Abstract

High-sensitivity distributed measurement of hydrostatic pressure is experimentally demonstrated by optical time-domain analysis of Brillouin dynamic grating (BDG) in polarization maintaining fibers (PMF’s). The spectral shift of the BDG in four different types of PMF’s are investigated under hydrostatic pressure variation from 14.5 psi (1 bar) to 884.7 psi (61 bar) with less than 2 m spatial resolution. The pressure sensitivity of BDG frequency is measured to be ‒1.69, + 0.65, + 0.78, and + 0.85 MHz/psi for a PM photonic crystal fiber (PM-PCF), two Bow-tie fibers, and a PANDA fiber, respectively, which is about 65 to 169 times larger than that of Brillouin frequency-based pressure sensing.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Temperature-compensated distributed hydrostatic pressure sensor with a thin-diameter polarization-maintaining photonic crystal fiber based on Brillouin dynamic gratings

Lei Teng, Hongying Zhang, Yongkang Dong, Dengwang Zhou, Taofei Jiang, Wei Gao, Zhiwei Lu, Liang Chen, and Xiaoyi Bao
Opt. Lett. 41(18) 4413-4416 (2016)

Strain dependence of Brillouin frequency, intensity, and bandwidth in polarization-maintaining fibers

Qinrong Yu, Xiaoyi Bao, and Liang Chen
Opt. Lett. 29(14) 1605-1607 (2004)

References

  • View by:
  • |
  • |
  • |

  1. C. M. Lin, Y. C. Liu, W. F. Liu, M. Y. Fu, H. J. Sheng, S. S. Bor, and C. L. Tien, “High-sensitivity simultaneous pressure and temperature sensor using a superstructure fiber grating,” IEEE Sens. J. 6(3), 691–696 (2006).
    [Crossref]
  2. D. Donlagic and E. Cibula, “All-fiber high-sensitivity pressure sensor with SiO2 diaphragm,” Opt. Lett. 30(16), 2071–2073 (2005).
    [Crossref] [PubMed]
  3. H.-J. Sheng, M.-Y. Fu, T.-C. Chen, W.-F. Liu, and S.-S. Bor, “A lateral pressure sensor using a fiber Bragg grating,” IEEE Photonics Technol. Lett. 16(4), 1146–1148 (2004).
    [Crossref]
  4. I. P. Johnson, D. J. Webb, and K. Kalli, “Hydrostatic pressure sensing using a polymer optical fiber Bragg gratings,” Proc. SPIE 8351, 835106 (2012).
    [Crossref]
  5. W. J. Bock, J. Chen, T. Eftimov, and W. Urbanczyk, “A photonic crystal fiber sensor for pressure measurements,” IEEE Trans. Instrum. Meas. 55(4), 1119–1123 (2006).
    [Crossref]
  6. A. Méndez and E. Diatzikis, “Fiber Optic Distributed Pressure Sensor Based on Brillouin Scattering,” in Optical Fiber Sensors, OSA Technical Digest (CD) (Optical Society of America, 2006), paper ThE46.
  7. H. Gu, H. Dong, G. Zhang, W. Hu, and Z. Li, “Simultaneous measurement of pressure and temperature using dual-path distributed Brillouin sensor,” Appl. Opt. 54(11), 3231–3235 (2015).
    [Crossref] [PubMed]
  8. H. Gu, H. Dong, G. Zhang, Y. Dong, and J. He, “Dependence of Brillouin frequency shift on radial and axial strain in silica optical fibers,” Appl. Opt. 51(32), 7864–7868 (2012).
    [Crossref] [PubMed]
  9. G. Zhang, H. Gu, H. Dong, L. Li, and J. He, “Pressure sensitization of Brillouin frequency shift in optical fibers with double-layer polymer coatings,” IEEE Sens. J. 13(6), 2437–2441 (2013).
    [Crossref]
  10. K. Y. Song, W. Zou, Z. He, and K. Hotate, “All-optical dynamic grating generation based on Brillouin scattering in polarization-maintaining fiber,” Opt. Lett. 33(9), 926–928 (2008).
    [Crossref] [PubMed]
  11. K. Y. Song, “High-sensitivity optical time-domain reflectometry based on Brillouin dynamic gratings in polarization maintaining fibers,” Opt. Express 20(25), 27377–27383 (2012).
    [Crossref] [PubMed]
  12. S. Li, M. J. Li, and R. S. Vodhanel, “All-optical Brillouin dynamic grating generation in few-mode optical fiber,” Opt. Lett. 37(22), 4660–4662 (2012).
    [Crossref] [PubMed]
  13. Y. H. Kim and K. Y. Song, “Mapping of intermodal beat length distribution in an elliptical-core two-mode fiber based on Brillouin dynamic grating,” Opt. Express 22(14), 17292–17302 (2014).
    [Crossref] [PubMed]
  14. Y. H. Kim and K. Y. Song, “Characterization of nonlinear temperature dependence of Brillouin dynamic grating spectra in polarization-maintaining fibers,” J. Lightwave Technol. 33(23), 4922–4927 (2015).
    [Crossref]
  15. W. Zou, Z. He, and K. Hotate, “One-laser-based generation/detection of Brillouin dynamic grating and its application to distributed discrimination of strain and temperature,” Opt. Express 19(3), 2363–2370 (2011).
    [Crossref] [PubMed]
  16. K. Y. Song, “Distributed fiber sensors based on Brillouin dynamic gratings,” in Proceedings of IEEE SENSORS 2014 (IEEE, 2014), pp. 154–157.
  17. K. S. Chang, “Pressure-induced birefringence in a coated highly birefringent optical fiber,” J. Lightwave Technol. 8(12), 1850–1855 (1990).
    [Crossref]
  18. K. S. Chiang, D. Wong, and P. L. Chu, “Strain-induced birefringence in a highly birefringent optical fiber,” Electron. Lett. 26(17), 1344–1346 (1990).
    [Crossref]
  19. G. B. Hocker, “Fiber-optic sensing of pressure and temperature,” Appl. Opt. 18(9), 1445–1448 (1979).
    [Crossref] [PubMed]
  20. S. N. Jouybari, H. Latifi, and Z. Chenari, “Distributed pressure measurement by Brillouin scattering dynamic grating for a two side holes fiber,” Proc. SPIE 8421, 84219A (2012).
    [Crossref]
  21. S. Chin and E. Rochat, “A method and device for pressure sensing,” Patent WO13185813 (Dec. 2013).
  22. M. A. Farahani, E. Castillo-Guerra, and B. G. Colpitts, “Accurate estimation of Brillouin frequency shift in Brillouin optical time domain analysis sensors using cross correlation,” Opt. Lett. 36(21), 4275–4277 (2011).
    [Crossref] [PubMed]

2015 (2)

2014 (1)

2013 (1)

G. Zhang, H. Gu, H. Dong, L. Li, and J. He, “Pressure sensitization of Brillouin frequency shift in optical fibers with double-layer polymer coatings,” IEEE Sens. J. 13(6), 2437–2441 (2013).
[Crossref]

2012 (5)

2011 (2)

2008 (1)

2006 (2)

W. J. Bock, J. Chen, T. Eftimov, and W. Urbanczyk, “A photonic crystal fiber sensor for pressure measurements,” IEEE Trans. Instrum. Meas. 55(4), 1119–1123 (2006).
[Crossref]

C. M. Lin, Y. C. Liu, W. F. Liu, M. Y. Fu, H. J. Sheng, S. S. Bor, and C. L. Tien, “High-sensitivity simultaneous pressure and temperature sensor using a superstructure fiber grating,” IEEE Sens. J. 6(3), 691–696 (2006).
[Crossref]

2005 (1)

2004 (1)

H.-J. Sheng, M.-Y. Fu, T.-C. Chen, W.-F. Liu, and S.-S. Bor, “A lateral pressure sensor using a fiber Bragg grating,” IEEE Photonics Technol. Lett. 16(4), 1146–1148 (2004).
[Crossref]

1990 (2)

K. S. Chang, “Pressure-induced birefringence in a coated highly birefringent optical fiber,” J. Lightwave Technol. 8(12), 1850–1855 (1990).
[Crossref]

K. S. Chiang, D. Wong, and P. L. Chu, “Strain-induced birefringence in a highly birefringent optical fiber,” Electron. Lett. 26(17), 1344–1346 (1990).
[Crossref]

1979 (1)

Bock, W. J.

W. J. Bock, J. Chen, T. Eftimov, and W. Urbanczyk, “A photonic crystal fiber sensor for pressure measurements,” IEEE Trans. Instrum. Meas. 55(4), 1119–1123 (2006).
[Crossref]

Bor, S. S.

C. M. Lin, Y. C. Liu, W. F. Liu, M. Y. Fu, H. J. Sheng, S. S. Bor, and C. L. Tien, “High-sensitivity simultaneous pressure and temperature sensor using a superstructure fiber grating,” IEEE Sens. J. 6(3), 691–696 (2006).
[Crossref]

Bor, S.-S.

H.-J. Sheng, M.-Y. Fu, T.-C. Chen, W.-F. Liu, and S.-S. Bor, “A lateral pressure sensor using a fiber Bragg grating,” IEEE Photonics Technol. Lett. 16(4), 1146–1148 (2004).
[Crossref]

Castillo-Guerra, E.

Chang, K. S.

K. S. Chang, “Pressure-induced birefringence in a coated highly birefringent optical fiber,” J. Lightwave Technol. 8(12), 1850–1855 (1990).
[Crossref]

Chen, J.

W. J. Bock, J. Chen, T. Eftimov, and W. Urbanczyk, “A photonic crystal fiber sensor for pressure measurements,” IEEE Trans. Instrum. Meas. 55(4), 1119–1123 (2006).
[Crossref]

Chen, T.-C.

H.-J. Sheng, M.-Y. Fu, T.-C. Chen, W.-F. Liu, and S.-S. Bor, “A lateral pressure sensor using a fiber Bragg grating,” IEEE Photonics Technol. Lett. 16(4), 1146–1148 (2004).
[Crossref]

Chenari, Z.

S. N. Jouybari, H. Latifi, and Z. Chenari, “Distributed pressure measurement by Brillouin scattering dynamic grating for a two side holes fiber,” Proc. SPIE 8421, 84219A (2012).
[Crossref]

Chiang, K. S.

K. S. Chiang, D. Wong, and P. L. Chu, “Strain-induced birefringence in a highly birefringent optical fiber,” Electron. Lett. 26(17), 1344–1346 (1990).
[Crossref]

Chu, P. L.

K. S. Chiang, D. Wong, and P. L. Chu, “Strain-induced birefringence in a highly birefringent optical fiber,” Electron. Lett. 26(17), 1344–1346 (1990).
[Crossref]

Cibula, E.

Colpitts, B. G.

Dong, H.

Dong, Y.

Donlagic, D.

Eftimov, T.

W. J. Bock, J. Chen, T. Eftimov, and W. Urbanczyk, “A photonic crystal fiber sensor for pressure measurements,” IEEE Trans. Instrum. Meas. 55(4), 1119–1123 (2006).
[Crossref]

Farahani, M. A.

Fu, M. Y.

C. M. Lin, Y. C. Liu, W. F. Liu, M. Y. Fu, H. J. Sheng, S. S. Bor, and C. L. Tien, “High-sensitivity simultaneous pressure and temperature sensor using a superstructure fiber grating,” IEEE Sens. J. 6(3), 691–696 (2006).
[Crossref]

Fu, M.-Y.

H.-J. Sheng, M.-Y. Fu, T.-C. Chen, W.-F. Liu, and S.-S. Bor, “A lateral pressure sensor using a fiber Bragg grating,” IEEE Photonics Technol. Lett. 16(4), 1146–1148 (2004).
[Crossref]

Gu, H.

He, J.

G. Zhang, H. Gu, H. Dong, L. Li, and J. He, “Pressure sensitization of Brillouin frequency shift in optical fibers with double-layer polymer coatings,” IEEE Sens. J. 13(6), 2437–2441 (2013).
[Crossref]

H. Gu, H. Dong, G. Zhang, Y. Dong, and J. He, “Dependence of Brillouin frequency shift on radial and axial strain in silica optical fibers,” Appl. Opt. 51(32), 7864–7868 (2012).
[Crossref] [PubMed]

He, Z.

Hocker, G. B.

Hotate, K.

Hu, W.

Johnson, I. P.

I. P. Johnson, D. J. Webb, and K. Kalli, “Hydrostatic pressure sensing using a polymer optical fiber Bragg gratings,” Proc. SPIE 8351, 835106 (2012).
[Crossref]

Jouybari, S. N.

S. N. Jouybari, H. Latifi, and Z. Chenari, “Distributed pressure measurement by Brillouin scattering dynamic grating for a two side holes fiber,” Proc. SPIE 8421, 84219A (2012).
[Crossref]

Kalli, K.

I. P. Johnson, D. J. Webb, and K. Kalli, “Hydrostatic pressure sensing using a polymer optical fiber Bragg gratings,” Proc. SPIE 8351, 835106 (2012).
[Crossref]

Kim, Y. H.

Latifi, H.

S. N. Jouybari, H. Latifi, and Z. Chenari, “Distributed pressure measurement by Brillouin scattering dynamic grating for a two side holes fiber,” Proc. SPIE 8421, 84219A (2012).
[Crossref]

Li, L.

G. Zhang, H. Gu, H. Dong, L. Li, and J. He, “Pressure sensitization of Brillouin frequency shift in optical fibers with double-layer polymer coatings,” IEEE Sens. J. 13(6), 2437–2441 (2013).
[Crossref]

Li, M. J.

Li, S.

Li, Z.

Lin, C. M.

C. M. Lin, Y. C. Liu, W. F. Liu, M. Y. Fu, H. J. Sheng, S. S. Bor, and C. L. Tien, “High-sensitivity simultaneous pressure and temperature sensor using a superstructure fiber grating,” IEEE Sens. J. 6(3), 691–696 (2006).
[Crossref]

Liu, W. F.

C. M. Lin, Y. C. Liu, W. F. Liu, M. Y. Fu, H. J. Sheng, S. S. Bor, and C. L. Tien, “High-sensitivity simultaneous pressure and temperature sensor using a superstructure fiber grating,” IEEE Sens. J. 6(3), 691–696 (2006).
[Crossref]

Liu, W.-F.

H.-J. Sheng, M.-Y. Fu, T.-C. Chen, W.-F. Liu, and S.-S. Bor, “A lateral pressure sensor using a fiber Bragg grating,” IEEE Photonics Technol. Lett. 16(4), 1146–1148 (2004).
[Crossref]

Liu, Y. C.

C. M. Lin, Y. C. Liu, W. F. Liu, M. Y. Fu, H. J. Sheng, S. S. Bor, and C. L. Tien, “High-sensitivity simultaneous pressure and temperature sensor using a superstructure fiber grating,” IEEE Sens. J. 6(3), 691–696 (2006).
[Crossref]

Sheng, H. J.

C. M. Lin, Y. C. Liu, W. F. Liu, M. Y. Fu, H. J. Sheng, S. S. Bor, and C. L. Tien, “High-sensitivity simultaneous pressure and temperature sensor using a superstructure fiber grating,” IEEE Sens. J. 6(3), 691–696 (2006).
[Crossref]

Sheng, H.-J.

H.-J. Sheng, M.-Y. Fu, T.-C. Chen, W.-F. Liu, and S.-S. Bor, “A lateral pressure sensor using a fiber Bragg grating,” IEEE Photonics Technol. Lett. 16(4), 1146–1148 (2004).
[Crossref]

Song, K. Y.

Tien, C. L.

C. M. Lin, Y. C. Liu, W. F. Liu, M. Y. Fu, H. J. Sheng, S. S. Bor, and C. L. Tien, “High-sensitivity simultaneous pressure and temperature sensor using a superstructure fiber grating,” IEEE Sens. J. 6(3), 691–696 (2006).
[Crossref]

Urbanczyk, W.

W. J. Bock, J. Chen, T. Eftimov, and W. Urbanczyk, “A photonic crystal fiber sensor for pressure measurements,” IEEE Trans. Instrum. Meas. 55(4), 1119–1123 (2006).
[Crossref]

Vodhanel, R. S.

Webb, D. J.

I. P. Johnson, D. J. Webb, and K. Kalli, “Hydrostatic pressure sensing using a polymer optical fiber Bragg gratings,” Proc. SPIE 8351, 835106 (2012).
[Crossref]

Wong, D.

K. S. Chiang, D. Wong, and P. L. Chu, “Strain-induced birefringence in a highly birefringent optical fiber,” Electron. Lett. 26(17), 1344–1346 (1990).
[Crossref]

Zhang, G.

Zou, W.

Appl. Opt. (3)

Electron. Lett. (1)

K. S. Chiang, D. Wong, and P. L. Chu, “Strain-induced birefringence in a highly birefringent optical fiber,” Electron. Lett. 26(17), 1344–1346 (1990).
[Crossref]

IEEE Photonics Technol. Lett. (1)

H.-J. Sheng, M.-Y. Fu, T.-C. Chen, W.-F. Liu, and S.-S. Bor, “A lateral pressure sensor using a fiber Bragg grating,” IEEE Photonics Technol. Lett. 16(4), 1146–1148 (2004).
[Crossref]

IEEE Sens. J. (2)

C. M. Lin, Y. C. Liu, W. F. Liu, M. Y. Fu, H. J. Sheng, S. S. Bor, and C. L. Tien, “High-sensitivity simultaneous pressure and temperature sensor using a superstructure fiber grating,” IEEE Sens. J. 6(3), 691–696 (2006).
[Crossref]

G. Zhang, H. Gu, H. Dong, L. Li, and J. He, “Pressure sensitization of Brillouin frequency shift in optical fibers with double-layer polymer coatings,” IEEE Sens. J. 13(6), 2437–2441 (2013).
[Crossref]

IEEE Trans. Instrum. Meas. (1)

W. J. Bock, J. Chen, T. Eftimov, and W. Urbanczyk, “A photonic crystal fiber sensor for pressure measurements,” IEEE Trans. Instrum. Meas. 55(4), 1119–1123 (2006).
[Crossref]

J. Lightwave Technol. (2)

Opt. Express (3)

Opt. Lett. (4)

Proc. SPIE (2)

I. P. Johnson, D. J. Webb, and K. Kalli, “Hydrostatic pressure sensing using a polymer optical fiber Bragg gratings,” Proc. SPIE 8351, 835106 (2012).
[Crossref]

S. N. Jouybari, H. Latifi, and Z. Chenari, “Distributed pressure measurement by Brillouin scattering dynamic grating for a two side holes fiber,” Proc. SPIE 8421, 84219A (2012).
[Crossref]

Other (3)

S. Chin and E. Rochat, “A method and device for pressure sensing,” Patent WO13185813 (Dec. 2013).

K. Y. Song, “Distributed fiber sensors based on Brillouin dynamic gratings,” in Proceedings of IEEE SENSORS 2014 (IEEE, 2014), pp. 154–157.

A. Méndez and E. Diatzikis, “Fiber Optic Distributed Pressure Sensor Based on Brillouin Scattering,” in Optical Fiber Sensors, OSA Technical Digest (CD) (Optical Society of America, 2006), paper ThE46.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Operation scheme (upper) and spectral configuration of optical waves (lower) for the BDG based on a PMF: νB, Brillouin frequency; νD, BDG frequency.
Fig. 2
Fig. 2 Experimental setup for distributed hydrostatic pressure measurement based on BDG in PMFs: LD, laser diode; EOM, electro-optic modulator; MWG, microwave generator; OTF, optical tunable filter; FBG, fiber Bragg grating; OSA, optical spectrum analyzer; SSBM, single-sideband modulator; PBS, polarization beam splitter; FUT, fiber under test; VOA, variable optical attenuator; PD, photodetector; DAQ, data acquisition. Note that insets A, B, and C show configurations for different FUT’s.
Fig. 3
Fig. 3 BDG spectra as a function of frequency offset Δν between pump1 and probe waves in (a) Bow-tie fiber ‘PMF-1’, (b) Bow-tie fiber ‘PMF-2’, (c) PANDA fiber ‘PMF-3′, and (d) PM-PCF ‘PMF-4’.
Fig. 4
Fig. 4 Distribution maps of the BDG frequency variation (ΔνD) with variable hydrostatic pressure to the test section in (a) Bow-tie fiber ‘PMF-1’, (b) Bow-tie fiber ‘PMF-2’, (c) PANDA fiber ‘PMF-3′, and (d) PM-PCF ‘PMF-4’.
Fig. 5
Fig. 5 BDG frequency shift (ΔνD) as a function of pressure in (a) Bow-tie fiber ‘PMF-1’, (b) Bow-tie fiber ‘PMF-2’, (c) PANDA fiber ‘PMF-3′, and (d) PM-PCF ‘PMF-4’.
Fig. 6
Fig. 6 Deviation of ΔνD from the linear fit in PMF-4 (PM-PCF).

Tables (1)

Tables Icon

Table 1 Specification and Characteristics of νD in various PMF’s

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

ν D = Δn n g ν 1 ,
B st =( μ 1 μ 2 )εG,
B T =( α 1 α 2 )TG,
ε= 2μ E P,
Δ ν D = 2μ( μ 2 μ 1 )P ( α 2 α 1 )TE ν D0 .

Metrics