[Crossref]

Shang, H.

Shi, J.

Siuzdak, J.

G. Stepniak, L. Maksymiuk, and J. Siuzdak, “Experimental comparison of PAM, CAP and DMT modulations in phosphorescent white LED transmission link,” IEEE Photonics J. 7(3), 7901708 (2015).
[Crossref]

G. Stepniak, L. Maksymiuk, and J. Siuzdak, “1.1Gbit/s white lighting LED-based visible light link with pulse amplitude modulation and volterra DFE equalization,” Microw. Opt. Technol. Lett. 57(7), 1620–1622 (2015).
[Crossref]

G. Stepniak, J. Siuzdak, and P. Zwierko, “Compensation of a VLC phosphorescent white LED nonlinearity by means of Volterra DFE,” IEEE Photonics Technol. Lett. 25(16), 1597–1600 (2013).
[Crossref]

Stepniak, G.

G. Stepniak, L. Maksymiuk, and J. Siuzdak, “1.1Gbit/s white lighting LED-based visible light link with pulse amplitude modulation and volterra DFE equalization,” Microw. Opt. Technol. Lett. 57(7), 1620–1622 (2015).
[Crossref]

G. Stepniak, L. Maksymiuk, and J. Siuzdak, “Experimental comparison of PAM, CAP and DMT modulations in phosphorescent white LED transmission link,” IEEE Photonics J. 7(3), 7901708 (2015).
[Crossref]

G. Stepniak, J. Siuzdak, and P. Zwierko, “Compensation of a VLC phosphorescent white LED nonlinearity by means of Volterra DFE,” IEEE Photonics Technol. Lett. 25(16), 1597–1600 (2013).
[Crossref]

Takai, I.

I. Takai, S. Ito, K. Yasutomi, K. Kagawa, M. Andoh, and S. Kawahito, “LED and CMOS image sensor based optical wireless communication system for automotive applications,” IEEE Photonics J. 5(5), 6801418 (2013).
[Crossref]

Tao, L.

Vacondio, F.

A. Leven, F. Vacondio, L. Schmalen, S. Brink, and W. Idler, “Estimation of soft FEC performance in optical transmission experiments,” IEEE Photonics Technol. Lett. 23(20), 1547–1549 (2011).
[Crossref]

Wajahat, A.

G. Cossu, A. Wajahat, R. Corsini, and E. Ciaramella, “5.6Gbit/s downlink and 1.5Gbit/s uplink optical wireless transmission at indoor distances (≥1.5m),” in European Conference on Optical Communication (ECOC), Amsterdam, Netherlands, 2014, We.3.6.4.

Wang, Y.

Y. Wang, X. Huang, L. Tao, J. Shi, and N. Chi, “4.5-Gb/s RGB-LED based WDM visible light communication system employing CAP modulation and RLS based adaptive equalization,” Opt. Express 23(10), 13626–13633 (2015).
[Crossref] [PubMed]

Y. Wang, Y. Wang, N. Chi, J. Yu, and H. Shang, “Demonstration of 575-Mb/s downlink and 225-Mb/s uplink bi-directional SCM-WDM visible light communication using RGB LED and phosphor-based LED,” Opt. Express 21(1), 1203–1208 (2013).
[Crossref] [PubMed]

Y. Wang, Y. Wang, N. Chi, J. Yu, and H. Shang, “Demonstration of 575-Mb/s downlink and 225-Mb/s uplink bi-directional SCM-WDM visible light communication using RGB LED and phosphor-based LED,” Opt. Express 21(1), 1203–1208 (2013).
[Crossref] [PubMed]

Y. Wang, Y. Wang, N. Chi, J. Yu, and H. Shang, “Demonstration of 575-Mb/s downlink and 225-Mb/s uplink bi-directional SCM-WDM visible light communication using RGB LED and phosphor-based LED,” Opt. Express 21(1), 1203–1208 (2013).
[Crossref] [PubMed]

Y. Wang, Y. Wang, N. Chi, J. Yu, and H. Shang, “Demonstration of 575-Mb/s downlink and 225-Mb/s uplink bi-directional SCM-WDM visible light communication using RGB LED and phosphor-based LED,” Opt. Express 21(1), 1203–1208 (2013).
[Crossref] [PubMed]

Y. Wang, N. Chi, Y. Wang, R. Li, X. Huang, C. Yang, and Z. Zhang, “High-speed quasi-balanced detection OFDM in visible light communication,” Opt. Express 21(23), 27558–27564 (2013).
[Crossref] [PubMed]

Y. Wang, N. Chi, Y. Wang, R. Li, X. Huang, C. Yang, and Z. Zhang, “High-speed quasi-balanced detection OFDM in visible light communication,” Opt. Express 21(23), 27558–27564 (2013).
[Crossref] [PubMed]

Won, E. T.

D. O’Brien, H. L. Minh, L. Zeng, G. Faulkner, K. Lee, D. Jung, Y. Oh, and E. T. Won, “Indoor visible light communications: challenges and prospects,” Proc. SPIE 7091, 709106 (2008).
[Crossref]

Yang, C.

Yasutomi, K.

I. Takai, S. Ito, K. Yasutomi, K. Kagawa, M. Andoh, and S. Kawahito, “LED and CMOS image sensor based optical wireless communication system for automotive applications,” IEEE Photonics J. 5(5), 6801418 (2013).
[Crossref]

Yeh, C.

C. Chow, C. Yeh, Y. Liu, and P. Huang, “‘Mitigation of optical background noise in light-emitting diode (LED) optical wireless communication systems,” IEEE Photonics J. 5(1), 7900307 (2013).
[Crossref]

Youn, J. S.

J. S. Youn, M. J. Lee, K. Y. Park, and W. Y. Choi, “10-Gb/s 850-nm CMOS OEIC receiver with a silicon avalanche photodetector,” IEEE J. Quantum. Elec. J. 48(2), 229–236 (2012).
[Crossref]

Yu, J.

Zeng, L.

K. Zhong, X. Zhou, T. Gui, L. Tao, Y. Gao, W. Chen, J. Man, L. Zeng, A. P. T. Lau, and C. Lu, “Experimental study of PAM-4, CAP-16, and DMT for 100 Gb/s short reach optical transmission systems,” Opt. Express 23(2), 1176–1189 (2015).
[Crossref] [PubMed]

D. O’Brien, H. L. Minh, L. Zeng, G. Faulkner, K. Lee, D. Jung, Y. Oh, and E. T. Won, “Indoor visible light communications: challenges and prospects,” Proc. SPIE 7091, 709106 (2008).
[Crossref]

Zhang, Z.

Zhong, K.

Zhou, X.

Zwierko, P.

G. Stepniak, J. Siuzdak, and P. Zwierko, “Compensation of a VLC phosphorescent white LED nonlinearity by means of Volterra DFE,” IEEE Photonics Technol. Lett. 25(16), 1597–1600 (2013).
[Crossref]

IEEE J. Quantum. Elec. J. (1)

J. S. Youn, M. J. Lee, K. Y. Park, and W. Y. Choi, “10-Gb/s 850-nm CMOS OEIC receiver with a silicon avalanche photodetector,” IEEE J. Quantum. Elec. J. 48(2), 229–236 (2012).
[Crossref]

IEEE J. Solid-St Circ (1)

B. Analui, D. Guckenberger, D. Kucharski, and A. Narasimha, “A fully integrated 20-gb/s optoelectronic transceiver implemented in a standard 0.13-cmos soi technology,” IEEE J. Solid-St Circ 41(12), 2945–2955 (2006).
[Crossref]

IEEE Photonics J. (3)

G. Stepniak, L. Maksymiuk, and J. Siuzdak, “Experimental comparison of PAM, CAP and DMT modulations in phosphorescent white LED transmission link,” IEEE Photonics J. 7(3), 7901708 (2015).
[Crossref]

C. Chow, C. Yeh, Y. Liu, and P. Huang, “‘Mitigation of optical background noise in light-emitting diode (LED) optical wireless communication systems,” IEEE Photonics J. 5(1), 7900307 (2013).
[Crossref]

I. Takai, S. Ito, K. Yasutomi, K. Kagawa, M. Andoh, and S. Kawahito, “LED and CMOS image sensor based optical wireless communication system for automotive applications,” IEEE Photonics J. 5(5), 6801418 (2013).
[Crossref]

IEEE Photonics Technol. Lett. (2)

A. Leven, F. Vacondio, L. Schmalen, S. Brink, and W. Idler, “Estimation of soft FEC performance in optical transmission experiments,” IEEE Photonics Technol. Lett. 23(20), 1547–1549 (2011).
[Crossref]

G. Stepniak, J. Siuzdak, and P. Zwierko, “Compensation of a VLC phosphorescent white LED nonlinearity by means of Volterra DFE,” IEEE Photonics Technol. Lett. 25(16), 1597–1600 (2013).
[Crossref]

Microw. Opt. Technol. Lett. (1)

G. Stepniak, L. Maksymiuk, and J. Siuzdak, “1.1Gbit/s white lighting LED-based visible light link with pulse amplitude modulation and volterra DFE equalization,” Microw. Opt. Technol. Lett. 57(7), 1620–1622 (2015).
[Crossref]

Opt. Express (5)

Proc. SPIE (1)

D. O’Brien, H. L. Minh, L. Zeng, G. Faulkner, K. Lee, D. Jung, Y. Oh, and E. T. Won, “Indoor visible light communications: challenges and prospects,” Proc. SPIE 7091, 709106 (2008).
[Crossref]

Other (5)

W. Martin, “Photodetector responsivity” in Computer Science and Communications Dictionary (Academic, 2001), pp. 1268.

A. M. Cailean, B. Cagneau, L. Chassagne, V. Popa, and M. Dimian, “Evaluation of the noise effects on Visible Light Communications using Manchester and Miller coding,” in IEEE International Conference on Development and Application Systems (DAS, 2014), pp. 85–89.
[Crossref]

G. Cossu, A. Wajahat, R. Corsini, and E. Ciaramella, “5.6Gbit/s downlink and 1.5Gbit/s uplink optical wireless transmission at indoor distances (≥1.5m),” in European Conference on Optical Communication (ECOC), Amsterdam, Netherlands, 2014, We.3.6.4.

X. Huang, J. Shi, J. Li, Y. Wang, Y. Wang, and N. Chi, “750Mbit/s Visible Light Communications employing 64QAM-OFDM Based on Amplitude Equalization Circuit,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2015), paper Tu2G.1.1385–1391 (2003).
[Crossref]

M. Zhang, Y. Wang, Z. Wang, J. Zhao, and N. Chi, “A novel scalar MCMMA blind equalization utilized in 8-PAM LED based visible light communication system,” presented at IEEE International Conference on Communications, Kuala Lumpur, Malaysia, 23–27 May, 2016.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 PS-Manchester coding: (a) schematic diagram; (b) spectrum.
Fig. 2
Fig. 2 Simulation results: (a) VLC channel curve; received spectrum for PAM-8 signals: (b) without coding; (c) with PS-Manchester coding; (d) with PS-Manchester coding but without differential decoding; (e) with PS-Manchester coding and differential decoding; (f) constellations for PAM-8 signals: (i) without coding; (ii) with PS-Manchester coding but without differential decoding; (iii) with PS-Manchester coding and differential decoding.
Fig. 3
Fig. 3 The experimental setup of WDM VLC system employing PS-Manchester coding and S-MCMMA equalization.
Fig. 4
Fig. 4 Measured experimental results: PAM-8 signals without coding: (a) transmitted spectra; (b) received spectra; PAM-8 signals with PS-Manchester coding: (c) transmitted spectra; (d) received spectra; (e) received spectra without differential decoding; (f) received spectra with differential decoding.
Fig. 5
Fig. 5 Measured BER versus bias voltages and input signal Vpp: (a) red chip; (b)green chip; (c) blue chip.
Fig. 6
Fig. 6 Measured BER performance versus different bitrates: (a) red chip; (b) green chip; (c) blue chip; (d) eye diagrams.
Fig. 7
Fig. 7 Measured BER performance versus different distances: (a) red chip; (b)green chip; (c) blue chip.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

E 2k1 (t)= a k
E 2k (t)= E 2k1 (t)= a k
S 2k1 (t)=[ ( V 0 V a )+α E 2k1 (t) ] e j2π f 0 t
r 2k1 (t)= S 2k1 (t)+ n 0,2k1 (t)
I 2k1 (t)= | r 2k1 (t) | 2 + n r,2k1 (t)
= ( V 0 V a ) 2 +2α( V 0 V a ) E 2k1 (t)+ α 2 E 2k1 2 (t)+ I n,2k1
I n,2k1 = | n 0,2k1 (t) | 2 +2α n 0,2k1 (t)[ ( V 0 V a )+ E 2k1 (t) ]+ n r,2k1 (t)
I 2k (t)= | r 2k (t) | 2 + n r,2k (t)= ( V 0 V a ) 2 2α( V 0 V a ) E 2k (t)+ α 2 E 2k 2 (t)+ I n,2k
I bk (t)= I 2k1 (t) I 2k (t)=4α( V 0 V a ) E 2k1 (t)+( I n,2k1 I n,2k )

Metrics