Abstract

A 3D imaging concept based on pulsed time-of-flight focal plane imaging is presented which can be tailored flexibly in terms of performance parameters such as range, image update rate, field-of-view, 2D resolution, depth accuracy, etc. according to the needs of different applications. The transmitter is based on a laser diode operating in enhanced gain-switching mode with a simple MOS/CMOS-switch current driver and capable of producing short (~100ps FWHM) high energy (up to nJ) pulses at a high pulsing rate. The receiver consists of 2D SPAD and TDC arrays placed on the same die, but in separate arrays. Paraxial optics can be used to illuminate the target field-of-view with the receiver placed at the focal plane of the receiver lens. To validate the concept, a prototype system is presented with a bulk laser diode/MOS driver operating at a wavelength of 870nm with a pulsing rate of 100kHz as the transmitter and a single-chip 9x9 SPAD array with 10-channel TDC as the receiver. The possibility of using this method as a solid-state solution to the task of 3D imaging is discussed in the light of the results derived from this prototype.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Design and characterization of a 256x64-pixel single-photon imager in CMOS for a MEMS-based laser scanning time-of-flight sensor

Cristiano Niclass, Kota Ito, Mineki Soga, Hiroyuki Matsubara, Isao Aoyagi, Satoru Kato, and Manabu Kagami
Opt. Express 20(11) 11863-11881 (2012)

Timing and probability of crosstalk in a dense CMOS SPAD array in pulsed TOF applications

Sahba Jahromi and Juha Kostamovaara
Opt. Express 26(16) 20622-20632 (2018)

Design and characterization of a p+/n-well SPAD array in 150nm CMOS process

Hesong Xu, Lucio Pancheri, Gian-Franco Dalla Betta, and David Stoppa
Opt. Express 25(11) 12765-12778 (2017)

References

  • View by:
  • |
  • |
  • |

  1. B. Schwarz, “LIDAR: mapping the world in 3D,” Nat. Photonics 4(7), 429–430 (2010).
    [Crossref]
  2. V. C. Coffey, “Imaging in 3-D: killer apps coming soon to a device near you!” Opt. Photonics News 25(6), 36–43 (2014).
    [Crossref]
  3. A. S. Malik, Depth Map and 3D Imaging Applications: Algorithms and Technologies: Algorithms and Technologies (IGI Global, 2011).
  4. R. J. Walker, J. A. Richardson, and R. K. Henderson, “A 128×96 pixel event-driven phase-domain ΔΣ-based fully digital 3D camera in 0.13μm CMOS imaging technology,” in International Solid-State Circuits Conference Digest of Technical Papers (IEEE, 2011), pp. 410–412.
  5. R. Lange, “3D time-of-flight distance measurement with custom solid-state image sensors in CMOS/CCD-technology,” Dissertation, Department of Electrical Engineering and Computer Science, University of Siegen (2000).
  6. D. Bronzi, Y. Zou, F. Villa, S. Tisa, A. Tosi, and F. Zappa, “Automotive three-dimensional vision through a single-photon counting SPAD camera,” IEEE Trans. Intell. Transp. Syst. 17(3), 782–795 (2016).
    [Crossref]
  7. V. Mitev and A. Pollini, “Flash imaging sensors for space applications,” in 7th International Conference on Recent Advances in Space Technologies (IEEE, 2015), pp. 687–693.
  8. O. Shcherbakova, L. Pancheri, G. F. Dalla Betta, N. Massari, and D. Stoppa, “3D camera based on linear-mode gain-modulated avalanche photodiodes,” in International Solid-State Circuits Conference Digest of Technical Papers (IEEE, 2013), pp. 490–491.
    [Crossref]
  9. M. Perenzoni, D. Perenzoni, and D. Stoppa, “A 64x64-pixel digital silicon photomultiplier direct ToF sensor with 100Mphotons/s/pixel background rejection and imaging/altimeter mode with 0.14% precision up to 6km for spacecraft navigation and landing,” in International Solid-State Circuits Conference (IEEE, 2016), pp. 118–119.
  10. C. Niclass and E. Charbon, “A single photon detector array with 64× 64 resolution and millimetric depth accuracy for 3D imaging,” in International Digest of Technical Papers.Solid-State Circuits Conference (IEEE, 2005), pp. 364–604.
  11. C. Niclass, A. Rochas, P. A. Besse, and E. Charbon, “Design and characterization of a CMOS 3-D image sensor based on single photon avalanche diodes,” IEEE J. Solid-State Circuits 40(9), 1847–1854 (2005).
    [Crossref]
  12. C. Niclass, C. Favi, T. Kluter, M. Gersbach, and E. Charbon, “A 128x128 single-photon imager with on-chip column-level 10b time-to-digital converter array capable of 97ps resolution,” in IEEE International Solid-State Circuits Conference-Digest of Technical Papers (IEEE, 2008), pp. 44–594.
  13. G. Buller and A. Wallace, “Ranging and three-dimensional imaging using time-correlated single-photon counting and point-by-point acquisition,” IEEE J. Sel. Top. Quantum Electron. 13(4), 1006–1015 (2007).
    [Crossref]
  14. A. Rochas, A. R. Pauchard, P. A. Besse, D. Pantic, Z. Prijic, and R. S. Popovic, “Low-noise silicon avalanche photodiodes fabricated in conventional CMOS technologies,” IEEE Trans. Electron Dev. 49(3), 387–394 (2002).
    [Crossref]
  15. S. Burri, Y. Maruyama, X. Michalet, F. Regazzoni, C. Bruschini, and E. Charbon, “Architecture and applications of a high resolution gated SPAD image sensor,” Opt. Express 22(14), 17573–17589 (2014).
    [Crossref] [PubMed]
  16. D. Bronzi, F. Villa, S. Bellisai, B. Markovic, S. Tisa, A. Tosi, F. Zappa, S. Weyers, D. Durini, W. Brockherde, and U. Paschen, “Low-noise and large-area CMOS SPADs with timing response free from slow tails,” in Proceedings of the European Solid-State Device Research Conference (2012), pp. 230–233.
    [Crossref]
  17. J. A. Richardson, E. Webster, L. A. Grant, and R. K. Henderson, “Scalable single-photon avalanche diode structures in nanometer CMOS technology,” IEEE Trans. Electron Dev. 58(7), 2028–2035 (2011).
    [Crossref]
  18. M. Perenzoni, L. Pancheri, and D. Stoppa, “Compact SPAD-based pixel architectures for time-resolved image sensors,” Sensors (Basel) 16(5), 745 (2016).
    [Crossref] [PubMed]
  19. F. Villa, R. Lussana, D. Bronzi, S. Tisa, A. Tosi, F. Zappa, A. Dalla Mora, D. Contini, D. Durini, S. Weyers, and W. Brockherde, “CMOS imager with 1024 SPADs and TDCs for single-photon timing and 3-D time-of-flight,” IEEE J. Sel. Top. Quantum Electron. 20(6), 364–373 (2014).
    [Crossref]
  20. K. Y. Lau, “Gain switching of semiconductor injection lasers,” Appl. Phys. Lett. 52(4), 257–259 (1988).
    [Crossref]
  21. D. Bimberg, K. Ketterer, E. H. Bottcher, and E. Scoll, “Gain modulation of unbiased semiconductor lasers: ultrashort pulse generation,” Int. J. Electron. 60(23), 23–45 (1986).
    [Crossref]
  22. S. Schwertfeger, A. Klehr, T. Hoffmann, A. Liero, H. Wenzel, and G. Erbert, “Generation of sub-100 ps pulses with a peak power of 65 W by gain switching, pulse shortening, and pulse amplification using a semiconductor-based master oscillator-power amplifier system,” Appl. Opt. 52(14), 3364–3367 (2013).
    [Crossref] [PubMed]
  23. S. Cova, M. Ghioni, A. Lotito, I. Rech, and F. Zappa, “Evolution and prospects for single-photon avalanche diodes and quenching circuits,” J. Mod. Opt. 51(9–10), 1267–1288 (2004).
    [Crossref]
  24. J. Kostamovaara, J. Huikari, L. Hallman, I. Nissinen, J. Nissinen, H. Rapakko, E. Avrutin, and B. Ryvkin, “On laser ranging based on high-speed/energy laser diode pulses and single-photon detection techniques,” IEEE Photonics J. 7(2), 1–15 (2015).
    [Crossref]
  25. N. J. Krichel, A. McCarthy, and G. S. Buller, “Resolving range ambiguity in a photon counting depth imager operating at kilometer distances,” Opt. Express 18(9), 9192–9206 (2010).
    [Crossref] [PubMed]
  26. B. Ryvkin, E. A. Avrutin, and J. T. Kostamovaara, “Asymmetric-waveguide laser diode for high-power optical pulse generation by gain switching,” J. Lightwave Technol. 27(12), 2125–2131 (2009).
    [Crossref]
  27. B. S. Ryvkin, E. A. Avrutin, and J. T. Kostamovaara, “Quantum well laser with an extremely large active layer width to optical confinement factor ratio for high-energy single picosecond pulse generation by gain switching,” Semicond. Sci. Technol. 26(4), 045010 (2011).
    [Crossref]
  28. B. S. Ryvkin, E. A. Avrutin, and J. T. Kostamovaara, “Vertical cavity surface emitting lasers with the active layer position detuned from standing wave antinode for picosecond pulse generation by gain switching,” J. Appl. Phys. 110(12), 123101 (2011).
    [Crossref]
  29. B. Lanz, B. S. Ryvkin, E. A. Avrutin, and J. T. Kostamovaara, “Performance improvement by a saturable absorber in gain-switched asymmetric-waveguide laser diodes,” Opt. Express 21(24), 29780–29791 (2013).
    [Crossref] [PubMed]
  30. L. Hallman, J. Huikari, and J. Kostamovaara, “A high-speed/power laser transmitter for single photon imaging applications,” in Proceedings of IEEE SENSORS (IEEE, 2014), pp. 1157–1160.
  31. J. M. T. Huikari, E. A. Avrutin, B. S. Ryvkin, J. J. Nissinen, and J. T. Kostamovaara, “High-energy picosecond pulse generation by gain switching in asymmetric waveguide structure multiple quantum well lasers,” IEEE J. Sel. Top. Quantum Electron. 21(6), 189–194 (2015).
    [Crossref]
  32. J.-P. Jansson, A. Mäntyniemi, and J. Kostamovaara, “A CMOS time-to-digital converter with better than 10 ps single-shot precision,” IEEE J. Solid-State Circuits 41(6), 1286–1296 (2006).
    [Crossref]
  33. J.-P. Jansson, A. Mäntyniemi, and J. Kostamovaara, “Synchronization in a multi-level CMOS time-to-digital Converter,” IEEE Trans. Circ. Syst. 56(8), 1622–1634 (2009).
    [Crossref]
  34. S. Jahromi, J. Jansson, I. Nissinen, J. Nissinen, and J. Kostamovaara, “A single chip laser radar receiver with a 9×9 SPAD detector array and a 10-channel TDC,” in European Solid-State Circuits Conference (2015), pp. 364–367.
  35. J. Nissinen and J. Kostamovaara, “A 4 a peak current and 2 ns pulse width CMOS laser diode driver for high measurement rate applications,” in Proceedings of European Solid-State Circuits Conference (IEEE, 2013), pp. 355–358.
    [Crossref]
  36. J. H. Shapiro, “Photon-efficient 3D imaging,” in Applications of Lasers for Sensing and Free Space Communications (Optical Society of America, 2015), pp. LM3D–2.
  37. D. Shin, A. Kirmani, V. K. Goyal, and J. H. Shapiro, “Photon-efficient computational 3-d and reflectivity imaging with single-photon detectors,” IEEE Trans. Computational Imaging 1(2), 112–125 (2015).
    [Crossref]

2016 (2)

D. Bronzi, Y. Zou, F. Villa, S. Tisa, A. Tosi, and F. Zappa, “Automotive three-dimensional vision through a single-photon counting SPAD camera,” IEEE Trans. Intell. Transp. Syst. 17(3), 782–795 (2016).
[Crossref]

M. Perenzoni, L. Pancheri, and D. Stoppa, “Compact SPAD-based pixel architectures for time-resolved image sensors,” Sensors (Basel) 16(5), 745 (2016).
[Crossref] [PubMed]

2015 (3)

J. Kostamovaara, J. Huikari, L. Hallman, I. Nissinen, J. Nissinen, H. Rapakko, E. Avrutin, and B. Ryvkin, “On laser ranging based on high-speed/energy laser diode pulses and single-photon detection techniques,” IEEE Photonics J. 7(2), 1–15 (2015).
[Crossref]

J. M. T. Huikari, E. A. Avrutin, B. S. Ryvkin, J. J. Nissinen, and J. T. Kostamovaara, “High-energy picosecond pulse generation by gain switching in asymmetric waveguide structure multiple quantum well lasers,” IEEE J. Sel. Top. Quantum Electron. 21(6), 189–194 (2015).
[Crossref]

D. Shin, A. Kirmani, V. K. Goyal, and J. H. Shapiro, “Photon-efficient computational 3-d and reflectivity imaging with single-photon detectors,” IEEE Trans. Computational Imaging 1(2), 112–125 (2015).
[Crossref]

2014 (3)

F. Villa, R. Lussana, D. Bronzi, S. Tisa, A. Tosi, F. Zappa, A. Dalla Mora, D. Contini, D. Durini, S. Weyers, and W. Brockherde, “CMOS imager with 1024 SPADs and TDCs for single-photon timing and 3-D time-of-flight,” IEEE J. Sel. Top. Quantum Electron. 20(6), 364–373 (2014).
[Crossref]

V. C. Coffey, “Imaging in 3-D: killer apps coming soon to a device near you!” Opt. Photonics News 25(6), 36–43 (2014).
[Crossref]

S. Burri, Y. Maruyama, X. Michalet, F. Regazzoni, C. Bruschini, and E. Charbon, “Architecture and applications of a high resolution gated SPAD image sensor,” Opt. Express 22(14), 17573–17589 (2014).
[Crossref] [PubMed]

2013 (2)

2011 (3)

B. S. Ryvkin, E. A. Avrutin, and J. T. Kostamovaara, “Quantum well laser with an extremely large active layer width to optical confinement factor ratio for high-energy single picosecond pulse generation by gain switching,” Semicond. Sci. Technol. 26(4), 045010 (2011).
[Crossref]

B. S. Ryvkin, E. A. Avrutin, and J. T. Kostamovaara, “Vertical cavity surface emitting lasers with the active layer position detuned from standing wave antinode for picosecond pulse generation by gain switching,” J. Appl. Phys. 110(12), 123101 (2011).
[Crossref]

J. A. Richardson, E. Webster, L. A. Grant, and R. K. Henderson, “Scalable single-photon avalanche diode structures in nanometer CMOS technology,” IEEE Trans. Electron Dev. 58(7), 2028–2035 (2011).
[Crossref]

2010 (2)

2009 (2)

B. Ryvkin, E. A. Avrutin, and J. T. Kostamovaara, “Asymmetric-waveguide laser diode for high-power optical pulse generation by gain switching,” J. Lightwave Technol. 27(12), 2125–2131 (2009).
[Crossref]

J.-P. Jansson, A. Mäntyniemi, and J. Kostamovaara, “Synchronization in a multi-level CMOS time-to-digital Converter,” IEEE Trans. Circ. Syst. 56(8), 1622–1634 (2009).
[Crossref]

2007 (1)

G. Buller and A. Wallace, “Ranging and three-dimensional imaging using time-correlated single-photon counting and point-by-point acquisition,” IEEE J. Sel. Top. Quantum Electron. 13(4), 1006–1015 (2007).
[Crossref]

2006 (1)

J.-P. Jansson, A. Mäntyniemi, and J. Kostamovaara, “A CMOS time-to-digital converter with better than 10 ps single-shot precision,” IEEE J. Solid-State Circuits 41(6), 1286–1296 (2006).
[Crossref]

2005 (1)

C. Niclass, A. Rochas, P. A. Besse, and E. Charbon, “Design and characterization of a CMOS 3-D image sensor based on single photon avalanche diodes,” IEEE J. Solid-State Circuits 40(9), 1847–1854 (2005).
[Crossref]

2004 (1)

S. Cova, M. Ghioni, A. Lotito, I. Rech, and F. Zappa, “Evolution and prospects for single-photon avalanche diodes and quenching circuits,” J. Mod. Opt. 51(9–10), 1267–1288 (2004).
[Crossref]

2002 (1)

A. Rochas, A. R. Pauchard, P. A. Besse, D. Pantic, Z. Prijic, and R. S. Popovic, “Low-noise silicon avalanche photodiodes fabricated in conventional CMOS technologies,” IEEE Trans. Electron Dev. 49(3), 387–394 (2002).
[Crossref]

1988 (1)

K. Y. Lau, “Gain switching of semiconductor injection lasers,” Appl. Phys. Lett. 52(4), 257–259 (1988).
[Crossref]

1986 (1)

D. Bimberg, K. Ketterer, E. H. Bottcher, and E. Scoll, “Gain modulation of unbiased semiconductor lasers: ultrashort pulse generation,” Int. J. Electron. 60(23), 23–45 (1986).
[Crossref]

Avrutin, E.

J. Kostamovaara, J. Huikari, L. Hallman, I. Nissinen, J. Nissinen, H. Rapakko, E. Avrutin, and B. Ryvkin, “On laser ranging based on high-speed/energy laser diode pulses and single-photon detection techniques,” IEEE Photonics J. 7(2), 1–15 (2015).
[Crossref]

Avrutin, E. A.

J. M. T. Huikari, E. A. Avrutin, B. S. Ryvkin, J. J. Nissinen, and J. T. Kostamovaara, “High-energy picosecond pulse generation by gain switching in asymmetric waveguide structure multiple quantum well lasers,” IEEE J. Sel. Top. Quantum Electron. 21(6), 189–194 (2015).
[Crossref]

B. Lanz, B. S. Ryvkin, E. A. Avrutin, and J. T. Kostamovaara, “Performance improvement by a saturable absorber in gain-switched asymmetric-waveguide laser diodes,” Opt. Express 21(24), 29780–29791 (2013).
[Crossref] [PubMed]

B. S. Ryvkin, E. A. Avrutin, and J. T. Kostamovaara, “Quantum well laser with an extremely large active layer width to optical confinement factor ratio for high-energy single picosecond pulse generation by gain switching,” Semicond. Sci. Technol. 26(4), 045010 (2011).
[Crossref]

B. S. Ryvkin, E. A. Avrutin, and J. T. Kostamovaara, “Vertical cavity surface emitting lasers with the active layer position detuned from standing wave antinode for picosecond pulse generation by gain switching,” J. Appl. Phys. 110(12), 123101 (2011).
[Crossref]

B. Ryvkin, E. A. Avrutin, and J. T. Kostamovaara, “Asymmetric-waveguide laser diode for high-power optical pulse generation by gain switching,” J. Lightwave Technol. 27(12), 2125–2131 (2009).
[Crossref]

Bellisai, S.

D. Bronzi, F. Villa, S. Bellisai, B. Markovic, S. Tisa, A. Tosi, F. Zappa, S. Weyers, D. Durini, W. Brockherde, and U. Paschen, “Low-noise and large-area CMOS SPADs with timing response free from slow tails,” in Proceedings of the European Solid-State Device Research Conference (2012), pp. 230–233.
[Crossref]

Besse, P. A.

C. Niclass, A. Rochas, P. A. Besse, and E. Charbon, “Design and characterization of a CMOS 3-D image sensor based on single photon avalanche diodes,” IEEE J. Solid-State Circuits 40(9), 1847–1854 (2005).
[Crossref]

A. Rochas, A. R. Pauchard, P. A. Besse, D. Pantic, Z. Prijic, and R. S. Popovic, “Low-noise silicon avalanche photodiodes fabricated in conventional CMOS technologies,” IEEE Trans. Electron Dev. 49(3), 387–394 (2002).
[Crossref]

Bimberg, D.

D. Bimberg, K. Ketterer, E. H. Bottcher, and E. Scoll, “Gain modulation of unbiased semiconductor lasers: ultrashort pulse generation,” Int. J. Electron. 60(23), 23–45 (1986).
[Crossref]

Bottcher, E. H.

D. Bimberg, K. Ketterer, E. H. Bottcher, and E. Scoll, “Gain modulation of unbiased semiconductor lasers: ultrashort pulse generation,” Int. J. Electron. 60(23), 23–45 (1986).
[Crossref]

Brockherde, W.

F. Villa, R. Lussana, D. Bronzi, S. Tisa, A. Tosi, F. Zappa, A. Dalla Mora, D. Contini, D. Durini, S. Weyers, and W. Brockherde, “CMOS imager with 1024 SPADs and TDCs for single-photon timing and 3-D time-of-flight,” IEEE J. Sel. Top. Quantum Electron. 20(6), 364–373 (2014).
[Crossref]

D. Bronzi, F. Villa, S. Bellisai, B. Markovic, S. Tisa, A. Tosi, F. Zappa, S. Weyers, D. Durini, W. Brockherde, and U. Paschen, “Low-noise and large-area CMOS SPADs with timing response free from slow tails,” in Proceedings of the European Solid-State Device Research Conference (2012), pp. 230–233.
[Crossref]

Bronzi, D.

D. Bronzi, Y. Zou, F. Villa, S. Tisa, A. Tosi, and F. Zappa, “Automotive three-dimensional vision through a single-photon counting SPAD camera,” IEEE Trans. Intell. Transp. Syst. 17(3), 782–795 (2016).
[Crossref]

F. Villa, R. Lussana, D. Bronzi, S. Tisa, A. Tosi, F. Zappa, A. Dalla Mora, D. Contini, D. Durini, S. Weyers, and W. Brockherde, “CMOS imager with 1024 SPADs and TDCs for single-photon timing and 3-D time-of-flight,” IEEE J. Sel. Top. Quantum Electron. 20(6), 364–373 (2014).
[Crossref]

D. Bronzi, F. Villa, S. Bellisai, B. Markovic, S. Tisa, A. Tosi, F. Zappa, S. Weyers, D. Durini, W. Brockherde, and U. Paschen, “Low-noise and large-area CMOS SPADs with timing response free from slow tails,” in Proceedings of the European Solid-State Device Research Conference (2012), pp. 230–233.
[Crossref]

Bruschini, C.

Buller, G.

G. Buller and A. Wallace, “Ranging and three-dimensional imaging using time-correlated single-photon counting and point-by-point acquisition,” IEEE J. Sel. Top. Quantum Electron. 13(4), 1006–1015 (2007).
[Crossref]

Buller, G. S.

Burri, S.

Charbon, E.

S. Burri, Y. Maruyama, X. Michalet, F. Regazzoni, C. Bruschini, and E. Charbon, “Architecture and applications of a high resolution gated SPAD image sensor,” Opt. Express 22(14), 17573–17589 (2014).
[Crossref] [PubMed]

C. Niclass, A. Rochas, P. A. Besse, and E. Charbon, “Design and characterization of a CMOS 3-D image sensor based on single photon avalanche diodes,” IEEE J. Solid-State Circuits 40(9), 1847–1854 (2005).
[Crossref]

C. Niclass, C. Favi, T. Kluter, M. Gersbach, and E. Charbon, “A 128x128 single-photon imager with on-chip column-level 10b time-to-digital converter array capable of 97ps resolution,” in IEEE International Solid-State Circuits Conference-Digest of Technical Papers (IEEE, 2008), pp. 44–594.

Coffey, V. C.

V. C. Coffey, “Imaging in 3-D: killer apps coming soon to a device near you!” Opt. Photonics News 25(6), 36–43 (2014).
[Crossref]

Contini, D.

F. Villa, R. Lussana, D. Bronzi, S. Tisa, A. Tosi, F. Zappa, A. Dalla Mora, D. Contini, D. Durini, S. Weyers, and W. Brockherde, “CMOS imager with 1024 SPADs and TDCs for single-photon timing and 3-D time-of-flight,” IEEE J. Sel. Top. Quantum Electron. 20(6), 364–373 (2014).
[Crossref]

Cova, S.

S. Cova, M. Ghioni, A. Lotito, I. Rech, and F. Zappa, “Evolution and prospects for single-photon avalanche diodes and quenching circuits,” J. Mod. Opt. 51(9–10), 1267–1288 (2004).
[Crossref]

Dalla Betta, G. F.

O. Shcherbakova, L. Pancheri, G. F. Dalla Betta, N. Massari, and D. Stoppa, “3D camera based on linear-mode gain-modulated avalanche photodiodes,” in International Solid-State Circuits Conference Digest of Technical Papers (IEEE, 2013), pp. 490–491.
[Crossref]

Dalla Mora, A.

F. Villa, R. Lussana, D. Bronzi, S. Tisa, A. Tosi, F. Zappa, A. Dalla Mora, D. Contini, D. Durini, S. Weyers, and W. Brockherde, “CMOS imager with 1024 SPADs and TDCs for single-photon timing and 3-D time-of-flight,” IEEE J. Sel. Top. Quantum Electron. 20(6), 364–373 (2014).
[Crossref]

Durini, D.

F. Villa, R. Lussana, D. Bronzi, S. Tisa, A. Tosi, F. Zappa, A. Dalla Mora, D. Contini, D. Durini, S. Weyers, and W. Brockherde, “CMOS imager with 1024 SPADs and TDCs for single-photon timing and 3-D time-of-flight,” IEEE J. Sel. Top. Quantum Electron. 20(6), 364–373 (2014).
[Crossref]

D. Bronzi, F. Villa, S. Bellisai, B. Markovic, S. Tisa, A. Tosi, F. Zappa, S. Weyers, D. Durini, W. Brockherde, and U. Paschen, “Low-noise and large-area CMOS SPADs with timing response free from slow tails,” in Proceedings of the European Solid-State Device Research Conference (2012), pp. 230–233.
[Crossref]

Erbert, G.

Favi, C.

C. Niclass, C. Favi, T. Kluter, M. Gersbach, and E. Charbon, “A 128x128 single-photon imager with on-chip column-level 10b time-to-digital converter array capable of 97ps resolution,” in IEEE International Solid-State Circuits Conference-Digest of Technical Papers (IEEE, 2008), pp. 44–594.

Gersbach, M.

C. Niclass, C. Favi, T. Kluter, M. Gersbach, and E. Charbon, “A 128x128 single-photon imager with on-chip column-level 10b time-to-digital converter array capable of 97ps resolution,” in IEEE International Solid-State Circuits Conference-Digest of Technical Papers (IEEE, 2008), pp. 44–594.

Ghioni, M.

S. Cova, M. Ghioni, A. Lotito, I. Rech, and F. Zappa, “Evolution and prospects for single-photon avalanche diodes and quenching circuits,” J. Mod. Opt. 51(9–10), 1267–1288 (2004).
[Crossref]

Goyal, V. K.

D. Shin, A. Kirmani, V. K. Goyal, and J. H. Shapiro, “Photon-efficient computational 3-d and reflectivity imaging with single-photon detectors,” IEEE Trans. Computational Imaging 1(2), 112–125 (2015).
[Crossref]

Grant, L. A.

J. A. Richardson, E. Webster, L. A. Grant, and R. K. Henderson, “Scalable single-photon avalanche diode structures in nanometer CMOS technology,” IEEE Trans. Electron Dev. 58(7), 2028–2035 (2011).
[Crossref]

Hallman, L.

J. Kostamovaara, J. Huikari, L. Hallman, I. Nissinen, J. Nissinen, H. Rapakko, E. Avrutin, and B. Ryvkin, “On laser ranging based on high-speed/energy laser diode pulses and single-photon detection techniques,” IEEE Photonics J. 7(2), 1–15 (2015).
[Crossref]

Henderson, R. K.

J. A. Richardson, E. Webster, L. A. Grant, and R. K. Henderson, “Scalable single-photon avalanche diode structures in nanometer CMOS technology,” IEEE Trans. Electron Dev. 58(7), 2028–2035 (2011).
[Crossref]

R. J. Walker, J. A. Richardson, and R. K. Henderson, “A 128×96 pixel event-driven phase-domain ΔΣ-based fully digital 3D camera in 0.13μm CMOS imaging technology,” in International Solid-State Circuits Conference Digest of Technical Papers (IEEE, 2011), pp. 410–412.

Hoffmann, T.

Huikari, J.

J. Kostamovaara, J. Huikari, L. Hallman, I. Nissinen, J. Nissinen, H. Rapakko, E. Avrutin, and B. Ryvkin, “On laser ranging based on high-speed/energy laser diode pulses and single-photon detection techniques,” IEEE Photonics J. 7(2), 1–15 (2015).
[Crossref]

Huikari, J. M. T.

J. M. T. Huikari, E. A. Avrutin, B. S. Ryvkin, J. J. Nissinen, and J. T. Kostamovaara, “High-energy picosecond pulse generation by gain switching in asymmetric waveguide structure multiple quantum well lasers,” IEEE J. Sel. Top. Quantum Electron. 21(6), 189–194 (2015).
[Crossref]

Jahromi, S.

S. Jahromi, J. Jansson, I. Nissinen, J. Nissinen, and J. Kostamovaara, “A single chip laser radar receiver with a 9×9 SPAD detector array and a 10-channel TDC,” in European Solid-State Circuits Conference (2015), pp. 364–367.

Jansson, J.

S. Jahromi, J. Jansson, I. Nissinen, J. Nissinen, and J. Kostamovaara, “A single chip laser radar receiver with a 9×9 SPAD detector array and a 10-channel TDC,” in European Solid-State Circuits Conference (2015), pp. 364–367.

Jansson, J.-P.

J.-P. Jansson, A. Mäntyniemi, and J. Kostamovaara, “Synchronization in a multi-level CMOS time-to-digital Converter,” IEEE Trans. Circ. Syst. 56(8), 1622–1634 (2009).
[Crossref]

J.-P. Jansson, A. Mäntyniemi, and J. Kostamovaara, “A CMOS time-to-digital converter with better than 10 ps single-shot precision,” IEEE J. Solid-State Circuits 41(6), 1286–1296 (2006).
[Crossref]

Ketterer, K.

D. Bimberg, K. Ketterer, E. H. Bottcher, and E. Scoll, “Gain modulation of unbiased semiconductor lasers: ultrashort pulse generation,” Int. J. Electron. 60(23), 23–45 (1986).
[Crossref]

Kirmani, A.

D. Shin, A. Kirmani, V. K. Goyal, and J. H. Shapiro, “Photon-efficient computational 3-d and reflectivity imaging with single-photon detectors,” IEEE Trans. Computational Imaging 1(2), 112–125 (2015).
[Crossref]

Klehr, A.

Kluter, T.

C. Niclass, C. Favi, T. Kluter, M. Gersbach, and E. Charbon, “A 128x128 single-photon imager with on-chip column-level 10b time-to-digital converter array capable of 97ps resolution,” in IEEE International Solid-State Circuits Conference-Digest of Technical Papers (IEEE, 2008), pp. 44–594.

Kostamovaara, J.

J. Kostamovaara, J. Huikari, L. Hallman, I. Nissinen, J. Nissinen, H. Rapakko, E. Avrutin, and B. Ryvkin, “On laser ranging based on high-speed/energy laser diode pulses and single-photon detection techniques,” IEEE Photonics J. 7(2), 1–15 (2015).
[Crossref]

J.-P. Jansson, A. Mäntyniemi, and J. Kostamovaara, “Synchronization in a multi-level CMOS time-to-digital Converter,” IEEE Trans. Circ. Syst. 56(8), 1622–1634 (2009).
[Crossref]

J.-P. Jansson, A. Mäntyniemi, and J. Kostamovaara, “A CMOS time-to-digital converter with better than 10 ps single-shot precision,” IEEE J. Solid-State Circuits 41(6), 1286–1296 (2006).
[Crossref]

J. Nissinen and J. Kostamovaara, “A 4 a peak current and 2 ns pulse width CMOS laser diode driver for high measurement rate applications,” in Proceedings of European Solid-State Circuits Conference (IEEE, 2013), pp. 355–358.
[Crossref]

S. Jahromi, J. Jansson, I. Nissinen, J. Nissinen, and J. Kostamovaara, “A single chip laser radar receiver with a 9×9 SPAD detector array and a 10-channel TDC,” in European Solid-State Circuits Conference (2015), pp. 364–367.

Kostamovaara, J. T.

J. M. T. Huikari, E. A. Avrutin, B. S. Ryvkin, J. J. Nissinen, and J. T. Kostamovaara, “High-energy picosecond pulse generation by gain switching in asymmetric waveguide structure multiple quantum well lasers,” IEEE J. Sel. Top. Quantum Electron. 21(6), 189–194 (2015).
[Crossref]

B. Lanz, B. S. Ryvkin, E. A. Avrutin, and J. T. Kostamovaara, “Performance improvement by a saturable absorber in gain-switched asymmetric-waveguide laser diodes,” Opt. Express 21(24), 29780–29791 (2013).
[Crossref] [PubMed]

B. S. Ryvkin, E. A. Avrutin, and J. T. Kostamovaara, “Quantum well laser with an extremely large active layer width to optical confinement factor ratio for high-energy single picosecond pulse generation by gain switching,” Semicond. Sci. Technol. 26(4), 045010 (2011).
[Crossref]

B. S. Ryvkin, E. A. Avrutin, and J. T. Kostamovaara, “Vertical cavity surface emitting lasers with the active layer position detuned from standing wave antinode for picosecond pulse generation by gain switching,” J. Appl. Phys. 110(12), 123101 (2011).
[Crossref]

B. Ryvkin, E. A. Avrutin, and J. T. Kostamovaara, “Asymmetric-waveguide laser diode for high-power optical pulse generation by gain switching,” J. Lightwave Technol. 27(12), 2125–2131 (2009).
[Crossref]

Krichel, N. J.

Lanz, B.

Lau, K. Y.

K. Y. Lau, “Gain switching of semiconductor injection lasers,” Appl. Phys. Lett. 52(4), 257–259 (1988).
[Crossref]

Liero, A.

Lotito, A.

S. Cova, M. Ghioni, A. Lotito, I. Rech, and F. Zappa, “Evolution and prospects for single-photon avalanche diodes and quenching circuits,” J. Mod. Opt. 51(9–10), 1267–1288 (2004).
[Crossref]

Lussana, R.

F. Villa, R. Lussana, D. Bronzi, S. Tisa, A. Tosi, F. Zappa, A. Dalla Mora, D. Contini, D. Durini, S. Weyers, and W. Brockherde, “CMOS imager with 1024 SPADs and TDCs for single-photon timing and 3-D time-of-flight,” IEEE J. Sel. Top. Quantum Electron. 20(6), 364–373 (2014).
[Crossref]

Mäntyniemi, A.

J.-P. Jansson, A. Mäntyniemi, and J. Kostamovaara, “Synchronization in a multi-level CMOS time-to-digital Converter,” IEEE Trans. Circ. Syst. 56(8), 1622–1634 (2009).
[Crossref]

J.-P. Jansson, A. Mäntyniemi, and J. Kostamovaara, “A CMOS time-to-digital converter with better than 10 ps single-shot precision,” IEEE J. Solid-State Circuits 41(6), 1286–1296 (2006).
[Crossref]

Markovic, B.

D. Bronzi, F. Villa, S. Bellisai, B. Markovic, S. Tisa, A. Tosi, F. Zappa, S. Weyers, D. Durini, W. Brockherde, and U. Paschen, “Low-noise and large-area CMOS SPADs with timing response free from slow tails,” in Proceedings of the European Solid-State Device Research Conference (2012), pp. 230–233.
[Crossref]

Maruyama, Y.

Massari, N.

O. Shcherbakova, L. Pancheri, G. F. Dalla Betta, N. Massari, and D. Stoppa, “3D camera based on linear-mode gain-modulated avalanche photodiodes,” in International Solid-State Circuits Conference Digest of Technical Papers (IEEE, 2013), pp. 490–491.
[Crossref]

McCarthy, A.

Michalet, X.

Mitev, V.

V. Mitev and A. Pollini, “Flash imaging sensors for space applications,” in 7th International Conference on Recent Advances in Space Technologies (IEEE, 2015), pp. 687–693.

Niclass, C.

C. Niclass, A. Rochas, P. A. Besse, and E. Charbon, “Design and characterization of a CMOS 3-D image sensor based on single photon avalanche diodes,” IEEE J. Solid-State Circuits 40(9), 1847–1854 (2005).
[Crossref]

C. Niclass, C. Favi, T. Kluter, M. Gersbach, and E. Charbon, “A 128x128 single-photon imager with on-chip column-level 10b time-to-digital converter array capable of 97ps resolution,” in IEEE International Solid-State Circuits Conference-Digest of Technical Papers (IEEE, 2008), pp. 44–594.

Nissinen, I.

J. Kostamovaara, J. Huikari, L. Hallman, I. Nissinen, J. Nissinen, H. Rapakko, E. Avrutin, and B. Ryvkin, “On laser ranging based on high-speed/energy laser diode pulses and single-photon detection techniques,” IEEE Photonics J. 7(2), 1–15 (2015).
[Crossref]

S. Jahromi, J. Jansson, I. Nissinen, J. Nissinen, and J. Kostamovaara, “A single chip laser radar receiver with a 9×9 SPAD detector array and a 10-channel TDC,” in European Solid-State Circuits Conference (2015), pp. 364–367.

Nissinen, J.

J. Kostamovaara, J. Huikari, L. Hallman, I. Nissinen, J. Nissinen, H. Rapakko, E. Avrutin, and B. Ryvkin, “On laser ranging based on high-speed/energy laser diode pulses and single-photon detection techniques,” IEEE Photonics J. 7(2), 1–15 (2015).
[Crossref]

S. Jahromi, J. Jansson, I. Nissinen, J. Nissinen, and J. Kostamovaara, “A single chip laser radar receiver with a 9×9 SPAD detector array and a 10-channel TDC,” in European Solid-State Circuits Conference (2015), pp. 364–367.

J. Nissinen and J. Kostamovaara, “A 4 a peak current and 2 ns pulse width CMOS laser diode driver for high measurement rate applications,” in Proceedings of European Solid-State Circuits Conference (IEEE, 2013), pp. 355–358.
[Crossref]

Nissinen, J. J.

J. M. T. Huikari, E. A. Avrutin, B. S. Ryvkin, J. J. Nissinen, and J. T. Kostamovaara, “High-energy picosecond pulse generation by gain switching in asymmetric waveguide structure multiple quantum well lasers,” IEEE J. Sel. Top. Quantum Electron. 21(6), 189–194 (2015).
[Crossref]

Pancheri, L.

M. Perenzoni, L. Pancheri, and D. Stoppa, “Compact SPAD-based pixel architectures for time-resolved image sensors,” Sensors (Basel) 16(5), 745 (2016).
[Crossref] [PubMed]

O. Shcherbakova, L. Pancheri, G. F. Dalla Betta, N. Massari, and D. Stoppa, “3D camera based on linear-mode gain-modulated avalanche photodiodes,” in International Solid-State Circuits Conference Digest of Technical Papers (IEEE, 2013), pp. 490–491.
[Crossref]

Pantic, D.

A. Rochas, A. R. Pauchard, P. A. Besse, D. Pantic, Z. Prijic, and R. S. Popovic, “Low-noise silicon avalanche photodiodes fabricated in conventional CMOS technologies,” IEEE Trans. Electron Dev. 49(3), 387–394 (2002).
[Crossref]

Paschen, U.

D. Bronzi, F. Villa, S. Bellisai, B. Markovic, S. Tisa, A. Tosi, F. Zappa, S. Weyers, D. Durini, W. Brockherde, and U. Paschen, “Low-noise and large-area CMOS SPADs with timing response free from slow tails,” in Proceedings of the European Solid-State Device Research Conference (2012), pp. 230–233.
[Crossref]

Pauchard, A. R.

A. Rochas, A. R. Pauchard, P. A. Besse, D. Pantic, Z. Prijic, and R. S. Popovic, “Low-noise silicon avalanche photodiodes fabricated in conventional CMOS technologies,” IEEE Trans. Electron Dev. 49(3), 387–394 (2002).
[Crossref]

Perenzoni, D.

M. Perenzoni, D. Perenzoni, and D. Stoppa, “A 64x64-pixel digital silicon photomultiplier direct ToF sensor with 100Mphotons/s/pixel background rejection and imaging/altimeter mode with 0.14% precision up to 6km for spacecraft navigation and landing,” in International Solid-State Circuits Conference (IEEE, 2016), pp. 118–119.

Perenzoni, M.

M. Perenzoni, L. Pancheri, and D. Stoppa, “Compact SPAD-based pixel architectures for time-resolved image sensors,” Sensors (Basel) 16(5), 745 (2016).
[Crossref] [PubMed]

M. Perenzoni, D. Perenzoni, and D. Stoppa, “A 64x64-pixel digital silicon photomultiplier direct ToF sensor with 100Mphotons/s/pixel background rejection and imaging/altimeter mode with 0.14% precision up to 6km for spacecraft navigation and landing,” in International Solid-State Circuits Conference (IEEE, 2016), pp. 118–119.

Pollini, A.

V. Mitev and A. Pollini, “Flash imaging sensors for space applications,” in 7th International Conference on Recent Advances in Space Technologies (IEEE, 2015), pp. 687–693.

Popovic, R. S.

A. Rochas, A. R. Pauchard, P. A. Besse, D. Pantic, Z. Prijic, and R. S. Popovic, “Low-noise silicon avalanche photodiodes fabricated in conventional CMOS technologies,” IEEE Trans. Electron Dev. 49(3), 387–394 (2002).
[Crossref]

Prijic, Z.

A. Rochas, A. R. Pauchard, P. A. Besse, D. Pantic, Z. Prijic, and R. S. Popovic, “Low-noise silicon avalanche photodiodes fabricated in conventional CMOS technologies,” IEEE Trans. Electron Dev. 49(3), 387–394 (2002).
[Crossref]

Rapakko, H.

J. Kostamovaara, J. Huikari, L. Hallman, I. Nissinen, J. Nissinen, H. Rapakko, E. Avrutin, and B. Ryvkin, “On laser ranging based on high-speed/energy laser diode pulses and single-photon detection techniques,” IEEE Photonics J. 7(2), 1–15 (2015).
[Crossref]

Rech, I.

S. Cova, M. Ghioni, A. Lotito, I. Rech, and F. Zappa, “Evolution and prospects for single-photon avalanche diodes and quenching circuits,” J. Mod. Opt. 51(9–10), 1267–1288 (2004).
[Crossref]

Regazzoni, F.

Richardson, J. A.

J. A. Richardson, E. Webster, L. A. Grant, and R. K. Henderson, “Scalable single-photon avalanche diode structures in nanometer CMOS technology,” IEEE Trans. Electron Dev. 58(7), 2028–2035 (2011).
[Crossref]

R. J. Walker, J. A. Richardson, and R. K. Henderson, “A 128×96 pixel event-driven phase-domain ΔΣ-based fully digital 3D camera in 0.13μm CMOS imaging technology,” in International Solid-State Circuits Conference Digest of Technical Papers (IEEE, 2011), pp. 410–412.

Rochas, A.

C. Niclass, A. Rochas, P. A. Besse, and E. Charbon, “Design and characterization of a CMOS 3-D image sensor based on single photon avalanche diodes,” IEEE J. Solid-State Circuits 40(9), 1847–1854 (2005).
[Crossref]

A. Rochas, A. R. Pauchard, P. A. Besse, D. Pantic, Z. Prijic, and R. S. Popovic, “Low-noise silicon avalanche photodiodes fabricated in conventional CMOS technologies,” IEEE Trans. Electron Dev. 49(3), 387–394 (2002).
[Crossref]

Ryvkin, B.

J. Kostamovaara, J. Huikari, L. Hallman, I. Nissinen, J. Nissinen, H. Rapakko, E. Avrutin, and B. Ryvkin, “On laser ranging based on high-speed/energy laser diode pulses and single-photon detection techniques,” IEEE Photonics J. 7(2), 1–15 (2015).
[Crossref]

B. Ryvkin, E. A. Avrutin, and J. T. Kostamovaara, “Asymmetric-waveguide laser diode for high-power optical pulse generation by gain switching,” J. Lightwave Technol. 27(12), 2125–2131 (2009).
[Crossref]

Ryvkin, B. S.

J. M. T. Huikari, E. A. Avrutin, B. S. Ryvkin, J. J. Nissinen, and J. T. Kostamovaara, “High-energy picosecond pulse generation by gain switching in asymmetric waveguide structure multiple quantum well lasers,” IEEE J. Sel. Top. Quantum Electron. 21(6), 189–194 (2015).
[Crossref]

B. Lanz, B. S. Ryvkin, E. A. Avrutin, and J. T. Kostamovaara, “Performance improvement by a saturable absorber in gain-switched asymmetric-waveguide laser diodes,” Opt. Express 21(24), 29780–29791 (2013).
[Crossref] [PubMed]

B. S. Ryvkin, E. A. Avrutin, and J. T. Kostamovaara, “Quantum well laser with an extremely large active layer width to optical confinement factor ratio for high-energy single picosecond pulse generation by gain switching,” Semicond. Sci. Technol. 26(4), 045010 (2011).
[Crossref]

B. S. Ryvkin, E. A. Avrutin, and J. T. Kostamovaara, “Vertical cavity surface emitting lasers with the active layer position detuned from standing wave antinode for picosecond pulse generation by gain switching,” J. Appl. Phys. 110(12), 123101 (2011).
[Crossref]

Schwarz, B.

B. Schwarz, “LIDAR: mapping the world in 3D,” Nat. Photonics 4(7), 429–430 (2010).
[Crossref]

Schwertfeger, S.

Scoll, E.

D. Bimberg, K. Ketterer, E. H. Bottcher, and E. Scoll, “Gain modulation of unbiased semiconductor lasers: ultrashort pulse generation,” Int. J. Electron. 60(23), 23–45 (1986).
[Crossref]

Shapiro, J. H.

D. Shin, A. Kirmani, V. K. Goyal, and J. H. Shapiro, “Photon-efficient computational 3-d and reflectivity imaging with single-photon detectors,” IEEE Trans. Computational Imaging 1(2), 112–125 (2015).
[Crossref]

Shcherbakova, O.

O. Shcherbakova, L. Pancheri, G. F. Dalla Betta, N. Massari, and D. Stoppa, “3D camera based on linear-mode gain-modulated avalanche photodiodes,” in International Solid-State Circuits Conference Digest of Technical Papers (IEEE, 2013), pp. 490–491.
[Crossref]

Shin, D.

D. Shin, A. Kirmani, V. K. Goyal, and J. H. Shapiro, “Photon-efficient computational 3-d and reflectivity imaging with single-photon detectors,” IEEE Trans. Computational Imaging 1(2), 112–125 (2015).
[Crossref]

Stoppa, D.

M. Perenzoni, L. Pancheri, and D. Stoppa, “Compact SPAD-based pixel architectures for time-resolved image sensors,” Sensors (Basel) 16(5), 745 (2016).
[Crossref] [PubMed]

O. Shcherbakova, L. Pancheri, G. F. Dalla Betta, N. Massari, and D. Stoppa, “3D camera based on linear-mode gain-modulated avalanche photodiodes,” in International Solid-State Circuits Conference Digest of Technical Papers (IEEE, 2013), pp. 490–491.
[Crossref]

M. Perenzoni, D. Perenzoni, and D. Stoppa, “A 64x64-pixel digital silicon photomultiplier direct ToF sensor with 100Mphotons/s/pixel background rejection and imaging/altimeter mode with 0.14% precision up to 6km for spacecraft navigation and landing,” in International Solid-State Circuits Conference (IEEE, 2016), pp. 118–119.

Tisa, S.

D. Bronzi, Y. Zou, F. Villa, S. Tisa, A. Tosi, and F. Zappa, “Automotive three-dimensional vision through a single-photon counting SPAD camera,” IEEE Trans. Intell. Transp. Syst. 17(3), 782–795 (2016).
[Crossref]

F. Villa, R. Lussana, D. Bronzi, S. Tisa, A. Tosi, F. Zappa, A. Dalla Mora, D. Contini, D. Durini, S. Weyers, and W. Brockherde, “CMOS imager with 1024 SPADs and TDCs for single-photon timing and 3-D time-of-flight,” IEEE J. Sel. Top. Quantum Electron. 20(6), 364–373 (2014).
[Crossref]

D. Bronzi, F. Villa, S. Bellisai, B. Markovic, S. Tisa, A. Tosi, F. Zappa, S. Weyers, D. Durini, W. Brockherde, and U. Paschen, “Low-noise and large-area CMOS SPADs with timing response free from slow tails,” in Proceedings of the European Solid-State Device Research Conference (2012), pp. 230–233.
[Crossref]

Tosi, A.

D. Bronzi, Y. Zou, F. Villa, S. Tisa, A. Tosi, and F. Zappa, “Automotive three-dimensional vision through a single-photon counting SPAD camera,” IEEE Trans. Intell. Transp. Syst. 17(3), 782–795 (2016).
[Crossref]

F. Villa, R. Lussana, D. Bronzi, S. Tisa, A. Tosi, F. Zappa, A. Dalla Mora, D. Contini, D. Durini, S. Weyers, and W. Brockherde, “CMOS imager with 1024 SPADs and TDCs for single-photon timing and 3-D time-of-flight,” IEEE J. Sel. Top. Quantum Electron. 20(6), 364–373 (2014).
[Crossref]

D. Bronzi, F. Villa, S. Bellisai, B. Markovic, S. Tisa, A. Tosi, F. Zappa, S. Weyers, D. Durini, W. Brockherde, and U. Paschen, “Low-noise and large-area CMOS SPADs with timing response free from slow tails,” in Proceedings of the European Solid-State Device Research Conference (2012), pp. 230–233.
[Crossref]

Villa, F.

D. Bronzi, Y. Zou, F. Villa, S. Tisa, A. Tosi, and F. Zappa, “Automotive three-dimensional vision through a single-photon counting SPAD camera,” IEEE Trans. Intell. Transp. Syst. 17(3), 782–795 (2016).
[Crossref]

F. Villa, R. Lussana, D. Bronzi, S. Tisa, A. Tosi, F. Zappa, A. Dalla Mora, D. Contini, D. Durini, S. Weyers, and W. Brockherde, “CMOS imager with 1024 SPADs and TDCs for single-photon timing and 3-D time-of-flight,” IEEE J. Sel. Top. Quantum Electron. 20(6), 364–373 (2014).
[Crossref]

D. Bronzi, F. Villa, S. Bellisai, B. Markovic, S. Tisa, A. Tosi, F. Zappa, S. Weyers, D. Durini, W. Brockherde, and U. Paschen, “Low-noise and large-area CMOS SPADs with timing response free from slow tails,” in Proceedings of the European Solid-State Device Research Conference (2012), pp. 230–233.
[Crossref]

Walker, R. J.

R. J. Walker, J. A. Richardson, and R. K. Henderson, “A 128×96 pixel event-driven phase-domain ΔΣ-based fully digital 3D camera in 0.13μm CMOS imaging technology,” in International Solid-State Circuits Conference Digest of Technical Papers (IEEE, 2011), pp. 410–412.

Wallace, A.

G. Buller and A. Wallace, “Ranging and three-dimensional imaging using time-correlated single-photon counting and point-by-point acquisition,” IEEE J. Sel. Top. Quantum Electron. 13(4), 1006–1015 (2007).
[Crossref]

Webster, E.

J. A. Richardson, E. Webster, L. A. Grant, and R. K. Henderson, “Scalable single-photon avalanche diode structures in nanometer CMOS technology,” IEEE Trans. Electron Dev. 58(7), 2028–2035 (2011).
[Crossref]

Wenzel, H.

Weyers, S.

F. Villa, R. Lussana, D. Bronzi, S. Tisa, A. Tosi, F. Zappa, A. Dalla Mora, D. Contini, D. Durini, S. Weyers, and W. Brockherde, “CMOS imager with 1024 SPADs and TDCs for single-photon timing and 3-D time-of-flight,” IEEE J. Sel. Top. Quantum Electron. 20(6), 364–373 (2014).
[Crossref]

D. Bronzi, F. Villa, S. Bellisai, B. Markovic, S. Tisa, A. Tosi, F. Zappa, S. Weyers, D. Durini, W. Brockherde, and U. Paschen, “Low-noise and large-area CMOS SPADs with timing response free from slow tails,” in Proceedings of the European Solid-State Device Research Conference (2012), pp. 230–233.
[Crossref]

Zappa, F.

D. Bronzi, Y. Zou, F. Villa, S. Tisa, A. Tosi, and F. Zappa, “Automotive three-dimensional vision through a single-photon counting SPAD camera,” IEEE Trans. Intell. Transp. Syst. 17(3), 782–795 (2016).
[Crossref]

F. Villa, R. Lussana, D. Bronzi, S. Tisa, A. Tosi, F. Zappa, A. Dalla Mora, D. Contini, D. Durini, S. Weyers, and W. Brockherde, “CMOS imager with 1024 SPADs and TDCs for single-photon timing and 3-D time-of-flight,” IEEE J. Sel. Top. Quantum Electron. 20(6), 364–373 (2014).
[Crossref]

S. Cova, M. Ghioni, A. Lotito, I. Rech, and F. Zappa, “Evolution and prospects for single-photon avalanche diodes and quenching circuits,” J. Mod. Opt. 51(9–10), 1267–1288 (2004).
[Crossref]

D. Bronzi, F. Villa, S. Bellisai, B. Markovic, S. Tisa, A. Tosi, F. Zappa, S. Weyers, D. Durini, W. Brockherde, and U. Paschen, “Low-noise and large-area CMOS SPADs with timing response free from slow tails,” in Proceedings of the European Solid-State Device Research Conference (2012), pp. 230–233.
[Crossref]

Zou, Y.

D. Bronzi, Y. Zou, F. Villa, S. Tisa, A. Tosi, and F. Zappa, “Automotive three-dimensional vision through a single-photon counting SPAD camera,” IEEE Trans. Intell. Transp. Syst. 17(3), 782–795 (2016).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

K. Y. Lau, “Gain switching of semiconductor injection lasers,” Appl. Phys. Lett. 52(4), 257–259 (1988).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (3)

J. M. T. Huikari, E. A. Avrutin, B. S. Ryvkin, J. J. Nissinen, and J. T. Kostamovaara, “High-energy picosecond pulse generation by gain switching in asymmetric waveguide structure multiple quantum well lasers,” IEEE J. Sel. Top. Quantum Electron. 21(6), 189–194 (2015).
[Crossref]

F. Villa, R. Lussana, D. Bronzi, S. Tisa, A. Tosi, F. Zappa, A. Dalla Mora, D. Contini, D. Durini, S. Weyers, and W. Brockherde, “CMOS imager with 1024 SPADs and TDCs for single-photon timing and 3-D time-of-flight,” IEEE J. Sel. Top. Quantum Electron. 20(6), 364–373 (2014).
[Crossref]

G. Buller and A. Wallace, “Ranging and three-dimensional imaging using time-correlated single-photon counting and point-by-point acquisition,” IEEE J. Sel. Top. Quantum Electron. 13(4), 1006–1015 (2007).
[Crossref]

IEEE J. Solid-State Circuits (2)

C. Niclass, A. Rochas, P. A. Besse, and E. Charbon, “Design and characterization of a CMOS 3-D image sensor based on single photon avalanche diodes,” IEEE J. Solid-State Circuits 40(9), 1847–1854 (2005).
[Crossref]

J.-P. Jansson, A. Mäntyniemi, and J. Kostamovaara, “A CMOS time-to-digital converter with better than 10 ps single-shot precision,” IEEE J. Solid-State Circuits 41(6), 1286–1296 (2006).
[Crossref]

IEEE Photonics J. (1)

J. Kostamovaara, J. Huikari, L. Hallman, I. Nissinen, J. Nissinen, H. Rapakko, E. Avrutin, and B. Ryvkin, “On laser ranging based on high-speed/energy laser diode pulses and single-photon detection techniques,” IEEE Photonics J. 7(2), 1–15 (2015).
[Crossref]

IEEE Trans. Circ. Syst. (1)

J.-P. Jansson, A. Mäntyniemi, and J. Kostamovaara, “Synchronization in a multi-level CMOS time-to-digital Converter,” IEEE Trans. Circ. Syst. 56(8), 1622–1634 (2009).
[Crossref]

IEEE Trans. Computational Imaging (1)

D. Shin, A. Kirmani, V. K. Goyal, and J. H. Shapiro, “Photon-efficient computational 3-d and reflectivity imaging with single-photon detectors,” IEEE Trans. Computational Imaging 1(2), 112–125 (2015).
[Crossref]

IEEE Trans. Electron Dev. (2)

J. A. Richardson, E. Webster, L. A. Grant, and R. K. Henderson, “Scalable single-photon avalanche diode structures in nanometer CMOS technology,” IEEE Trans. Electron Dev. 58(7), 2028–2035 (2011).
[Crossref]

A. Rochas, A. R. Pauchard, P. A. Besse, D. Pantic, Z. Prijic, and R. S. Popovic, “Low-noise silicon avalanche photodiodes fabricated in conventional CMOS technologies,” IEEE Trans. Electron Dev. 49(3), 387–394 (2002).
[Crossref]

IEEE Trans. Intell. Transp. Syst. (1)

D. Bronzi, Y. Zou, F. Villa, S. Tisa, A. Tosi, and F. Zappa, “Automotive three-dimensional vision through a single-photon counting SPAD camera,” IEEE Trans. Intell. Transp. Syst. 17(3), 782–795 (2016).
[Crossref]

Int. J. Electron. (1)

D. Bimberg, K. Ketterer, E. H. Bottcher, and E. Scoll, “Gain modulation of unbiased semiconductor lasers: ultrashort pulse generation,” Int. J. Electron. 60(23), 23–45 (1986).
[Crossref]

J. Appl. Phys. (1)

B. S. Ryvkin, E. A. Avrutin, and J. T. Kostamovaara, “Vertical cavity surface emitting lasers with the active layer position detuned from standing wave antinode for picosecond pulse generation by gain switching,” J. Appl. Phys. 110(12), 123101 (2011).
[Crossref]

J. Lightwave Technol. (1)

J. Mod. Opt. (1)

S. Cova, M. Ghioni, A. Lotito, I. Rech, and F. Zappa, “Evolution and prospects for single-photon avalanche diodes and quenching circuits,” J. Mod. Opt. 51(9–10), 1267–1288 (2004).
[Crossref]

Nat. Photonics (1)

B. Schwarz, “LIDAR: mapping the world in 3D,” Nat. Photonics 4(7), 429–430 (2010).
[Crossref]

Opt. Express (3)

Opt. Photonics News (1)

V. C. Coffey, “Imaging in 3-D: killer apps coming soon to a device near you!” Opt. Photonics News 25(6), 36–43 (2014).
[Crossref]

Semicond. Sci. Technol. (1)

B. S. Ryvkin, E. A. Avrutin, and J. T. Kostamovaara, “Quantum well laser with an extremely large active layer width to optical confinement factor ratio for high-energy single picosecond pulse generation by gain switching,” Semicond. Sci. Technol. 26(4), 045010 (2011).
[Crossref]

Sensors (Basel) (1)

M. Perenzoni, L. Pancheri, and D. Stoppa, “Compact SPAD-based pixel architectures for time-resolved image sensors,” Sensors (Basel) 16(5), 745 (2016).
[Crossref] [PubMed]

Other (13)

C. Niclass, C. Favi, T. Kluter, M. Gersbach, and E. Charbon, “A 128x128 single-photon imager with on-chip column-level 10b time-to-digital converter array capable of 97ps resolution,” in IEEE International Solid-State Circuits Conference-Digest of Technical Papers (IEEE, 2008), pp. 44–594.

D. Bronzi, F. Villa, S. Bellisai, B. Markovic, S. Tisa, A. Tosi, F. Zappa, S. Weyers, D. Durini, W. Brockherde, and U. Paschen, “Low-noise and large-area CMOS SPADs with timing response free from slow tails,” in Proceedings of the European Solid-State Device Research Conference (2012), pp. 230–233.
[Crossref]

A. S. Malik, Depth Map and 3D Imaging Applications: Algorithms and Technologies: Algorithms and Technologies (IGI Global, 2011).

R. J. Walker, J. A. Richardson, and R. K. Henderson, “A 128×96 pixel event-driven phase-domain ΔΣ-based fully digital 3D camera in 0.13μm CMOS imaging technology,” in International Solid-State Circuits Conference Digest of Technical Papers (IEEE, 2011), pp. 410–412.

R. Lange, “3D time-of-flight distance measurement with custom solid-state image sensors in CMOS/CCD-technology,” Dissertation, Department of Electrical Engineering and Computer Science, University of Siegen (2000).

V. Mitev and A. Pollini, “Flash imaging sensors for space applications,” in 7th International Conference on Recent Advances in Space Technologies (IEEE, 2015), pp. 687–693.

O. Shcherbakova, L. Pancheri, G. F. Dalla Betta, N. Massari, and D. Stoppa, “3D camera based on linear-mode gain-modulated avalanche photodiodes,” in International Solid-State Circuits Conference Digest of Technical Papers (IEEE, 2013), pp. 490–491.
[Crossref]

M. Perenzoni, D. Perenzoni, and D. Stoppa, “A 64x64-pixel digital silicon photomultiplier direct ToF sensor with 100Mphotons/s/pixel background rejection and imaging/altimeter mode with 0.14% precision up to 6km for spacecraft navigation and landing,” in International Solid-State Circuits Conference (IEEE, 2016), pp. 118–119.

C. Niclass and E. Charbon, “A single photon detector array with 64× 64 resolution and millimetric depth accuracy for 3D imaging,” in International Digest of Technical Papers.Solid-State Circuits Conference (IEEE, 2005), pp. 364–604.

L. Hallman, J. Huikari, and J. Kostamovaara, “A high-speed/power laser transmitter for single photon imaging applications,” in Proceedings of IEEE SENSORS (IEEE, 2014), pp. 1157–1160.

S. Jahromi, J. Jansson, I. Nissinen, J. Nissinen, and J. Kostamovaara, “A single chip laser radar receiver with a 9×9 SPAD detector array and a 10-channel TDC,” in European Solid-State Circuits Conference (2015), pp. 364–367.

J. Nissinen and J. Kostamovaara, “A 4 a peak current and 2 ns pulse width CMOS laser diode driver for high measurement rate applications,” in Proceedings of European Solid-State Circuits Conference (IEEE, 2013), pp. 355–358.
[Crossref]

J. H. Shapiro, “Photon-efficient 3D imaging,” in Applications of Lasers for Sensing and Free Space Communications (Optical Society of America, 2015), pp. LM3D–2.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 The 3D imager concept.
Fig. 2
Fig. 2 The solid-state 3D laser imager concept: a pulsed TOF focal plane imager using an LD transmitter, a 2D CMOS SPAD-based receiver and paraxial optics.
Fig. 3
Fig. 3 The pulsed TOF laser 3D imager prototype: (a) graphical representation, (b) photo of the measurement setup.
Fig. 4
Fig. 4 Photo of the receiver chip.
Fig. 5
Fig. 5 Architecture of the TDC, based on a counter and 2-level interpolation.
Fig. 6
Fig. 6 The time-gating concept.
Fig. 7
Fig. 7 (a) Single shot distribution of one SPAD operating in single photon mode with a flat target at ~19m (b) the measured mean and sigma of the distributions versus the number of averaged detections (N) in two cases corresponding to presence or filtration of the tail (inset: zoomed version for 1<N<50).
Fig. 8
Fig. 8 (a) 3D images of a pyramid with three steps, (b) a ramp, one-third of which is covered with a low reflective material (brown cardboard), (c) a white, flat plane with a cube placed on top, and (d) a color map representation of the detection probability for the ramp target.

Metrics