Abstract

This paper demonstrates multiphoton excited fluorescence imaging through a polarisation maintaining multicore fiber (PM-MCF) while the fiber is dynamically deformed using all-proximal detection. Single-shot proximal measurement of the relative optical path lengths of all the cores of the PM-MCF in double pass is achieved using a Mach-Zehnder interferometer read out by a scientific CMOS camera operating at 416 Hz. A non-linear least squares fitting procedure is then employed to determine the deformation-induced lateral shift of the excitation spot at the distal tip of the PM-MCF. An experimental validation of this approach is presented that compares the proximally measured deformation-induced lateral shift in focal spot position to an independent distally measured ground truth. The proximal measurement of deformation-induced shift in focal spot position is applied to correct for deformation-induced shifts in focal spot position during raster-scanning multiphoton excited fluorescence imaging.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Semi-random multicore fibre design for adaptive multiphoton endoscopy

Youngchan Kim, Sean Warren, Fernando Favero, James Stone, James Clegg, Mark Neil, Carl Paterson, Jonathan Knight, Paul French, and Chris Dunsby
Opt. Express 26(3) 3661-3673 (2018)

Bending-induced inter-core group delays in multicore fibers

Viktor Tsvirkun, Siddharth Sivankutty, Géraud Bouwmans, Olivier Vanvincq, Esben Ravn Andresen, and Hervé Rigneault
Opt. Express 25(25) 31863-31875 (2017)

Light control in a multicore fiber using the memory effect

Nicolino Stasio, Donald B. Conkey, Christophe Moser, and Demetri Psaltis
Opt. Express 23(23) 30532-30544 (2015)

References

  • View by:
  • |
  • |
  • |

  1. A. Volyar, A. Gnatovskii, N. Kukhtarev, and S. Lapaeva, “Image transmission via a multimode fiber assisted by polarization preserving phase conjugation in the photorefractive crystal,” Appl. Phys. B 52(6), 400–401 (1991).
    [Crossref]
  2. S. Bianchi and R. Di Leonardo, “A multi-mode fiber probe for holographic micromanipulation and microscopy,” Lab Chip 12(3), 635–639 (2012).
    [Crossref] [PubMed]
  3. T. Čižmár and K. Dholakia, “Exploiting multimode waveguides for pure fibre-based imaging,” Nat. Commun. 3, 1027 (2012).
    [Crossref] [PubMed]
  4. Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109(20), 203901 (2012).
    [Crossref] [PubMed]
  5. I. N. Papadopoulos, S. Farahi, C. Moser, and D. Psaltis, “High-resolution, lensless endoscope based on digital scanning through a multimode optical fiber,” Biomed. Opt. Express 4(2), 260–270 (2013).
    [Crossref] [PubMed]
  6. E. E. Morales-Delgado, S. Farahi, I. N. Papadopoulos, D. Psaltis, and C. Moser, “Delivery of focused short pulses through a multimode fiber,” Opt. Express 23(7), 9109–9120 (2015).
    [Crossref] [PubMed]
  7. A. J. Thompson, C. Paterson, M. A. A. Neil, C. Dunsby, and P. M. W. French, “Adaptive phase compensation for ultracompact laser scanning endomicroscopy,” Opt. Lett. 36(9), 1707–1709 (2011).
    [Crossref] [PubMed]
  8. E. R. Andresen, G. Bouwmans, S. Monneret, and H. Rigneault, “Toward endoscopes with no distal optics: video-rate scanning microscopy through a fiber bundle,” Opt. Lett. 38(5), 609–611 (2013).
    [Crossref] [PubMed]
  9. E. R. Andresen, G. Bouwmans, S. Monneret, and H. Rigneault, “Two-photon lensless endoscope,” Opt. Express 21(18), 20713–20721 (2013).
    [Crossref] [PubMed]
  10. Y. Kim, S. C. Warren, J. M. Stone, J. C. Knight, M. A. A. Neil, C. Paterson, C. W. Dunsby, and P. M. W. French, “Adaptive multiphoton endomicroscope incorporating a polarization-maintaining multicore optical fiber,” IEEE J. Sel. Top. Quantum Electron. 22(3), 6800708 (2016).
    [Crossref]
  11. D. B. Conkey, N. Stasio, E. E. Morales-Delgado, M. Romito, C. Moser, and D. Psaltis, “Lensless two-photon imaging through a multicore fiber with coherence-gated digital phase conjugation,” J. Biomed. Opt. 21(4), 045002 (2016).
    [Crossref] [PubMed]
  12. A. M. Caravaca-Aguirre, E. Niv, D. B. Conkey, and R. Piestun, “Real-time resilient focusing through a bending multimode fiber,” Opt. Express 21(10), 12881–12887 (2013).
    [Crossref] [PubMed]
  13. S. Farahi, D. Ziegler, I. N. Papadopoulos, D. Psaltis, and C. Moser, “Dynamic bending compensation while focusing through a multimode fiber,” Opt. Express 21(19), 22504–22514 (2013).
    [Crossref] [PubMed]
  14. M. Plöschner, T. Tyc, and T. Čižmár, “Seeing through chaos in multimode fibers,” Nat. Photonics 9(8), 529–535 (2015).
    [Crossref]
  15. J. M. Stone, F. Yu, and J. C. Knight, “Highly birefringent 98-core fiber,” Opt. Lett. 39(15), 4568–4570 (2014).
    [Crossref] [PubMed]
  16. M. J. D. Powell, “The BOBYQA algorithm for bound constrained optimization without derivatives”, http://www.damtp.cam.ac.uk/user/na/NA_papers/NA2009_06.pdf .
  17. A. Dandridge, “Fiber optic sensors based on Mach-Zehnder and Michelson interferometers”, in Fiber optic sensors: an introduction for engineers and scientists, E. Udd, ed. (Wiley 1991), pp. 310.
  18. E. R. Andresen, S. Sivankutty, G. Bouwmans, L. Gallais, S. Monneret, and H. Rigneault, “Measurement and compensation of residual group delay in a multi-core fiber for lensless endoscopy,” J. Opt. Soc. Am. B 32(6), 1221 (2015).
    [Crossref]

2016 (2)

Y. Kim, S. C. Warren, J. M. Stone, J. C. Knight, M. A. A. Neil, C. Paterson, C. W. Dunsby, and P. M. W. French, “Adaptive multiphoton endomicroscope incorporating a polarization-maintaining multicore optical fiber,” IEEE J. Sel. Top. Quantum Electron. 22(3), 6800708 (2016).
[Crossref]

D. B. Conkey, N. Stasio, E. E. Morales-Delgado, M. Romito, C. Moser, and D. Psaltis, “Lensless two-photon imaging through a multicore fiber with coherence-gated digital phase conjugation,” J. Biomed. Opt. 21(4), 045002 (2016).
[Crossref] [PubMed]

2015 (3)

2014 (1)

2013 (5)

2012 (3)

S. Bianchi and R. Di Leonardo, “A multi-mode fiber probe for holographic micromanipulation and microscopy,” Lab Chip 12(3), 635–639 (2012).
[Crossref] [PubMed]

T. Čižmár and K. Dholakia, “Exploiting multimode waveguides for pure fibre-based imaging,” Nat. Commun. 3, 1027 (2012).
[Crossref] [PubMed]

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109(20), 203901 (2012).
[Crossref] [PubMed]

2011 (1)

1991 (1)

A. Volyar, A. Gnatovskii, N. Kukhtarev, and S. Lapaeva, “Image transmission via a multimode fiber assisted by polarization preserving phase conjugation in the photorefractive crystal,” Appl. Phys. B 52(6), 400–401 (1991).
[Crossref]

Andresen, E. R.

Bianchi, S.

S. Bianchi and R. Di Leonardo, “A multi-mode fiber probe for holographic micromanipulation and microscopy,” Lab Chip 12(3), 635–639 (2012).
[Crossref] [PubMed]

Bouwmans, G.

Caravaca-Aguirre, A. M.

Choi, W.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109(20), 203901 (2012).
[Crossref] [PubMed]

Choi, Y.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109(20), 203901 (2012).
[Crossref] [PubMed]

Cižmár, T.

M. Plöschner, T. Tyc, and T. Čižmár, “Seeing through chaos in multimode fibers,” Nat. Photonics 9(8), 529–535 (2015).
[Crossref]

T. Čižmár and K. Dholakia, “Exploiting multimode waveguides for pure fibre-based imaging,” Nat. Commun. 3, 1027 (2012).
[Crossref] [PubMed]

Conkey, D. B.

D. B. Conkey, N. Stasio, E. E. Morales-Delgado, M. Romito, C. Moser, and D. Psaltis, “Lensless two-photon imaging through a multicore fiber with coherence-gated digital phase conjugation,” J. Biomed. Opt. 21(4), 045002 (2016).
[Crossref] [PubMed]

A. M. Caravaca-Aguirre, E. Niv, D. B. Conkey, and R. Piestun, “Real-time resilient focusing through a bending multimode fiber,” Opt. Express 21(10), 12881–12887 (2013).
[Crossref] [PubMed]

Dasari, R. R.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109(20), 203901 (2012).
[Crossref] [PubMed]

Dholakia, K.

T. Čižmár and K. Dholakia, “Exploiting multimode waveguides for pure fibre-based imaging,” Nat. Commun. 3, 1027 (2012).
[Crossref] [PubMed]

Di Leonardo, R.

S. Bianchi and R. Di Leonardo, “A multi-mode fiber probe for holographic micromanipulation and microscopy,” Lab Chip 12(3), 635–639 (2012).
[Crossref] [PubMed]

Dunsby, C.

Dunsby, C. W.

Y. Kim, S. C. Warren, J. M. Stone, J. C. Knight, M. A. A. Neil, C. Paterson, C. W. Dunsby, and P. M. W. French, “Adaptive multiphoton endomicroscope incorporating a polarization-maintaining multicore optical fiber,” IEEE J. Sel. Top. Quantum Electron. 22(3), 6800708 (2016).
[Crossref]

Fang-Yen, C.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109(20), 203901 (2012).
[Crossref] [PubMed]

Farahi, S.

French, P. M. W.

Y. Kim, S. C. Warren, J. M. Stone, J. C. Knight, M. A. A. Neil, C. Paterson, C. W. Dunsby, and P. M. W. French, “Adaptive multiphoton endomicroscope incorporating a polarization-maintaining multicore optical fiber,” IEEE J. Sel. Top. Quantum Electron. 22(3), 6800708 (2016).
[Crossref]

A. J. Thompson, C. Paterson, M. A. A. Neil, C. Dunsby, and P. M. W. French, “Adaptive phase compensation for ultracompact laser scanning endomicroscopy,” Opt. Lett. 36(9), 1707–1709 (2011).
[Crossref] [PubMed]

Gallais, L.

Gnatovskii, A.

A. Volyar, A. Gnatovskii, N. Kukhtarev, and S. Lapaeva, “Image transmission via a multimode fiber assisted by polarization preserving phase conjugation in the photorefractive crystal,” Appl. Phys. B 52(6), 400–401 (1991).
[Crossref]

Kim, M.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109(20), 203901 (2012).
[Crossref] [PubMed]

Kim, Y.

Y. Kim, S. C. Warren, J. M. Stone, J. C. Knight, M. A. A. Neil, C. Paterson, C. W. Dunsby, and P. M. W. French, “Adaptive multiphoton endomicroscope incorporating a polarization-maintaining multicore optical fiber,” IEEE J. Sel. Top. Quantum Electron. 22(3), 6800708 (2016).
[Crossref]

Knight, J. C.

Y. Kim, S. C. Warren, J. M. Stone, J. C. Knight, M. A. A. Neil, C. Paterson, C. W. Dunsby, and P. M. W. French, “Adaptive multiphoton endomicroscope incorporating a polarization-maintaining multicore optical fiber,” IEEE J. Sel. Top. Quantum Electron. 22(3), 6800708 (2016).
[Crossref]

J. M. Stone, F. Yu, and J. C. Knight, “Highly birefringent 98-core fiber,” Opt. Lett. 39(15), 4568–4570 (2014).
[Crossref] [PubMed]

Kukhtarev, N.

A. Volyar, A. Gnatovskii, N. Kukhtarev, and S. Lapaeva, “Image transmission via a multimode fiber assisted by polarization preserving phase conjugation in the photorefractive crystal,” Appl. Phys. B 52(6), 400–401 (1991).
[Crossref]

Lapaeva, S.

A. Volyar, A. Gnatovskii, N. Kukhtarev, and S. Lapaeva, “Image transmission via a multimode fiber assisted by polarization preserving phase conjugation in the photorefractive crystal,” Appl. Phys. B 52(6), 400–401 (1991).
[Crossref]

Lee, K. J.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109(20), 203901 (2012).
[Crossref] [PubMed]

Monneret, S.

Morales-Delgado, E. E.

D. B. Conkey, N. Stasio, E. E. Morales-Delgado, M. Romito, C. Moser, and D. Psaltis, “Lensless two-photon imaging through a multicore fiber with coherence-gated digital phase conjugation,” J. Biomed. Opt. 21(4), 045002 (2016).
[Crossref] [PubMed]

E. E. Morales-Delgado, S. Farahi, I. N. Papadopoulos, D. Psaltis, and C. Moser, “Delivery of focused short pulses through a multimode fiber,” Opt. Express 23(7), 9109–9120 (2015).
[Crossref] [PubMed]

Moser, C.

Neil, M. A. A.

Y. Kim, S. C. Warren, J. M. Stone, J. C. Knight, M. A. A. Neil, C. Paterson, C. W. Dunsby, and P. M. W. French, “Adaptive multiphoton endomicroscope incorporating a polarization-maintaining multicore optical fiber,” IEEE J. Sel. Top. Quantum Electron. 22(3), 6800708 (2016).
[Crossref]

A. J. Thompson, C. Paterson, M. A. A. Neil, C. Dunsby, and P. M. W. French, “Adaptive phase compensation for ultracompact laser scanning endomicroscopy,” Opt. Lett. 36(9), 1707–1709 (2011).
[Crossref] [PubMed]

Niv, E.

Papadopoulos, I. N.

Paterson, C.

Y. Kim, S. C. Warren, J. M. Stone, J. C. Knight, M. A. A. Neil, C. Paterson, C. W. Dunsby, and P. M. W. French, “Adaptive multiphoton endomicroscope incorporating a polarization-maintaining multicore optical fiber,” IEEE J. Sel. Top. Quantum Electron. 22(3), 6800708 (2016).
[Crossref]

A. J. Thompson, C. Paterson, M. A. A. Neil, C. Dunsby, and P. M. W. French, “Adaptive phase compensation for ultracompact laser scanning endomicroscopy,” Opt. Lett. 36(9), 1707–1709 (2011).
[Crossref] [PubMed]

Piestun, R.

Plöschner, M.

M. Plöschner, T. Tyc, and T. Čižmár, “Seeing through chaos in multimode fibers,” Nat. Photonics 9(8), 529–535 (2015).
[Crossref]

Psaltis, D.

Rigneault, H.

Romito, M.

D. B. Conkey, N. Stasio, E. E. Morales-Delgado, M. Romito, C. Moser, and D. Psaltis, “Lensless two-photon imaging through a multicore fiber with coherence-gated digital phase conjugation,” J. Biomed. Opt. 21(4), 045002 (2016).
[Crossref] [PubMed]

Sivankutty, S.

Stasio, N.

D. B. Conkey, N. Stasio, E. E. Morales-Delgado, M. Romito, C. Moser, and D. Psaltis, “Lensless two-photon imaging through a multicore fiber with coherence-gated digital phase conjugation,” J. Biomed. Opt. 21(4), 045002 (2016).
[Crossref] [PubMed]

Stone, J. M.

Y. Kim, S. C. Warren, J. M. Stone, J. C. Knight, M. A. A. Neil, C. Paterson, C. W. Dunsby, and P. M. W. French, “Adaptive multiphoton endomicroscope incorporating a polarization-maintaining multicore optical fiber,” IEEE J. Sel. Top. Quantum Electron. 22(3), 6800708 (2016).
[Crossref]

J. M. Stone, F. Yu, and J. C. Knight, “Highly birefringent 98-core fiber,” Opt. Lett. 39(15), 4568–4570 (2014).
[Crossref] [PubMed]

Thompson, A. J.

Tyc, T.

M. Plöschner, T. Tyc, and T. Čižmár, “Seeing through chaos in multimode fibers,” Nat. Photonics 9(8), 529–535 (2015).
[Crossref]

Volyar, A.

A. Volyar, A. Gnatovskii, N. Kukhtarev, and S. Lapaeva, “Image transmission via a multimode fiber assisted by polarization preserving phase conjugation in the photorefractive crystal,” Appl. Phys. B 52(6), 400–401 (1991).
[Crossref]

Warren, S. C.

Y. Kim, S. C. Warren, J. M. Stone, J. C. Knight, M. A. A. Neil, C. Paterson, C. W. Dunsby, and P. M. W. French, “Adaptive multiphoton endomicroscope incorporating a polarization-maintaining multicore optical fiber,” IEEE J. Sel. Top. Quantum Electron. 22(3), 6800708 (2016).
[Crossref]

Yang, T. D.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109(20), 203901 (2012).
[Crossref] [PubMed]

Yoon, C.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109(20), 203901 (2012).
[Crossref] [PubMed]

Yu, F.

Ziegler, D.

Appl. Phys. B (1)

A. Volyar, A. Gnatovskii, N. Kukhtarev, and S. Lapaeva, “Image transmission via a multimode fiber assisted by polarization preserving phase conjugation in the photorefractive crystal,” Appl. Phys. B 52(6), 400–401 (1991).
[Crossref]

Biomed. Opt. Express (1)

IEEE J. Sel. Top. Quantum Electron. (1)

Y. Kim, S. C. Warren, J. M. Stone, J. C. Knight, M. A. A. Neil, C. Paterson, C. W. Dunsby, and P. M. W. French, “Adaptive multiphoton endomicroscope incorporating a polarization-maintaining multicore optical fiber,” IEEE J. Sel. Top. Quantum Electron. 22(3), 6800708 (2016).
[Crossref]

J. Biomed. Opt. (1)

D. B. Conkey, N. Stasio, E. E. Morales-Delgado, M. Romito, C. Moser, and D. Psaltis, “Lensless two-photon imaging through a multicore fiber with coherence-gated digital phase conjugation,” J. Biomed. Opt. 21(4), 045002 (2016).
[Crossref] [PubMed]

J. Opt. Soc. Am. B (1)

Lab Chip (1)

S. Bianchi and R. Di Leonardo, “A multi-mode fiber probe for holographic micromanipulation and microscopy,” Lab Chip 12(3), 635–639 (2012).
[Crossref] [PubMed]

Nat. Commun. (1)

T. Čižmár and K. Dholakia, “Exploiting multimode waveguides for pure fibre-based imaging,” Nat. Commun. 3, 1027 (2012).
[Crossref] [PubMed]

Nat. Photonics (1)

M. Plöschner, T. Tyc, and T. Čižmár, “Seeing through chaos in multimode fibers,” Nat. Photonics 9(8), 529–535 (2015).
[Crossref]

Opt. Express (4)

Opt. Lett. (3)

Phys. Rev. Lett. (1)

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109(20), 203901 (2012).
[Crossref] [PubMed]

Other (2)

M. J. D. Powell, “The BOBYQA algorithm for bound constrained optimization without derivatives”, http://www.damtp.cam.ac.uk/user/na/NA_papers/NA2009_06.pdf .

A. Dandridge, “Fiber optic sensors based on Mach-Zehnder and Michelson interferometers”, in Fiber optic sensors: an introduction for engineers and scientists, E. Udd, ed. (Wiley 1991), pp. 310.

Supplementary Material (2)

NameDescription
» Visualization 1: MP4 (1380 KB)      Visualisation 1
» Visualization 2: MP4 (985 KB)      Visualisation 2

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Experimental setup: HWP, half wave plate; PBS, polarising beam splitter; L, achromatic doublet lens; OL, microscope objective; SMF, single mode fiber; QWP, quarter wave plate; DS, delay stage; BS, non-polarising beam splitter; P, polariser; SLM spatial light modulator; ID, iris diaphragm; DBS, dichroic beam splitter; SPF, short-pass filter; BPF, band-pass filter; PMT, photomultiplier tube. (b) Optical micrograph of the PM-MCF. (c) False-color image showing a typical microlens phase profile applied to the SLM. (d) Left, exemplar interferogram acquired at Camera 2 where a background image of light from the reference beam only has been subtracted to increase the image contrast. Right, zoom in of image on left to show the interference fringes for each individual core. The scale bar in (c) and (d) indicates the scale at the proximal end of the bundle.
Fig. 2
Fig. 2 Determination of tip and tilt induced by fiber deformation. (a) black circles show the calculated phase change for each fiber core between an exemplar time t and reference time tref . The phase-wrapped plane surface color-coded by phase value shows the results of the fit of the model to the data. (b) residuals of the fit to the data shown in (a). (c) histogram of the residuals shown in (b).
Fig. 3
Fig. 3 Measurement of deformation-induced lateral shifts of the focus calculated from the proximal phase measurements (blue) and measured from the centroid of the distal focus spot (green). (a) and (b) show the shifts in the x and y directions respectively.
Fig. 4
Fig. 4 Results of image correction performed for data acquired while the multicore fiber is perturbed by a loudspeaker cone (top row and Visualization 1) and by hand (middle row and Visualization 2). The left hand column shows a photo of the multicore fiber being deformed. The middle column shows the fluorescence image obtained from two fluorescent beads without correction and the right hand column shows the fluorescence image obtained with correction. All four fluorescence intensity images are shown using the same grey scale. The image on the bottom row shows a transmitted light image of the object obtained on Camera 1.
Fig. 5
Fig. 5 Raw (left hand column) and corrected (right hand column) fluorescence images obtained with the multicore fiber perturbed by the loudspeaker cone operated at different frequencies. All images are displayed using the same grey scale.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

ϕ model (i) (t)= x (i) a x (t)+ y (i) a y (t)+b(t).
min{ i mod -π..π [ ( ϕ measured (i) (t) ϕ measured (i) ( t ref ) ) ϕ model (i) ( a x , a y ,b) ] 2 },
p x,y = a x,y 2 λ 2π f,
min{ i mod -π..π [ ( ( ϕ measured (i) (t) ϕ applied (i) (t) )( ϕ measured (i) ( t ref ) ϕ applied (i) ( t ref ) ) ) ϕ model (i) ( a x , a y ,b) ] 2 }.
Δϕ= 2π λ ξnΔL,

Metrics