Abstract

We report on efficient optical beam-steering using a hot-embossed reflective blazed grating in combination with liquid crystal. A numerical simulation of the electrical switching characteristics of the liquid crystal is performed and the results are used in an FDTD optical simulator to analyze the beam deflection. The corresponding experiment on the realized device is performed and is found to be in good agreement. Beam deflection angles of 4.4° upon perpendicular incidence are found with low applied voltages of 3.4 V. By tilting the device with respect to the incoming optical beam it can be electronically switched such that the beam undergoes either total internal reflection or reflection with a tunable angle.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Liquid-crystal blazed-grating beam deflector

Xu Wang, Daniel Wilson, Richard Muller, Paul Maker, and Demetri Psaltis
Appl. Opt. 39(35) 6545-6555 (2000)

On the fringing-field effect in liquid-crystal beam-steering devices

Boris Apter, Uzi Efron, and Eldad Bahat-Treidel
Appl. Opt. 43(1) 11-19 (2004)

Fringing-field effect in liquid-crystal beam-steering devices: an approximate analytical model

Uzi Efron, Boris Apter, and Eldad Bahat-Treidel
J. Opt. Soc. Am. A 21(10) 1996-2008 (2004)

References

  • View by:
  • |
  • |
  • |

  1. J. Beeckman, K. Neyts, and P. Vanbrabant, “Liquid-crystal photonic applications,” Opt. Eng. 50, 17 (2011).
    [Crossref]
  2. P. F. McManamon, P. J. Bos, M. J. Escuti, J. Heikenfeld, S. Serati, H. Xie, and E. Watson, “A review of phased array steering for narrow-band electrooptical systems,” Proceedings of the IEEE 97, 1078–1096 (2009).
    [Crossref]
  3. S. Nersisyan, N. Tabiryan, D. Steeves, and B. Kimball, “The Promise of Diffractive Waveplates,” Opt. Photon. News 21, 40–45 (2010).
    [Crossref]
  4. H. Chen, Y. Weng, D. Xu, N. Tabiryan, and S. Wu, “Beam steering for virtual/augmented reality displays with a cycloidal diffractive waveplate,” Opt. Express 24, 7287–7298 (2016).
    [Crossref] [PubMed]
  5. V. Presnyakov, K. Asatryan, and T. Galstian, “Optical polarization grating induced liquid crystal micro-structure using azo-dye command layer,” Opt. Express 14, 10558–10564 (2006).
    [Crossref] [PubMed]
  6. C. Provenzano, P. Pagliusi, and G. Cipparrone, “Highly efficient liquid crystal based diffraction grating induced by polarization holograms at the aligning surfaces,” Appl. Phys. Lett. 89, 121105 (2006).
    [Crossref]
  7. I. Nys, J. Beeckman, and K. Neyts, “Switchable 3d liquid crystal grating generated by periodic photo-alignment on both substrates,” Soft Matter 11, 7802–7808 (2015).
    [Crossref] [PubMed]
  8. B. Apter, U. Efron, and E. Bahat-Treidel, “On the fringing-field effect in liquid-crystal beam-steering devices,” Appl. Opt. 43, 11–19 (2004).
    [Crossref] [PubMed]
  9. X. Wang, B. Wang, P. J. Bos, P. F. McManamon, J. J. Pouch, F. A. Miranda, and J. E. Anderson, “Modeling and design of an optimized liquid-crystal optical phased array,” J. Appl. Phys. 98, 073101 (2005).
    [Crossref]
  10. S. R. Harris, “Polarization effects in nematic liquid crystal optical phased arrays,” Proc. SPIE 5213, 26–39 (2003).
    [Crossref]
  11. M. L. Jepsen and H. J. Gerritsen, “Liquid-crystal-filled gratings with high diffraction efficiency,” Opt. Lett. 21, 1081–1083 (1996).
    [Crossref] [PubMed]
  12. X. Shang, J.-Y. Tan, O. Willekens, J. De Smet, P. Joshi, D. Cuypers, E. Islamaj, J. Beeckman, K. Neyts, M. Vervaeke, H. Thienpont, and H. De Smet, “Electrically controllable liquid crystal component for efficient light steering,” IEEE Photon. J. 7, 1–13 (2015).
    [Crossref]
  13. X. Wang, D. Wilson, R. Muller, P. Maker, and D. Psaltis, “Liquid-crystal blazed-grating beam deflector,” Appl. Opt. 39, 6545–6555 (2000).
    [Crossref]
  14. D. De Coster, H. Ottevaere, M. Vervaeke, J. V. Erps, M. Callewaert, P. Wuytens, S. H. Simpson, S. Hanna, W. D. Malsche, and H. Thienpont, “Mass-manufacturable polymer microfluidic device for dual fiber optical trapping,” Opt. Express 23, 30991–31009 (2015).
    [Crossref] [PubMed]
  15. M. Worgull, Hot Embossing: Theory and Technology of Microreplication (William Andrew, 2009).
  16. V. Chigrinov, H. S. Kwok, H. Takada, and H. Takatsu, “Photo-aligning by azo-dyes: Physics and applications,” Liq. Cryst. Today 14, 1–15 (2005).
    [Crossref]
  17. I. Haller, H. A. Huggins, and M. J. Freiser, “On the measurement of indices of refraction of nematic liquids,” Mol. Cryst. Liq. Cryst. 16, (1–2), 53–59 (1972)
    [Crossref]
  18. R. James, E. Willman, F. A. Fernández, and S. E. Day, “Finite-element modeling of liquid-crystal hydrodynamics with a variable degree of order,” IEEE Trans. Electron Dev 53, 1575–1582 (2006).
    [Crossref]
  19. P. Yeh and C. Gu, Optics of Liquid Crystal Displays (John Wiley & Sons, 2010), Chap. 1

2016 (1)

2015 (3)

I. Nys, J. Beeckman, and K. Neyts, “Switchable 3d liquid crystal grating generated by periodic photo-alignment on both substrates,” Soft Matter 11, 7802–7808 (2015).
[Crossref] [PubMed]

X. Shang, J.-Y. Tan, O. Willekens, J. De Smet, P. Joshi, D. Cuypers, E. Islamaj, J. Beeckman, K. Neyts, M. Vervaeke, H. Thienpont, and H. De Smet, “Electrically controllable liquid crystal component for efficient light steering,” IEEE Photon. J. 7, 1–13 (2015).
[Crossref]

D. De Coster, H. Ottevaere, M. Vervaeke, J. V. Erps, M. Callewaert, P. Wuytens, S. H. Simpson, S. Hanna, W. D. Malsche, and H. Thienpont, “Mass-manufacturable polymer microfluidic device for dual fiber optical trapping,” Opt. Express 23, 30991–31009 (2015).
[Crossref] [PubMed]

2011 (1)

J. Beeckman, K. Neyts, and P. Vanbrabant, “Liquid-crystal photonic applications,” Opt. Eng. 50, 17 (2011).
[Crossref]

2010 (1)

S. Nersisyan, N. Tabiryan, D. Steeves, and B. Kimball, “The Promise of Diffractive Waveplates,” Opt. Photon. News 21, 40–45 (2010).
[Crossref]

2009 (1)

P. F. McManamon, P. J. Bos, M. J. Escuti, J. Heikenfeld, S. Serati, H. Xie, and E. Watson, “A review of phased array steering for narrow-band electrooptical systems,” Proceedings of the IEEE 97, 1078–1096 (2009).
[Crossref]

2006 (3)

V. Presnyakov, K. Asatryan, and T. Galstian, “Optical polarization grating induced liquid crystal micro-structure using azo-dye command layer,” Opt. Express 14, 10558–10564 (2006).
[Crossref] [PubMed]

C. Provenzano, P. Pagliusi, and G. Cipparrone, “Highly efficient liquid crystal based diffraction grating induced by polarization holograms at the aligning surfaces,” Appl. Phys. Lett. 89, 121105 (2006).
[Crossref]

R. James, E. Willman, F. A. Fernández, and S. E. Day, “Finite-element modeling of liquid-crystal hydrodynamics with a variable degree of order,” IEEE Trans. Electron Dev 53, 1575–1582 (2006).
[Crossref]

2005 (2)

V. Chigrinov, H. S. Kwok, H. Takada, and H. Takatsu, “Photo-aligning by azo-dyes: Physics and applications,” Liq. Cryst. Today 14, 1–15 (2005).
[Crossref]

X. Wang, B. Wang, P. J. Bos, P. F. McManamon, J. J. Pouch, F. A. Miranda, and J. E. Anderson, “Modeling and design of an optimized liquid-crystal optical phased array,” J. Appl. Phys. 98, 073101 (2005).
[Crossref]

2004 (1)

2003 (1)

S. R. Harris, “Polarization effects in nematic liquid crystal optical phased arrays,” Proc. SPIE 5213, 26–39 (2003).
[Crossref]

2000 (1)

1996 (1)

1972 (1)

I. Haller, H. A. Huggins, and M. J. Freiser, “On the measurement of indices of refraction of nematic liquids,” Mol. Cryst. Liq. Cryst. 16, (1–2), 53–59 (1972)
[Crossref]

Anderson, J. E.

X. Wang, B. Wang, P. J. Bos, P. F. McManamon, J. J. Pouch, F. A. Miranda, and J. E. Anderson, “Modeling and design of an optimized liquid-crystal optical phased array,” J. Appl. Phys. 98, 073101 (2005).
[Crossref]

Apter, B.

Asatryan, K.

Bahat-Treidel, E.

Beeckman, J.

I. Nys, J. Beeckman, and K. Neyts, “Switchable 3d liquid crystal grating generated by periodic photo-alignment on both substrates,” Soft Matter 11, 7802–7808 (2015).
[Crossref] [PubMed]

X. Shang, J.-Y. Tan, O. Willekens, J. De Smet, P. Joshi, D. Cuypers, E. Islamaj, J. Beeckman, K. Neyts, M. Vervaeke, H. Thienpont, and H. De Smet, “Electrically controllable liquid crystal component for efficient light steering,” IEEE Photon. J. 7, 1–13 (2015).
[Crossref]

J. Beeckman, K. Neyts, and P. Vanbrabant, “Liquid-crystal photonic applications,” Opt. Eng. 50, 17 (2011).
[Crossref]

Bos, P. J.

P. F. McManamon, P. J. Bos, M. J. Escuti, J. Heikenfeld, S. Serati, H. Xie, and E. Watson, “A review of phased array steering for narrow-band electrooptical systems,” Proceedings of the IEEE 97, 1078–1096 (2009).
[Crossref]

X. Wang, B. Wang, P. J. Bos, P. F. McManamon, J. J. Pouch, F. A. Miranda, and J. E. Anderson, “Modeling and design of an optimized liquid-crystal optical phased array,” J. Appl. Phys. 98, 073101 (2005).
[Crossref]

Callewaert, M.

Chen, H.

Chigrinov, V.

V. Chigrinov, H. S. Kwok, H. Takada, and H. Takatsu, “Photo-aligning by azo-dyes: Physics and applications,” Liq. Cryst. Today 14, 1–15 (2005).
[Crossref]

Cipparrone, G.

C. Provenzano, P. Pagliusi, and G. Cipparrone, “Highly efficient liquid crystal based diffraction grating induced by polarization holograms at the aligning surfaces,” Appl. Phys. Lett. 89, 121105 (2006).
[Crossref]

Cuypers, D.

X. Shang, J.-Y. Tan, O. Willekens, J. De Smet, P. Joshi, D. Cuypers, E. Islamaj, J. Beeckman, K. Neyts, M. Vervaeke, H. Thienpont, and H. De Smet, “Electrically controllable liquid crystal component for efficient light steering,” IEEE Photon. J. 7, 1–13 (2015).
[Crossref]

Day, S. E.

R. James, E. Willman, F. A. Fernández, and S. E. Day, “Finite-element modeling of liquid-crystal hydrodynamics with a variable degree of order,” IEEE Trans. Electron Dev 53, 1575–1582 (2006).
[Crossref]

De Coster, D.

De Smet, H.

X. Shang, J.-Y. Tan, O. Willekens, J. De Smet, P. Joshi, D. Cuypers, E. Islamaj, J. Beeckman, K. Neyts, M. Vervaeke, H. Thienpont, and H. De Smet, “Electrically controllable liquid crystal component for efficient light steering,” IEEE Photon. J. 7, 1–13 (2015).
[Crossref]

De Smet, J.

X. Shang, J.-Y. Tan, O. Willekens, J. De Smet, P. Joshi, D. Cuypers, E. Islamaj, J. Beeckman, K. Neyts, M. Vervaeke, H. Thienpont, and H. De Smet, “Electrically controllable liquid crystal component for efficient light steering,” IEEE Photon. J. 7, 1–13 (2015).
[Crossref]

Efron, U.

Erps, J. V.

Escuti, M. J.

P. F. McManamon, P. J. Bos, M. J. Escuti, J. Heikenfeld, S. Serati, H. Xie, and E. Watson, “A review of phased array steering for narrow-band electrooptical systems,” Proceedings of the IEEE 97, 1078–1096 (2009).
[Crossref]

Fernández, F. A.

R. James, E. Willman, F. A. Fernández, and S. E. Day, “Finite-element modeling of liquid-crystal hydrodynamics with a variable degree of order,” IEEE Trans. Electron Dev 53, 1575–1582 (2006).
[Crossref]

Freiser, M. J.

I. Haller, H. A. Huggins, and M. J. Freiser, “On the measurement of indices of refraction of nematic liquids,” Mol. Cryst. Liq. Cryst. 16, (1–2), 53–59 (1972)
[Crossref]

Galstian, T.

Gerritsen, H. J.

Gu, C.

P. Yeh and C. Gu, Optics of Liquid Crystal Displays (John Wiley & Sons, 2010), Chap. 1

Haller, I.

I. Haller, H. A. Huggins, and M. J. Freiser, “On the measurement of indices of refraction of nematic liquids,” Mol. Cryst. Liq. Cryst. 16, (1–2), 53–59 (1972)
[Crossref]

Hanna, S.

Harris, S. R.

S. R. Harris, “Polarization effects in nematic liquid crystal optical phased arrays,” Proc. SPIE 5213, 26–39 (2003).
[Crossref]

Heikenfeld, J.

P. F. McManamon, P. J. Bos, M. J. Escuti, J. Heikenfeld, S. Serati, H. Xie, and E. Watson, “A review of phased array steering for narrow-band electrooptical systems,” Proceedings of the IEEE 97, 1078–1096 (2009).
[Crossref]

Huggins, H. A.

I. Haller, H. A. Huggins, and M. J. Freiser, “On the measurement of indices of refraction of nematic liquids,” Mol. Cryst. Liq. Cryst. 16, (1–2), 53–59 (1972)
[Crossref]

Islamaj, E.

X. Shang, J.-Y. Tan, O. Willekens, J. De Smet, P. Joshi, D. Cuypers, E. Islamaj, J. Beeckman, K. Neyts, M. Vervaeke, H. Thienpont, and H. De Smet, “Electrically controllable liquid crystal component for efficient light steering,” IEEE Photon. J. 7, 1–13 (2015).
[Crossref]

James, R.

R. James, E. Willman, F. A. Fernández, and S. E. Day, “Finite-element modeling of liquid-crystal hydrodynamics with a variable degree of order,” IEEE Trans. Electron Dev 53, 1575–1582 (2006).
[Crossref]

Jepsen, M. L.

Joshi, P.

X. Shang, J.-Y. Tan, O. Willekens, J. De Smet, P. Joshi, D. Cuypers, E. Islamaj, J. Beeckman, K. Neyts, M. Vervaeke, H. Thienpont, and H. De Smet, “Electrically controllable liquid crystal component for efficient light steering,” IEEE Photon. J. 7, 1–13 (2015).
[Crossref]

Kimball, B.

S. Nersisyan, N. Tabiryan, D. Steeves, and B. Kimball, “The Promise of Diffractive Waveplates,” Opt. Photon. News 21, 40–45 (2010).
[Crossref]

Kwok, H. S.

V. Chigrinov, H. S. Kwok, H. Takada, and H. Takatsu, “Photo-aligning by azo-dyes: Physics and applications,” Liq. Cryst. Today 14, 1–15 (2005).
[Crossref]

Maker, P.

Malsche, W. D.

McManamon, P. F.

P. F. McManamon, P. J. Bos, M. J. Escuti, J. Heikenfeld, S. Serati, H. Xie, and E. Watson, “A review of phased array steering for narrow-band electrooptical systems,” Proceedings of the IEEE 97, 1078–1096 (2009).
[Crossref]

X. Wang, B. Wang, P. J. Bos, P. F. McManamon, J. J. Pouch, F. A. Miranda, and J. E. Anderson, “Modeling and design of an optimized liquid-crystal optical phased array,” J. Appl. Phys. 98, 073101 (2005).
[Crossref]

Miranda, F. A.

X. Wang, B. Wang, P. J. Bos, P. F. McManamon, J. J. Pouch, F. A. Miranda, and J. E. Anderson, “Modeling and design of an optimized liquid-crystal optical phased array,” J. Appl. Phys. 98, 073101 (2005).
[Crossref]

Muller, R.

Nersisyan, S.

S. Nersisyan, N. Tabiryan, D. Steeves, and B. Kimball, “The Promise of Diffractive Waveplates,” Opt. Photon. News 21, 40–45 (2010).
[Crossref]

Neyts, K.

X. Shang, J.-Y. Tan, O. Willekens, J. De Smet, P. Joshi, D. Cuypers, E. Islamaj, J. Beeckman, K. Neyts, M. Vervaeke, H. Thienpont, and H. De Smet, “Electrically controllable liquid crystal component for efficient light steering,” IEEE Photon. J. 7, 1–13 (2015).
[Crossref]

I. Nys, J. Beeckman, and K. Neyts, “Switchable 3d liquid crystal grating generated by periodic photo-alignment on both substrates,” Soft Matter 11, 7802–7808 (2015).
[Crossref] [PubMed]

J. Beeckman, K. Neyts, and P. Vanbrabant, “Liquid-crystal photonic applications,” Opt. Eng. 50, 17 (2011).
[Crossref]

Nys, I.

I. Nys, J. Beeckman, and K. Neyts, “Switchable 3d liquid crystal grating generated by periodic photo-alignment on both substrates,” Soft Matter 11, 7802–7808 (2015).
[Crossref] [PubMed]

Ottevaere, H.

Pagliusi, P.

C. Provenzano, P. Pagliusi, and G. Cipparrone, “Highly efficient liquid crystal based diffraction grating induced by polarization holograms at the aligning surfaces,” Appl. Phys. Lett. 89, 121105 (2006).
[Crossref]

Pouch, J. J.

X. Wang, B. Wang, P. J. Bos, P. F. McManamon, J. J. Pouch, F. A. Miranda, and J. E. Anderson, “Modeling and design of an optimized liquid-crystal optical phased array,” J. Appl. Phys. 98, 073101 (2005).
[Crossref]

Presnyakov, V.

Provenzano, C.

C. Provenzano, P. Pagliusi, and G. Cipparrone, “Highly efficient liquid crystal based diffraction grating induced by polarization holograms at the aligning surfaces,” Appl. Phys. Lett. 89, 121105 (2006).
[Crossref]

Psaltis, D.

Serati, S.

P. F. McManamon, P. J. Bos, M. J. Escuti, J. Heikenfeld, S. Serati, H. Xie, and E. Watson, “A review of phased array steering for narrow-band electrooptical systems,” Proceedings of the IEEE 97, 1078–1096 (2009).
[Crossref]

Shang, X.

X. Shang, J.-Y. Tan, O. Willekens, J. De Smet, P. Joshi, D. Cuypers, E. Islamaj, J. Beeckman, K. Neyts, M. Vervaeke, H. Thienpont, and H. De Smet, “Electrically controllable liquid crystal component for efficient light steering,” IEEE Photon. J. 7, 1–13 (2015).
[Crossref]

Simpson, S. H.

Steeves, D.

S. Nersisyan, N. Tabiryan, D. Steeves, and B. Kimball, “The Promise of Diffractive Waveplates,” Opt. Photon. News 21, 40–45 (2010).
[Crossref]

Tabiryan, N.

Takada, H.

V. Chigrinov, H. S. Kwok, H. Takada, and H. Takatsu, “Photo-aligning by azo-dyes: Physics and applications,” Liq. Cryst. Today 14, 1–15 (2005).
[Crossref]

Takatsu, H.

V. Chigrinov, H. S. Kwok, H. Takada, and H. Takatsu, “Photo-aligning by azo-dyes: Physics and applications,” Liq. Cryst. Today 14, 1–15 (2005).
[Crossref]

Tan, J.-Y.

X. Shang, J.-Y. Tan, O. Willekens, J. De Smet, P. Joshi, D. Cuypers, E. Islamaj, J. Beeckman, K. Neyts, M. Vervaeke, H. Thienpont, and H. De Smet, “Electrically controllable liquid crystal component for efficient light steering,” IEEE Photon. J. 7, 1–13 (2015).
[Crossref]

Thienpont, H.

X. Shang, J.-Y. Tan, O. Willekens, J. De Smet, P. Joshi, D. Cuypers, E. Islamaj, J. Beeckman, K. Neyts, M. Vervaeke, H. Thienpont, and H. De Smet, “Electrically controllable liquid crystal component for efficient light steering,” IEEE Photon. J. 7, 1–13 (2015).
[Crossref]

D. De Coster, H. Ottevaere, M. Vervaeke, J. V. Erps, M. Callewaert, P. Wuytens, S. H. Simpson, S. Hanna, W. D. Malsche, and H. Thienpont, “Mass-manufacturable polymer microfluidic device for dual fiber optical trapping,” Opt. Express 23, 30991–31009 (2015).
[Crossref] [PubMed]

Vanbrabant, P.

J. Beeckman, K. Neyts, and P. Vanbrabant, “Liquid-crystal photonic applications,” Opt. Eng. 50, 17 (2011).
[Crossref]

Vervaeke, M.

X. Shang, J.-Y. Tan, O. Willekens, J. De Smet, P. Joshi, D. Cuypers, E. Islamaj, J. Beeckman, K. Neyts, M. Vervaeke, H. Thienpont, and H. De Smet, “Electrically controllable liquid crystal component for efficient light steering,” IEEE Photon. J. 7, 1–13 (2015).
[Crossref]

D. De Coster, H. Ottevaere, M. Vervaeke, J. V. Erps, M. Callewaert, P. Wuytens, S. H. Simpson, S. Hanna, W. D. Malsche, and H. Thienpont, “Mass-manufacturable polymer microfluidic device for dual fiber optical trapping,” Opt. Express 23, 30991–31009 (2015).
[Crossref] [PubMed]

Wang, B.

X. Wang, B. Wang, P. J. Bos, P. F. McManamon, J. J. Pouch, F. A. Miranda, and J. E. Anderson, “Modeling and design of an optimized liquid-crystal optical phased array,” J. Appl. Phys. 98, 073101 (2005).
[Crossref]

Wang, X.

X. Wang, B. Wang, P. J. Bos, P. F. McManamon, J. J. Pouch, F. A. Miranda, and J. E. Anderson, “Modeling and design of an optimized liquid-crystal optical phased array,” J. Appl. Phys. 98, 073101 (2005).
[Crossref]

X. Wang, D. Wilson, R. Muller, P. Maker, and D. Psaltis, “Liquid-crystal blazed-grating beam deflector,” Appl. Opt. 39, 6545–6555 (2000).
[Crossref]

Watson, E.

P. F. McManamon, P. J. Bos, M. J. Escuti, J. Heikenfeld, S. Serati, H. Xie, and E. Watson, “A review of phased array steering for narrow-band electrooptical systems,” Proceedings of the IEEE 97, 1078–1096 (2009).
[Crossref]

Weng, Y.

Willekens, O.

X. Shang, J.-Y. Tan, O. Willekens, J. De Smet, P. Joshi, D. Cuypers, E. Islamaj, J. Beeckman, K. Neyts, M. Vervaeke, H. Thienpont, and H. De Smet, “Electrically controllable liquid crystal component for efficient light steering,” IEEE Photon. J. 7, 1–13 (2015).
[Crossref]

Willman, E.

R. James, E. Willman, F. A. Fernández, and S. E. Day, “Finite-element modeling of liquid-crystal hydrodynamics with a variable degree of order,” IEEE Trans. Electron Dev 53, 1575–1582 (2006).
[Crossref]

Wilson, D.

Worgull, M.

M. Worgull, Hot Embossing: Theory and Technology of Microreplication (William Andrew, 2009).

Wu, S.

Wuytens, P.

Xie, H.

P. F. McManamon, P. J. Bos, M. J. Escuti, J. Heikenfeld, S. Serati, H. Xie, and E. Watson, “A review of phased array steering for narrow-band electrooptical systems,” Proceedings of the IEEE 97, 1078–1096 (2009).
[Crossref]

Xu, D.

Yeh, P.

P. Yeh and C. Gu, Optics of Liquid Crystal Displays (John Wiley & Sons, 2010), Chap. 1

Appl. Opt. (2)

Appl. Phys. Lett. (1)

C. Provenzano, P. Pagliusi, and G. Cipparrone, “Highly efficient liquid crystal based diffraction grating induced by polarization holograms at the aligning surfaces,” Appl. Phys. Lett. 89, 121105 (2006).
[Crossref]

IEEE Photon. J. (1)

X. Shang, J.-Y. Tan, O. Willekens, J. De Smet, P. Joshi, D. Cuypers, E. Islamaj, J. Beeckman, K. Neyts, M. Vervaeke, H. Thienpont, and H. De Smet, “Electrically controllable liquid crystal component for efficient light steering,” IEEE Photon. J. 7, 1–13 (2015).
[Crossref]

IEEE Trans. Electron Dev (1)

R. James, E. Willman, F. A. Fernández, and S. E. Day, “Finite-element modeling of liquid-crystal hydrodynamics with a variable degree of order,” IEEE Trans. Electron Dev 53, 1575–1582 (2006).
[Crossref]

J. Appl. Phys. (1)

X. Wang, B. Wang, P. J. Bos, P. F. McManamon, J. J. Pouch, F. A. Miranda, and J. E. Anderson, “Modeling and design of an optimized liquid-crystal optical phased array,” J. Appl. Phys. 98, 073101 (2005).
[Crossref]

Liq. Cryst. Today (1)

V. Chigrinov, H. S. Kwok, H. Takada, and H. Takatsu, “Photo-aligning by azo-dyes: Physics and applications,” Liq. Cryst. Today 14, 1–15 (2005).
[Crossref]

Mol. Cryst. Liq. Cryst. (1)

I. Haller, H. A. Huggins, and M. J. Freiser, “On the measurement of indices of refraction of nematic liquids,” Mol. Cryst. Liq. Cryst. 16, (1–2), 53–59 (1972)
[Crossref]

Opt. Eng. (1)

J. Beeckman, K. Neyts, and P. Vanbrabant, “Liquid-crystal photonic applications,” Opt. Eng. 50, 17 (2011).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Opt. Photon. News (1)

S. Nersisyan, N. Tabiryan, D. Steeves, and B. Kimball, “The Promise of Diffractive Waveplates,” Opt. Photon. News 21, 40–45 (2010).
[Crossref]

Proc. SPIE (1)

S. R. Harris, “Polarization effects in nematic liquid crystal optical phased arrays,” Proc. SPIE 5213, 26–39 (2003).
[Crossref]

Proceedings of the IEEE (1)

P. F. McManamon, P. J. Bos, M. J. Escuti, J. Heikenfeld, S. Serati, H. Xie, and E. Watson, “A review of phased array steering for narrow-band electrooptical systems,” Proceedings of the IEEE 97, 1078–1096 (2009).
[Crossref]

Soft Matter (1)

I. Nys, J. Beeckman, and K. Neyts, “Switchable 3d liquid crystal grating generated by periodic photo-alignment on both substrates,” Soft Matter 11, 7802–7808 (2015).
[Crossref] [PubMed]

Other (2)

M. Worgull, Hot Embossing: Theory and Technology of Microreplication (William Andrew, 2009).

P. Yeh and C. Gu, Optics of Liquid Crystal Displays (John Wiley & Sons, 2010), Chap. 1

Supplementary Material (1)

NameDescription
» Visualization 1: MP4 (454 KB)      Dynamic behaviour of the direct on-off switching of the tilted LC-grating

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Cross-section of the structure of the studied device. The left and right side illustrate the working principle: when an electric potential is applied, the liquid crystal switches, thereby causing a change in the effective refractive index. On the left side of the figure, the liquid crystal director is viewed head-on, the extraordinary axis is parallel to the grooves. hspacer = 5.5 µm, hridge = 15.9 µm, Λ = 50 µm

Fig. 2
Fig. 2

Microscope images of the liquid crystal blazed grating hybrid cell, in absence of a voltage. The sample is imaged using reflected light between two crossed polarizers in (a) and (b). In (a), the sample is rotated such that the director is parallel to the analyzer. As this causes an overly dark image, the lower left region has been digitally enhanced to show the groove direction. In (b), the director is at 45° with respect to both polarizer transmission axes. In (c), the cell is observed in transmission, using light from red LEDs (λc = 641 nm, ΔλFWHM = 18.7 nm) with a magnification twice as large as in (a) and (b). In (d) the cell is imaged from the backside, using the same magnification as image (c).

Fig. 3
Fig. 3

Overview of the light path when laser light is reflected from the hybrid grating. In (a) the measurement setup is illustrated, in (b) the ray diagram is drawn inside the device for light propagating through the wedge-like cavity and reflecting from the oblique substrate edge.

Fig. 4
Fig. 4

Simulated director profile and equipotential lines for two electric potential differences between the electrodes (thick, black lines). Initial alignment of the LC molecules is along the grating grooves, i.e. perpendicular to the plane of this figure. The black dots and rods in (a) and (b) represent the projection of the liquid crystal director on the plane of these cross-sections. In (a), the voltage between the electrodes is V = 0.8 V, in (b) (V = 7.7 V). Periodic boundary conditions are used on the left and right sides, Dirichlet boundary conditions on the electrodes.

Fig. 5
Fig. 5

Simulated power in the diffraction orders of the hybrid blazed grating for 633 nm light. The graph in (a) shows the beam deflection behavior, while finer details are apparent from the representation in graph (b). The normalization of the intensity is with respect to the incident light.

Fig. 6
Fig. 6

Recorded laser diffraction pattern of the hybrid blazed grating at two different voltages. The location of the beam incident on the reflective grating, relative to the reflected beam, is indicated in the figure, as well as the order number, m from Eq. (3).

Fig. 7
Fig. 7

Evolution of the diffraction pattern of the hybrid blazed grating as a function of the voltage applied between the two electrodes. Each vertical slice shows the diffraction pattern at a specific amplitude of an applied 1 kHz square wave electric signal. The deflection angles are relative to the grating normal, which is parallel to the incident laser beam. The dataset to the left shows the evolution for unpolarized reflected light, whereas the dataset to the right displays the result from having another polarizer between the reflective grating and the detection screen.

Fig. 8
Fig. 8

Left: experimental results of the light reflection to different angles as a function of applied voltage. The grating is tilted with respect to the incident beam at an angle of (26.6 ± 0.1)°. Right: photos of the cell, when the applied voltage is 0 V (top) and 10 V (bottom). The process of tilting the cell and its influence on the diffraction orders is shown in Visualization 1, which also includes the dynamic behaviour due to on-off switching.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

θ o = arcsin { n LC n env sin [ 2 α + arcsin ( n env n LC sin θ i ) ] } ,
Δ θ o 2 × Δ n LC × α ,
Λ ( sin θ o + sin θ i ) = m λ ,

Metrics