Abstract

The use of low-power high-repetition-rate ultrafast pulsed excitation in stable optical trapping of dielectric nanoparticles has been demonstrated in the recent past; the high peak power of each pulse leads to instantaneous trapping of a nanoparticle with fast inertial response and the high repetition-rate ensures repetitive trapping by successive pulses However, with such high peak power pulsed excitation under a tight focusing condition, nonlinear optical effects on trapping efficiency also become significant and cannot be ignored. Thus, in addition to the above mentioned repetitive instantaneous trapping, trapping efficiency under pulsed excitation is also influenced by the optical Kerr effect, which we theoretically investigate here. Using dipole approximation we show that with an increase in laser power the radial component of the trapping potential becomes progressively more stable but the axial component is dramatically modulated due to increased Kerr nonlinearity. We justify that the relevant parameter to quantify the trapping efficiency is not the absolute depth of the highly asymmetric axial trapping potential but the height of the potential barrier along the beam propagation direction. We also discuss the optimal excitation parameters leading to the most stable dipole trap. Our results show excellent agreement with previous experiments.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optical forces of focused femtosecond laser pulses on nonlinear optical Rayleigh particles

Liping Gong, Bing Gu, Guanghao Rui, Yiping Cui, Zhuqing Zhu, and Qiwen Zhan
Photon. Res. 6(2) 138-143 (2018)

Exploring the physics of efficient optical trapping of dielectric nanoparticles with ultrafast pulsed excitation

Debjit Roy, Debabrata Goswami, and Arijit K. De
Appl. Opt. 54(23) 7002-7006 (2015)

Alternate analytic formulation of optical force on a dielectric sphere in the ray optics limit

Anita Devi and Arijit K. De
J. Opt. Soc. Am. B 35(2) 244-250 (2018)

References

  • View by:
  • |
  • |
  • |

  1. K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75(9), 2787–2809 (2004).
    [Crossref] [PubMed]
  2. K. Svoboda and S. M. Block, “Biological applications of optical forces,” Annu. Rev. Biophys. Biomol. Struct. 23(1), 247–285 (1994).
    [Crossref] [PubMed]
  3. A. D. Mehta, M. Rief, J. A. Spudich, D. A. Smith, and R. M. Simmons, “Single-molecule biomechanics with optical methods,” Science 283(5408), 1689–1695 (1999).
    [Crossref] [PubMed]
  4. C. Bustamante, Y. R. Chemla, N. R. Forde, and D. Izhaky, “Mechanical processes in biochemistry,” Annu. Rev. Biochem. 73(1), 705–748 (2004).
    [Crossref] [PubMed]
  5. J. R. Moffitt, Y. R. Chemla, S. B. Smith, and C. Bustamante, “Recent advances in optical tweezers,” Annu. Rev. Biochem. 77(1), 205–228 (2008).
    [Crossref] [PubMed]
  6. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11(5), 288–290 (1986).
    [Crossref] [PubMed]
  7. A. Ashkin, Optical Trapping and Manipulation of Neutral Particles Using Lasers: A Reprint Volume with Commentaries (World Scientific, 2006).
  8. A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235(4795), 1517–1520 (1987).
    [Crossref] [PubMed]
  9. S. Tan, H. A. Lopez, C. W. Cai, and Y. Zhang, “Optical trapping of single-walled carbon nanotubes,” Nano Lett. 4(8), 1415–1419 (2004).
    [Crossref]
  10. L. Bosanac, T. Aabo, P. M. Bendix, and L. B. Oddershede, “Efficient optical trapping and visualization of silver nanoparticles,” Nano Lett. 8(5), 1486–1491 (2008).
    [Crossref] [PubMed]
  11. L. Jauffred and L. B. Oddershede, “Two-photon quantum dot excitation during optical trapping,” Nano Lett. 10(5), 1927–1930 (2010).
    [Crossref] [PubMed]
  12. K. Svoboda and S. M. Block, “Optical trapping of metallic Rayleigh particles,” Opt. Lett. 19(13), 930–932 (1994).
    [Crossref] [PubMed]
  13. P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, “Expanding the optical trapping range of gold nanoparticles,” Nano Lett. 5(10), 1937–1942 (2005).
    [Crossref] [PubMed]
  14. L. Bosanac, T. Aabo, P. M. Bendix, and L. B. Oddershede, “Efficient optical trapping and visualization of silver nanoparticles,” Nano Lett. 8(5), 1486–1491 (2008).
    [Crossref] [PubMed]
  15. C. Selhuber-Unkel, I. Zins, O. Schubert, C. Sönnichsen, and L. B. Oddershede, “Quantitative optical trapping of single gold nanorods,” Nano Lett. 8(9), 2998–3003 (2008).
    [Crossref] [PubMed]
  16. F. Hajizadeh and S. N. S. Reihani, “Optimized optical trapping of gold nanoparticles,” Opt. Express 18(2), 551–559 (2010).
    [Crossref] [PubMed]
  17. B. Agate, C. Brown, W. Sibbett, and K. Dholakia, “Femtosecond optical tweezers for in-situ control of two-photon fluorescence,” Opt. Express 12(13), 3011–3017 (2004).
    [Crossref] [PubMed]
  18. J. C. Shane, M. Mazilu, W. M. Lee, and K. Dholakia, “Effect of pulse temporal shape on optical trapping and impulse transfer using ultrashort pulsed lasers,” Opt. Express 18(7), 7554–7568 (2010).
    [Crossref] [PubMed]
  19. L. G. Wang and C. L. Zhao, “Dynamic radiation force of a pulsed gaussian beam acting on rayleigh dielectric sphere,” Opt. Express 15(17), 10615–10621 (2007).
    [Crossref] [PubMed]
  20. L. G. Wang and H. S. Chai, “Revisit on dynamic radiation forces induced by pulsed Gaussian beams,” Opt. Express 19(15), 14389–14402 (2011).
    [Crossref] [PubMed]
  21. A. K. De, D. Roy, B. Saha, and D. Goswami, “A simple method for constructing and calibrating an optical tweezer,” Curr. Sci. 95, 723–724 (2008).
  22. A. K. De, D. Roy, and D. Goswami, “Towards stable trapping of single macromolecules in solution,” Proc SPIE Int Soc Opt Eng 7762, 776203 (2010).
    [Crossref] [PubMed]
  23. T.-H. Liu, W.-Y. Chiang, A. Usman, and H. Masuhara, “Optical trapping dynamics of a single polystyrene sphere: Continuous wave versus femtosecond lasers,” J. Phys. Chem. C 120(4), 2392–2399 (2016).
    [Crossref]
  24. A. K. De, D. Roy, A. Dutta, and D. Goswami, “Stable optical trapping of latex nanoparticles with ultrashort pulsed illumination,” Appl. Opt. 48(31), G33–G37 (2009).
    [Crossref] [PubMed]
  25. A. K. De and D. Goswami, “Towards controlling molecular motions in fluorescence microscopy and optical trapping: a spatiotemporal approach,” Int. Rev. Phys. Chem. 30(3), 275–299 (2011).
    [Crossref] [PubMed]
  26. D. Roy, D. Goswami, and A. K. De, “Exploring the physics of efficient optical trapping of dielectric nanoparticles with ultrafast pulsed excitation,” Appl. Opt. 54(23), 7002–7006 (2015).
    [Crossref] [PubMed]
  27. Y. Harada and T. Asakura, “Radiation forces on a dielectric sphere in the Rayleigh scattering regime,” Opt. Commun. 124(5-6), 529–541 (1996).
    [Crossref]
  28. http://refractiveindex.info/
  29. J. M. Weber, CRC Handbook of Optical Material, Vol. III (CRC Press, 2003).
  30. M. Jahja, “On nonlinear optical constants of polystyrene,” International Symposium on Modern Optics and Its Applications-2011 (2011).
  31. X. Y. Hu, Q. H. Gong, Y. H. Liu, B. Cheng, and D. Zhang, “All-optical switching of defect mode in two-dimensional nonlinear organic photonic crystals,” Appl. Phys. Lett. 87(23), 231111 (2005).
    [Crossref]
  32. X. Y. Hu, P. Jiang, C. Y. Ding, H. Yang, and Q. H. Gong, “Picosecond and low power all-optical switching based on an organic photonic bandgap microcavity,” Nat. Photonics 2(3), 185–189 (2008).
    [Crossref]
  33. K. Tanaka, “Optical nonlinearity in photonic glasses,” J. Mater. Sci. Mater. Electron. 16(10), 633–643 (2005).
    [Crossref]
  34. R. Pobre and C. Saloma, “Radiation force exerted on nanometer size non-resonant Kerr particle by a tightly focused Gaussian beam,” Opt. Commun. 267(2), 295–304 (2006).
    [Crossref]

2016 (1)

T.-H. Liu, W.-Y. Chiang, A. Usman, and H. Masuhara, “Optical trapping dynamics of a single polystyrene sphere: Continuous wave versus femtosecond lasers,” J. Phys. Chem. C 120(4), 2392–2399 (2016).
[Crossref]

2015 (1)

2011 (2)

L. G. Wang and H. S. Chai, “Revisit on dynamic radiation forces induced by pulsed Gaussian beams,” Opt. Express 19(15), 14389–14402 (2011).
[Crossref] [PubMed]

A. K. De and D. Goswami, “Towards controlling molecular motions in fluorescence microscopy and optical trapping: a spatiotemporal approach,” Int. Rev. Phys. Chem. 30(3), 275–299 (2011).
[Crossref] [PubMed]

2010 (4)

F. Hajizadeh and S. N. S. Reihani, “Optimized optical trapping of gold nanoparticles,” Opt. Express 18(2), 551–559 (2010).
[Crossref] [PubMed]

J. C. Shane, M. Mazilu, W. M. Lee, and K. Dholakia, “Effect of pulse temporal shape on optical trapping and impulse transfer using ultrashort pulsed lasers,” Opt. Express 18(7), 7554–7568 (2010).
[Crossref] [PubMed]

A. K. De, D. Roy, and D. Goswami, “Towards stable trapping of single macromolecules in solution,” Proc SPIE Int Soc Opt Eng 7762, 776203 (2010).
[Crossref] [PubMed]

L. Jauffred and L. B. Oddershede, “Two-photon quantum dot excitation during optical trapping,” Nano Lett. 10(5), 1927–1930 (2010).
[Crossref] [PubMed]

2009 (1)

2008 (6)

X. Y. Hu, P. Jiang, C. Y. Ding, H. Yang, and Q. H. Gong, “Picosecond and low power all-optical switching based on an organic photonic bandgap microcavity,” Nat. Photonics 2(3), 185–189 (2008).
[Crossref]

L. Bosanac, T. Aabo, P. M. Bendix, and L. B. Oddershede, “Efficient optical trapping and visualization of silver nanoparticles,” Nano Lett. 8(5), 1486–1491 (2008).
[Crossref] [PubMed]

C. Selhuber-Unkel, I. Zins, O. Schubert, C. Sönnichsen, and L. B. Oddershede, “Quantitative optical trapping of single gold nanorods,” Nano Lett. 8(9), 2998–3003 (2008).
[Crossref] [PubMed]

A. K. De, D. Roy, B. Saha, and D. Goswami, “A simple method for constructing and calibrating an optical tweezer,” Curr. Sci. 95, 723–724 (2008).

J. R. Moffitt, Y. R. Chemla, S. B. Smith, and C. Bustamante, “Recent advances in optical tweezers,” Annu. Rev. Biochem. 77(1), 205–228 (2008).
[Crossref] [PubMed]

L. Bosanac, T. Aabo, P. M. Bendix, and L. B. Oddershede, “Efficient optical trapping and visualization of silver nanoparticles,” Nano Lett. 8(5), 1486–1491 (2008).
[Crossref] [PubMed]

2007 (1)

2006 (1)

R. Pobre and C. Saloma, “Radiation force exerted on nanometer size non-resonant Kerr particle by a tightly focused Gaussian beam,” Opt. Commun. 267(2), 295–304 (2006).
[Crossref]

2005 (3)

K. Tanaka, “Optical nonlinearity in photonic glasses,” J. Mater. Sci. Mater. Electron. 16(10), 633–643 (2005).
[Crossref]

P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, “Expanding the optical trapping range of gold nanoparticles,” Nano Lett. 5(10), 1937–1942 (2005).
[Crossref] [PubMed]

X. Y. Hu, Q. H. Gong, Y. H. Liu, B. Cheng, and D. Zhang, “All-optical switching of defect mode in two-dimensional nonlinear organic photonic crystals,” Appl. Phys. Lett. 87(23), 231111 (2005).
[Crossref]

2004 (4)

S. Tan, H. A. Lopez, C. W. Cai, and Y. Zhang, “Optical trapping of single-walled carbon nanotubes,” Nano Lett. 4(8), 1415–1419 (2004).
[Crossref]

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75(9), 2787–2809 (2004).
[Crossref] [PubMed]

C. Bustamante, Y. R. Chemla, N. R. Forde, and D. Izhaky, “Mechanical processes in biochemistry,” Annu. Rev. Biochem. 73(1), 705–748 (2004).
[Crossref] [PubMed]

B. Agate, C. Brown, W. Sibbett, and K. Dholakia, “Femtosecond optical tweezers for in-situ control of two-photon fluorescence,” Opt. Express 12(13), 3011–3017 (2004).
[Crossref] [PubMed]

1999 (1)

A. D. Mehta, M. Rief, J. A. Spudich, D. A. Smith, and R. M. Simmons, “Single-molecule biomechanics with optical methods,” Science 283(5408), 1689–1695 (1999).
[Crossref] [PubMed]

1996 (1)

Y. Harada and T. Asakura, “Radiation forces on a dielectric sphere in the Rayleigh scattering regime,” Opt. Commun. 124(5-6), 529–541 (1996).
[Crossref]

1994 (2)

K. Svoboda and S. M. Block, “Biological applications of optical forces,” Annu. Rev. Biophys. Biomol. Struct. 23(1), 247–285 (1994).
[Crossref] [PubMed]

K. Svoboda and S. M. Block, “Optical trapping of metallic Rayleigh particles,” Opt. Lett. 19(13), 930–932 (1994).
[Crossref] [PubMed]

1987 (1)

A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235(4795), 1517–1520 (1987).
[Crossref] [PubMed]

1986 (1)

Aabo, T.

L. Bosanac, T. Aabo, P. M. Bendix, and L. B. Oddershede, “Efficient optical trapping and visualization of silver nanoparticles,” Nano Lett. 8(5), 1486–1491 (2008).
[Crossref] [PubMed]

L. Bosanac, T. Aabo, P. M. Bendix, and L. B. Oddershede, “Efficient optical trapping and visualization of silver nanoparticles,” Nano Lett. 8(5), 1486–1491 (2008).
[Crossref] [PubMed]

Agate, B.

Asakura, T.

Y. Harada and T. Asakura, “Radiation forces on a dielectric sphere in the Rayleigh scattering regime,” Opt. Commun. 124(5-6), 529–541 (1996).
[Crossref]

Ashkin, A.

Bendix, P. M.

L. Bosanac, T. Aabo, P. M. Bendix, and L. B. Oddershede, “Efficient optical trapping and visualization of silver nanoparticles,” Nano Lett. 8(5), 1486–1491 (2008).
[Crossref] [PubMed]

L. Bosanac, T. Aabo, P. M. Bendix, and L. B. Oddershede, “Efficient optical trapping and visualization of silver nanoparticles,” Nano Lett. 8(5), 1486–1491 (2008).
[Crossref] [PubMed]

Bhatia, V. K.

P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, “Expanding the optical trapping range of gold nanoparticles,” Nano Lett. 5(10), 1937–1942 (2005).
[Crossref] [PubMed]

Bjorkholm, J. E.

Block, S. M.

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75(9), 2787–2809 (2004).
[Crossref] [PubMed]

K. Svoboda and S. M. Block, “Biological applications of optical forces,” Annu. Rev. Biophys. Biomol. Struct. 23(1), 247–285 (1994).
[Crossref] [PubMed]

K. Svoboda and S. M. Block, “Optical trapping of metallic Rayleigh particles,” Opt. Lett. 19(13), 930–932 (1994).
[Crossref] [PubMed]

Bosanac, L.

L. Bosanac, T. Aabo, P. M. Bendix, and L. B. Oddershede, “Efficient optical trapping and visualization of silver nanoparticles,” Nano Lett. 8(5), 1486–1491 (2008).
[Crossref] [PubMed]

L. Bosanac, T. Aabo, P. M. Bendix, and L. B. Oddershede, “Efficient optical trapping and visualization of silver nanoparticles,” Nano Lett. 8(5), 1486–1491 (2008).
[Crossref] [PubMed]

Brown, C.

Bustamante, C.

J. R. Moffitt, Y. R. Chemla, S. B. Smith, and C. Bustamante, “Recent advances in optical tweezers,” Annu. Rev. Biochem. 77(1), 205–228 (2008).
[Crossref] [PubMed]

C. Bustamante, Y. R. Chemla, N. R. Forde, and D. Izhaky, “Mechanical processes in biochemistry,” Annu. Rev. Biochem. 73(1), 705–748 (2004).
[Crossref] [PubMed]

Cai, C. W.

S. Tan, H. A. Lopez, C. W. Cai, and Y. Zhang, “Optical trapping of single-walled carbon nanotubes,” Nano Lett. 4(8), 1415–1419 (2004).
[Crossref]

Chai, H. S.

Chemla, Y. R.

J. R. Moffitt, Y. R. Chemla, S. B. Smith, and C. Bustamante, “Recent advances in optical tweezers,” Annu. Rev. Biochem. 77(1), 205–228 (2008).
[Crossref] [PubMed]

C. Bustamante, Y. R. Chemla, N. R. Forde, and D. Izhaky, “Mechanical processes in biochemistry,” Annu. Rev. Biochem. 73(1), 705–748 (2004).
[Crossref] [PubMed]

Cheng, B.

X. Y. Hu, Q. H. Gong, Y. H. Liu, B. Cheng, and D. Zhang, “All-optical switching of defect mode in two-dimensional nonlinear organic photonic crystals,” Appl. Phys. Lett. 87(23), 231111 (2005).
[Crossref]

Chiang, W.-Y.

T.-H. Liu, W.-Y. Chiang, A. Usman, and H. Masuhara, “Optical trapping dynamics of a single polystyrene sphere: Continuous wave versus femtosecond lasers,” J. Phys. Chem. C 120(4), 2392–2399 (2016).
[Crossref]

Chu, S.

De, A. K.

D. Roy, D. Goswami, and A. K. De, “Exploring the physics of efficient optical trapping of dielectric nanoparticles with ultrafast pulsed excitation,” Appl. Opt. 54(23), 7002–7006 (2015).
[Crossref] [PubMed]

A. K. De and D. Goswami, “Towards controlling molecular motions in fluorescence microscopy and optical trapping: a spatiotemporal approach,” Int. Rev. Phys. Chem. 30(3), 275–299 (2011).
[Crossref] [PubMed]

A. K. De, D. Roy, and D. Goswami, “Towards stable trapping of single macromolecules in solution,” Proc SPIE Int Soc Opt Eng 7762, 776203 (2010).
[Crossref] [PubMed]

A. K. De, D. Roy, A. Dutta, and D. Goswami, “Stable optical trapping of latex nanoparticles with ultrashort pulsed illumination,” Appl. Opt. 48(31), G33–G37 (2009).
[Crossref] [PubMed]

A. K. De, D. Roy, B. Saha, and D. Goswami, “A simple method for constructing and calibrating an optical tweezer,” Curr. Sci. 95, 723–724 (2008).

Dholakia, K.

Ding, C. Y.

X. Y. Hu, P. Jiang, C. Y. Ding, H. Yang, and Q. H. Gong, “Picosecond and low power all-optical switching based on an organic photonic bandgap microcavity,” Nat. Photonics 2(3), 185–189 (2008).
[Crossref]

Dutta, A.

Dziedzic, J. M.

Forde, N. R.

C. Bustamante, Y. R. Chemla, N. R. Forde, and D. Izhaky, “Mechanical processes in biochemistry,” Annu. Rev. Biochem. 73(1), 705–748 (2004).
[Crossref] [PubMed]

Gong, Q. H.

X. Y. Hu, P. Jiang, C. Y. Ding, H. Yang, and Q. H. Gong, “Picosecond and low power all-optical switching based on an organic photonic bandgap microcavity,” Nat. Photonics 2(3), 185–189 (2008).
[Crossref]

X. Y. Hu, Q. H. Gong, Y. H. Liu, B. Cheng, and D. Zhang, “All-optical switching of defect mode in two-dimensional nonlinear organic photonic crystals,” Appl. Phys. Lett. 87(23), 231111 (2005).
[Crossref]

Goswami, D.

D. Roy, D. Goswami, and A. K. De, “Exploring the physics of efficient optical trapping of dielectric nanoparticles with ultrafast pulsed excitation,” Appl. Opt. 54(23), 7002–7006 (2015).
[Crossref] [PubMed]

A. K. De and D. Goswami, “Towards controlling molecular motions in fluorescence microscopy and optical trapping: a spatiotemporal approach,” Int. Rev. Phys. Chem. 30(3), 275–299 (2011).
[Crossref] [PubMed]

A. K. De, D. Roy, and D. Goswami, “Towards stable trapping of single macromolecules in solution,” Proc SPIE Int Soc Opt Eng 7762, 776203 (2010).
[Crossref] [PubMed]

A. K. De, D. Roy, A. Dutta, and D. Goswami, “Stable optical trapping of latex nanoparticles with ultrashort pulsed illumination,” Appl. Opt. 48(31), G33–G37 (2009).
[Crossref] [PubMed]

A. K. De, D. Roy, B. Saha, and D. Goswami, “A simple method for constructing and calibrating an optical tweezer,” Curr. Sci. 95, 723–724 (2008).

Hajizadeh, F.

Hansen, P. M.

P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, “Expanding the optical trapping range of gold nanoparticles,” Nano Lett. 5(10), 1937–1942 (2005).
[Crossref] [PubMed]

Harada, Y.

Y. Harada and T. Asakura, “Radiation forces on a dielectric sphere in the Rayleigh scattering regime,” Opt. Commun. 124(5-6), 529–541 (1996).
[Crossref]

Harrit, N.

P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, “Expanding the optical trapping range of gold nanoparticles,” Nano Lett. 5(10), 1937–1942 (2005).
[Crossref] [PubMed]

Hu, X. Y.

X. Y. Hu, P. Jiang, C. Y. Ding, H. Yang, and Q. H. Gong, “Picosecond and low power all-optical switching based on an organic photonic bandgap microcavity,” Nat. Photonics 2(3), 185–189 (2008).
[Crossref]

X. Y. Hu, Q. H. Gong, Y. H. Liu, B. Cheng, and D. Zhang, “All-optical switching of defect mode in two-dimensional nonlinear organic photonic crystals,” Appl. Phys. Lett. 87(23), 231111 (2005).
[Crossref]

Izhaky, D.

C. Bustamante, Y. R. Chemla, N. R. Forde, and D. Izhaky, “Mechanical processes in biochemistry,” Annu. Rev. Biochem. 73(1), 705–748 (2004).
[Crossref] [PubMed]

Jahja, M.

M. Jahja, “On nonlinear optical constants of polystyrene,” International Symposium on Modern Optics and Its Applications-2011 (2011).

Jauffred, L.

L. Jauffred and L. B. Oddershede, “Two-photon quantum dot excitation during optical trapping,” Nano Lett. 10(5), 1927–1930 (2010).
[Crossref] [PubMed]

Jiang, P.

X. Y. Hu, P. Jiang, C. Y. Ding, H. Yang, and Q. H. Gong, “Picosecond and low power all-optical switching based on an organic photonic bandgap microcavity,” Nat. Photonics 2(3), 185–189 (2008).
[Crossref]

Lee, W. M.

Liu, T.-H.

T.-H. Liu, W.-Y. Chiang, A. Usman, and H. Masuhara, “Optical trapping dynamics of a single polystyrene sphere: Continuous wave versus femtosecond lasers,” J. Phys. Chem. C 120(4), 2392–2399 (2016).
[Crossref]

Liu, Y. H.

X. Y. Hu, Q. H. Gong, Y. H. Liu, B. Cheng, and D. Zhang, “All-optical switching of defect mode in two-dimensional nonlinear organic photonic crystals,” Appl. Phys. Lett. 87(23), 231111 (2005).
[Crossref]

Lopez, H. A.

S. Tan, H. A. Lopez, C. W. Cai, and Y. Zhang, “Optical trapping of single-walled carbon nanotubes,” Nano Lett. 4(8), 1415–1419 (2004).
[Crossref]

Masuhara, H.

T.-H. Liu, W.-Y. Chiang, A. Usman, and H. Masuhara, “Optical trapping dynamics of a single polystyrene sphere: Continuous wave versus femtosecond lasers,” J. Phys. Chem. C 120(4), 2392–2399 (2016).
[Crossref]

Mazilu, M.

Mehta, A. D.

A. D. Mehta, M. Rief, J. A. Spudich, D. A. Smith, and R. M. Simmons, “Single-molecule biomechanics with optical methods,” Science 283(5408), 1689–1695 (1999).
[Crossref] [PubMed]

Moffitt, J. R.

J. R. Moffitt, Y. R. Chemla, S. B. Smith, and C. Bustamante, “Recent advances in optical tweezers,” Annu. Rev. Biochem. 77(1), 205–228 (2008).
[Crossref] [PubMed]

Neuman, K. C.

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75(9), 2787–2809 (2004).
[Crossref] [PubMed]

Oddershede, L.

P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, “Expanding the optical trapping range of gold nanoparticles,” Nano Lett. 5(10), 1937–1942 (2005).
[Crossref] [PubMed]

Oddershede, L. B.

L. Jauffred and L. B. Oddershede, “Two-photon quantum dot excitation during optical trapping,” Nano Lett. 10(5), 1927–1930 (2010).
[Crossref] [PubMed]

L. Bosanac, T. Aabo, P. M. Bendix, and L. B. Oddershede, “Efficient optical trapping and visualization of silver nanoparticles,” Nano Lett. 8(5), 1486–1491 (2008).
[Crossref] [PubMed]

L. Bosanac, T. Aabo, P. M. Bendix, and L. B. Oddershede, “Efficient optical trapping and visualization of silver nanoparticles,” Nano Lett. 8(5), 1486–1491 (2008).
[Crossref] [PubMed]

C. Selhuber-Unkel, I. Zins, O. Schubert, C. Sönnichsen, and L. B. Oddershede, “Quantitative optical trapping of single gold nanorods,” Nano Lett. 8(9), 2998–3003 (2008).
[Crossref] [PubMed]

Pobre, R.

R. Pobre and C. Saloma, “Radiation force exerted on nanometer size non-resonant Kerr particle by a tightly focused Gaussian beam,” Opt. Commun. 267(2), 295–304 (2006).
[Crossref]

Reihani, S. N. S.

Rief, M.

A. D. Mehta, M. Rief, J. A. Spudich, D. A. Smith, and R. M. Simmons, “Single-molecule biomechanics with optical methods,” Science 283(5408), 1689–1695 (1999).
[Crossref] [PubMed]

Roy, D.

D. Roy, D. Goswami, and A. K. De, “Exploring the physics of efficient optical trapping of dielectric nanoparticles with ultrafast pulsed excitation,” Appl. Opt. 54(23), 7002–7006 (2015).
[Crossref] [PubMed]

A. K. De, D. Roy, and D. Goswami, “Towards stable trapping of single macromolecules in solution,” Proc SPIE Int Soc Opt Eng 7762, 776203 (2010).
[Crossref] [PubMed]

A. K. De, D. Roy, A. Dutta, and D. Goswami, “Stable optical trapping of latex nanoparticles with ultrashort pulsed illumination,” Appl. Opt. 48(31), G33–G37 (2009).
[Crossref] [PubMed]

A. K. De, D. Roy, B. Saha, and D. Goswami, “A simple method for constructing and calibrating an optical tweezer,” Curr. Sci. 95, 723–724 (2008).

Saha, B.

A. K. De, D. Roy, B. Saha, and D. Goswami, “A simple method for constructing and calibrating an optical tweezer,” Curr. Sci. 95, 723–724 (2008).

Saloma, C.

R. Pobre and C. Saloma, “Radiation force exerted on nanometer size non-resonant Kerr particle by a tightly focused Gaussian beam,” Opt. Commun. 267(2), 295–304 (2006).
[Crossref]

Schubert, O.

C. Selhuber-Unkel, I. Zins, O. Schubert, C. Sönnichsen, and L. B. Oddershede, “Quantitative optical trapping of single gold nanorods,” Nano Lett. 8(9), 2998–3003 (2008).
[Crossref] [PubMed]

Selhuber-Unkel, C.

C. Selhuber-Unkel, I. Zins, O. Schubert, C. Sönnichsen, and L. B. Oddershede, “Quantitative optical trapping of single gold nanorods,” Nano Lett. 8(9), 2998–3003 (2008).
[Crossref] [PubMed]

Shane, J. C.

Sibbett, W.

Simmons, R. M.

A. D. Mehta, M. Rief, J. A. Spudich, D. A. Smith, and R. M. Simmons, “Single-molecule biomechanics with optical methods,” Science 283(5408), 1689–1695 (1999).
[Crossref] [PubMed]

Smith, D. A.

A. D. Mehta, M. Rief, J. A. Spudich, D. A. Smith, and R. M. Simmons, “Single-molecule biomechanics with optical methods,” Science 283(5408), 1689–1695 (1999).
[Crossref] [PubMed]

Smith, S. B.

J. R. Moffitt, Y. R. Chemla, S. B. Smith, and C. Bustamante, “Recent advances in optical tweezers,” Annu. Rev. Biochem. 77(1), 205–228 (2008).
[Crossref] [PubMed]

Sönnichsen, C.

C. Selhuber-Unkel, I. Zins, O. Schubert, C. Sönnichsen, and L. B. Oddershede, “Quantitative optical trapping of single gold nanorods,” Nano Lett. 8(9), 2998–3003 (2008).
[Crossref] [PubMed]

Spudich, J. A.

A. D. Mehta, M. Rief, J. A. Spudich, D. A. Smith, and R. M. Simmons, “Single-molecule biomechanics with optical methods,” Science 283(5408), 1689–1695 (1999).
[Crossref] [PubMed]

Svoboda, K.

K. Svoboda and S. M. Block, “Biological applications of optical forces,” Annu. Rev. Biophys. Biomol. Struct. 23(1), 247–285 (1994).
[Crossref] [PubMed]

K. Svoboda and S. M. Block, “Optical trapping of metallic Rayleigh particles,” Opt. Lett. 19(13), 930–932 (1994).
[Crossref] [PubMed]

Tan, S.

S. Tan, H. A. Lopez, C. W. Cai, and Y. Zhang, “Optical trapping of single-walled carbon nanotubes,” Nano Lett. 4(8), 1415–1419 (2004).
[Crossref]

Tanaka, K.

K. Tanaka, “Optical nonlinearity in photonic glasses,” J. Mater. Sci. Mater. Electron. 16(10), 633–643 (2005).
[Crossref]

Usman, A.

T.-H. Liu, W.-Y. Chiang, A. Usman, and H. Masuhara, “Optical trapping dynamics of a single polystyrene sphere: Continuous wave versus femtosecond lasers,” J. Phys. Chem. C 120(4), 2392–2399 (2016).
[Crossref]

Wang, L. G.

Yang, H.

X. Y. Hu, P. Jiang, C. Y. Ding, H. Yang, and Q. H. Gong, “Picosecond and low power all-optical switching based on an organic photonic bandgap microcavity,” Nat. Photonics 2(3), 185–189 (2008).
[Crossref]

Zhang, D.

X. Y. Hu, Q. H. Gong, Y. H. Liu, B. Cheng, and D. Zhang, “All-optical switching of defect mode in two-dimensional nonlinear organic photonic crystals,” Appl. Phys. Lett. 87(23), 231111 (2005).
[Crossref]

Zhang, Y.

S. Tan, H. A. Lopez, C. W. Cai, and Y. Zhang, “Optical trapping of single-walled carbon nanotubes,” Nano Lett. 4(8), 1415–1419 (2004).
[Crossref]

Zhao, C. L.

Zins, I.

C. Selhuber-Unkel, I. Zins, O. Schubert, C. Sönnichsen, and L. B. Oddershede, “Quantitative optical trapping of single gold nanorods,” Nano Lett. 8(9), 2998–3003 (2008).
[Crossref] [PubMed]

Annu. Rev. Biochem. (2)

C. Bustamante, Y. R. Chemla, N. R. Forde, and D. Izhaky, “Mechanical processes in biochemistry,” Annu. Rev. Biochem. 73(1), 705–748 (2004).
[Crossref] [PubMed]

J. R. Moffitt, Y. R. Chemla, S. B. Smith, and C. Bustamante, “Recent advances in optical tweezers,” Annu. Rev. Biochem. 77(1), 205–228 (2008).
[Crossref] [PubMed]

Annu. Rev. Biophys. Biomol. Struct. (1)

K. Svoboda and S. M. Block, “Biological applications of optical forces,” Annu. Rev. Biophys. Biomol. Struct. 23(1), 247–285 (1994).
[Crossref] [PubMed]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

X. Y. Hu, Q. H. Gong, Y. H. Liu, B. Cheng, and D. Zhang, “All-optical switching of defect mode in two-dimensional nonlinear organic photonic crystals,” Appl. Phys. Lett. 87(23), 231111 (2005).
[Crossref]

Curr. Sci. (1)

A. K. De, D. Roy, B. Saha, and D. Goswami, “A simple method for constructing and calibrating an optical tweezer,” Curr. Sci. 95, 723–724 (2008).

Int. Rev. Phys. Chem. (1)

A. K. De and D. Goswami, “Towards controlling molecular motions in fluorescence microscopy and optical trapping: a spatiotemporal approach,” Int. Rev. Phys. Chem. 30(3), 275–299 (2011).
[Crossref] [PubMed]

J. Mater. Sci. Mater. Electron. (1)

K. Tanaka, “Optical nonlinearity in photonic glasses,” J. Mater. Sci. Mater. Electron. 16(10), 633–643 (2005).
[Crossref]

J. Phys. Chem. C (1)

T.-H. Liu, W.-Y. Chiang, A. Usman, and H. Masuhara, “Optical trapping dynamics of a single polystyrene sphere: Continuous wave versus femtosecond lasers,” J. Phys. Chem. C 120(4), 2392–2399 (2016).
[Crossref]

Nano Lett. (6)

S. Tan, H. A. Lopez, C. W. Cai, and Y. Zhang, “Optical trapping of single-walled carbon nanotubes,” Nano Lett. 4(8), 1415–1419 (2004).
[Crossref]

L. Bosanac, T. Aabo, P. M. Bendix, and L. B. Oddershede, “Efficient optical trapping and visualization of silver nanoparticles,” Nano Lett. 8(5), 1486–1491 (2008).
[Crossref] [PubMed]

L. Jauffred and L. B. Oddershede, “Two-photon quantum dot excitation during optical trapping,” Nano Lett. 10(5), 1927–1930 (2010).
[Crossref] [PubMed]

P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, “Expanding the optical trapping range of gold nanoparticles,” Nano Lett. 5(10), 1937–1942 (2005).
[Crossref] [PubMed]

L. Bosanac, T. Aabo, P. M. Bendix, and L. B. Oddershede, “Efficient optical trapping and visualization of silver nanoparticles,” Nano Lett. 8(5), 1486–1491 (2008).
[Crossref] [PubMed]

C. Selhuber-Unkel, I. Zins, O. Schubert, C. Sönnichsen, and L. B. Oddershede, “Quantitative optical trapping of single gold nanorods,” Nano Lett. 8(9), 2998–3003 (2008).
[Crossref] [PubMed]

Nat. Photonics (1)

X. Y. Hu, P. Jiang, C. Y. Ding, H. Yang, and Q. H. Gong, “Picosecond and low power all-optical switching based on an organic photonic bandgap microcavity,” Nat. Photonics 2(3), 185–189 (2008).
[Crossref]

Opt. Commun. (2)

R. Pobre and C. Saloma, “Radiation force exerted on nanometer size non-resonant Kerr particle by a tightly focused Gaussian beam,” Opt. Commun. 267(2), 295–304 (2006).
[Crossref]

Y. Harada and T. Asakura, “Radiation forces on a dielectric sphere in the Rayleigh scattering regime,” Opt. Commun. 124(5-6), 529–541 (1996).
[Crossref]

Opt. Express (5)

Opt. Lett. (2)

Proc SPIE Int Soc Opt Eng (1)

A. K. De, D. Roy, and D. Goswami, “Towards stable trapping of single macromolecules in solution,” Proc SPIE Int Soc Opt Eng 7762, 776203 (2010).
[Crossref] [PubMed]

Rev. Sci. Instrum. (1)

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75(9), 2787–2809 (2004).
[Crossref] [PubMed]

Science (2)

A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235(4795), 1517–1520 (1987).
[Crossref] [PubMed]

A. D. Mehta, M. Rief, J. A. Spudich, D. A. Smith, and R. M. Simmons, “Single-molecule biomechanics with optical methods,” Science 283(5408), 1689–1695 (1999).
[Crossref] [PubMed]

Other (4)

A. Ashkin, Optical Trapping and Manipulation of Neutral Particles Using Lasers: A Reprint Volume with Commentaries (World Scientific, 2006).

http://refractiveindex.info/

J. M. Weber, CRC Handbook of Optical Material, Vol. III (CRC Press, 2003).

M. Jahja, “On nonlinear optical constants of polystyrene,” International Symposium on Modern Optics and Its Applications-2011 (2011).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Plots of trapping force along radial direction at 100mW average power under CW and pulsed excitation ignoring and including Kerr effect.
Fig. 2
Fig. 2 Plots of trapping potential along radial direction at 100mW average power under CW and pulsed excitation ignoring and including Kerr effect.
Fig. 3
Fig. 3 Plots of trapping force along axial direction at 100mW average power under CW and pulsed excitation ignoring and including Kerr effect. The blue lines correspond to scattering force, the green to gradient force and the red to total force.
Fig. 4
Fig. 4 Plots of trapping potential along axial direction at 100mW average power under CW and pulsed excitation ignoring and including Kerr effect. The blue lines correspond to scattering potential, the green to gradient potential and the red to total potential.
Fig. 5
Fig. 5 Plots of trapping force along axial direction at different average power levels. The blue lines correspond to scattering force, the green to gradient force and the red to total force.
Fig. 6
Fig. 6 Plots of trapping potential along axial direction at different average power levels. The blue lines correspond to scattering potential, the green to gradient potential and the red to total potential.
Fig. 7
Fig. 7 Plots of absolute depth of the trapping potential (left) and escape potential (right) along axial direction at different average power levels.
Fig. 8
Fig. 8 Plots of position of the minima for absolute trapping potential along axial direction (Left) and the gradient and the scattering potential (green and blue lines, respectively) corresponding to this minima (Middle) at different average power levels. Right: Plots of the absolute depth of the trapping potential and the asymptotic scattering potential (red and blue lines, respectively) for the same.
Fig. 9
Fig. 9 Plots of escape potential with NA = 1.3, 1.4 and 1.45 (black, red and grey lines respectively) at different average power levels.
Fig. 10
Fig. 10 Left: Plots of escape potential on an 80nm particle (red line) and on a 70nm particle (black line) at different average power levels. Right: The same for a 100nm particle.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

I(r,z)=( 2P π w 0 2 ) 1 1+ (2 z ˜ ) 2 exp[ 2 r ˜ 2 1+ (2 z ˜ ) 2 ]
F radial (r; z=0)=  2π n w a 3 c ( m 2 1 m 2 +2 ) 4 r ˜ w 0 ( P π w 0 2 )exp[ 2( r ˜ 2 ) ] F axial,gradient (z; r=0)=  2π n w a 3 c ( m 2 1 m 2 +2 ) 8 z ˜ /(k w 0 2 ) 1+ ( 2 z ˜ ) 2 ( 2P π w 0 2 ) 1 1+ ( 2 z ˜ ) 2 F axial,  scatter (z; r=0)=  8π n w ( ka ) 4 a 2 3c ( m 2 1 m 2 +2 ) 2 ( 2P π w 0 2 ) 1 1+ ( 2 z ˜ ) 2
U radial (r; z=0)=  F radial (r; z=0)dr U axial,gradient/scatter (z; r=0)=  F axial,gradient/scatter (z; r=0)dz
P peak P average I peak I average = 1 f*τ 10 5
n w/p = n 0 w/p +  n 2 w/p *I( r,z )
F pulsed = 1 T τ 2 τ 2 F pulsed dt= F pulsed 1 T τ 2 τ 2 dt= F pulsed *( 1 T *τ )= F pulsed *(f*τ)
F pulsed =constant* I peak *( f*τ )=constant* I average F CW
F pulsed F CW

Metrics