Abstract

Narrow-bandgap semiconductors such as alloys of InAsAlSb and their heterostructures are considered promising candidates for next generation infrared photodetectors and devices. The prospect of actively tuning the spectral responsivity of these detectors at the pixel level is very appealing. In principle, this could be achieved with a tunable metasurface fabricated monolithically on the detector pixel. Here, we present first steps towards that goal using a complementary metasurface strongly coupled to an epsilon-near-zero (ENZ) mode operating in the long-wave region of the infrared spectrum. We fabricate such a coupled system using the same epitaxial layers used for infrared pixels in a focal plane array and demonstrate the existence of ENZ modes in high mobility layers of InAsSb. We confirm that the coupling strength between the ENZ mode and the metasurface depends on the ENZ layer thickness and demonstrate a transmission modulation on the order of 25%. We further show numerically the expected tunable spectral behavior of such coupled system under reverse and forward bias, which could be used in future electrically tunable detectors.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Monolithic metallic nanocavities for strong light-matter interaction to quantum-well intersubband excitations

A. Benz, S. Campione, S. Liu, I. Montano, J. F. Klem, M. B. Sinclair, F. Capolino, and I. Brener
Opt. Express 21(26) 32572-32581 (2013)

All-semiconductor active plasmonic system in mid-infrared wavelengths

Debin Li and C. Z. Ning
Opt. Express 19(15) 14594-14603 (2011)

References

  • View by:
  • |
  • |
  • |

  1. P. Martyniuk, M. Kopytko, and A. Rogalski, “Barrier infrared detectors,” Opto-Electron. Rev. 22(2), 127–146 (2014).
    [Crossref]
  2. C. Liu, Y. Li, and Y. Zeng, “Progress in antimonide based III-V compound semiconductors and devices,” Engineering 2(08), 617–624 (2010).
    [Crossref]
  3. S. Law, R. Liu, and D. Wasserman, “Doped semiconductors with band-edge plasma frequencies,” J. Vac. Sci. Technol. B 32(5), 052601 (2014).
    [Crossref]
  4. D. Wei, C. Harris, C. C. Bomberger, J. Zhang, J. Zide, and S. Law, “Single-material semiconductor hyperbolic metamaterials,” Opt. Express 24(8), 8735–8745 (2016).
    [Crossref] [PubMed]
  5. S. Law, D. C. Adams, A. M. Taylor, and D. Wasserman, “Mid-infrared designer metals,” Opt. Express 20(11), 12155–12165 (2012).
    [Crossref] [PubMed]
  6. P. P. Iyer, M. Pendharkar, and J. A. Schuller, “Electrically reconfigurable metasurfaces using heterojunction resonators,” Adv. Opt. Mater.in press.
  7. P. P. Iyer, N. A. Butakov, and J. A. Schuller, “Reconfigurable semiconductor phased-array metasurfaces,” ACS Photonics 2(8), 1077–1084 (2015).
    [Crossref]
  8. S. Vassant, J.-P. Hugonin, F. Marquier, and J.-J. Greffet, “Berreman mode and epsilon near zero mode,” Opt. Express 20(21), 23971–23977 (2012).
    [Crossref] [PubMed]
  9. S. Campione, I. Brener, and F. Marquier, “Theory of epsilon-near-zero modes in ultrathin films,” Phys. Rev. B 91(12), 121408 (2015).
    [Crossref]
  10. A. Benz, I. Montano, J. F. Klem, and I. Brener, “Tunable metamaterials based on voltage controlled strong coupling,” Appl. Phys. Lett. 103(26), 263116 (2013).
    [Crossref]
  11. J. Park, J.-H. Kang, X. Liu, and M. L. Brongersma, “Electrically tunable epsilon-near-zero (ENZ) metafilm absorbers,” Sci. Rep. 5, 15754 (2015).
    [Crossref] [PubMed]
  12. P. Törmä and W. L. Barnes, “Strong coupling between surface plasmon polaritons and emitters: a review,” Rep. Prog. Phys. 78(1), 013901 (2015).
    [Crossref] [PubMed]
  13. B. Askenazi, A. Vasanelli, A. Delteil, Y. Todorov, L. C. Andreani, G. Beaudoin, I. Sagnes, and C. Sirtori, “Ultra-strong light–matter coupling for designer Reststrahlen band,” New J. Phys. 16(4), 043029 (2014).
    [Crossref]
  14. S. V. Baieva, T. K. Hakala, and J. J. Toppari, “Strong coupling between surface plasmon polaritons and Sulforhodamine 101 dye,” Nanoscale Res. Lett. 7(1), 191 (2012).
    [Crossref] [PubMed]
  15. J. Bellessa, C. Bonnand, J. C. Plenet, and J. Mugnier, “Strong coupling between surface plasmons and excitons in an organic semiconductor,” Phys. Rev. Lett. 93(3), 036404 (2004).
    [Crossref] [PubMed]
  16. A. Benz, S. Campione, S. Liu, I. Montaño, J. F. Klem, A. Allerman, J. R. Wendt, M. B. Sinclair, F. Capolino, and I. Brener, “Strong coupling in the sub-wavelength limit using metamaterial nanocavities,” Nat. Commun. 4, 2882 (2013).
    [Crossref] [PubMed]
  17. C. Ciuti, G. Bastard, and I. Carusotto, “Quantum vacuum properties of the intersubband cavity polariton field,” Phys. Rev. B 72(11), 115303 (2005).
    [Crossref]
  18. S. De Liberato, C. Ciuti, and I. Carusotto, “Quantum vacuum radiation spectra from a semiconductor microcavity with a time-modulated vacuum Rabi frequency,” Phys. Rev. Lett. 98(10), 103602 (2007).
    [Crossref] [PubMed]
  19. S. Campione, J. R. Wendt, G. A. Keeler, and T. S. Luk, “Near-infrared strong coupling between metamaterials and epsilon-near-zero modes in degenerately doped semiconductor nanolayers,” ACS Photonics 3(2), 293–297 (2016).
    [Crossref]
  20. S. Campione, S. Liu, A. Benz, J. F. Klem, M. B. Sinclair, and I. Brener, “Epsilon-near-zero modes for tailored light-matter interaction,” Phys. Rev. Appl. 4(4), 044011 (2015).
    [Crossref]
  21. D. W. Berreman, “Infrared absorption at longitudinal optic frequency in cubic crystal films,” Phys. Rev. 130(6), 2193–2198 (1963).
    [Crossref]
  22. R. A. Ferrell, “Predicted radiation of plasma oscillations in metal films,” Phys. Rev. 111(5), 1214–1222 (1958).
    [Crossref]
  23. Y. C. Jun, E. Gonzales, J. L. Reno, E. A. Shaner, A. Gabbay, and I. Brener, “Active tuning of mid-infrared metamaterials by electrical control of carrier densities,” Opt. Express 20(2), 1903–1911 (2012).
    [Crossref] [PubMed]
  24. FDTD Solutions by FDTD Lumerical Inc, https://www.lumerical.com/ .
  25. S. Campione, A. Benz, J. F. Klem, M. B. Sinclair, I. Brener, and F. Capolino, “Electrodynamic modeling of strong coupling between a metasurface and intersubband transitions in quantum wells,” Phys. Rev. B 89(16), 165133 (2014).
    [Crossref]
  26. A. Benz, S. Campione, J. F. Klem, M. B. Sinclair, and I. Brener, “Control of strong light-matter coupling using the capacitance of metamaterial nanocavities,” Nano Lett. 15(3), 1959–1966 (2015).
    [Crossref] [PubMed]
  27. Y. Todorov, A. M. Andrews, R. Colombelli, S. De Liberato, C. Ciuti, P. Klang, G. Strasser, and C. Sirtori, “Ultrastrong light-matter coupling regime with polariton dots,” Phys. Rev. Lett. 105(19), 196402 (2010).
    [Crossref] [PubMed]
  28. C. Maissen, G. Scalari, F. Valmorra, M. Beck, J. Faist, S. Cibella, R. Leoni, C. Reichl, C. Charpentier, and W. Wegscheider, “Ultrastrong coupling in the near field of complementary split-ring resonators,” Phys. Rev. B 90(20), 205309 (2014).
    [Crossref]
  29. G. Scalari, C. Maissen, D. Turcinková, D. Hagenmüller, S. De Liberato, C. Ciuti, C. Reichl, D. Schuh, W. Wegscheider, M. Beck, and J. Faist, “Ultrastrong coupling of the cyclotron transition of a 2D electron gas to a THz metamaterial,” Science 335(6074), 1323–1326 (2012).
    [Crossref] [PubMed]
  30. Y.-W. Huang, H. W. H. Lee, R. Sokhoyan, R. Pala, K. Thyagarajan, S. Han, D. P. Tsai, and H. A. Atwater, “Gate-tunable conducting oxide metasurfaces,” http://arxiv.org/abs/1511.09380 (2015).
  31. H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
    [Crossref] [PubMed]
  32. Y. C. Jun, J. Reno, T. Ribaudo, E. Shaner, J.-J. Greffet, S. Vassant, F. Marquier, M. Sinclair, and I. Brener, “Epsilon-near-zero strong coupling in metamaterial-semiconductor hybrid structures,” Nano Lett. 13(11), 5391–5396 (2013).
    [Crossref] [PubMed]
  33. Y. C. Jun and I. Brener, “Electrically tunable infrared metamaterials based on depletion-type semiconductor devices,” J. Opt. 14(11), 114013 (2012).
    [Crossref]
  34. WVASE by J.A. Woollam Co, https://www.jawoollam.com/ellipsometry-software/wvase

2016 (2)

D. Wei, C. Harris, C. C. Bomberger, J. Zhang, J. Zide, and S. Law, “Single-material semiconductor hyperbolic metamaterials,” Opt. Express 24(8), 8735–8745 (2016).
[Crossref] [PubMed]

S. Campione, J. R. Wendt, G. A. Keeler, and T. S. Luk, “Near-infrared strong coupling between metamaterials and epsilon-near-zero modes in degenerately doped semiconductor nanolayers,” ACS Photonics 3(2), 293–297 (2016).
[Crossref]

2015 (6)

S. Campione, S. Liu, A. Benz, J. F. Klem, M. B. Sinclair, and I. Brener, “Epsilon-near-zero modes for tailored light-matter interaction,” Phys. Rev. Appl. 4(4), 044011 (2015).
[Crossref]

A. Benz, S. Campione, J. F. Klem, M. B. Sinclair, and I. Brener, “Control of strong light-matter coupling using the capacitance of metamaterial nanocavities,” Nano Lett. 15(3), 1959–1966 (2015).
[Crossref] [PubMed]

P. P. Iyer, N. A. Butakov, and J. A. Schuller, “Reconfigurable semiconductor phased-array metasurfaces,” ACS Photonics 2(8), 1077–1084 (2015).
[Crossref]

S. Campione, I. Brener, and F. Marquier, “Theory of epsilon-near-zero modes in ultrathin films,” Phys. Rev. B 91(12), 121408 (2015).
[Crossref]

J. Park, J.-H. Kang, X. Liu, and M. L. Brongersma, “Electrically tunable epsilon-near-zero (ENZ) metafilm absorbers,” Sci. Rep. 5, 15754 (2015).
[Crossref] [PubMed]

P. Törmä and W. L. Barnes, “Strong coupling between surface plasmon polaritons and emitters: a review,” Rep. Prog. Phys. 78(1), 013901 (2015).
[Crossref] [PubMed]

2014 (5)

B. Askenazi, A. Vasanelli, A. Delteil, Y. Todorov, L. C. Andreani, G. Beaudoin, I. Sagnes, and C. Sirtori, “Ultra-strong light–matter coupling for designer Reststrahlen band,” New J. Phys. 16(4), 043029 (2014).
[Crossref]

S. Law, R. Liu, and D. Wasserman, “Doped semiconductors with band-edge plasma frequencies,” J. Vac. Sci. Technol. B 32(5), 052601 (2014).
[Crossref]

P. Martyniuk, M. Kopytko, and A. Rogalski, “Barrier infrared detectors,” Opto-Electron. Rev. 22(2), 127–146 (2014).
[Crossref]

S. Campione, A. Benz, J. F. Klem, M. B. Sinclair, I. Brener, and F. Capolino, “Electrodynamic modeling of strong coupling between a metasurface and intersubband transitions in quantum wells,” Phys. Rev. B 89(16), 165133 (2014).
[Crossref]

C. Maissen, G. Scalari, F. Valmorra, M. Beck, J. Faist, S. Cibella, R. Leoni, C. Reichl, C. Charpentier, and W. Wegscheider, “Ultrastrong coupling in the near field of complementary split-ring resonators,” Phys. Rev. B 90(20), 205309 (2014).
[Crossref]

2013 (3)

Y. C. Jun, J. Reno, T. Ribaudo, E. Shaner, J.-J. Greffet, S. Vassant, F. Marquier, M. Sinclair, and I. Brener, “Epsilon-near-zero strong coupling in metamaterial-semiconductor hybrid structures,” Nano Lett. 13(11), 5391–5396 (2013).
[Crossref] [PubMed]

A. Benz, I. Montano, J. F. Klem, and I. Brener, “Tunable metamaterials based on voltage controlled strong coupling,” Appl. Phys. Lett. 103(26), 263116 (2013).
[Crossref]

A. Benz, S. Campione, S. Liu, I. Montaño, J. F. Klem, A. Allerman, J. R. Wendt, M. B. Sinclair, F. Capolino, and I. Brener, “Strong coupling in the sub-wavelength limit using metamaterial nanocavities,” Nat. Commun. 4, 2882 (2013).
[Crossref] [PubMed]

2012 (6)

S. V. Baieva, T. K. Hakala, and J. J. Toppari, “Strong coupling between surface plasmon polaritons and Sulforhodamine 101 dye,” Nanoscale Res. Lett. 7(1), 191 (2012).
[Crossref] [PubMed]

S. Vassant, J.-P. Hugonin, F. Marquier, and J.-J. Greffet, “Berreman mode and epsilon near zero mode,” Opt. Express 20(21), 23971–23977 (2012).
[Crossref] [PubMed]

S. Law, D. C. Adams, A. M. Taylor, and D. Wasserman, “Mid-infrared designer metals,” Opt. Express 20(11), 12155–12165 (2012).
[Crossref] [PubMed]

Y. C. Jun and I. Brener, “Electrically tunable infrared metamaterials based on depletion-type semiconductor devices,” J. Opt. 14(11), 114013 (2012).
[Crossref]

G. Scalari, C. Maissen, D. Turcinková, D. Hagenmüller, S. De Liberato, C. Ciuti, C. Reichl, D. Schuh, W. Wegscheider, M. Beck, and J. Faist, “Ultrastrong coupling of the cyclotron transition of a 2D electron gas to a THz metamaterial,” Science 335(6074), 1323–1326 (2012).
[Crossref] [PubMed]

Y. C. Jun, E. Gonzales, J. L. Reno, E. A. Shaner, A. Gabbay, and I. Brener, “Active tuning of mid-infrared metamaterials by electrical control of carrier densities,” Opt. Express 20(2), 1903–1911 (2012).
[Crossref] [PubMed]

2010 (2)

Y. Todorov, A. M. Andrews, R. Colombelli, S. De Liberato, C. Ciuti, P. Klang, G. Strasser, and C. Sirtori, “Ultrastrong light-matter coupling regime with polariton dots,” Phys. Rev. Lett. 105(19), 196402 (2010).
[Crossref] [PubMed]

C. Liu, Y. Li, and Y. Zeng, “Progress in antimonide based III-V compound semiconductors and devices,” Engineering 2(08), 617–624 (2010).
[Crossref]

2007 (1)

S. De Liberato, C. Ciuti, and I. Carusotto, “Quantum vacuum radiation spectra from a semiconductor microcavity with a time-modulated vacuum Rabi frequency,” Phys. Rev. Lett. 98(10), 103602 (2007).
[Crossref] [PubMed]

2006 (1)

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

2005 (1)

C. Ciuti, G. Bastard, and I. Carusotto, “Quantum vacuum properties of the intersubband cavity polariton field,” Phys. Rev. B 72(11), 115303 (2005).
[Crossref]

2004 (1)

J. Bellessa, C. Bonnand, J. C. Plenet, and J. Mugnier, “Strong coupling between surface plasmons and excitons in an organic semiconductor,” Phys. Rev. Lett. 93(3), 036404 (2004).
[Crossref] [PubMed]

1963 (1)

D. W. Berreman, “Infrared absorption at longitudinal optic frequency in cubic crystal films,” Phys. Rev. 130(6), 2193–2198 (1963).
[Crossref]

1958 (1)

R. A. Ferrell, “Predicted radiation of plasma oscillations in metal films,” Phys. Rev. 111(5), 1214–1222 (1958).
[Crossref]

Adams, D. C.

Allerman, A.

A. Benz, S. Campione, S. Liu, I. Montaño, J. F. Klem, A. Allerman, J. R. Wendt, M. B. Sinclair, F. Capolino, and I. Brener, “Strong coupling in the sub-wavelength limit using metamaterial nanocavities,” Nat. Commun. 4, 2882 (2013).
[Crossref] [PubMed]

Andreani, L. C.

B. Askenazi, A. Vasanelli, A. Delteil, Y. Todorov, L. C. Andreani, G. Beaudoin, I. Sagnes, and C. Sirtori, “Ultra-strong light–matter coupling for designer Reststrahlen band,” New J. Phys. 16(4), 043029 (2014).
[Crossref]

Andrews, A. M.

Y. Todorov, A. M. Andrews, R. Colombelli, S. De Liberato, C. Ciuti, P. Klang, G. Strasser, and C. Sirtori, “Ultrastrong light-matter coupling regime with polariton dots,” Phys. Rev. Lett. 105(19), 196402 (2010).
[Crossref] [PubMed]

Askenazi, B.

B. Askenazi, A. Vasanelli, A. Delteil, Y. Todorov, L. C. Andreani, G. Beaudoin, I. Sagnes, and C. Sirtori, “Ultra-strong light–matter coupling for designer Reststrahlen band,” New J. Phys. 16(4), 043029 (2014).
[Crossref]

Averitt, R. D.

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

Baieva, S. V.

S. V. Baieva, T. K. Hakala, and J. J. Toppari, “Strong coupling between surface plasmon polaritons and Sulforhodamine 101 dye,” Nanoscale Res. Lett. 7(1), 191 (2012).
[Crossref] [PubMed]

Barnes, W. L.

P. Törmä and W. L. Barnes, “Strong coupling between surface plasmon polaritons and emitters: a review,” Rep. Prog. Phys. 78(1), 013901 (2015).
[Crossref] [PubMed]

Bastard, G.

C. Ciuti, G. Bastard, and I. Carusotto, “Quantum vacuum properties of the intersubband cavity polariton field,” Phys. Rev. B 72(11), 115303 (2005).
[Crossref]

Beaudoin, G.

B. Askenazi, A. Vasanelli, A. Delteil, Y. Todorov, L. C. Andreani, G. Beaudoin, I. Sagnes, and C. Sirtori, “Ultra-strong light–matter coupling for designer Reststrahlen band,” New J. Phys. 16(4), 043029 (2014).
[Crossref]

Beck, M.

C. Maissen, G. Scalari, F. Valmorra, M. Beck, J. Faist, S. Cibella, R. Leoni, C. Reichl, C. Charpentier, and W. Wegscheider, “Ultrastrong coupling in the near field of complementary split-ring resonators,” Phys. Rev. B 90(20), 205309 (2014).
[Crossref]

G. Scalari, C. Maissen, D. Turcinková, D. Hagenmüller, S. De Liberato, C. Ciuti, C. Reichl, D. Schuh, W. Wegscheider, M. Beck, and J. Faist, “Ultrastrong coupling of the cyclotron transition of a 2D electron gas to a THz metamaterial,” Science 335(6074), 1323–1326 (2012).
[Crossref] [PubMed]

Bellessa, J.

J. Bellessa, C. Bonnand, J. C. Plenet, and J. Mugnier, “Strong coupling between surface plasmons and excitons in an organic semiconductor,” Phys. Rev. Lett. 93(3), 036404 (2004).
[Crossref] [PubMed]

Benz, A.

S. Campione, S. Liu, A. Benz, J. F. Klem, M. B. Sinclair, and I. Brener, “Epsilon-near-zero modes for tailored light-matter interaction,” Phys. Rev. Appl. 4(4), 044011 (2015).
[Crossref]

A. Benz, S. Campione, J. F. Klem, M. B. Sinclair, and I. Brener, “Control of strong light-matter coupling using the capacitance of metamaterial nanocavities,” Nano Lett. 15(3), 1959–1966 (2015).
[Crossref] [PubMed]

S. Campione, A. Benz, J. F. Klem, M. B. Sinclair, I. Brener, and F. Capolino, “Electrodynamic modeling of strong coupling between a metasurface and intersubband transitions in quantum wells,” Phys. Rev. B 89(16), 165133 (2014).
[Crossref]

A. Benz, S. Campione, S. Liu, I. Montaño, J. F. Klem, A. Allerman, J. R. Wendt, M. B. Sinclair, F. Capolino, and I. Brener, “Strong coupling in the sub-wavelength limit using metamaterial nanocavities,” Nat. Commun. 4, 2882 (2013).
[Crossref] [PubMed]

A. Benz, I. Montano, J. F. Klem, and I. Brener, “Tunable metamaterials based on voltage controlled strong coupling,” Appl. Phys. Lett. 103(26), 263116 (2013).
[Crossref]

Berreman, D. W.

D. W. Berreman, “Infrared absorption at longitudinal optic frequency in cubic crystal films,” Phys. Rev. 130(6), 2193–2198 (1963).
[Crossref]

Bomberger, C. C.

Bonnand, C.

J. Bellessa, C. Bonnand, J. C. Plenet, and J. Mugnier, “Strong coupling between surface plasmons and excitons in an organic semiconductor,” Phys. Rev. Lett. 93(3), 036404 (2004).
[Crossref] [PubMed]

Brener, I.

S. Campione, I. Brener, and F. Marquier, “Theory of epsilon-near-zero modes in ultrathin films,” Phys. Rev. B 91(12), 121408 (2015).
[Crossref]

S. Campione, S. Liu, A. Benz, J. F. Klem, M. B. Sinclair, and I. Brener, “Epsilon-near-zero modes for tailored light-matter interaction,” Phys. Rev. Appl. 4(4), 044011 (2015).
[Crossref]

A. Benz, S. Campione, J. F. Klem, M. B. Sinclair, and I. Brener, “Control of strong light-matter coupling using the capacitance of metamaterial nanocavities,” Nano Lett. 15(3), 1959–1966 (2015).
[Crossref] [PubMed]

S. Campione, A. Benz, J. F. Klem, M. B. Sinclair, I. Brener, and F. Capolino, “Electrodynamic modeling of strong coupling between a metasurface and intersubband transitions in quantum wells,” Phys. Rev. B 89(16), 165133 (2014).
[Crossref]

A. Benz, S. Campione, S. Liu, I. Montaño, J. F. Klem, A. Allerman, J. R. Wendt, M. B. Sinclair, F. Capolino, and I. Brener, “Strong coupling in the sub-wavelength limit using metamaterial nanocavities,” Nat. Commun. 4, 2882 (2013).
[Crossref] [PubMed]

A. Benz, I. Montano, J. F. Klem, and I. Brener, “Tunable metamaterials based on voltage controlled strong coupling,” Appl. Phys. Lett. 103(26), 263116 (2013).
[Crossref]

Y. C. Jun, J. Reno, T. Ribaudo, E. Shaner, J.-J. Greffet, S. Vassant, F. Marquier, M. Sinclair, and I. Brener, “Epsilon-near-zero strong coupling in metamaterial-semiconductor hybrid structures,” Nano Lett. 13(11), 5391–5396 (2013).
[Crossref] [PubMed]

Y. C. Jun and I. Brener, “Electrically tunable infrared metamaterials based on depletion-type semiconductor devices,” J. Opt. 14(11), 114013 (2012).
[Crossref]

Y. C. Jun, E. Gonzales, J. L. Reno, E. A. Shaner, A. Gabbay, and I. Brener, “Active tuning of mid-infrared metamaterials by electrical control of carrier densities,” Opt. Express 20(2), 1903–1911 (2012).
[Crossref] [PubMed]

Brongersma, M. L.

J. Park, J.-H. Kang, X. Liu, and M. L. Brongersma, “Electrically tunable epsilon-near-zero (ENZ) metafilm absorbers,” Sci. Rep. 5, 15754 (2015).
[Crossref] [PubMed]

Butakov, N. A.

P. P. Iyer, N. A. Butakov, and J. A. Schuller, “Reconfigurable semiconductor phased-array metasurfaces,” ACS Photonics 2(8), 1077–1084 (2015).
[Crossref]

Campione, S.

S. Campione, J. R. Wendt, G. A. Keeler, and T. S. Luk, “Near-infrared strong coupling between metamaterials and epsilon-near-zero modes in degenerately doped semiconductor nanolayers,” ACS Photonics 3(2), 293–297 (2016).
[Crossref]

S. Campione, S. Liu, A. Benz, J. F. Klem, M. B. Sinclair, and I. Brener, “Epsilon-near-zero modes for tailored light-matter interaction,” Phys. Rev. Appl. 4(4), 044011 (2015).
[Crossref]

A. Benz, S. Campione, J. F. Klem, M. B. Sinclair, and I. Brener, “Control of strong light-matter coupling using the capacitance of metamaterial nanocavities,” Nano Lett. 15(3), 1959–1966 (2015).
[Crossref] [PubMed]

S. Campione, I. Brener, and F. Marquier, “Theory of epsilon-near-zero modes in ultrathin films,” Phys. Rev. B 91(12), 121408 (2015).
[Crossref]

S. Campione, A. Benz, J. F. Klem, M. B. Sinclair, I. Brener, and F. Capolino, “Electrodynamic modeling of strong coupling between a metasurface and intersubband transitions in quantum wells,” Phys. Rev. B 89(16), 165133 (2014).
[Crossref]

A. Benz, S. Campione, S. Liu, I. Montaño, J. F. Klem, A. Allerman, J. R. Wendt, M. B. Sinclair, F. Capolino, and I. Brener, “Strong coupling in the sub-wavelength limit using metamaterial nanocavities,” Nat. Commun. 4, 2882 (2013).
[Crossref] [PubMed]

Capolino, F.

S. Campione, A. Benz, J. F. Klem, M. B. Sinclair, I. Brener, and F. Capolino, “Electrodynamic modeling of strong coupling between a metasurface and intersubband transitions in quantum wells,” Phys. Rev. B 89(16), 165133 (2014).
[Crossref]

A. Benz, S. Campione, S. Liu, I. Montaño, J. F. Klem, A. Allerman, J. R. Wendt, M. B. Sinclair, F. Capolino, and I. Brener, “Strong coupling in the sub-wavelength limit using metamaterial nanocavities,” Nat. Commun. 4, 2882 (2013).
[Crossref] [PubMed]

Carusotto, I.

S. De Liberato, C. Ciuti, and I. Carusotto, “Quantum vacuum radiation spectra from a semiconductor microcavity with a time-modulated vacuum Rabi frequency,” Phys. Rev. Lett. 98(10), 103602 (2007).
[Crossref] [PubMed]

C. Ciuti, G. Bastard, and I. Carusotto, “Quantum vacuum properties of the intersubband cavity polariton field,” Phys. Rev. B 72(11), 115303 (2005).
[Crossref]

Charpentier, C.

C. Maissen, G. Scalari, F. Valmorra, M. Beck, J. Faist, S. Cibella, R. Leoni, C. Reichl, C. Charpentier, and W. Wegscheider, “Ultrastrong coupling in the near field of complementary split-ring resonators,” Phys. Rev. B 90(20), 205309 (2014).
[Crossref]

Chen, H.-T.

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

Cibella, S.

C. Maissen, G. Scalari, F. Valmorra, M. Beck, J. Faist, S. Cibella, R. Leoni, C. Reichl, C. Charpentier, and W. Wegscheider, “Ultrastrong coupling in the near field of complementary split-ring resonators,” Phys. Rev. B 90(20), 205309 (2014).
[Crossref]

Ciuti, C.

G. Scalari, C. Maissen, D. Turcinková, D. Hagenmüller, S. De Liberato, C. Ciuti, C. Reichl, D. Schuh, W. Wegscheider, M. Beck, and J. Faist, “Ultrastrong coupling of the cyclotron transition of a 2D electron gas to a THz metamaterial,” Science 335(6074), 1323–1326 (2012).
[Crossref] [PubMed]

Y. Todorov, A. M. Andrews, R. Colombelli, S. De Liberato, C. Ciuti, P. Klang, G. Strasser, and C. Sirtori, “Ultrastrong light-matter coupling regime with polariton dots,” Phys. Rev. Lett. 105(19), 196402 (2010).
[Crossref] [PubMed]

S. De Liberato, C. Ciuti, and I. Carusotto, “Quantum vacuum radiation spectra from a semiconductor microcavity with a time-modulated vacuum Rabi frequency,” Phys. Rev. Lett. 98(10), 103602 (2007).
[Crossref] [PubMed]

C. Ciuti, G. Bastard, and I. Carusotto, “Quantum vacuum properties of the intersubband cavity polariton field,” Phys. Rev. B 72(11), 115303 (2005).
[Crossref]

Colombelli, R.

Y. Todorov, A. M. Andrews, R. Colombelli, S. De Liberato, C. Ciuti, P. Klang, G. Strasser, and C. Sirtori, “Ultrastrong light-matter coupling regime with polariton dots,” Phys. Rev. Lett. 105(19), 196402 (2010).
[Crossref] [PubMed]

De Liberato, S.

G. Scalari, C. Maissen, D. Turcinková, D. Hagenmüller, S. De Liberato, C. Ciuti, C. Reichl, D. Schuh, W. Wegscheider, M. Beck, and J. Faist, “Ultrastrong coupling of the cyclotron transition of a 2D electron gas to a THz metamaterial,” Science 335(6074), 1323–1326 (2012).
[Crossref] [PubMed]

Y. Todorov, A. M. Andrews, R. Colombelli, S. De Liberato, C. Ciuti, P. Klang, G. Strasser, and C. Sirtori, “Ultrastrong light-matter coupling regime with polariton dots,” Phys. Rev. Lett. 105(19), 196402 (2010).
[Crossref] [PubMed]

S. De Liberato, C. Ciuti, and I. Carusotto, “Quantum vacuum radiation spectra from a semiconductor microcavity with a time-modulated vacuum Rabi frequency,” Phys. Rev. Lett. 98(10), 103602 (2007).
[Crossref] [PubMed]

Delteil, A.

B. Askenazi, A. Vasanelli, A. Delteil, Y. Todorov, L. C. Andreani, G. Beaudoin, I. Sagnes, and C. Sirtori, “Ultra-strong light–matter coupling for designer Reststrahlen band,” New J. Phys. 16(4), 043029 (2014).
[Crossref]

Faist, J.

C. Maissen, G. Scalari, F. Valmorra, M. Beck, J. Faist, S. Cibella, R. Leoni, C. Reichl, C. Charpentier, and W. Wegscheider, “Ultrastrong coupling in the near field of complementary split-ring resonators,” Phys. Rev. B 90(20), 205309 (2014).
[Crossref]

G. Scalari, C. Maissen, D. Turcinková, D. Hagenmüller, S. De Liberato, C. Ciuti, C. Reichl, D. Schuh, W. Wegscheider, M. Beck, and J. Faist, “Ultrastrong coupling of the cyclotron transition of a 2D electron gas to a THz metamaterial,” Science 335(6074), 1323–1326 (2012).
[Crossref] [PubMed]

Ferrell, R. A.

R. A. Ferrell, “Predicted radiation of plasma oscillations in metal films,” Phys. Rev. 111(5), 1214–1222 (1958).
[Crossref]

Gabbay, A.

Gonzales, E.

Gossard, A. C.

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

Greffet, J.-J.

Y. C. Jun, J. Reno, T. Ribaudo, E. Shaner, J.-J. Greffet, S. Vassant, F. Marquier, M. Sinclair, and I. Brener, “Epsilon-near-zero strong coupling in metamaterial-semiconductor hybrid structures,” Nano Lett. 13(11), 5391–5396 (2013).
[Crossref] [PubMed]

S. Vassant, J.-P. Hugonin, F. Marquier, and J.-J. Greffet, “Berreman mode and epsilon near zero mode,” Opt. Express 20(21), 23971–23977 (2012).
[Crossref] [PubMed]

Hagenmüller, D.

G. Scalari, C. Maissen, D. Turcinková, D. Hagenmüller, S. De Liberato, C. Ciuti, C. Reichl, D. Schuh, W. Wegscheider, M. Beck, and J. Faist, “Ultrastrong coupling of the cyclotron transition of a 2D electron gas to a THz metamaterial,” Science 335(6074), 1323–1326 (2012).
[Crossref] [PubMed]

Hakala, T. K.

S. V. Baieva, T. K. Hakala, and J. J. Toppari, “Strong coupling between surface plasmon polaritons and Sulforhodamine 101 dye,” Nanoscale Res. Lett. 7(1), 191 (2012).
[Crossref] [PubMed]

Harris, C.

Hugonin, J.-P.

Iyer, P. P.

P. P. Iyer, N. A. Butakov, and J. A. Schuller, “Reconfigurable semiconductor phased-array metasurfaces,” ACS Photonics 2(8), 1077–1084 (2015).
[Crossref]

P. P. Iyer, M. Pendharkar, and J. A. Schuller, “Electrically reconfigurable metasurfaces using heterojunction resonators,” Adv. Opt. Mater.in press.

Jun, Y. C.

Y. C. Jun, J. Reno, T. Ribaudo, E. Shaner, J.-J. Greffet, S. Vassant, F. Marquier, M. Sinclair, and I. Brener, “Epsilon-near-zero strong coupling in metamaterial-semiconductor hybrid structures,” Nano Lett. 13(11), 5391–5396 (2013).
[Crossref] [PubMed]

Y. C. Jun and I. Brener, “Electrically tunable infrared metamaterials based on depletion-type semiconductor devices,” J. Opt. 14(11), 114013 (2012).
[Crossref]

Y. C. Jun, E. Gonzales, J. L. Reno, E. A. Shaner, A. Gabbay, and I. Brener, “Active tuning of mid-infrared metamaterials by electrical control of carrier densities,” Opt. Express 20(2), 1903–1911 (2012).
[Crossref] [PubMed]

Kang, J.-H.

J. Park, J.-H. Kang, X. Liu, and M. L. Brongersma, “Electrically tunable epsilon-near-zero (ENZ) metafilm absorbers,” Sci. Rep. 5, 15754 (2015).
[Crossref] [PubMed]

Keeler, G. A.

S. Campione, J. R. Wendt, G. A. Keeler, and T. S. Luk, “Near-infrared strong coupling between metamaterials and epsilon-near-zero modes in degenerately doped semiconductor nanolayers,” ACS Photonics 3(2), 293–297 (2016).
[Crossref]

Klang, P.

Y. Todorov, A. M. Andrews, R. Colombelli, S. De Liberato, C. Ciuti, P. Klang, G. Strasser, and C. Sirtori, “Ultrastrong light-matter coupling regime with polariton dots,” Phys. Rev. Lett. 105(19), 196402 (2010).
[Crossref] [PubMed]

Klem, J. F.

S. Campione, S. Liu, A. Benz, J. F. Klem, M. B. Sinclair, and I. Brener, “Epsilon-near-zero modes for tailored light-matter interaction,” Phys. Rev. Appl. 4(4), 044011 (2015).
[Crossref]

A. Benz, S. Campione, J. F. Klem, M. B. Sinclair, and I. Brener, “Control of strong light-matter coupling using the capacitance of metamaterial nanocavities,” Nano Lett. 15(3), 1959–1966 (2015).
[Crossref] [PubMed]

S. Campione, A. Benz, J. F. Klem, M. B. Sinclair, I. Brener, and F. Capolino, “Electrodynamic modeling of strong coupling between a metasurface and intersubband transitions in quantum wells,” Phys. Rev. B 89(16), 165133 (2014).
[Crossref]

A. Benz, S. Campione, S. Liu, I. Montaño, J. F. Klem, A. Allerman, J. R. Wendt, M. B. Sinclair, F. Capolino, and I. Brener, “Strong coupling in the sub-wavelength limit using metamaterial nanocavities,” Nat. Commun. 4, 2882 (2013).
[Crossref] [PubMed]

A. Benz, I. Montano, J. F. Klem, and I. Brener, “Tunable metamaterials based on voltage controlled strong coupling,” Appl. Phys. Lett. 103(26), 263116 (2013).
[Crossref]

Kopytko, M.

P. Martyniuk, M. Kopytko, and A. Rogalski, “Barrier infrared detectors,” Opto-Electron. Rev. 22(2), 127–146 (2014).
[Crossref]

Law, S.

Leoni, R.

C. Maissen, G. Scalari, F. Valmorra, M. Beck, J. Faist, S. Cibella, R. Leoni, C. Reichl, C. Charpentier, and W. Wegscheider, “Ultrastrong coupling in the near field of complementary split-ring resonators,” Phys. Rev. B 90(20), 205309 (2014).
[Crossref]

Li, Y.

C. Liu, Y. Li, and Y. Zeng, “Progress in antimonide based III-V compound semiconductors and devices,” Engineering 2(08), 617–624 (2010).
[Crossref]

Liu, C.

C. Liu, Y. Li, and Y. Zeng, “Progress in antimonide based III-V compound semiconductors and devices,” Engineering 2(08), 617–624 (2010).
[Crossref]

Liu, R.

S. Law, R. Liu, and D. Wasserman, “Doped semiconductors with band-edge plasma frequencies,” J. Vac. Sci. Technol. B 32(5), 052601 (2014).
[Crossref]

Liu, S.

S. Campione, S. Liu, A. Benz, J. F. Klem, M. B. Sinclair, and I. Brener, “Epsilon-near-zero modes for tailored light-matter interaction,” Phys. Rev. Appl. 4(4), 044011 (2015).
[Crossref]

A. Benz, S. Campione, S. Liu, I. Montaño, J. F. Klem, A. Allerman, J. R. Wendt, M. B. Sinclair, F. Capolino, and I. Brener, “Strong coupling in the sub-wavelength limit using metamaterial nanocavities,” Nat. Commun. 4, 2882 (2013).
[Crossref] [PubMed]

Liu, X.

J. Park, J.-H. Kang, X. Liu, and M. L. Brongersma, “Electrically tunable epsilon-near-zero (ENZ) metafilm absorbers,” Sci. Rep. 5, 15754 (2015).
[Crossref] [PubMed]

Luk, T. S.

S. Campione, J. R. Wendt, G. A. Keeler, and T. S. Luk, “Near-infrared strong coupling between metamaterials and epsilon-near-zero modes in degenerately doped semiconductor nanolayers,” ACS Photonics 3(2), 293–297 (2016).
[Crossref]

Maissen, C.

C. Maissen, G. Scalari, F. Valmorra, M. Beck, J. Faist, S. Cibella, R. Leoni, C. Reichl, C. Charpentier, and W. Wegscheider, “Ultrastrong coupling in the near field of complementary split-ring resonators,” Phys. Rev. B 90(20), 205309 (2014).
[Crossref]

G. Scalari, C. Maissen, D. Turcinková, D. Hagenmüller, S. De Liberato, C. Ciuti, C. Reichl, D. Schuh, W. Wegscheider, M. Beck, and J. Faist, “Ultrastrong coupling of the cyclotron transition of a 2D electron gas to a THz metamaterial,” Science 335(6074), 1323–1326 (2012).
[Crossref] [PubMed]

Marquier, F.

S. Campione, I. Brener, and F. Marquier, “Theory of epsilon-near-zero modes in ultrathin films,” Phys. Rev. B 91(12), 121408 (2015).
[Crossref]

Y. C. Jun, J. Reno, T. Ribaudo, E. Shaner, J.-J. Greffet, S. Vassant, F. Marquier, M. Sinclair, and I. Brener, “Epsilon-near-zero strong coupling in metamaterial-semiconductor hybrid structures,” Nano Lett. 13(11), 5391–5396 (2013).
[Crossref] [PubMed]

S. Vassant, J.-P. Hugonin, F. Marquier, and J.-J. Greffet, “Berreman mode and epsilon near zero mode,” Opt. Express 20(21), 23971–23977 (2012).
[Crossref] [PubMed]

Martyniuk, P.

P. Martyniuk, M. Kopytko, and A. Rogalski, “Barrier infrared detectors,” Opto-Electron. Rev. 22(2), 127–146 (2014).
[Crossref]

Montano, I.

A. Benz, I. Montano, J. F. Klem, and I. Brener, “Tunable metamaterials based on voltage controlled strong coupling,” Appl. Phys. Lett. 103(26), 263116 (2013).
[Crossref]

Montaño, I.

A. Benz, S. Campione, S. Liu, I. Montaño, J. F. Klem, A. Allerman, J. R. Wendt, M. B. Sinclair, F. Capolino, and I. Brener, “Strong coupling in the sub-wavelength limit using metamaterial nanocavities,” Nat. Commun. 4, 2882 (2013).
[Crossref] [PubMed]

Mugnier, J.

J. Bellessa, C. Bonnand, J. C. Plenet, and J. Mugnier, “Strong coupling between surface plasmons and excitons in an organic semiconductor,” Phys. Rev. Lett. 93(3), 036404 (2004).
[Crossref] [PubMed]

Padilla, W. J.

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

Park, J.

J. Park, J.-H. Kang, X. Liu, and M. L. Brongersma, “Electrically tunable epsilon-near-zero (ENZ) metafilm absorbers,” Sci. Rep. 5, 15754 (2015).
[Crossref] [PubMed]

Pendharkar, M.

P. P. Iyer, M. Pendharkar, and J. A. Schuller, “Electrically reconfigurable metasurfaces using heterojunction resonators,” Adv. Opt. Mater.in press.

Plenet, J. C.

J. Bellessa, C. Bonnand, J. C. Plenet, and J. Mugnier, “Strong coupling between surface plasmons and excitons in an organic semiconductor,” Phys. Rev. Lett. 93(3), 036404 (2004).
[Crossref] [PubMed]

Reichl, C.

C. Maissen, G. Scalari, F. Valmorra, M. Beck, J. Faist, S. Cibella, R. Leoni, C. Reichl, C. Charpentier, and W. Wegscheider, “Ultrastrong coupling in the near field of complementary split-ring resonators,” Phys. Rev. B 90(20), 205309 (2014).
[Crossref]

G. Scalari, C. Maissen, D. Turcinková, D. Hagenmüller, S. De Liberato, C. Ciuti, C. Reichl, D. Schuh, W. Wegscheider, M. Beck, and J. Faist, “Ultrastrong coupling of the cyclotron transition of a 2D electron gas to a THz metamaterial,” Science 335(6074), 1323–1326 (2012).
[Crossref] [PubMed]

Reno, J.

Y. C. Jun, J. Reno, T. Ribaudo, E. Shaner, J.-J. Greffet, S. Vassant, F. Marquier, M. Sinclair, and I. Brener, “Epsilon-near-zero strong coupling in metamaterial-semiconductor hybrid structures,” Nano Lett. 13(11), 5391–5396 (2013).
[Crossref] [PubMed]

Reno, J. L.

Ribaudo, T.

Y. C. Jun, J. Reno, T. Ribaudo, E. Shaner, J.-J. Greffet, S. Vassant, F. Marquier, M. Sinclair, and I. Brener, “Epsilon-near-zero strong coupling in metamaterial-semiconductor hybrid structures,” Nano Lett. 13(11), 5391–5396 (2013).
[Crossref] [PubMed]

Rogalski, A.

P. Martyniuk, M. Kopytko, and A. Rogalski, “Barrier infrared detectors,” Opto-Electron. Rev. 22(2), 127–146 (2014).
[Crossref]

Sagnes, I.

B. Askenazi, A. Vasanelli, A. Delteil, Y. Todorov, L. C. Andreani, G. Beaudoin, I. Sagnes, and C. Sirtori, “Ultra-strong light–matter coupling for designer Reststrahlen band,” New J. Phys. 16(4), 043029 (2014).
[Crossref]

Scalari, G.

C. Maissen, G. Scalari, F. Valmorra, M. Beck, J. Faist, S. Cibella, R. Leoni, C. Reichl, C. Charpentier, and W. Wegscheider, “Ultrastrong coupling in the near field of complementary split-ring resonators,” Phys. Rev. B 90(20), 205309 (2014).
[Crossref]

G. Scalari, C. Maissen, D. Turcinková, D. Hagenmüller, S. De Liberato, C. Ciuti, C. Reichl, D. Schuh, W. Wegscheider, M. Beck, and J. Faist, “Ultrastrong coupling of the cyclotron transition of a 2D electron gas to a THz metamaterial,” Science 335(6074), 1323–1326 (2012).
[Crossref] [PubMed]

Schuh, D.

G. Scalari, C. Maissen, D. Turcinková, D. Hagenmüller, S. De Liberato, C. Ciuti, C. Reichl, D. Schuh, W. Wegscheider, M. Beck, and J. Faist, “Ultrastrong coupling of the cyclotron transition of a 2D electron gas to a THz metamaterial,” Science 335(6074), 1323–1326 (2012).
[Crossref] [PubMed]

Schuller, J. A.

P. P. Iyer, N. A. Butakov, and J. A. Schuller, “Reconfigurable semiconductor phased-array metasurfaces,” ACS Photonics 2(8), 1077–1084 (2015).
[Crossref]

P. P. Iyer, M. Pendharkar, and J. A. Schuller, “Electrically reconfigurable metasurfaces using heterojunction resonators,” Adv. Opt. Mater.in press.

Shaner, E.

Y. C. Jun, J. Reno, T. Ribaudo, E. Shaner, J.-J. Greffet, S. Vassant, F. Marquier, M. Sinclair, and I. Brener, “Epsilon-near-zero strong coupling in metamaterial-semiconductor hybrid structures,” Nano Lett. 13(11), 5391–5396 (2013).
[Crossref] [PubMed]

Shaner, E. A.

Sinclair, M.

Y. C. Jun, J. Reno, T. Ribaudo, E. Shaner, J.-J. Greffet, S. Vassant, F. Marquier, M. Sinclair, and I. Brener, “Epsilon-near-zero strong coupling in metamaterial-semiconductor hybrid structures,” Nano Lett. 13(11), 5391–5396 (2013).
[Crossref] [PubMed]

Sinclair, M. B.

S. Campione, S. Liu, A. Benz, J. F. Klem, M. B. Sinclair, and I. Brener, “Epsilon-near-zero modes for tailored light-matter interaction,” Phys. Rev. Appl. 4(4), 044011 (2015).
[Crossref]

A. Benz, S. Campione, J. F. Klem, M. B. Sinclair, and I. Brener, “Control of strong light-matter coupling using the capacitance of metamaterial nanocavities,” Nano Lett. 15(3), 1959–1966 (2015).
[Crossref] [PubMed]

S. Campione, A. Benz, J. F. Klem, M. B. Sinclair, I. Brener, and F. Capolino, “Electrodynamic modeling of strong coupling between a metasurface and intersubband transitions in quantum wells,” Phys. Rev. B 89(16), 165133 (2014).
[Crossref]

A. Benz, S. Campione, S. Liu, I. Montaño, J. F. Klem, A. Allerman, J. R. Wendt, M. B. Sinclair, F. Capolino, and I. Brener, “Strong coupling in the sub-wavelength limit using metamaterial nanocavities,” Nat. Commun. 4, 2882 (2013).
[Crossref] [PubMed]

Sirtori, C.

B. Askenazi, A. Vasanelli, A. Delteil, Y. Todorov, L. C. Andreani, G. Beaudoin, I. Sagnes, and C. Sirtori, “Ultra-strong light–matter coupling for designer Reststrahlen band,” New J. Phys. 16(4), 043029 (2014).
[Crossref]

Y. Todorov, A. M. Andrews, R. Colombelli, S. De Liberato, C. Ciuti, P. Klang, G. Strasser, and C. Sirtori, “Ultrastrong light-matter coupling regime with polariton dots,” Phys. Rev. Lett. 105(19), 196402 (2010).
[Crossref] [PubMed]

Strasser, G.

Y. Todorov, A. M. Andrews, R. Colombelli, S. De Liberato, C. Ciuti, P. Klang, G. Strasser, and C. Sirtori, “Ultrastrong light-matter coupling regime with polariton dots,” Phys. Rev. Lett. 105(19), 196402 (2010).
[Crossref] [PubMed]

Taylor, A. J.

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

Taylor, A. M.

Todorov, Y.

B. Askenazi, A. Vasanelli, A. Delteil, Y. Todorov, L. C. Andreani, G. Beaudoin, I. Sagnes, and C. Sirtori, “Ultra-strong light–matter coupling for designer Reststrahlen band,” New J. Phys. 16(4), 043029 (2014).
[Crossref]

Y. Todorov, A. M. Andrews, R. Colombelli, S. De Liberato, C. Ciuti, P. Klang, G. Strasser, and C. Sirtori, “Ultrastrong light-matter coupling regime with polariton dots,” Phys. Rev. Lett. 105(19), 196402 (2010).
[Crossref] [PubMed]

Toppari, J. J.

S. V. Baieva, T. K. Hakala, and J. J. Toppari, “Strong coupling between surface plasmon polaritons and Sulforhodamine 101 dye,” Nanoscale Res. Lett. 7(1), 191 (2012).
[Crossref] [PubMed]

Törmä, P.

P. Törmä and W. L. Barnes, “Strong coupling between surface plasmon polaritons and emitters: a review,” Rep. Prog. Phys. 78(1), 013901 (2015).
[Crossref] [PubMed]

Turcinková, D.

G. Scalari, C. Maissen, D. Turcinková, D. Hagenmüller, S. De Liberato, C. Ciuti, C. Reichl, D. Schuh, W. Wegscheider, M. Beck, and J. Faist, “Ultrastrong coupling of the cyclotron transition of a 2D electron gas to a THz metamaterial,” Science 335(6074), 1323–1326 (2012).
[Crossref] [PubMed]

Valmorra, F.

C. Maissen, G. Scalari, F. Valmorra, M. Beck, J. Faist, S. Cibella, R. Leoni, C. Reichl, C. Charpentier, and W. Wegscheider, “Ultrastrong coupling in the near field of complementary split-ring resonators,” Phys. Rev. B 90(20), 205309 (2014).
[Crossref]

Vasanelli, A.

B. Askenazi, A. Vasanelli, A. Delteil, Y. Todorov, L. C. Andreani, G. Beaudoin, I. Sagnes, and C. Sirtori, “Ultra-strong light–matter coupling for designer Reststrahlen band,” New J. Phys. 16(4), 043029 (2014).
[Crossref]

Vassant, S.

Y. C. Jun, J. Reno, T. Ribaudo, E. Shaner, J.-J. Greffet, S. Vassant, F. Marquier, M. Sinclair, and I. Brener, “Epsilon-near-zero strong coupling in metamaterial-semiconductor hybrid structures,” Nano Lett. 13(11), 5391–5396 (2013).
[Crossref] [PubMed]

S. Vassant, J.-P. Hugonin, F. Marquier, and J.-J. Greffet, “Berreman mode and epsilon near zero mode,” Opt. Express 20(21), 23971–23977 (2012).
[Crossref] [PubMed]

Wasserman, D.

S. Law, R. Liu, and D. Wasserman, “Doped semiconductors with band-edge plasma frequencies,” J. Vac. Sci. Technol. B 32(5), 052601 (2014).
[Crossref]

S. Law, D. C. Adams, A. M. Taylor, and D. Wasserman, “Mid-infrared designer metals,” Opt. Express 20(11), 12155–12165 (2012).
[Crossref] [PubMed]

Wegscheider, W.

C. Maissen, G. Scalari, F. Valmorra, M. Beck, J. Faist, S. Cibella, R. Leoni, C. Reichl, C. Charpentier, and W. Wegscheider, “Ultrastrong coupling in the near field of complementary split-ring resonators,” Phys. Rev. B 90(20), 205309 (2014).
[Crossref]

G. Scalari, C. Maissen, D. Turcinková, D. Hagenmüller, S. De Liberato, C. Ciuti, C. Reichl, D. Schuh, W. Wegscheider, M. Beck, and J. Faist, “Ultrastrong coupling of the cyclotron transition of a 2D electron gas to a THz metamaterial,” Science 335(6074), 1323–1326 (2012).
[Crossref] [PubMed]

Wei, D.

Wendt, J. R.

S. Campione, J. R. Wendt, G. A. Keeler, and T. S. Luk, “Near-infrared strong coupling between metamaterials and epsilon-near-zero modes in degenerately doped semiconductor nanolayers,” ACS Photonics 3(2), 293–297 (2016).
[Crossref]

A. Benz, S. Campione, S. Liu, I. Montaño, J. F. Klem, A. Allerman, J. R. Wendt, M. B. Sinclair, F. Capolino, and I. Brener, “Strong coupling in the sub-wavelength limit using metamaterial nanocavities,” Nat. Commun. 4, 2882 (2013).
[Crossref] [PubMed]

Zeng, Y.

C. Liu, Y. Li, and Y. Zeng, “Progress in antimonide based III-V compound semiconductors and devices,” Engineering 2(08), 617–624 (2010).
[Crossref]

Zhang, J.

Zide, J.

Zide, J. M. O.

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

ACS Photonics (2)

S. Campione, J. R. Wendt, G. A. Keeler, and T. S. Luk, “Near-infrared strong coupling between metamaterials and epsilon-near-zero modes in degenerately doped semiconductor nanolayers,” ACS Photonics 3(2), 293–297 (2016).
[Crossref]

P. P. Iyer, N. A. Butakov, and J. A. Schuller, “Reconfigurable semiconductor phased-array metasurfaces,” ACS Photonics 2(8), 1077–1084 (2015).
[Crossref]

Appl. Phys. Lett. (1)

A. Benz, I. Montano, J. F. Klem, and I. Brener, “Tunable metamaterials based on voltage controlled strong coupling,” Appl. Phys. Lett. 103(26), 263116 (2013).
[Crossref]

Engineering (1)

C. Liu, Y. Li, and Y. Zeng, “Progress in antimonide based III-V compound semiconductors and devices,” Engineering 2(08), 617–624 (2010).
[Crossref]

J. Opt. (1)

Y. C. Jun and I. Brener, “Electrically tunable infrared metamaterials based on depletion-type semiconductor devices,” J. Opt. 14(11), 114013 (2012).
[Crossref]

J. Vac. Sci. Technol. B (1)

S. Law, R. Liu, and D. Wasserman, “Doped semiconductors with band-edge plasma frequencies,” J. Vac. Sci. Technol. B 32(5), 052601 (2014).
[Crossref]

Nano Lett. (2)

Y. C. Jun, J. Reno, T. Ribaudo, E. Shaner, J.-J. Greffet, S. Vassant, F. Marquier, M. Sinclair, and I. Brener, “Epsilon-near-zero strong coupling in metamaterial-semiconductor hybrid structures,” Nano Lett. 13(11), 5391–5396 (2013).
[Crossref] [PubMed]

A. Benz, S. Campione, J. F. Klem, M. B. Sinclair, and I. Brener, “Control of strong light-matter coupling using the capacitance of metamaterial nanocavities,” Nano Lett. 15(3), 1959–1966 (2015).
[Crossref] [PubMed]

Nanoscale Res. Lett. (1)

S. V. Baieva, T. K. Hakala, and J. J. Toppari, “Strong coupling between surface plasmon polaritons and Sulforhodamine 101 dye,” Nanoscale Res. Lett. 7(1), 191 (2012).
[Crossref] [PubMed]

Nat. Commun. (1)

A. Benz, S. Campione, S. Liu, I. Montaño, J. F. Klem, A. Allerman, J. R. Wendt, M. B. Sinclair, F. Capolino, and I. Brener, “Strong coupling in the sub-wavelength limit using metamaterial nanocavities,” Nat. Commun. 4, 2882 (2013).
[Crossref] [PubMed]

Nature (1)

H.-T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

New J. Phys. (1)

B. Askenazi, A. Vasanelli, A. Delteil, Y. Todorov, L. C. Andreani, G. Beaudoin, I. Sagnes, and C. Sirtori, “Ultra-strong light–matter coupling for designer Reststrahlen band,” New J. Phys. 16(4), 043029 (2014).
[Crossref]

Opt. Express (4)

Opto-Electron. Rev. (1)

P. Martyniuk, M. Kopytko, and A. Rogalski, “Barrier infrared detectors,” Opto-Electron. Rev. 22(2), 127–146 (2014).
[Crossref]

Phys. Rev. (2)

D. W. Berreman, “Infrared absorption at longitudinal optic frequency in cubic crystal films,” Phys. Rev. 130(6), 2193–2198 (1963).
[Crossref]

R. A. Ferrell, “Predicted radiation of plasma oscillations in metal films,” Phys. Rev. 111(5), 1214–1222 (1958).
[Crossref]

Phys. Rev. Appl. (1)

S. Campione, S. Liu, A. Benz, J. F. Klem, M. B. Sinclair, and I. Brener, “Epsilon-near-zero modes for tailored light-matter interaction,” Phys. Rev. Appl. 4(4), 044011 (2015).
[Crossref]

Phys. Rev. B (4)

S. Campione, A. Benz, J. F. Klem, M. B. Sinclair, I. Brener, and F. Capolino, “Electrodynamic modeling of strong coupling between a metasurface and intersubband transitions in quantum wells,” Phys. Rev. B 89(16), 165133 (2014).
[Crossref]

C. Ciuti, G. Bastard, and I. Carusotto, “Quantum vacuum properties of the intersubband cavity polariton field,” Phys. Rev. B 72(11), 115303 (2005).
[Crossref]

S. Campione, I. Brener, and F. Marquier, “Theory of epsilon-near-zero modes in ultrathin films,” Phys. Rev. B 91(12), 121408 (2015).
[Crossref]

C. Maissen, G. Scalari, F. Valmorra, M. Beck, J. Faist, S. Cibella, R. Leoni, C. Reichl, C. Charpentier, and W. Wegscheider, “Ultrastrong coupling in the near field of complementary split-ring resonators,” Phys. Rev. B 90(20), 205309 (2014).
[Crossref]

Phys. Rev. Lett. (3)

S. De Liberato, C. Ciuti, and I. Carusotto, “Quantum vacuum radiation spectra from a semiconductor microcavity with a time-modulated vacuum Rabi frequency,” Phys. Rev. Lett. 98(10), 103602 (2007).
[Crossref] [PubMed]

J. Bellessa, C. Bonnand, J. C. Plenet, and J. Mugnier, “Strong coupling between surface plasmons and excitons in an organic semiconductor,” Phys. Rev. Lett. 93(3), 036404 (2004).
[Crossref] [PubMed]

Y. Todorov, A. M. Andrews, R. Colombelli, S. De Liberato, C. Ciuti, P. Klang, G. Strasser, and C. Sirtori, “Ultrastrong light-matter coupling regime with polariton dots,” Phys. Rev. Lett. 105(19), 196402 (2010).
[Crossref] [PubMed]

Rep. Prog. Phys. (1)

P. Törmä and W. L. Barnes, “Strong coupling between surface plasmon polaritons and emitters: a review,” Rep. Prog. Phys. 78(1), 013901 (2015).
[Crossref] [PubMed]

Sci. Rep. (1)

J. Park, J.-H. Kang, X. Liu, and M. L. Brongersma, “Electrically tunable epsilon-near-zero (ENZ) metafilm absorbers,” Sci. Rep. 5, 15754 (2015).
[Crossref] [PubMed]

Science (1)

G. Scalari, C. Maissen, D. Turcinková, D. Hagenmüller, S. De Liberato, C. Ciuti, C. Reichl, D. Schuh, W. Wegscheider, M. Beck, and J. Faist, “Ultrastrong coupling of the cyclotron transition of a 2D electron gas to a THz metamaterial,” Science 335(6074), 1323–1326 (2012).
[Crossref] [PubMed]

Other (4)

Y.-W. Huang, H. W. H. Lee, R. Sokhoyan, R. Pala, K. Thyagarajan, S. Han, D. P. Tsai, and H. A. Atwater, “Gate-tunable conducting oxide metasurfaces,” http://arxiv.org/abs/1511.09380 (2015).

P. P. Iyer, M. Pendharkar, and J. A. Schuller, “Electrically reconfigurable metasurfaces using heterojunction resonators,” Adv. Opt. Mater.in press.

WVASE by J.A. Woollam Co, https://www.jawoollam.com/ellipsometry-software/wvase

FDTD Solutions by FDTD Lumerical Inc, https://www.lumerical.com/ .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Schematic of a voltage tunable spectral filter (top layers) monolithically integrated on a photodetector (purple). (b) Semiconductor layer stack used in this work; the epsilon-near-zero (ENZ) layer is marked with the diagonal pattern. Two thicknesses of the ENZ layer were investigated in this work: 30 and 80 nm. The cap layer is undoped InAsSb. (c, d) Experimental measurement of the ellipsometric angle Ψ for two 80 nm ENZ samples with doping levels as noted in the plots. The Berreman feature associated with the ENZ crossing is clearly visible as a dip around 14.5 µm and 11.8 µm, respectively.

Fig. 2
Fig. 2

(a) Dimensions of the metasurface unit cell as optimized by finite-difference time-domain simulations. (b) Scanning electron micrograph of a typical fabricated metasurface. (c) Simulated transmission spectrum of the bare cavity resonance as was used in the optimization process.

Fig. 3
Fig. 3

(a) Experimental FTIR transmission curves as a function of scaling factors for the ‘30nm ENZ’ sample. (b) Same as (a) but simulated in FDTD. (c) Simulated transmission spectra for the bare cavity: no polariton splitting is observed in this case. (d) Experimental FTIR reflection curves as a function of scaling factors for the ‘80nm ENZ’ sample. (e) Same as (d) but simulated in FDTD. (f) Simulated reflection spectra of the bare cavity. All curves are normalized to the [0,1] interval.

Fig. 4
Fig. 4

(a) Experimental and simulated reflection curves at the anti-crossing point, scaling factor 1.4 for the ‘80nm ENZ’ sample. (b) Same as (a) but for the ‘30nm ENZ’ sample and 1.2 scaling factor.

Fig. 5
Fig. 5

FDTD simulations showing the transmission spectrum of the device with 30 nm ENZ layer under various carrier depletion/accumulation conditions. The inset depicts a schematic of the simulated structure with carrier density modification.

Tables (1)

Tables Icon

Table 1 Gaussian Oscillator parameters in our lightly doped InAsSb layer.

Metrics