Abstract

Stimulated Raman scattering spectroscopy is a powerful technique for label-free molecular identification, but its broadband implementation is technically challenging. We introduce and experimentally demonstrate a novel approach based on photonic time stretch. The broadband femtosecond Stokes pulse, after interacting with the sample, is stretched by a telecom fiber to ≈15ns, mapping its spectrum in time. The signal is sampled through a fast analog-to-digital converter, providing single-shot spectra at 80-kHz rate. We demonstrate ≈10−5 sensitivity over ≈500cm−1 in the C-H region. Our results pave the way to high-speed broadband vibrational imaging for materials science and biophotonics.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Broadband stimulated Raman scattering with Fourier-transform detection

Julien Réhault, Francesco Crisafi, Vikas Kumar, Gustavo Ciardi, Marco Marangoni, Giulio Cerullo, and Dario Polli
Opt. Express 23(19) 25235-25246 (2015)

Background-free broadband CARS spectroscopy from a 1-MHz ytterbium laser

Vikas Kumar, R. Osellame, R. Ramponi, G. Cerullo, and M. Marangoni
Opt. Express 19(16) 15143-15148 (2011)

Spectrally modulated stimulated Raman scattering imaging with an angle-to-wavelength pulse shaper

Delong Zhang, Mikhail N. Slipchenko, Daniel E. Leaird, Andrew M. Weiner, and Ji-Xin Cheng
Opt. Express 21(11) 13864-13874 (2013)

References

  • View by:
  • |
  • |
  • |

  1. M. Ghomi, Applications of Raman spectroscopy to biology: from basic studies to disease diagnosis (IOS, 2012).
  2. W. H. Weber and R. Merlin, Raman scattering in materials science (Springer, 2000).
  3. D. Pestov, R. K. Murawski, G. O. Ariunbold, X. Wang, M. Zhi, A. V. Sokolov, V. A. Sautenkov, Y. V. Rostovtsev, A. Dogariu, Y. Huang, and M. O. Scully, “Optimizing the laser-pulse configuration for coherent Raman spectroscopy,” Science 316(5822), 265–268 (2007).
    [Crossref] [PubMed]
  4. G. Turrell and J. Corset, Raman microscopy: developments and applications (Academic, 1996).
  5. W. Min, C. W. Freudiger, S. Lu, and X. S. Xie, “Coherent nonlinear optical imaging: beyond fluorescence microscopy,” Annu. Rev. Phys. Chem. 62(1), 507–530 (2011).
    [Crossref] [PubMed]
  6. A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
    [Crossref]
  7. C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(46), 16807–16812 (2005).
    [Crossref] [PubMed]
  8. C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
    [Crossref] [PubMed]
  9. P. Nandakumar, A. Kovalev, and A. Volkmer, “Vibrational imaging based on stimulated Raman scattering microscopy,” New J. Phys. 11(3), 033026 (2009).
    [Crossref]
  10. B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330(6009), 1368–1370 (2010).
    [Crossref] [PubMed]
  11. M. T. Cicerone, K. A. Aamer, Y. J. Lee, and E. Vartiainen, “Maximum entropy and time-domain Kramers-Kronig phase retrieval approaches are functionally equivalent for CARS microspectroscopy,” J. Raman Spectrosc. 43(5), 637–643 (2012).
    [Crossref]
  12. C. H. Camp and M. T. Cicerone, “Chemically sensitive bioimaging with coherent Raman scattering,” Nat. Photonics 9(5), 295–305 (2015).
    [Crossref]
  13. C. H. Camp, Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, A. R. H. Walker, J. N. Rich, J. D. Lathia, and M. T. Cicerone, “High-speed coherent Raman fingerprint imaging of biological tissues,” Nat. Photonics 8(8), 627–634 (2014).
    [Crossref] [PubMed]
  14. R. Arora, G. I. Petrov, J. Liu, and V. V. Yakovlev, “Improving sensitivity in nonlinear Raman microspectroscopy imaging and sensing,” J. Biomed. Opt. 16(2), 021114 (2011).
    [Crossref] [PubMed]
  15. T. W. Kee and M. T. Cicerone, “Simple approach to one-laser, broadband coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 29(23), 2701–2703 (2004).
    [Crossref] [PubMed]
  16. H. Kano and H. Hamaguchi, “Femtosecond coherent anti-Stokes Raman scattering spectroscopy using supercontinuum generated from a photonic crystal fiber,” Appl. Phys. Lett. 85(19), 4298–4300 (2004).
    [Crossref]
  17. B. von Vacano, L. Meyer, and M. Motzkus, “Rapid polymer blend imaging with quantitative broadband multiplex CARS microscopy,” J. Raman Spectrosc. 38(7), 916–926 (2007).
    [Crossref]
  18. C. Pohling, T. Buckup, A. Pagenstecher, and M. Motzkus, “Chemoselective imaging of mouse brain tissue via multiplex CARS microscopy,” Biomed. Opt. Express 2(8), 2110–2116 (2011).
    [Crossref] [PubMed]
  19. T. Hellerer, A. M. K. Enejder, and A. Zumbusch, “Spectral focusing: high spectral resolution spectroscopy with broad-bandwidth laser pulses,” Appl. Phys. Lett. 85(1), 25–27 (2004).
    [Crossref]
  20. I. Rocha-Mendoza, W. Langbein, and P. Borri, “Coherent anti-Stokes Raman microspectroscopy using spectral focusing with glass dispersion,” Appl. Phys. Lett. 93(20), 201103 (2008).
    [Crossref]
  21. J. P. Ogilvie, E. Beaurepaire, A. Alexandrou, and M. Joffre, “Fourier-transform coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 31(4), 480–482 (2006).
    [Crossref] [PubMed]
  22. T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502(7471), 355–358 (2013).
    [Crossref] [PubMed]
  23. K. Hashimoto, M. Takahashi, T. Ideguchi, and K. Goda, “Broadband coherent Raman spectroscopy running at 24,000 spectra per second,” Sci. Rep. 6, 21036 (2016).
    [Crossref] [PubMed]
  24. E. Ploetz, S. Laimgruber, S. Berner, W. Zinth, and P. Gilch, “Femtosecond stimulated Raman microscopy,” Appl. Phys. B 87(3), 389–393 (2007).
    [Crossref]
  25. E. Ploetz, B. Marx, T. Klein, R. Huber, and P. Gilch, “A 75 MHz light source for femtosecond stimulated raman microscopy,” Opt. Express 17(21), 18612–18620 (2009).
    [Crossref] [PubMed]
  26. W. Rock, M. Bonn, and S. H. Parekh, “Near shot-noise limited hyperspectral stimulated Raman scattering spectroscopy using low energy lasers and a fast CMOS array,” Opt. Express 21(13), 15113–15120 (2013).
    [Crossref] [PubMed]
  27. Y. Ozeki, W. Umemura, Y. Otsuka, S. Satoh, H. Hashimoto, K. Sumimura, N. Nishizawa, K. Fukui, and K. Itoh, “High-speed molecular spectral imaging of tissue with stimulated Raman scattering,” Nat. Photonics 6(12), 845–851 (2012).
    [Crossref]
  28. L. Kong, M. Ji, G. R. Holtom, D. Fu, C. W. Freudiger, and X. S. Xie, “Multicolor stimulated Raman scattering microscopy with a rapidly tunable optical parametric oscillator,” Opt. Lett. 38(2), 145–147 (2013).
    [Crossref] [PubMed]
  29. S. Karpf, M. Eibl, W. Wieser, T. Klein, and R. Huber, “A Time-Encoded Technique for fibre-based hyperspectral broadband stimulated Raman microscopy,” Nat. Commun. 6, 6784 (2015).
    [Crossref] [PubMed]
  30. D. Fu, F.-K. Lu, X. Zhang, C. Freudiger, D. R. Pernik, G. Holtom, and X. S. Xie, “Quantitative chemical imaging with multiplex stimulated Raman scattering microscopy,” J. Am. Chem. Soc. 134(8), 3623–3626 (2012).
    [Crossref] [PubMed]
  31. E. R. Andresen, P. Berto, and H. Rigneault, “Stimulated Raman scattering microscopy by spectral focusing and fiber-generated soliton as Stokes pulse,” Opt. Lett. 36(13), 2387–2389 (2011).
    [Crossref] [PubMed]
  32. D. Fu, G. Holtom, C. Freudiger, X. Zhang, and X. S. Xie, “Hyperspectral imaging with stimulated Raman scattering by chirped femtosecond lasers,” J. Phys. Chem. B 117(16), 4634–4640 (2013).
    [Crossref] [PubMed]
  33. K. Seto, Y. Okuda, E. Tokunaga, and T. Kobayashi, “Development of a multiplex stimulated Raman microscope for spectral imaging through multi-channel lock-in detection,” Rev. Sci. Instrum. 84(8), 083705 (2013).
    [Crossref] [PubMed]
  34. K. Seto, Y. Okuda, E. Tokunaga, and T. Kobayashi, “Multiplex stimulated Raman imaging with white probe light from a photonic-crystal fibre and with multi-wavelength balanced detection,” J. Phys. D 47(34), 345401 (2014).
    [Crossref]
  35. C.-S. Liao, M. N. Slipchenko, P. Wang, J. Li, S.-Y. Lee, R. A. Oglesbee, and J.-X. Cheng, “Microsecond scale vibrational spectroscopic imaging by multiplex stimulated Raman scattering microscopy,” Light Sci. Appl. 4, e265 (2015).
    [Crossref] [PubMed]
  36. J. Réhault, F. Crisafi, V. Kumar, G. Ciardi, M. Marangoni, G. Cerullo, and D. Polli, “Broadband stimulated Raman scattering with Fourier-transform detection,” Opt. Express 23(19), 25235–25246 (2015).
    [Crossref] [PubMed]
  37. A. Bhushan, F. Coppinger, and B. Jalali, “Time-stretched analogue-to-digital conversion,” Electron. Lett. 34(9), 839–841 (1998).
    [Crossref]
  38. F. Coppinger, A. S. Bhushan, and B. Jalali, “Photonic time stretch and its application to analog-to-digital conversion,” IEEE Trans. Microw. Theory 47(7), 1309–1314 (1999).
    [Crossref]
  39. A. M. Fard, S. Gupta, and B. Jalali, “Photonic time-stretch digitizer and its extension to real-time spectroscopy and imaging,” Laser Photonics Rev. 7(2), 207–263 (2013).
    [Crossref]
  40. D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450(7172), 1054–1057 (2007).
    [Crossref] [PubMed]
  41. G. Herink, B. Jalali, C. Ropers, and D. R. Solli, “Resolving the build-up of femtosecond mode-locking with single-shot spectroscopy at 90 MHz frame rate,” Nat. Photonics 10(5), 321–326 (2016).
    [Crossref]
  42. M. Bradler, P. Baum, and E. Riedle, “Femtosecond continuum generation in bulk laser host materials with sub-μJ pump pulses,” Appl. Phys. B 97(3), 561–574 (2009).
    [Crossref]
  43. D. Träutlein, M. Deibler, A. Leitenstorfer, and E. Ferrando-May, “Specific local induction of DNA strand breaks by infrared multi-photon absorption,” Nucleic Acids Res. 38(3), e14 (2010).
    [Crossref] [PubMed]
  44. A. A. Voronin and A. M. Zheltikov, “Ionization penalty in nonlinear optical bioimaging,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 81(5), 051918 (2010).
    [Crossref] [PubMed]
  45. G. Agrawal, Nonlinear fiber optics (Academic, 2012).
  46. M. Andreana, M.-A. Houle, D. J. Moffatt, A. Ridsdale, E. Buettner, F. Légaré, and A. Stolow, “Amplitude and polarization modulated hyperspectral stimulated Raman scattering microscopy,” Opt. Express 23(22), 28119–28131 (2015).
    [Crossref] [PubMed]
  47. P. Berto, E. R. Andresen, and H. Rigneault, “Background-free stimulated Raman spectroscopy and microscopy,” Phys. Rev. Lett. 112(5), 053905 (2014).
    [Crossref] [PubMed]
  48. C. H. Camp, S. Yegnanarayanan, A. A. Eftekhar, H. Sridhar, and A. Adibi, “Multiplex coherent anti-Stokes Raman scattering (MCARS) for chemically sensitive, label-free flow cytometry,” Opt. Express 17(25), 22879–22889 (2009).
    [Crossref] [PubMed]
  49. G. V. Oshovsky, G. Rago, J. P. R. Day, M. L. Soudijn, W. Rock, S. H. Parekh, G. Ciancaleoni, J. N. H. Reek, and M. Bonn, “Coherent anti-Stokes Raman scattering microspectroscopic kinetic study of fast hydrogen bond formation in microfluidic devices,” Anal. Chem. 85(19), 8923–8927 (2013).
    [Crossref] [PubMed]
  50. M. Windbergs, M. Jurna, H. L. Offerhaus, J. L. Herek, P. Kleinebudde, and C. J. Strachan, “Chemical imaging of oral solid dosage forms and changes upon dissolution using coherent anti-Stokes Raman scattering microscopy,” Anal. Chem. 81(6), 2085–2091 (2009).
    [Crossref] [PubMed]
  51. F. Preda, V. Kumar, F. Crisafi, D. G. Figueroa Del Valle, G. Cerullo, and D. Polli, “Broadband pump-probe spectroscopy at 20-MHz modulation frequency,” Opt. Lett. 41(13), doc. ID 263685 (Posted 25 May 2016, in press).
    [Crossref]
  52. P. R. Poulin and K. A. Nelson, “Irreversible organic crystalline chemistry monitored in real time,” Science 313(5794), 1756–1760 (2006).
    [Crossref] [PubMed]

2016 (2)

K. Hashimoto, M. Takahashi, T. Ideguchi, and K. Goda, “Broadband coherent Raman spectroscopy running at 24,000 spectra per second,” Sci. Rep. 6, 21036 (2016).
[Crossref] [PubMed]

G. Herink, B. Jalali, C. Ropers, and D. R. Solli, “Resolving the build-up of femtosecond mode-locking with single-shot spectroscopy at 90 MHz frame rate,” Nat. Photonics 10(5), 321–326 (2016).
[Crossref]

2015 (5)

C.-S. Liao, M. N. Slipchenko, P. Wang, J. Li, S.-Y. Lee, R. A. Oglesbee, and J.-X. Cheng, “Microsecond scale vibrational spectroscopic imaging by multiplex stimulated Raman scattering microscopy,” Light Sci. Appl. 4, e265 (2015).
[Crossref] [PubMed]

S. Karpf, M. Eibl, W. Wieser, T. Klein, and R. Huber, “A Time-Encoded Technique for fibre-based hyperspectral broadband stimulated Raman microscopy,” Nat. Commun. 6, 6784 (2015).
[Crossref] [PubMed]

C. H. Camp and M. T. Cicerone, “Chemically sensitive bioimaging with coherent Raman scattering,” Nat. Photonics 9(5), 295–305 (2015).
[Crossref]

J. Réhault, F. Crisafi, V. Kumar, G. Ciardi, M. Marangoni, G. Cerullo, and D. Polli, “Broadband stimulated Raman scattering with Fourier-transform detection,” Opt. Express 23(19), 25235–25246 (2015).
[Crossref] [PubMed]

M. Andreana, M.-A. Houle, D. J. Moffatt, A. Ridsdale, E. Buettner, F. Légaré, and A. Stolow, “Amplitude and polarization modulated hyperspectral stimulated Raman scattering microscopy,” Opt. Express 23(22), 28119–28131 (2015).
[Crossref] [PubMed]

2014 (3)

P. Berto, E. R. Andresen, and H. Rigneault, “Background-free stimulated Raman spectroscopy and microscopy,” Phys. Rev. Lett. 112(5), 053905 (2014).
[Crossref] [PubMed]

C. H. Camp, Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, A. R. H. Walker, J. N. Rich, J. D. Lathia, and M. T. Cicerone, “High-speed coherent Raman fingerprint imaging of biological tissues,” Nat. Photonics 8(8), 627–634 (2014).
[Crossref] [PubMed]

K. Seto, Y. Okuda, E. Tokunaga, and T. Kobayashi, “Multiplex stimulated Raman imaging with white probe light from a photonic-crystal fibre and with multi-wavelength balanced detection,” J. Phys. D 47(34), 345401 (2014).
[Crossref]

2013 (7)

D. Fu, G. Holtom, C. Freudiger, X. Zhang, and X. S. Xie, “Hyperspectral imaging with stimulated Raman scattering by chirped femtosecond lasers,” J. Phys. Chem. B 117(16), 4634–4640 (2013).
[Crossref] [PubMed]

K. Seto, Y. Okuda, E. Tokunaga, and T. Kobayashi, “Development of a multiplex stimulated Raman microscope for spectral imaging through multi-channel lock-in detection,” Rev. Sci. Instrum. 84(8), 083705 (2013).
[Crossref] [PubMed]

A. M. Fard, S. Gupta, and B. Jalali, “Photonic time-stretch digitizer and its extension to real-time spectroscopy and imaging,” Laser Photonics Rev. 7(2), 207–263 (2013).
[Crossref]

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502(7471), 355–358 (2013).
[Crossref] [PubMed]

G. V. Oshovsky, G. Rago, J. P. R. Day, M. L. Soudijn, W. Rock, S. H. Parekh, G. Ciancaleoni, J. N. H. Reek, and M. Bonn, “Coherent anti-Stokes Raman scattering microspectroscopic kinetic study of fast hydrogen bond formation in microfluidic devices,” Anal. Chem. 85(19), 8923–8927 (2013).
[Crossref] [PubMed]

L. Kong, M. Ji, G. R. Holtom, D. Fu, C. W. Freudiger, and X. S. Xie, “Multicolor stimulated Raman scattering microscopy with a rapidly tunable optical parametric oscillator,” Opt. Lett. 38(2), 145–147 (2013).
[Crossref] [PubMed]

W. Rock, M. Bonn, and S. H. Parekh, “Near shot-noise limited hyperspectral stimulated Raman scattering spectroscopy using low energy lasers and a fast CMOS array,” Opt. Express 21(13), 15113–15120 (2013).
[Crossref] [PubMed]

2012 (3)

M. T. Cicerone, K. A. Aamer, Y. J. Lee, and E. Vartiainen, “Maximum entropy and time-domain Kramers-Kronig phase retrieval approaches are functionally equivalent for CARS microspectroscopy,” J. Raman Spectrosc. 43(5), 637–643 (2012).
[Crossref]

Y. Ozeki, W. Umemura, Y. Otsuka, S. Satoh, H. Hashimoto, K. Sumimura, N. Nishizawa, K. Fukui, and K. Itoh, “High-speed molecular spectral imaging of tissue with stimulated Raman scattering,” Nat. Photonics 6(12), 845–851 (2012).
[Crossref]

D. Fu, F.-K. Lu, X. Zhang, C. Freudiger, D. R. Pernik, G. Holtom, and X. S. Xie, “Quantitative chemical imaging with multiplex stimulated Raman scattering microscopy,” J. Am. Chem. Soc. 134(8), 3623–3626 (2012).
[Crossref] [PubMed]

2011 (4)

W. Min, C. W. Freudiger, S. Lu, and X. S. Xie, “Coherent nonlinear optical imaging: beyond fluorescence microscopy,” Annu. Rev. Phys. Chem. 62(1), 507–530 (2011).
[Crossref] [PubMed]

R. Arora, G. I. Petrov, J. Liu, and V. V. Yakovlev, “Improving sensitivity in nonlinear Raman microspectroscopy imaging and sensing,” J. Biomed. Opt. 16(2), 021114 (2011).
[Crossref] [PubMed]

E. R. Andresen, P. Berto, and H. Rigneault, “Stimulated Raman scattering microscopy by spectral focusing and fiber-generated soliton as Stokes pulse,” Opt. Lett. 36(13), 2387–2389 (2011).
[Crossref] [PubMed]

C. Pohling, T. Buckup, A. Pagenstecher, and M. Motzkus, “Chemoselective imaging of mouse brain tissue via multiplex CARS microscopy,” Biomed. Opt. Express 2(8), 2110–2116 (2011).
[Crossref] [PubMed]

2010 (3)

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330(6009), 1368–1370 (2010).
[Crossref] [PubMed]

D. Träutlein, M. Deibler, A. Leitenstorfer, and E. Ferrando-May, “Specific local induction of DNA strand breaks by infrared multi-photon absorption,” Nucleic Acids Res. 38(3), e14 (2010).
[Crossref] [PubMed]

A. A. Voronin and A. M. Zheltikov, “Ionization penalty in nonlinear optical bioimaging,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 81(5), 051918 (2010).
[Crossref] [PubMed]

2009 (5)

M. Bradler, P. Baum, and E. Riedle, “Femtosecond continuum generation in bulk laser host materials with sub-μJ pump pulses,” Appl. Phys. B 97(3), 561–574 (2009).
[Crossref]

P. Nandakumar, A. Kovalev, and A. Volkmer, “Vibrational imaging based on stimulated Raman scattering microscopy,” New J. Phys. 11(3), 033026 (2009).
[Crossref]

M. Windbergs, M. Jurna, H. L. Offerhaus, J. L. Herek, P. Kleinebudde, and C. J. Strachan, “Chemical imaging of oral solid dosage forms and changes upon dissolution using coherent anti-Stokes Raman scattering microscopy,” Anal. Chem. 81(6), 2085–2091 (2009).
[Crossref] [PubMed]

E. Ploetz, B. Marx, T. Klein, R. Huber, and P. Gilch, “A 75 MHz light source for femtosecond stimulated raman microscopy,” Opt. Express 17(21), 18612–18620 (2009).
[Crossref] [PubMed]

C. H. Camp, S. Yegnanarayanan, A. A. Eftekhar, H. Sridhar, and A. Adibi, “Multiplex coherent anti-Stokes Raman scattering (MCARS) for chemically sensitive, label-free flow cytometry,” Opt. Express 17(25), 22879–22889 (2009).
[Crossref] [PubMed]

2008 (2)

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

I. Rocha-Mendoza, W. Langbein, and P. Borri, “Coherent anti-Stokes Raman microspectroscopy using spectral focusing with glass dispersion,” Appl. Phys. Lett. 93(20), 201103 (2008).
[Crossref]

2007 (4)

B. von Vacano, L. Meyer, and M. Motzkus, “Rapid polymer blend imaging with quantitative broadband multiplex CARS microscopy,” J. Raman Spectrosc. 38(7), 916–926 (2007).
[Crossref]

D. Pestov, R. K. Murawski, G. O. Ariunbold, X. Wang, M. Zhi, A. V. Sokolov, V. A. Sautenkov, Y. V. Rostovtsev, A. Dogariu, Y. Huang, and M. O. Scully, “Optimizing the laser-pulse configuration for coherent Raman spectroscopy,” Science 316(5822), 265–268 (2007).
[Crossref] [PubMed]

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450(7172), 1054–1057 (2007).
[Crossref] [PubMed]

E. Ploetz, S. Laimgruber, S. Berner, W. Zinth, and P. Gilch, “Femtosecond stimulated Raman microscopy,” Appl. Phys. B 87(3), 389–393 (2007).
[Crossref]

2006 (2)

J. P. Ogilvie, E. Beaurepaire, A. Alexandrou, and M. Joffre, “Fourier-transform coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 31(4), 480–482 (2006).
[Crossref] [PubMed]

P. R. Poulin and K. A. Nelson, “Irreversible organic crystalline chemistry monitored in real time,” Science 313(5794), 1756–1760 (2006).
[Crossref] [PubMed]

2005 (1)

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(46), 16807–16812 (2005).
[Crossref] [PubMed]

2004 (3)

T. Hellerer, A. M. K. Enejder, and A. Zumbusch, “Spectral focusing: high spectral resolution spectroscopy with broad-bandwidth laser pulses,” Appl. Phys. Lett. 85(1), 25–27 (2004).
[Crossref]

H. Kano and H. Hamaguchi, “Femtosecond coherent anti-Stokes Raman scattering spectroscopy using supercontinuum generated from a photonic crystal fiber,” Appl. Phys. Lett. 85(19), 4298–4300 (2004).
[Crossref]

T. W. Kee and M. T. Cicerone, “Simple approach to one-laser, broadband coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 29(23), 2701–2703 (2004).
[Crossref] [PubMed]

1999 (2)

F. Coppinger, A. S. Bhushan, and B. Jalali, “Photonic time stretch and its application to analog-to-digital conversion,” IEEE Trans. Microw. Theory 47(7), 1309–1314 (1999).
[Crossref]

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
[Crossref]

1998 (1)

A. Bhushan, F. Coppinger, and B. Jalali, “Time-stretched analogue-to-digital conversion,” Electron. Lett. 34(9), 839–841 (1998).
[Crossref]

Aamer, K. A.

M. T. Cicerone, K. A. Aamer, Y. J. Lee, and E. Vartiainen, “Maximum entropy and time-domain Kramers-Kronig phase retrieval approaches are functionally equivalent for CARS microspectroscopy,” J. Raman Spectrosc. 43(5), 637–643 (2012).
[Crossref]

Adibi, A.

Alexandrou, A.

Andreana, M.

Andresen, E. R.

Ariunbold, G. O.

D. Pestov, R. K. Murawski, G. O. Ariunbold, X. Wang, M. Zhi, A. V. Sokolov, V. A. Sautenkov, Y. V. Rostovtsev, A. Dogariu, Y. Huang, and M. O. Scully, “Optimizing the laser-pulse configuration for coherent Raman spectroscopy,” Science 316(5822), 265–268 (2007).
[Crossref] [PubMed]

Arora, R.

R. Arora, G. I. Petrov, J. Liu, and V. V. Yakovlev, “Improving sensitivity in nonlinear Raman microspectroscopy imaging and sensing,” J. Biomed. Opt. 16(2), 021114 (2011).
[Crossref] [PubMed]

Baum, P.

M. Bradler, P. Baum, and E. Riedle, “Femtosecond continuum generation in bulk laser host materials with sub-μJ pump pulses,” Appl. Phys. B 97(3), 561–574 (2009).
[Crossref]

Beaurepaire, E.

Berner, S.

E. Ploetz, S. Laimgruber, S. Berner, W. Zinth, and P. Gilch, “Femtosecond stimulated Raman microscopy,” Appl. Phys. B 87(3), 389–393 (2007).
[Crossref]

Bernhardt, B.

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502(7471), 355–358 (2013).
[Crossref] [PubMed]

Berto, P.

Bhushan, A.

A. Bhushan, F. Coppinger, and B. Jalali, “Time-stretched analogue-to-digital conversion,” Electron. Lett. 34(9), 839–841 (1998).
[Crossref]

Bhushan, A. S.

F. Coppinger, A. S. Bhushan, and B. Jalali, “Photonic time stretch and its application to analog-to-digital conversion,” IEEE Trans. Microw. Theory 47(7), 1309–1314 (1999).
[Crossref]

Bonn, M.

G. V. Oshovsky, G. Rago, J. P. R. Day, M. L. Soudijn, W. Rock, S. H. Parekh, G. Ciancaleoni, J. N. H. Reek, and M. Bonn, “Coherent anti-Stokes Raman scattering microspectroscopic kinetic study of fast hydrogen bond formation in microfluidic devices,” Anal. Chem. 85(19), 8923–8927 (2013).
[Crossref] [PubMed]

W. Rock, M. Bonn, and S. H. Parekh, “Near shot-noise limited hyperspectral stimulated Raman scattering spectroscopy using low energy lasers and a fast CMOS array,” Opt. Express 21(13), 15113–15120 (2013).
[Crossref] [PubMed]

Borri, P.

I. Rocha-Mendoza, W. Langbein, and P. Borri, “Coherent anti-Stokes Raman microspectroscopy using spectral focusing with glass dispersion,” Appl. Phys. Lett. 93(20), 201103 (2008).
[Crossref]

Bradler, M.

M. Bradler, P. Baum, and E. Riedle, “Femtosecond continuum generation in bulk laser host materials with sub-μJ pump pulses,” Appl. Phys. B 97(3), 561–574 (2009).
[Crossref]

Buckup, T.

Buettner, E.

Camp, C. H.

C. H. Camp and M. T. Cicerone, “Chemically sensitive bioimaging with coherent Raman scattering,” Nat. Photonics 9(5), 295–305 (2015).
[Crossref]

C. H. Camp, Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, A. R. H. Walker, J. N. Rich, J. D. Lathia, and M. T. Cicerone, “High-speed coherent Raman fingerprint imaging of biological tissues,” Nat. Photonics 8(8), 627–634 (2014).
[Crossref] [PubMed]

C. H. Camp, S. Yegnanarayanan, A. A. Eftekhar, H. Sridhar, and A. Adibi, “Multiplex coherent anti-Stokes Raman scattering (MCARS) for chemically sensitive, label-free flow cytometry,” Opt. Express 17(25), 22879–22889 (2009).
[Crossref] [PubMed]

Cerullo, G.

Cheng, J.-X.

C.-S. Liao, M. N. Slipchenko, P. Wang, J. Li, S.-Y. Lee, R. A. Oglesbee, and J.-X. Cheng, “Microsecond scale vibrational spectroscopic imaging by multiplex stimulated Raman scattering microscopy,” Light Sci. Appl. 4, e265 (2015).
[Crossref] [PubMed]

Ciancaleoni, G.

G. V. Oshovsky, G. Rago, J. P. R. Day, M. L. Soudijn, W. Rock, S. H. Parekh, G. Ciancaleoni, J. N. H. Reek, and M. Bonn, “Coherent anti-Stokes Raman scattering microspectroscopic kinetic study of fast hydrogen bond formation in microfluidic devices,” Anal. Chem. 85(19), 8923–8927 (2013).
[Crossref] [PubMed]

Ciardi, G.

Cicerone, M. T.

C. H. Camp and M. T. Cicerone, “Chemically sensitive bioimaging with coherent Raman scattering,” Nat. Photonics 9(5), 295–305 (2015).
[Crossref]

C. H. Camp, Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, A. R. H. Walker, J. N. Rich, J. D. Lathia, and M. T. Cicerone, “High-speed coherent Raman fingerprint imaging of biological tissues,” Nat. Photonics 8(8), 627–634 (2014).
[Crossref] [PubMed]

M. T. Cicerone, K. A. Aamer, Y. J. Lee, and E. Vartiainen, “Maximum entropy and time-domain Kramers-Kronig phase retrieval approaches are functionally equivalent for CARS microspectroscopy,” J. Raman Spectrosc. 43(5), 637–643 (2012).
[Crossref]

T. W. Kee and M. T. Cicerone, “Simple approach to one-laser, broadband coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 29(23), 2701–2703 (2004).
[Crossref] [PubMed]

Coppinger, F.

F. Coppinger, A. S. Bhushan, and B. Jalali, “Photonic time stretch and its application to analog-to-digital conversion,” IEEE Trans. Microw. Theory 47(7), 1309–1314 (1999).
[Crossref]

A. Bhushan, F. Coppinger, and B. Jalali, “Time-stretched analogue-to-digital conversion,” Electron. Lett. 34(9), 839–841 (1998).
[Crossref]

Côté, D.

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(46), 16807–16812 (2005).
[Crossref] [PubMed]

Crisafi, F.

Day, J. P. R.

G. V. Oshovsky, G. Rago, J. P. R. Day, M. L. Soudijn, W. Rock, S. H. Parekh, G. Ciancaleoni, J. N. H. Reek, and M. Bonn, “Coherent anti-Stokes Raman scattering microspectroscopic kinetic study of fast hydrogen bond formation in microfluidic devices,” Anal. Chem. 85(19), 8923–8927 (2013).
[Crossref] [PubMed]

Deibler, M.

D. Träutlein, M. Deibler, A. Leitenstorfer, and E. Ferrando-May, “Specific local induction of DNA strand breaks by infrared multi-photon absorption,” Nucleic Acids Res. 38(3), e14 (2010).
[Crossref] [PubMed]

Dogariu, A.

D. Pestov, R. K. Murawski, G. O. Ariunbold, X. Wang, M. Zhi, A. V. Sokolov, V. A. Sautenkov, Y. V. Rostovtsev, A. Dogariu, Y. Huang, and M. O. Scully, “Optimizing the laser-pulse configuration for coherent Raman spectroscopy,” Science 316(5822), 265–268 (2007).
[Crossref] [PubMed]

Eftekhar, A. A.

Eibl, M.

S. Karpf, M. Eibl, W. Wieser, T. Klein, and R. Huber, “A Time-Encoded Technique for fibre-based hyperspectral broadband stimulated Raman microscopy,” Nat. Commun. 6, 6784 (2015).
[Crossref] [PubMed]

Enejder, A. M. K.

T. Hellerer, A. M. K. Enejder, and A. Zumbusch, “Spectral focusing: high spectral resolution spectroscopy with broad-bandwidth laser pulses,” Appl. Phys. Lett. 85(1), 25–27 (2004).
[Crossref]

Evans, C. L.

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(46), 16807–16812 (2005).
[Crossref] [PubMed]

Fard, A. M.

A. M. Fard, S. Gupta, and B. Jalali, “Photonic time-stretch digitizer and its extension to real-time spectroscopy and imaging,” Laser Photonics Rev. 7(2), 207–263 (2013).
[Crossref]

Ferrando-May, E.

D. Träutlein, M. Deibler, A. Leitenstorfer, and E. Ferrando-May, “Specific local induction of DNA strand breaks by infrared multi-photon absorption,” Nucleic Acids Res. 38(3), e14 (2010).
[Crossref] [PubMed]

Freudiger, C.

D. Fu, G. Holtom, C. Freudiger, X. Zhang, and X. S. Xie, “Hyperspectral imaging with stimulated Raman scattering by chirped femtosecond lasers,” J. Phys. Chem. B 117(16), 4634–4640 (2013).
[Crossref] [PubMed]

D. Fu, F.-K. Lu, X. Zhang, C. Freudiger, D. R. Pernik, G. Holtom, and X. S. Xie, “Quantitative chemical imaging with multiplex stimulated Raman scattering microscopy,” J. Am. Chem. Soc. 134(8), 3623–3626 (2012).
[Crossref] [PubMed]

Freudiger, C. W.

L. Kong, M. Ji, G. R. Holtom, D. Fu, C. W. Freudiger, and X. S. Xie, “Multicolor stimulated Raman scattering microscopy with a rapidly tunable optical parametric oscillator,” Opt. Lett. 38(2), 145–147 (2013).
[Crossref] [PubMed]

W. Min, C. W. Freudiger, S. Lu, and X. S. Xie, “Coherent nonlinear optical imaging: beyond fluorescence microscopy,” Annu. Rev. Phys. Chem. 62(1), 507–530 (2011).
[Crossref] [PubMed]

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330(6009), 1368–1370 (2010).
[Crossref] [PubMed]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Fu, D.

L. Kong, M. Ji, G. R. Holtom, D. Fu, C. W. Freudiger, and X. S. Xie, “Multicolor stimulated Raman scattering microscopy with a rapidly tunable optical parametric oscillator,” Opt. Lett. 38(2), 145–147 (2013).
[Crossref] [PubMed]

D. Fu, G. Holtom, C. Freudiger, X. Zhang, and X. S. Xie, “Hyperspectral imaging with stimulated Raman scattering by chirped femtosecond lasers,” J. Phys. Chem. B 117(16), 4634–4640 (2013).
[Crossref] [PubMed]

D. Fu, F.-K. Lu, X. Zhang, C. Freudiger, D. R. Pernik, G. Holtom, and X. S. Xie, “Quantitative chemical imaging with multiplex stimulated Raman scattering microscopy,” J. Am. Chem. Soc. 134(8), 3623–3626 (2012).
[Crossref] [PubMed]

Fukui, K.

Y. Ozeki, W. Umemura, Y. Otsuka, S. Satoh, H. Hashimoto, K. Sumimura, N. Nishizawa, K. Fukui, and K. Itoh, “High-speed molecular spectral imaging of tissue with stimulated Raman scattering,” Nat. Photonics 6(12), 845–851 (2012).
[Crossref]

Gilch, P.

E. Ploetz, B. Marx, T. Klein, R. Huber, and P. Gilch, “A 75 MHz light source for femtosecond stimulated raman microscopy,” Opt. Express 17(21), 18612–18620 (2009).
[Crossref] [PubMed]

E. Ploetz, S. Laimgruber, S. Berner, W. Zinth, and P. Gilch, “Femtosecond stimulated Raman microscopy,” Appl. Phys. B 87(3), 389–393 (2007).
[Crossref]

Goda, K.

K. Hashimoto, M. Takahashi, T. Ideguchi, and K. Goda, “Broadband coherent Raman spectroscopy running at 24,000 spectra per second,” Sci. Rep. 6, 21036 (2016).
[Crossref] [PubMed]

Guelachvili, G.

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502(7471), 355–358 (2013).
[Crossref] [PubMed]

Gupta, S.

A. M. Fard, S. Gupta, and B. Jalali, “Photonic time-stretch digitizer and its extension to real-time spectroscopy and imaging,” Laser Photonics Rev. 7(2), 207–263 (2013).
[Crossref]

Hamaguchi, H.

H. Kano and H. Hamaguchi, “Femtosecond coherent anti-Stokes Raman scattering spectroscopy using supercontinuum generated from a photonic crystal fiber,” Appl. Phys. Lett. 85(19), 4298–4300 (2004).
[Crossref]

Hänsch, T. W.

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502(7471), 355–358 (2013).
[Crossref] [PubMed]

Hartshorn, C. M.

C. H. Camp, Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, A. R. H. Walker, J. N. Rich, J. D. Lathia, and M. T. Cicerone, “High-speed coherent Raman fingerprint imaging of biological tissues,” Nat. Photonics 8(8), 627–634 (2014).
[Crossref] [PubMed]

Hashimoto, H.

Y. Ozeki, W. Umemura, Y. Otsuka, S. Satoh, H. Hashimoto, K. Sumimura, N. Nishizawa, K. Fukui, and K. Itoh, “High-speed molecular spectral imaging of tissue with stimulated Raman scattering,” Nat. Photonics 6(12), 845–851 (2012).
[Crossref]

Hashimoto, K.

K. Hashimoto, M. Takahashi, T. Ideguchi, and K. Goda, “Broadband coherent Raman spectroscopy running at 24,000 spectra per second,” Sci. Rep. 6, 21036 (2016).
[Crossref] [PubMed]

He, C.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Heddleston, J. M.

C. H. Camp, Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, A. R. H. Walker, J. N. Rich, J. D. Lathia, and M. T. Cicerone, “High-speed coherent Raman fingerprint imaging of biological tissues,” Nat. Photonics 8(8), 627–634 (2014).
[Crossref] [PubMed]

Hellerer, T.

T. Hellerer, A. M. K. Enejder, and A. Zumbusch, “Spectral focusing: high spectral resolution spectroscopy with broad-bandwidth laser pulses,” Appl. Phys. Lett. 85(1), 25–27 (2004).
[Crossref]

Herek, J. L.

M. Windbergs, M. Jurna, H. L. Offerhaus, J. L. Herek, P. Kleinebudde, and C. J. Strachan, “Chemical imaging of oral solid dosage forms and changes upon dissolution using coherent anti-Stokes Raman scattering microscopy,” Anal. Chem. 81(6), 2085–2091 (2009).
[Crossref] [PubMed]

Herink, G.

G. Herink, B. Jalali, C. Ropers, and D. R. Solli, “Resolving the build-up of femtosecond mode-locking with single-shot spectroscopy at 90 MHz frame rate,” Nat. Photonics 10(5), 321–326 (2016).
[Crossref]

Holtom, G.

D. Fu, G. Holtom, C. Freudiger, X. Zhang, and X. S. Xie, “Hyperspectral imaging with stimulated Raman scattering by chirped femtosecond lasers,” J. Phys. Chem. B 117(16), 4634–4640 (2013).
[Crossref] [PubMed]

D. Fu, F.-K. Lu, X. Zhang, C. Freudiger, D. R. Pernik, G. Holtom, and X. S. Xie, “Quantitative chemical imaging with multiplex stimulated Raman scattering microscopy,” J. Am. Chem. Soc. 134(8), 3623–3626 (2012).
[Crossref] [PubMed]

Holtom, G. R.

L. Kong, M. Ji, G. R. Holtom, D. Fu, C. W. Freudiger, and X. S. Xie, “Multicolor stimulated Raman scattering microscopy with a rapidly tunable optical parametric oscillator,” Opt. Lett. 38(2), 145–147 (2013).
[Crossref] [PubMed]

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330(6009), 1368–1370 (2010).
[Crossref] [PubMed]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
[Crossref]

Holzner, S.

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502(7471), 355–358 (2013).
[Crossref] [PubMed]

Houle, M.-A.

Huang, Y.

D. Pestov, R. K. Murawski, G. O. Ariunbold, X. Wang, M. Zhi, A. V. Sokolov, V. A. Sautenkov, Y. V. Rostovtsev, A. Dogariu, Y. Huang, and M. O. Scully, “Optimizing the laser-pulse configuration for coherent Raman spectroscopy,” Science 316(5822), 265–268 (2007).
[Crossref] [PubMed]

Huber, R.

S. Karpf, M. Eibl, W. Wieser, T. Klein, and R. Huber, “A Time-Encoded Technique for fibre-based hyperspectral broadband stimulated Raman microscopy,” Nat. Commun. 6, 6784 (2015).
[Crossref] [PubMed]

E. Ploetz, B. Marx, T. Klein, R. Huber, and P. Gilch, “A 75 MHz light source for femtosecond stimulated raman microscopy,” Opt. Express 17(21), 18612–18620 (2009).
[Crossref] [PubMed]

Ideguchi, T.

K. Hashimoto, M. Takahashi, T. Ideguchi, and K. Goda, “Broadband coherent Raman spectroscopy running at 24,000 spectra per second,” Sci. Rep. 6, 21036 (2016).
[Crossref] [PubMed]

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502(7471), 355–358 (2013).
[Crossref] [PubMed]

Itoh, K.

Y. Ozeki, W. Umemura, Y. Otsuka, S. Satoh, H. Hashimoto, K. Sumimura, N. Nishizawa, K. Fukui, and K. Itoh, “High-speed molecular spectral imaging of tissue with stimulated Raman scattering,” Nat. Photonics 6(12), 845–851 (2012).
[Crossref]

Jalali, B.

G. Herink, B. Jalali, C. Ropers, and D. R. Solli, “Resolving the build-up of femtosecond mode-locking with single-shot spectroscopy at 90 MHz frame rate,” Nat. Photonics 10(5), 321–326 (2016).
[Crossref]

A. M. Fard, S. Gupta, and B. Jalali, “Photonic time-stretch digitizer and its extension to real-time spectroscopy and imaging,” Laser Photonics Rev. 7(2), 207–263 (2013).
[Crossref]

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450(7172), 1054–1057 (2007).
[Crossref] [PubMed]

F. Coppinger, A. S. Bhushan, and B. Jalali, “Photonic time stretch and its application to analog-to-digital conversion,” IEEE Trans. Microw. Theory 47(7), 1309–1314 (1999).
[Crossref]

A. Bhushan, F. Coppinger, and B. Jalali, “Time-stretched analogue-to-digital conversion,” Electron. Lett. 34(9), 839–841 (1998).
[Crossref]

Ji, M.

Joffre, M.

Jurna, M.

M. Windbergs, M. Jurna, H. L. Offerhaus, J. L. Herek, P. Kleinebudde, and C. J. Strachan, “Chemical imaging of oral solid dosage forms and changes upon dissolution using coherent anti-Stokes Raman scattering microscopy,” Anal. Chem. 81(6), 2085–2091 (2009).
[Crossref] [PubMed]

Kang, J. X.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Kano, H.

H. Kano and H. Hamaguchi, “Femtosecond coherent anti-Stokes Raman scattering spectroscopy using supercontinuum generated from a photonic crystal fiber,” Appl. Phys. Lett. 85(19), 4298–4300 (2004).
[Crossref]

Karpf, S.

S. Karpf, M. Eibl, W. Wieser, T. Klein, and R. Huber, “A Time-Encoded Technique for fibre-based hyperspectral broadband stimulated Raman microscopy,” Nat. Commun. 6, 6784 (2015).
[Crossref] [PubMed]

Kee, T. W.

Klein, T.

S. Karpf, M. Eibl, W. Wieser, T. Klein, and R. Huber, “A Time-Encoded Technique for fibre-based hyperspectral broadband stimulated Raman microscopy,” Nat. Commun. 6, 6784 (2015).
[Crossref] [PubMed]

E. Ploetz, B. Marx, T. Klein, R. Huber, and P. Gilch, “A 75 MHz light source for femtosecond stimulated raman microscopy,” Opt. Express 17(21), 18612–18620 (2009).
[Crossref] [PubMed]

Kleinebudde, P.

M. Windbergs, M. Jurna, H. L. Offerhaus, J. L. Herek, P. Kleinebudde, and C. J. Strachan, “Chemical imaging of oral solid dosage forms and changes upon dissolution using coherent anti-Stokes Raman scattering microscopy,” Anal. Chem. 81(6), 2085–2091 (2009).
[Crossref] [PubMed]

Kobayashi, T.

K. Seto, Y. Okuda, E. Tokunaga, and T. Kobayashi, “Multiplex stimulated Raman imaging with white probe light from a photonic-crystal fibre and with multi-wavelength balanced detection,” J. Phys. D 47(34), 345401 (2014).
[Crossref]

K. Seto, Y. Okuda, E. Tokunaga, and T. Kobayashi, “Development of a multiplex stimulated Raman microscope for spectral imaging through multi-channel lock-in detection,” Rev. Sci. Instrum. 84(8), 083705 (2013).
[Crossref] [PubMed]

Kong, L.

Koonath, P.

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450(7172), 1054–1057 (2007).
[Crossref] [PubMed]

Kovalev, A.

P. Nandakumar, A. Kovalev, and A. Volkmer, “Vibrational imaging based on stimulated Raman scattering microscopy,” New J. Phys. 11(3), 033026 (2009).
[Crossref]

Kumar, V.

Laimgruber, S.

E. Ploetz, S. Laimgruber, S. Berner, W. Zinth, and P. Gilch, “Femtosecond stimulated Raman microscopy,” Appl. Phys. B 87(3), 389–393 (2007).
[Crossref]

Langbein, W.

I. Rocha-Mendoza, W. Langbein, and P. Borri, “Coherent anti-Stokes Raman microspectroscopy using spectral focusing with glass dispersion,” Appl. Phys. Lett. 93(20), 201103 (2008).
[Crossref]

Lathia, J. D.

C. H. Camp, Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, A. R. H. Walker, J. N. Rich, J. D. Lathia, and M. T. Cicerone, “High-speed coherent Raman fingerprint imaging of biological tissues,” Nat. Photonics 8(8), 627–634 (2014).
[Crossref] [PubMed]

Lee, S.-Y.

C.-S. Liao, M. N. Slipchenko, P. Wang, J. Li, S.-Y. Lee, R. A. Oglesbee, and J.-X. Cheng, “Microsecond scale vibrational spectroscopic imaging by multiplex stimulated Raman scattering microscopy,” Light Sci. Appl. 4, e265 (2015).
[Crossref] [PubMed]

Lee, Y. J.

C. H. Camp, Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, A. R. H. Walker, J. N. Rich, J. D. Lathia, and M. T. Cicerone, “High-speed coherent Raman fingerprint imaging of biological tissues,” Nat. Photonics 8(8), 627–634 (2014).
[Crossref] [PubMed]

M. T. Cicerone, K. A. Aamer, Y. J. Lee, and E. Vartiainen, “Maximum entropy and time-domain Kramers-Kronig phase retrieval approaches are functionally equivalent for CARS microspectroscopy,” J. Raman Spectrosc. 43(5), 637–643 (2012).
[Crossref]

Légaré, F.

Leitenstorfer, A.

D. Träutlein, M. Deibler, A. Leitenstorfer, and E. Ferrando-May, “Specific local induction of DNA strand breaks by infrared multi-photon absorption,” Nucleic Acids Res. 38(3), e14 (2010).
[Crossref] [PubMed]

Li, J.

C.-S. Liao, M. N. Slipchenko, P. Wang, J. Li, S.-Y. Lee, R. A. Oglesbee, and J.-X. Cheng, “Microsecond scale vibrational spectroscopic imaging by multiplex stimulated Raman scattering microscopy,” Light Sci. Appl. 4, e265 (2015).
[Crossref] [PubMed]

Liao, C.-S.

C.-S. Liao, M. N. Slipchenko, P. Wang, J. Li, S.-Y. Lee, R. A. Oglesbee, and J.-X. Cheng, “Microsecond scale vibrational spectroscopic imaging by multiplex stimulated Raman scattering microscopy,” Light Sci. Appl. 4, e265 (2015).
[Crossref] [PubMed]

Lin, C. P.

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(46), 16807–16812 (2005).
[Crossref] [PubMed]

Liu, J.

R. Arora, G. I. Petrov, J. Liu, and V. V. Yakovlev, “Improving sensitivity in nonlinear Raman microspectroscopy imaging and sensing,” J. Biomed. Opt. 16(2), 021114 (2011).
[Crossref] [PubMed]

Lu, F.-K.

D. Fu, F.-K. Lu, X. Zhang, C. Freudiger, D. R. Pernik, G. Holtom, and X. S. Xie, “Quantitative chemical imaging with multiplex stimulated Raman scattering microscopy,” J. Am. Chem. Soc. 134(8), 3623–3626 (2012).
[Crossref] [PubMed]

Lu, S.

W. Min, C. W. Freudiger, S. Lu, and X. S. Xie, “Coherent nonlinear optical imaging: beyond fluorescence microscopy,” Annu. Rev. Phys. Chem. 62(1), 507–530 (2011).
[Crossref] [PubMed]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Marangoni, M.

Marx, B.

Meyer, L.

B. von Vacano, L. Meyer, and M. Motzkus, “Rapid polymer blend imaging with quantitative broadband multiplex CARS microscopy,” J. Raman Spectrosc. 38(7), 916–926 (2007).
[Crossref]

Min, W.

W. Min, C. W. Freudiger, S. Lu, and X. S. Xie, “Coherent nonlinear optical imaging: beyond fluorescence microscopy,” Annu. Rev. Phys. Chem. 62(1), 507–530 (2011).
[Crossref] [PubMed]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Moffatt, D. J.

Motzkus, M.

C. Pohling, T. Buckup, A. Pagenstecher, and M. Motzkus, “Chemoselective imaging of mouse brain tissue via multiplex CARS microscopy,” Biomed. Opt. Express 2(8), 2110–2116 (2011).
[Crossref] [PubMed]

B. von Vacano, L. Meyer, and M. Motzkus, “Rapid polymer blend imaging with quantitative broadband multiplex CARS microscopy,” J. Raman Spectrosc. 38(7), 916–926 (2007).
[Crossref]

Murawski, R. K.

D. Pestov, R. K. Murawski, G. O. Ariunbold, X. Wang, M. Zhi, A. V. Sokolov, V. A. Sautenkov, Y. V. Rostovtsev, A. Dogariu, Y. Huang, and M. O. Scully, “Optimizing the laser-pulse configuration for coherent Raman spectroscopy,” Science 316(5822), 265–268 (2007).
[Crossref] [PubMed]

Nandakumar, P.

P. Nandakumar, A. Kovalev, and A. Volkmer, “Vibrational imaging based on stimulated Raman scattering microscopy,” New J. Phys. 11(3), 033026 (2009).
[Crossref]

Nelson, K. A.

P. R. Poulin and K. A. Nelson, “Irreversible organic crystalline chemistry monitored in real time,” Science 313(5794), 1756–1760 (2006).
[Crossref] [PubMed]

Nishizawa, N.

Y. Ozeki, W. Umemura, Y. Otsuka, S. Satoh, H. Hashimoto, K. Sumimura, N. Nishizawa, K. Fukui, and K. Itoh, “High-speed molecular spectral imaging of tissue with stimulated Raman scattering,” Nat. Photonics 6(12), 845–851 (2012).
[Crossref]

Offerhaus, H. L.

M. Windbergs, M. Jurna, H. L. Offerhaus, J. L. Herek, P. Kleinebudde, and C. J. Strachan, “Chemical imaging of oral solid dosage forms and changes upon dissolution using coherent anti-Stokes Raman scattering microscopy,” Anal. Chem. 81(6), 2085–2091 (2009).
[Crossref] [PubMed]

Ogilvie, J. P.

Oglesbee, R. A.

C.-S. Liao, M. N. Slipchenko, P. Wang, J. Li, S.-Y. Lee, R. A. Oglesbee, and J.-X. Cheng, “Microsecond scale vibrational spectroscopic imaging by multiplex stimulated Raman scattering microscopy,” Light Sci. Appl. 4, e265 (2015).
[Crossref] [PubMed]

Okuda, Y.

K. Seto, Y. Okuda, E. Tokunaga, and T. Kobayashi, “Multiplex stimulated Raman imaging with white probe light from a photonic-crystal fibre and with multi-wavelength balanced detection,” J. Phys. D 47(34), 345401 (2014).
[Crossref]

K. Seto, Y. Okuda, E. Tokunaga, and T. Kobayashi, “Development of a multiplex stimulated Raman microscope for spectral imaging through multi-channel lock-in detection,” Rev. Sci. Instrum. 84(8), 083705 (2013).
[Crossref] [PubMed]

Oshovsky, G. V.

G. V. Oshovsky, G. Rago, J. P. R. Day, M. L. Soudijn, W. Rock, S. H. Parekh, G. Ciancaleoni, J. N. H. Reek, and M. Bonn, “Coherent anti-Stokes Raman scattering microspectroscopic kinetic study of fast hydrogen bond formation in microfluidic devices,” Anal. Chem. 85(19), 8923–8927 (2013).
[Crossref] [PubMed]

Otsuka, Y.

Y. Ozeki, W. Umemura, Y. Otsuka, S. Satoh, H. Hashimoto, K. Sumimura, N. Nishizawa, K. Fukui, and K. Itoh, “High-speed molecular spectral imaging of tissue with stimulated Raman scattering,” Nat. Photonics 6(12), 845–851 (2012).
[Crossref]

Ozeki, Y.

Y. Ozeki, W. Umemura, Y. Otsuka, S. Satoh, H. Hashimoto, K. Sumimura, N. Nishizawa, K. Fukui, and K. Itoh, “High-speed molecular spectral imaging of tissue with stimulated Raman scattering,” Nat. Photonics 6(12), 845–851 (2012).
[Crossref]

Pagenstecher, A.

Parekh, S. H.

W. Rock, M. Bonn, and S. H. Parekh, “Near shot-noise limited hyperspectral stimulated Raman scattering spectroscopy using low energy lasers and a fast CMOS array,” Opt. Express 21(13), 15113–15120 (2013).
[Crossref] [PubMed]

G. V. Oshovsky, G. Rago, J. P. R. Day, M. L. Soudijn, W. Rock, S. H. Parekh, G. Ciancaleoni, J. N. H. Reek, and M. Bonn, “Coherent anti-Stokes Raman scattering microspectroscopic kinetic study of fast hydrogen bond formation in microfluidic devices,” Anal. Chem. 85(19), 8923–8927 (2013).
[Crossref] [PubMed]

Pernik, D. R.

D. Fu, F.-K. Lu, X. Zhang, C. Freudiger, D. R. Pernik, G. Holtom, and X. S. Xie, “Quantitative chemical imaging with multiplex stimulated Raman scattering microscopy,” J. Am. Chem. Soc. 134(8), 3623–3626 (2012).
[Crossref] [PubMed]

Pestov, D.

D. Pestov, R. K. Murawski, G. O. Ariunbold, X. Wang, M. Zhi, A. V. Sokolov, V. A. Sautenkov, Y. V. Rostovtsev, A. Dogariu, Y. Huang, and M. O. Scully, “Optimizing the laser-pulse configuration for coherent Raman spectroscopy,” Science 316(5822), 265–268 (2007).
[Crossref] [PubMed]

Petrov, G. I.

R. Arora, G. I. Petrov, J. Liu, and V. V. Yakovlev, “Improving sensitivity in nonlinear Raman microspectroscopy imaging and sensing,” J. Biomed. Opt. 16(2), 021114 (2011).
[Crossref] [PubMed]

Picqué, N.

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502(7471), 355–358 (2013).
[Crossref] [PubMed]

Ploetz, E.

E. Ploetz, B. Marx, T. Klein, R. Huber, and P. Gilch, “A 75 MHz light source for femtosecond stimulated raman microscopy,” Opt. Express 17(21), 18612–18620 (2009).
[Crossref] [PubMed]

E. Ploetz, S. Laimgruber, S. Berner, W. Zinth, and P. Gilch, “Femtosecond stimulated Raman microscopy,” Appl. Phys. B 87(3), 389–393 (2007).
[Crossref]

Pohling, C.

Polli, D.

Potma, E. O.

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(46), 16807–16812 (2005).
[Crossref] [PubMed]

Poulin, P. R.

P. R. Poulin and K. A. Nelson, “Irreversible organic crystalline chemistry monitored in real time,” Science 313(5794), 1756–1760 (2006).
[Crossref] [PubMed]

Puoris’haag, M.

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(46), 16807–16812 (2005).
[Crossref] [PubMed]

Rago, G.

G. V. Oshovsky, G. Rago, J. P. R. Day, M. L. Soudijn, W. Rock, S. H. Parekh, G. Ciancaleoni, J. N. H. Reek, and M. Bonn, “Coherent anti-Stokes Raman scattering microspectroscopic kinetic study of fast hydrogen bond formation in microfluidic devices,” Anal. Chem. 85(19), 8923–8927 (2013).
[Crossref] [PubMed]

Reek, J. N. H.

G. V. Oshovsky, G. Rago, J. P. R. Day, M. L. Soudijn, W. Rock, S. H. Parekh, G. Ciancaleoni, J. N. H. Reek, and M. Bonn, “Coherent anti-Stokes Raman scattering microspectroscopic kinetic study of fast hydrogen bond formation in microfluidic devices,” Anal. Chem. 85(19), 8923–8927 (2013).
[Crossref] [PubMed]

Réhault, J.

Reichman, J.

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330(6009), 1368–1370 (2010).
[Crossref] [PubMed]

Rich, J. N.

C. H. Camp, Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, A. R. H. Walker, J. N. Rich, J. D. Lathia, and M. T. Cicerone, “High-speed coherent Raman fingerprint imaging of biological tissues,” Nat. Photonics 8(8), 627–634 (2014).
[Crossref] [PubMed]

Ridsdale, A.

Riedle, E.

M. Bradler, P. Baum, and E. Riedle, “Femtosecond continuum generation in bulk laser host materials with sub-μJ pump pulses,” Appl. Phys. B 97(3), 561–574 (2009).
[Crossref]

Rigneault, H.

Rocha-Mendoza, I.

I. Rocha-Mendoza, W. Langbein, and P. Borri, “Coherent anti-Stokes Raman microspectroscopy using spectral focusing with glass dispersion,” Appl. Phys. Lett. 93(20), 201103 (2008).
[Crossref]

Rock, W.

W. Rock, M. Bonn, and S. H. Parekh, “Near shot-noise limited hyperspectral stimulated Raman scattering spectroscopy using low energy lasers and a fast CMOS array,” Opt. Express 21(13), 15113–15120 (2013).
[Crossref] [PubMed]

G. V. Oshovsky, G. Rago, J. P. R. Day, M. L. Soudijn, W. Rock, S. H. Parekh, G. Ciancaleoni, J. N. H. Reek, and M. Bonn, “Coherent anti-Stokes Raman scattering microspectroscopic kinetic study of fast hydrogen bond formation in microfluidic devices,” Anal. Chem. 85(19), 8923–8927 (2013).
[Crossref] [PubMed]

Ropers, C.

G. Herink, B. Jalali, C. Ropers, and D. R. Solli, “Resolving the build-up of femtosecond mode-locking with single-shot spectroscopy at 90 MHz frame rate,” Nat. Photonics 10(5), 321–326 (2016).
[Crossref]

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450(7172), 1054–1057 (2007).
[Crossref] [PubMed]

Rostovtsev, Y. V.

D. Pestov, R. K. Murawski, G. O. Ariunbold, X. Wang, M. Zhi, A. V. Sokolov, V. A. Sautenkov, Y. V. Rostovtsev, A. Dogariu, Y. Huang, and M. O. Scully, “Optimizing the laser-pulse configuration for coherent Raman spectroscopy,” Science 316(5822), 265–268 (2007).
[Crossref] [PubMed]

Saar, B. G.

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330(6009), 1368–1370 (2010).
[Crossref] [PubMed]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Satoh, S.

Y. Ozeki, W. Umemura, Y. Otsuka, S. Satoh, H. Hashimoto, K. Sumimura, N. Nishizawa, K. Fukui, and K. Itoh, “High-speed molecular spectral imaging of tissue with stimulated Raman scattering,” Nat. Photonics 6(12), 845–851 (2012).
[Crossref]

Sautenkov, V. A.

D. Pestov, R. K. Murawski, G. O. Ariunbold, X. Wang, M. Zhi, A. V. Sokolov, V. A. Sautenkov, Y. V. Rostovtsev, A. Dogariu, Y. Huang, and M. O. Scully, “Optimizing the laser-pulse configuration for coherent Raman spectroscopy,” Science 316(5822), 265–268 (2007).
[Crossref] [PubMed]

Scully, M. O.

D. Pestov, R. K. Murawski, G. O. Ariunbold, X. Wang, M. Zhi, A. V. Sokolov, V. A. Sautenkov, Y. V. Rostovtsev, A. Dogariu, Y. Huang, and M. O. Scully, “Optimizing the laser-pulse configuration for coherent Raman spectroscopy,” Science 316(5822), 265–268 (2007).
[Crossref] [PubMed]

Seto, K.

K. Seto, Y. Okuda, E. Tokunaga, and T. Kobayashi, “Multiplex stimulated Raman imaging with white probe light from a photonic-crystal fibre and with multi-wavelength balanced detection,” J. Phys. D 47(34), 345401 (2014).
[Crossref]

K. Seto, Y. Okuda, E. Tokunaga, and T. Kobayashi, “Development of a multiplex stimulated Raman microscope for spectral imaging through multi-channel lock-in detection,” Rev. Sci. Instrum. 84(8), 083705 (2013).
[Crossref] [PubMed]

Slipchenko, M. N.

C.-S. Liao, M. N. Slipchenko, P. Wang, J. Li, S.-Y. Lee, R. A. Oglesbee, and J.-X. Cheng, “Microsecond scale vibrational spectroscopic imaging by multiplex stimulated Raman scattering microscopy,” Light Sci. Appl. 4, e265 (2015).
[Crossref] [PubMed]

Sokolov, A. V.

D. Pestov, R. K. Murawski, G. O. Ariunbold, X. Wang, M. Zhi, A. V. Sokolov, V. A. Sautenkov, Y. V. Rostovtsev, A. Dogariu, Y. Huang, and M. O. Scully, “Optimizing the laser-pulse configuration for coherent Raman spectroscopy,” Science 316(5822), 265–268 (2007).
[Crossref] [PubMed]

Solli, D. R.

G. Herink, B. Jalali, C. Ropers, and D. R. Solli, “Resolving the build-up of femtosecond mode-locking with single-shot spectroscopy at 90 MHz frame rate,” Nat. Photonics 10(5), 321–326 (2016).
[Crossref]

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450(7172), 1054–1057 (2007).
[Crossref] [PubMed]

Soudijn, M. L.

G. V. Oshovsky, G. Rago, J. P. R. Day, M. L. Soudijn, W. Rock, S. H. Parekh, G. Ciancaleoni, J. N. H. Reek, and M. Bonn, “Coherent anti-Stokes Raman scattering microspectroscopic kinetic study of fast hydrogen bond formation in microfluidic devices,” Anal. Chem. 85(19), 8923–8927 (2013).
[Crossref] [PubMed]

Sridhar, H.

Stanley, C. M.

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330(6009), 1368–1370 (2010).
[Crossref] [PubMed]

Stolow, A.

Strachan, C. J.

M. Windbergs, M. Jurna, H. L. Offerhaus, J. L. Herek, P. Kleinebudde, and C. J. Strachan, “Chemical imaging of oral solid dosage forms and changes upon dissolution using coherent anti-Stokes Raman scattering microscopy,” Anal. Chem. 81(6), 2085–2091 (2009).
[Crossref] [PubMed]

Sumimura, K.

Y. Ozeki, W. Umemura, Y. Otsuka, S. Satoh, H. Hashimoto, K. Sumimura, N. Nishizawa, K. Fukui, and K. Itoh, “High-speed molecular spectral imaging of tissue with stimulated Raman scattering,” Nat. Photonics 6(12), 845–851 (2012).
[Crossref]

Takahashi, M.

K. Hashimoto, M. Takahashi, T. Ideguchi, and K. Goda, “Broadband coherent Raman spectroscopy running at 24,000 spectra per second,” Sci. Rep. 6, 21036 (2016).
[Crossref] [PubMed]

Tokunaga, E.

K. Seto, Y. Okuda, E. Tokunaga, and T. Kobayashi, “Multiplex stimulated Raman imaging with white probe light from a photonic-crystal fibre and with multi-wavelength balanced detection,” J. Phys. D 47(34), 345401 (2014).
[Crossref]

K. Seto, Y. Okuda, E. Tokunaga, and T. Kobayashi, “Development of a multiplex stimulated Raman microscope for spectral imaging through multi-channel lock-in detection,” Rev. Sci. Instrum. 84(8), 083705 (2013).
[Crossref] [PubMed]

Träutlein, D.

D. Träutlein, M. Deibler, A. Leitenstorfer, and E. Ferrando-May, “Specific local induction of DNA strand breaks by infrared multi-photon absorption,” Nucleic Acids Res. 38(3), e14 (2010).
[Crossref] [PubMed]

Tsai, J. C.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

Umemura, W.

Y. Ozeki, W. Umemura, Y. Otsuka, S. Satoh, H. Hashimoto, K. Sumimura, N. Nishizawa, K. Fukui, and K. Itoh, “High-speed molecular spectral imaging of tissue with stimulated Raman scattering,” Nat. Photonics 6(12), 845–851 (2012).
[Crossref]

Vartiainen, E.

M. T. Cicerone, K. A. Aamer, Y. J. Lee, and E. Vartiainen, “Maximum entropy and time-domain Kramers-Kronig phase retrieval approaches are functionally equivalent for CARS microspectroscopy,” J. Raman Spectrosc. 43(5), 637–643 (2012).
[Crossref]

Volkmer, A.

P. Nandakumar, A. Kovalev, and A. Volkmer, “Vibrational imaging based on stimulated Raman scattering microscopy,” New J. Phys. 11(3), 033026 (2009).
[Crossref]

von Vacano, B.

B. von Vacano, L. Meyer, and M. Motzkus, “Rapid polymer blend imaging with quantitative broadband multiplex CARS microscopy,” J. Raman Spectrosc. 38(7), 916–926 (2007).
[Crossref]

Voronin, A. A.

A. A. Voronin and A. M. Zheltikov, “Ionization penalty in nonlinear optical bioimaging,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 81(5), 051918 (2010).
[Crossref] [PubMed]

Walker, A. R. H.

C. H. Camp, Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, A. R. H. Walker, J. N. Rich, J. D. Lathia, and M. T. Cicerone, “High-speed coherent Raman fingerprint imaging of biological tissues,” Nat. Photonics 8(8), 627–634 (2014).
[Crossref] [PubMed]

Wang, P.

C.-S. Liao, M. N. Slipchenko, P. Wang, J. Li, S.-Y. Lee, R. A. Oglesbee, and J.-X. Cheng, “Microsecond scale vibrational spectroscopic imaging by multiplex stimulated Raman scattering microscopy,” Light Sci. Appl. 4, e265 (2015).
[Crossref] [PubMed]

Wang, X.

D. Pestov, R. K. Murawski, G. O. Ariunbold, X. Wang, M. Zhi, A. V. Sokolov, V. A. Sautenkov, Y. V. Rostovtsev, A. Dogariu, Y. Huang, and M. O. Scully, “Optimizing the laser-pulse configuration for coherent Raman spectroscopy,” Science 316(5822), 265–268 (2007).
[Crossref] [PubMed]

Wieser, W.

S. Karpf, M. Eibl, W. Wieser, T. Klein, and R. Huber, “A Time-Encoded Technique for fibre-based hyperspectral broadband stimulated Raman microscopy,” Nat. Commun. 6, 6784 (2015).
[Crossref] [PubMed]

Windbergs, M.

M. Windbergs, M. Jurna, H. L. Offerhaus, J. L. Herek, P. Kleinebudde, and C. J. Strachan, “Chemical imaging of oral solid dosage forms and changes upon dissolution using coherent anti-Stokes Raman scattering microscopy,” Anal. Chem. 81(6), 2085–2091 (2009).
[Crossref] [PubMed]

Xie, X. S.

L. Kong, M. Ji, G. R. Holtom, D. Fu, C. W. Freudiger, and X. S. Xie, “Multicolor stimulated Raman scattering microscopy with a rapidly tunable optical parametric oscillator,” Opt. Lett. 38(2), 145–147 (2013).
[Crossref] [PubMed]

D. Fu, G. Holtom, C. Freudiger, X. Zhang, and X. S. Xie, “Hyperspectral imaging with stimulated Raman scattering by chirped femtosecond lasers,” J. Phys. Chem. B 117(16), 4634–4640 (2013).
[Crossref] [PubMed]

D. Fu, F.-K. Lu, X. Zhang, C. Freudiger, D. R. Pernik, G. Holtom, and X. S. Xie, “Quantitative chemical imaging with multiplex stimulated Raman scattering microscopy,” J. Am. Chem. Soc. 134(8), 3623–3626 (2012).
[Crossref] [PubMed]

W. Min, C. W. Freudiger, S. Lu, and X. S. Xie, “Coherent nonlinear optical imaging: beyond fluorescence microscopy,” Annu. Rev. Phys. Chem. 62(1), 507–530 (2011).
[Crossref] [PubMed]

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330(6009), 1368–1370 (2010).
[Crossref] [PubMed]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(46), 16807–16812 (2005).
[Crossref] [PubMed]

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
[Crossref]

Yakovlev, V. V.

R. Arora, G. I. Petrov, J. Liu, and V. V. Yakovlev, “Improving sensitivity in nonlinear Raman microspectroscopy imaging and sensing,” J. Biomed. Opt. 16(2), 021114 (2011).
[Crossref] [PubMed]

Yegnanarayanan, S.

Zhang, X.

D. Fu, G. Holtom, C. Freudiger, X. Zhang, and X. S. Xie, “Hyperspectral imaging with stimulated Raman scattering by chirped femtosecond lasers,” J. Phys. Chem. B 117(16), 4634–4640 (2013).
[Crossref] [PubMed]

D. Fu, F.-K. Lu, X. Zhang, C. Freudiger, D. R. Pernik, G. Holtom, and X. S. Xie, “Quantitative chemical imaging with multiplex stimulated Raman scattering microscopy,” J. Am. Chem. Soc. 134(8), 3623–3626 (2012).
[Crossref] [PubMed]

Zheltikov, A. M.

A. A. Voronin and A. M. Zheltikov, “Ionization penalty in nonlinear optical bioimaging,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 81(5), 051918 (2010).
[Crossref] [PubMed]

Zhi, M.

D. Pestov, R. K. Murawski, G. O. Ariunbold, X. Wang, M. Zhi, A. V. Sokolov, V. A. Sautenkov, Y. V. Rostovtsev, A. Dogariu, Y. Huang, and M. O. Scully, “Optimizing the laser-pulse configuration for coherent Raman spectroscopy,” Science 316(5822), 265–268 (2007).
[Crossref] [PubMed]

Zinth, W.

E. Ploetz, S. Laimgruber, S. Berner, W. Zinth, and P. Gilch, “Femtosecond stimulated Raman microscopy,” Appl. Phys. B 87(3), 389–393 (2007).
[Crossref]

Zumbusch, A.

T. Hellerer, A. M. K. Enejder, and A. Zumbusch, “Spectral focusing: high spectral resolution spectroscopy with broad-bandwidth laser pulses,” Appl. Phys. Lett. 85(1), 25–27 (2004).
[Crossref]

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
[Crossref]

Anal. Chem. (2)

G. V. Oshovsky, G. Rago, J. P. R. Day, M. L. Soudijn, W. Rock, S. H. Parekh, G. Ciancaleoni, J. N. H. Reek, and M. Bonn, “Coherent anti-Stokes Raman scattering microspectroscopic kinetic study of fast hydrogen bond formation in microfluidic devices,” Anal. Chem. 85(19), 8923–8927 (2013).
[Crossref] [PubMed]

M. Windbergs, M. Jurna, H. L. Offerhaus, J. L. Herek, P. Kleinebudde, and C. J. Strachan, “Chemical imaging of oral solid dosage forms and changes upon dissolution using coherent anti-Stokes Raman scattering microscopy,” Anal. Chem. 81(6), 2085–2091 (2009).
[Crossref] [PubMed]

Annu. Rev. Phys. Chem. (1)

W. Min, C. W. Freudiger, S. Lu, and X. S. Xie, “Coherent nonlinear optical imaging: beyond fluorescence microscopy,” Annu. Rev. Phys. Chem. 62(1), 507–530 (2011).
[Crossref] [PubMed]

Appl. Phys. B (2)

E. Ploetz, S. Laimgruber, S. Berner, W. Zinth, and P. Gilch, “Femtosecond stimulated Raman microscopy,” Appl. Phys. B 87(3), 389–393 (2007).
[Crossref]

M. Bradler, P. Baum, and E. Riedle, “Femtosecond continuum generation in bulk laser host materials with sub-μJ pump pulses,” Appl. Phys. B 97(3), 561–574 (2009).
[Crossref]

Appl. Phys. Lett. (3)

T. Hellerer, A. M. K. Enejder, and A. Zumbusch, “Spectral focusing: high spectral resolution spectroscopy with broad-bandwidth laser pulses,” Appl. Phys. Lett. 85(1), 25–27 (2004).
[Crossref]

I. Rocha-Mendoza, W. Langbein, and P. Borri, “Coherent anti-Stokes Raman microspectroscopy using spectral focusing with glass dispersion,” Appl. Phys. Lett. 93(20), 201103 (2008).
[Crossref]

H. Kano and H. Hamaguchi, “Femtosecond coherent anti-Stokes Raman scattering spectroscopy using supercontinuum generated from a photonic crystal fiber,” Appl. Phys. Lett. 85(19), 4298–4300 (2004).
[Crossref]

Biomed. Opt. Express (1)

Electron. Lett. (1)

A. Bhushan, F. Coppinger, and B. Jalali, “Time-stretched analogue-to-digital conversion,” Electron. Lett. 34(9), 839–841 (1998).
[Crossref]

IEEE Trans. Microw. Theory (1)

F. Coppinger, A. S. Bhushan, and B. Jalali, “Photonic time stretch and its application to analog-to-digital conversion,” IEEE Trans. Microw. Theory 47(7), 1309–1314 (1999).
[Crossref]

J. Am. Chem. Soc. (1)

D. Fu, F.-K. Lu, X. Zhang, C. Freudiger, D. R. Pernik, G. Holtom, and X. S. Xie, “Quantitative chemical imaging with multiplex stimulated Raman scattering microscopy,” J. Am. Chem. Soc. 134(8), 3623–3626 (2012).
[Crossref] [PubMed]

J. Biomed. Opt. (1)

R. Arora, G. I. Petrov, J. Liu, and V. V. Yakovlev, “Improving sensitivity in nonlinear Raman microspectroscopy imaging and sensing,” J. Biomed. Opt. 16(2), 021114 (2011).
[Crossref] [PubMed]

J. Phys. Chem. B (1)

D. Fu, G. Holtom, C. Freudiger, X. Zhang, and X. S. Xie, “Hyperspectral imaging with stimulated Raman scattering by chirped femtosecond lasers,” J. Phys. Chem. B 117(16), 4634–4640 (2013).
[Crossref] [PubMed]

J. Phys. D (1)

K. Seto, Y. Okuda, E. Tokunaga, and T. Kobayashi, “Multiplex stimulated Raman imaging with white probe light from a photonic-crystal fibre and with multi-wavelength balanced detection,” J. Phys. D 47(34), 345401 (2014).
[Crossref]

J. Raman Spectrosc. (2)

B. von Vacano, L. Meyer, and M. Motzkus, “Rapid polymer blend imaging with quantitative broadband multiplex CARS microscopy,” J. Raman Spectrosc. 38(7), 916–926 (2007).
[Crossref]

M. T. Cicerone, K. A. Aamer, Y. J. Lee, and E. Vartiainen, “Maximum entropy and time-domain Kramers-Kronig phase retrieval approaches are functionally equivalent for CARS microspectroscopy,” J. Raman Spectrosc. 43(5), 637–643 (2012).
[Crossref]

Laser Photonics Rev. (1)

A. M. Fard, S. Gupta, and B. Jalali, “Photonic time-stretch digitizer and its extension to real-time spectroscopy and imaging,” Laser Photonics Rev. 7(2), 207–263 (2013).
[Crossref]

Light Sci. Appl. (1)

C.-S. Liao, M. N. Slipchenko, P. Wang, J. Li, S.-Y. Lee, R. A. Oglesbee, and J.-X. Cheng, “Microsecond scale vibrational spectroscopic imaging by multiplex stimulated Raman scattering microscopy,” Light Sci. Appl. 4, e265 (2015).
[Crossref] [PubMed]

Nat. Commun. (1)

S. Karpf, M. Eibl, W. Wieser, T. Klein, and R. Huber, “A Time-Encoded Technique for fibre-based hyperspectral broadband stimulated Raman microscopy,” Nat. Commun. 6, 6784 (2015).
[Crossref] [PubMed]

Nat. Photonics (4)

Y. Ozeki, W. Umemura, Y. Otsuka, S. Satoh, H. Hashimoto, K. Sumimura, N. Nishizawa, K. Fukui, and K. Itoh, “High-speed molecular spectral imaging of tissue with stimulated Raman scattering,” Nat. Photonics 6(12), 845–851 (2012).
[Crossref]

C. H. Camp and M. T. Cicerone, “Chemically sensitive bioimaging with coherent Raman scattering,” Nat. Photonics 9(5), 295–305 (2015).
[Crossref]

C. H. Camp, Y. J. Lee, J. M. Heddleston, C. M. Hartshorn, A. R. H. Walker, J. N. Rich, J. D. Lathia, and M. T. Cicerone, “High-speed coherent Raman fingerprint imaging of biological tissues,” Nat. Photonics 8(8), 627–634 (2014).
[Crossref] [PubMed]

G. Herink, B. Jalali, C. Ropers, and D. R. Solli, “Resolving the build-up of femtosecond mode-locking with single-shot spectroscopy at 90 MHz frame rate,” Nat. Photonics 10(5), 321–326 (2016).
[Crossref]

Nature (2)

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450(7172), 1054–1057 (2007).
[Crossref] [PubMed]

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502(7471), 355–358 (2013).
[Crossref] [PubMed]

New J. Phys. (1)

P. Nandakumar, A. Kovalev, and A. Volkmer, “Vibrational imaging based on stimulated Raman scattering microscopy,” New J. Phys. 11(3), 033026 (2009).
[Crossref]

Nucleic Acids Res. (1)

D. Träutlein, M. Deibler, A. Leitenstorfer, and E. Ferrando-May, “Specific local induction of DNA strand breaks by infrared multi-photon absorption,” Nucleic Acids Res. 38(3), e14 (2010).
[Crossref] [PubMed]

Opt. Express (5)

Opt. Lett. (4)

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

A. A. Voronin and A. M. Zheltikov, “Ionization penalty in nonlinear optical bioimaging,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 81(5), 051918 (2010).
[Crossref] [PubMed]

Phys. Rev. Lett. (2)

P. Berto, E. R. Andresen, and H. Rigneault, “Background-free stimulated Raman spectroscopy and microscopy,” Phys. Rev. Lett. 112(5), 053905 (2014).
[Crossref] [PubMed]

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
[Crossref]

Proc. Natl. Acad. Sci. U.S.A. (1)

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(46), 16807–16812 (2005).
[Crossref] [PubMed]

Rev. Sci. Instrum. (1)

K. Seto, Y. Okuda, E. Tokunaga, and T. Kobayashi, “Development of a multiplex stimulated Raman microscope for spectral imaging through multi-channel lock-in detection,” Rev. Sci. Instrum. 84(8), 083705 (2013).
[Crossref] [PubMed]

Sci. Rep. (1)

K. Hashimoto, M. Takahashi, T. Ideguchi, and K. Goda, “Broadband coherent Raman spectroscopy running at 24,000 spectra per second,” Sci. Rep. 6, 21036 (2016).
[Crossref] [PubMed]

Science (4)

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008).
[Crossref] [PubMed]

D. Pestov, R. K. Murawski, G. O. Ariunbold, X. Wang, M. Zhi, A. V. Sokolov, V. A. Sautenkov, Y. V. Rostovtsev, A. Dogariu, Y. Huang, and M. O. Scully, “Optimizing the laser-pulse configuration for coherent Raman spectroscopy,” Science 316(5822), 265–268 (2007).
[Crossref] [PubMed]

B. G. Saar, C. W. Freudiger, J. Reichman, C. M. Stanley, G. R. Holtom, and X. S. Xie, “Video-rate molecular imaging in vivo with stimulated Raman scattering,” Science 330(6009), 1368–1370 (2010).
[Crossref] [PubMed]

P. R. Poulin and K. A. Nelson, “Irreversible organic crystalline chemistry monitored in real time,” Science 313(5794), 1756–1760 (2006).
[Crossref] [PubMed]

Other (5)

F. Preda, V. Kumar, F. Crisafi, D. G. Figueroa Del Valle, G. Cerullo, and D. Polli, “Broadband pump-probe spectroscopy at 20-MHz modulation frequency,” Opt. Lett. 41(13), doc. ID 263685 (Posted 25 May 2016, in press).
[Crossref]

G. Agrawal, Nonlinear fiber optics (Academic, 2012).

G. Turrell and J. Corset, Raman microscopy: developments and applications (Academic, 1996).

M. Ghomi, Applications of Raman spectroscopy to biology: from basic studies to disease diagnosis (IOS, 2012).

W. H. Weber and R. Merlin, Raman scattering in materials science (Springer, 2000).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Experimental setup of the PTS-SRS. BS: beam splitter; AOM: Acousto-optic modulator; LWPF: long-wave-pass filter; DM: dichroic mirror; OBJ., microscope objectives; PD: photodiode.
Fig. 2
Fig. 2 Calibration of the PTS. (a) Stokes temporal traces acquired with the oscilloscope (red continuous line) and corresponding Stokes spectrum acquired with the OMA (blue dotted line) (b) Time-wavelength calibration curve.
Fig. 3
Fig. 3 (a) Stokes spectra obtained with the PTS setup in the presence (black line) and in the absence (red line) of the pump pulse. The inset highlights the spectral differences due to SRG in the methanol sample. (b) Corresponding SRG spectrum of methanol obtained by PTS-SRS technique (black solid line). As a dashed orange line we also reported a reference spontaneous Raman spectrum of methanol, adapted from [8].
Fig. 4
Fig. 4 Sensitivity of the PTS-SRS. (a) Wavelength-dependent rms of the SRG for different numbers of laser shots N, measured with the 12-bit oscilloscope. (b) rms of the SRG as a function of N for the 8-bit (triangles) and the 12-bit (circles) oscilloscopes. Dashed lines are fits to the data with a/ N functions.
Fig. 5
Fig. 5 SRS spectrum of different solvents. Each spectrum is obtained acquiring N = 8 consecutive pulses (100µs acquisition time) for the 12-bit (a) and 8-bit (b) oscilloscope. Orange dashed line in (b) is a reference spontaneous Raman spectrum of methanol, adapted from [8]. Pump energy was 200nJ on the sample. The cyclohexane signal has been divided by 4 for comparison.
Fig. 6
Fig. 6 (a) SRG on the acetone peak at 2940cm−1 as a function of the pump energy. Measurements were performed using the 12-bit oscilloscope. Inset: SRS spectrum of acetone acquired with 0.27-nJ pump energy and averaging over 104 laser shots (125-ms total measurement time). (b) Dilution test of methanol in water. Inset: SRG of the 2840 cm−1 peak as a function of methanol concentration.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

T(λ)=T( λ 0 )+ λ 0 λ D( λ )Ld λ

Metrics