Abstract

A new type of fiber optic relative humidity (RH) sensor based on an agarose coated silica microsphere resonator is proposed and experimentally demonstrated. Whispering gallery modes (WGMs) in the micro resonator are excited by evanescent coupling using a tapered fiber with ~3.3 µm waist diameter. A change in the relative humidity of the surrounding the resonator air induces changes in the refractive index (RI) and thickness of the Agarose coating layer. These changes in turn lead to a spectral shift of the WGM resonances, which can be related to the RH value after a suitable calibration. Studies of the repeatability, long-term stability, measurement accuracy and temperature dependence of the proposed sensor are carried out. The RH sensitivity of the proposed sensor depends on the concentration of the agarose gel which determines the initial thickness of the deposited coating layer. Studies of the micro- resonators with coating layers fabricated from gels with three different Agarose concentrations of 0.5%, 1.125% and 2.25 wt./vol.% showed that an increase in the initial thickness of the coating material results in an increase in sensitivity but also leads to a decrease of quality factor (Q) of the micro resonator. The highest sensitivity achieved in our experiments was 518 pm/%RH in the RH range from 30% to 70%. The proposed sensor offers the advantages of a very compact form factor, low hysteresis, good repeatability, and low cross sensitivity to temperature.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Study of the influence of the agarose hydrogel layer thickness on sensitivity of the coated silica microsphere resonator to humidity

Arun Kumar Mallik, Gerald Farrell, Qiang Wu, and Yuliya Semenova
Appl. Opt. 56(14) 4065-4069 (2017)

Agarose gel-coated LPG based on two sensing mechanisms for relative humidity measurement

Yinping Miao, Kaikiang Zhang, Yujie Yuam, Bo Liu, Hao Zhang, Yan Liu, and Jianquan Yao
Appl. Opt. 52(1) 90-95 (2013)

Effect of coating thickness on the sensitivity of a humidity sensor based on an Agarose coated photonic crystal fiber interferometer

Jinesh Mathew, Yuliya Semenova, and Gerald Farrell
Opt. Express 21(5) 6313-6320 (2013)

References

  • View by:
  • |
  • |
  • |

  1. F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant micro cavity,” Appl. Phys. Lett. 80(21), 4057–4059 (2002).
    [Crossref]
  2. S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, and F. Vollmer, “Shift of whispering-gallery modes in microspheres by protein adsorption,” Opt. Lett. 28(4), 272–274 (2003).
    [Crossref] [PubMed]
  3. W. Fang, D. B. Buchholz, R. C. Bailey, J. T. Hupp, R. P. H. Chang, and H. Cao, “Detection of chemical species using ultraviolet microdisk lasers,” Appl. Phys. Lett. 85(17), 3666–3668 (2004).
    [Crossref]
  4. T. Ling and L. J. Guo, “A unique resonance mode observed in a prism-coupled micro-tube resonator sensor with superior index sensitivity,” Opt. Express 15(25), 17424–17432 (2007).
    [Crossref] [PubMed]
  5. E. Krioukov, D. J. W. Klunder, A. Driessen, J. Greve, and C. Otto, “Sensor based on an integrated optical microcavity,” Opt. Lett. 27(7), 512–514 (2002).
    [Crossref] [PubMed]
  6. V. S. Ilchenko, P. S. Volikov, V. L. Velichansky, F. Treussart, V. Lefèvre-Seguin, J.-M. Raimond, and S. Haroche, “Strain tunable High-Q optical microsphere resonator,” Opt. Commun. 145(1-6), 86–90 (1998).
    [Crossref]
  7. N. Lin, L. Jiang, S. Wang, Q. Chen, H. Xiao, Y. Lu, and H. Tsai, “Simulation and optimization of polymer-coated microsphere resonators in chemical vapor sensing,” Appl. Opt. 50(28), 5465–5472 (2011).
    [Crossref] [PubMed]
  8. P. R. Story, D. W. Galipeau, and R. D. Mileham, “A study of low-cost sensors for measuring low relative humidity,” Sens. Actuator. Biol. Chem. 25(1–3), 681–685 (1995).
  9. A. Raichur and H. Pedersen, “Fiber optic moisture sensor for baking and drying process control,” Proc. Food Processing Automation IV, Am. Soc. Agric. Eng. 180–189 (1995).
  10. Z. Chen and C. Lu, “Humidity sensors: a review of materials and mechanisms,” Sens. Lett. 3(4), 274–295 (2005).
    [Crossref]
  11. H. E. Posch and O. S. Wolfbeis, “Optical sensors, 13: fibre-optic humidity sensor based on fluorescence quenching,” Sens. Actuators 15(1), 77–83 (1988).
    [Crossref]
  12. F. J. Arregui, I. R. Matias, K. L. Cooper, and R. O. Claus, “Simultaneous measurement of humidity and temperature by combining a reflective intensity-based optical fiber sensor and a fiber Bragg grating,” IEEE Sens. J. 2(5), 482–487 (2002).
    [Crossref]
  13. J. M. Corres, I. R. Matias, M. Hernaez, J. Bravo, and F. J. Arregui, “Optical Fiber Humidity Sensors Using Nano structured Coatings of SiO2 Nano particles,” IEEE Sens. J. 8(3), 281–285 (2008).
    [Crossref]
  14. M. Hernáez, C. R. Zamarreño, I. R. Matías, and F. J. Arregui, “Optical fiber humidity sensor based on surface plasmon resonance in the infra-red region,” JPCS 178, 012019 (2009).
  15. M. Yinping, L. Bo, Z. Hao, L. Yuan, Z. Haibin, S. Hua, Z. Weihua, and Z. Qida, “Relative humidity sensor based on tilted fiber Bragg grating with polyvinyl alcohol coating,” IEEE Photonics Technol. Lett. 21(7), 441–443 (2009).
    [Crossref]
  16. A. Gastón, F. Pérez, and J. Sevilla, “Optical fiber relative-humidity sensor with polyvinyl alcohol film,” Appl. Opt. 43(21), 4127–4132 (2004).
    [Crossref] [PubMed]
  17. S. Acikgoz, B. Bilen, M. M. Demir, Y. Z. Menceloglu, Y. Skarlatos, G. Aktas, and M. N. Inci, “Use of polyethylene glycol coatings for optical fiber humidity sensing,” Opt. Rev. 15(2), 84–90 (2008).
    [Crossref]
  18. C. Barian, I. Matias, F. Arregui, and M. Lopez-Amo, “Optical fiber humidity sensor based on a tapered fiber coated with agarose gel,” Sens. Actuator. Biol. Chem. 69, 127–131 (2000).
  19. K. J. Lee, D. Wawro, P. S. Priambodo, and R. Magnusson, “Agarose-gel based guided-mode resonance humidity sensor,” IEEE Sens. J. 7(3), 409–414 (2007).
    [Crossref]
  20. N. M. Doliba, S. L. Wehrli, A. M. Babsky, N. M. Doliba, and M. D. Osbakken, “Encapsulation and perfusion of mitochondria in agarose beads for functional studies with P-NMR spectroscopy,” Magn. Reson. Med. 39(5), 679–684 (1998).
    [Crossref] [PubMed]
  21. O. Iglesias, A. Garcıa, M. Roques, and J. L. Bueno, “Drying of water gels: determination of the characteristic curve of agar–agar,” Dry. Technol. 11(3), 571–587 (1993).
    [Crossref]
  22. J. Mathew, Y. Semenova, G. Rajan, P. Wang, and G. Farrell, “Improving the sensitivity of a humidity sensor based on fiber bend coated with a hygroscopic coating,” Opt. Laser Technol. 43(7), 1301–1305 (2011).
    [Crossref]
  23. Q. Wu, Y. Semenova, J. Mathew, P. Wang, and G. Farrell, “Humidity sensor based on a single-mode hetero-core fiber structure,” Opt. Lett. 36(10), 1752–1754 (2011).
    [Crossref] [PubMed]
  24. G. Brambilla, V. Finazzi, and D. Richardson, “Ultra-low-loss optical fiber nanotapers,” Opt. Express 12(10), 2258–2263 (2004).
    [Crossref] [PubMed]
  25. T. A. Birks and Y. W. Li, “The shape of fiber tapers,” J. Lightwave Technol. 10(4), 432–438 (1992).
    [Crossref]
  26. H. Kurihara, S. Torigoe, M. Omura, K. Saito, M. Kurihara, and S. Matsubara, “DNA fragmentation induced by a cytoplasmic extract from irradiated cells,” Radiat. Res. 150(3), 269–274 (1998).
    [Crossref] [PubMed]
  27. M. L. Gorodetsky, A. A. Savchenkov, and V. S. Ilchenko, “Ultimate Q of optical microsphere resonators,” Opt. Lett. 21(7), 453–455 (1996).
    [Crossref] [PubMed]
  28. B. E. Little, J.-P. Laine, and H. A. Haus, “Analytic Theory of coupling from tapered fibers and half-blocks into Microsphere Resonators,” J. Lightwave Technol. 17(4), 704–715 (1999).
    [Crossref]
  29. Y. Miao, K. Zhang, Y. Yuam, B. Liu, H. Zhang, Y. Liu, and J. Yao, “Agarose gel-coated LPG based on two sensing mechanisms for relative humidity measurement,” Appl. Opt. 52(1), 90–95 (2013).
    [Crossref] [PubMed]
  30. J. Mathew, Y. Semenova, and G. Farrell, “Experimental demonstration of a high-sensitivity humidity sensor based on an Agarose-coated transmission-type photonic crystal fiber interferometer,” Appl. Opt. 52(16), 3884–3890 (2013).
    [Crossref] [PubMed]
  31. I. M. White and X. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express 16(2), 1020–1028 (2008).
    [Crossref] [PubMed]

2013 (2)

2011 (3)

2009 (2)

M. Hernáez, C. R. Zamarreño, I. R. Matías, and F. J. Arregui, “Optical fiber humidity sensor based on surface plasmon resonance in the infra-red region,” JPCS 178, 012019 (2009).

M. Yinping, L. Bo, Z. Hao, L. Yuan, Z. Haibin, S. Hua, Z. Weihua, and Z. Qida, “Relative humidity sensor based on tilted fiber Bragg grating with polyvinyl alcohol coating,” IEEE Photonics Technol. Lett. 21(7), 441–443 (2009).
[Crossref]

2008 (3)

S. Acikgoz, B. Bilen, M. M. Demir, Y. Z. Menceloglu, Y. Skarlatos, G. Aktas, and M. N. Inci, “Use of polyethylene glycol coatings for optical fiber humidity sensing,” Opt. Rev. 15(2), 84–90 (2008).
[Crossref]

J. M. Corres, I. R. Matias, M. Hernaez, J. Bravo, and F. J. Arregui, “Optical Fiber Humidity Sensors Using Nano structured Coatings of SiO2 Nano particles,” IEEE Sens. J. 8(3), 281–285 (2008).
[Crossref]

I. M. White and X. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express 16(2), 1020–1028 (2008).
[Crossref] [PubMed]

2007 (2)

K. J. Lee, D. Wawro, P. S. Priambodo, and R. Magnusson, “Agarose-gel based guided-mode resonance humidity sensor,” IEEE Sens. J. 7(3), 409–414 (2007).
[Crossref]

T. Ling and L. J. Guo, “A unique resonance mode observed in a prism-coupled micro-tube resonator sensor with superior index sensitivity,” Opt. Express 15(25), 17424–17432 (2007).
[Crossref] [PubMed]

2005 (1)

Z. Chen and C. Lu, “Humidity sensors: a review of materials and mechanisms,” Sens. Lett. 3(4), 274–295 (2005).
[Crossref]

2004 (3)

2003 (1)

2002 (3)

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant micro cavity,” Appl. Phys. Lett. 80(21), 4057–4059 (2002).
[Crossref]

E. Krioukov, D. J. W. Klunder, A. Driessen, J. Greve, and C. Otto, “Sensor based on an integrated optical microcavity,” Opt. Lett. 27(7), 512–514 (2002).
[Crossref] [PubMed]

F. J. Arregui, I. R. Matias, K. L. Cooper, and R. O. Claus, “Simultaneous measurement of humidity and temperature by combining a reflective intensity-based optical fiber sensor and a fiber Bragg grating,” IEEE Sens. J. 2(5), 482–487 (2002).
[Crossref]

2000 (1)

C. Barian, I. Matias, F. Arregui, and M. Lopez-Amo, “Optical fiber humidity sensor based on a tapered fiber coated with agarose gel,” Sens. Actuator. Biol. Chem. 69, 127–131 (2000).

1999 (1)

1998 (3)

H. Kurihara, S. Torigoe, M. Omura, K. Saito, M. Kurihara, and S. Matsubara, “DNA fragmentation induced by a cytoplasmic extract from irradiated cells,” Radiat. Res. 150(3), 269–274 (1998).
[Crossref] [PubMed]

N. M. Doliba, S. L. Wehrli, A. M. Babsky, N. M. Doliba, and M. D. Osbakken, “Encapsulation and perfusion of mitochondria in agarose beads for functional studies with P-NMR spectroscopy,” Magn. Reson. Med. 39(5), 679–684 (1998).
[Crossref] [PubMed]

V. S. Ilchenko, P. S. Volikov, V. L. Velichansky, F. Treussart, V. Lefèvre-Seguin, J.-M. Raimond, and S. Haroche, “Strain tunable High-Q optical microsphere resonator,” Opt. Commun. 145(1-6), 86–90 (1998).
[Crossref]

1996 (1)

1995 (1)

P. R. Story, D. W. Galipeau, and R. D. Mileham, “A study of low-cost sensors for measuring low relative humidity,” Sens. Actuator. Biol. Chem. 25(1–3), 681–685 (1995).

1993 (1)

O. Iglesias, A. Garcıa, M. Roques, and J. L. Bueno, “Drying of water gels: determination of the characteristic curve of agar–agar,” Dry. Technol. 11(3), 571–587 (1993).
[Crossref]

1992 (1)

T. A. Birks and Y. W. Li, “The shape of fiber tapers,” J. Lightwave Technol. 10(4), 432–438 (1992).
[Crossref]

1988 (1)

H. E. Posch and O. S. Wolfbeis, “Optical sensors, 13: fibre-optic humidity sensor based on fluorescence quenching,” Sens. Actuators 15(1), 77–83 (1988).
[Crossref]

Acikgoz, S.

S. Acikgoz, B. Bilen, M. M. Demir, Y. Z. Menceloglu, Y. Skarlatos, G. Aktas, and M. N. Inci, “Use of polyethylene glycol coatings for optical fiber humidity sensing,” Opt. Rev. 15(2), 84–90 (2008).
[Crossref]

Aktas, G.

S. Acikgoz, B. Bilen, M. M. Demir, Y. Z. Menceloglu, Y. Skarlatos, G. Aktas, and M. N. Inci, “Use of polyethylene glycol coatings for optical fiber humidity sensing,” Opt. Rev. 15(2), 84–90 (2008).
[Crossref]

Arnold, S.

S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, and F. Vollmer, “Shift of whispering-gallery modes in microspheres by protein adsorption,” Opt. Lett. 28(4), 272–274 (2003).
[Crossref] [PubMed]

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant micro cavity,” Appl. Phys. Lett. 80(21), 4057–4059 (2002).
[Crossref]

Arregui, F.

C. Barian, I. Matias, F. Arregui, and M. Lopez-Amo, “Optical fiber humidity sensor based on a tapered fiber coated with agarose gel,” Sens. Actuator. Biol. Chem. 69, 127–131 (2000).

Arregui, F. J.

M. Hernáez, C. R. Zamarreño, I. R. Matías, and F. J. Arregui, “Optical fiber humidity sensor based on surface plasmon resonance in the infra-red region,” JPCS 178, 012019 (2009).

J. M. Corres, I. R. Matias, M. Hernaez, J. Bravo, and F. J. Arregui, “Optical Fiber Humidity Sensors Using Nano structured Coatings of SiO2 Nano particles,” IEEE Sens. J. 8(3), 281–285 (2008).
[Crossref]

F. J. Arregui, I. R. Matias, K. L. Cooper, and R. O. Claus, “Simultaneous measurement of humidity and temperature by combining a reflective intensity-based optical fiber sensor and a fiber Bragg grating,” IEEE Sens. J. 2(5), 482–487 (2002).
[Crossref]

Babsky, A. M.

N. M. Doliba, S. L. Wehrli, A. M. Babsky, N. M. Doliba, and M. D. Osbakken, “Encapsulation and perfusion of mitochondria in agarose beads for functional studies with P-NMR spectroscopy,” Magn. Reson. Med. 39(5), 679–684 (1998).
[Crossref] [PubMed]

Bailey, R. C.

W. Fang, D. B. Buchholz, R. C. Bailey, J. T. Hupp, R. P. H. Chang, and H. Cao, “Detection of chemical species using ultraviolet microdisk lasers,” Appl. Phys. Lett. 85(17), 3666–3668 (2004).
[Crossref]

Barian, C.

C. Barian, I. Matias, F. Arregui, and M. Lopez-Amo, “Optical fiber humidity sensor based on a tapered fiber coated with agarose gel,” Sens. Actuator. Biol. Chem. 69, 127–131 (2000).

Bilen, B.

S. Acikgoz, B. Bilen, M. M. Demir, Y. Z. Menceloglu, Y. Skarlatos, G. Aktas, and M. N. Inci, “Use of polyethylene glycol coatings for optical fiber humidity sensing,” Opt. Rev. 15(2), 84–90 (2008).
[Crossref]

Birks, T. A.

T. A. Birks and Y. W. Li, “The shape of fiber tapers,” J. Lightwave Technol. 10(4), 432–438 (1992).
[Crossref]

Bo, L.

M. Yinping, L. Bo, Z. Hao, L. Yuan, Z. Haibin, S. Hua, Z. Weihua, and Z. Qida, “Relative humidity sensor based on tilted fiber Bragg grating with polyvinyl alcohol coating,” IEEE Photonics Technol. Lett. 21(7), 441–443 (2009).
[Crossref]

Brambilla, G.

Braun, D.

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant micro cavity,” Appl. Phys. Lett. 80(21), 4057–4059 (2002).
[Crossref]

Bravo, J.

J. M. Corres, I. R. Matias, M. Hernaez, J. Bravo, and F. J. Arregui, “Optical Fiber Humidity Sensors Using Nano structured Coatings of SiO2 Nano particles,” IEEE Sens. J. 8(3), 281–285 (2008).
[Crossref]

Buchholz, D. B.

W. Fang, D. B. Buchholz, R. C. Bailey, J. T. Hupp, R. P. H. Chang, and H. Cao, “Detection of chemical species using ultraviolet microdisk lasers,” Appl. Phys. Lett. 85(17), 3666–3668 (2004).
[Crossref]

Bueno, J. L.

O. Iglesias, A. Garcıa, M. Roques, and J. L. Bueno, “Drying of water gels: determination of the characteristic curve of agar–agar,” Dry. Technol. 11(3), 571–587 (1993).
[Crossref]

Cao, H.

W. Fang, D. B. Buchholz, R. C. Bailey, J. T. Hupp, R. P. H. Chang, and H. Cao, “Detection of chemical species using ultraviolet microdisk lasers,” Appl. Phys. Lett. 85(17), 3666–3668 (2004).
[Crossref]

Chang, R. P. H.

W. Fang, D. B. Buchholz, R. C. Bailey, J. T. Hupp, R. P. H. Chang, and H. Cao, “Detection of chemical species using ultraviolet microdisk lasers,” Appl. Phys. Lett. 85(17), 3666–3668 (2004).
[Crossref]

Chen, Q.

Chen, Z.

Z. Chen and C. Lu, “Humidity sensors: a review of materials and mechanisms,” Sens. Lett. 3(4), 274–295 (2005).
[Crossref]

Claus, R. O.

F. J. Arregui, I. R. Matias, K. L. Cooper, and R. O. Claus, “Simultaneous measurement of humidity and temperature by combining a reflective intensity-based optical fiber sensor and a fiber Bragg grating,” IEEE Sens. J. 2(5), 482–487 (2002).
[Crossref]

Cooper, K. L.

F. J. Arregui, I. R. Matias, K. L. Cooper, and R. O. Claus, “Simultaneous measurement of humidity and temperature by combining a reflective intensity-based optical fiber sensor and a fiber Bragg grating,” IEEE Sens. J. 2(5), 482–487 (2002).
[Crossref]

Corres, J. M.

J. M. Corres, I. R. Matias, M. Hernaez, J. Bravo, and F. J. Arregui, “Optical Fiber Humidity Sensors Using Nano structured Coatings of SiO2 Nano particles,” IEEE Sens. J. 8(3), 281–285 (2008).
[Crossref]

Demir, M. M.

S. Acikgoz, B. Bilen, M. M. Demir, Y. Z. Menceloglu, Y. Skarlatos, G. Aktas, and M. N. Inci, “Use of polyethylene glycol coatings for optical fiber humidity sensing,” Opt. Rev. 15(2), 84–90 (2008).
[Crossref]

Doliba, N. M.

N. M. Doliba, S. L. Wehrli, A. M. Babsky, N. M. Doliba, and M. D. Osbakken, “Encapsulation and perfusion of mitochondria in agarose beads for functional studies with P-NMR spectroscopy,” Magn. Reson. Med. 39(5), 679–684 (1998).
[Crossref] [PubMed]

N. M. Doliba, S. L. Wehrli, A. M. Babsky, N. M. Doliba, and M. D. Osbakken, “Encapsulation and perfusion of mitochondria in agarose beads for functional studies with P-NMR spectroscopy,” Magn. Reson. Med. 39(5), 679–684 (1998).
[Crossref] [PubMed]

Driessen, A.

Fan, X.

Fang, W.

W. Fang, D. B. Buchholz, R. C. Bailey, J. T. Hupp, R. P. H. Chang, and H. Cao, “Detection of chemical species using ultraviolet microdisk lasers,” Appl. Phys. Lett. 85(17), 3666–3668 (2004).
[Crossref]

Farrell, G.

Finazzi, V.

Galipeau, D. W.

P. R. Story, D. W. Galipeau, and R. D. Mileham, “A study of low-cost sensors for measuring low relative humidity,” Sens. Actuator. Biol. Chem. 25(1–3), 681–685 (1995).

Garcia, A.

O. Iglesias, A. Garcıa, M. Roques, and J. L. Bueno, “Drying of water gels: determination of the characteristic curve of agar–agar,” Dry. Technol. 11(3), 571–587 (1993).
[Crossref]

Gastón, A.

Gorodetsky, M. L.

Greve, J.

Guo, L. J.

Haibin, Z.

M. Yinping, L. Bo, Z. Hao, L. Yuan, Z. Haibin, S. Hua, Z. Weihua, and Z. Qida, “Relative humidity sensor based on tilted fiber Bragg grating with polyvinyl alcohol coating,” IEEE Photonics Technol. Lett. 21(7), 441–443 (2009).
[Crossref]

Hao, Z.

M. Yinping, L. Bo, Z. Hao, L. Yuan, Z. Haibin, S. Hua, Z. Weihua, and Z. Qida, “Relative humidity sensor based on tilted fiber Bragg grating with polyvinyl alcohol coating,” IEEE Photonics Technol. Lett. 21(7), 441–443 (2009).
[Crossref]

Haroche, S.

V. S. Ilchenko, P. S. Volikov, V. L. Velichansky, F. Treussart, V. Lefèvre-Seguin, J.-M. Raimond, and S. Haroche, “Strain tunable High-Q optical microsphere resonator,” Opt. Commun. 145(1-6), 86–90 (1998).
[Crossref]

Haus, H. A.

Hernaez, M.

J. M. Corres, I. R. Matias, M. Hernaez, J. Bravo, and F. J. Arregui, “Optical Fiber Humidity Sensors Using Nano structured Coatings of SiO2 Nano particles,” IEEE Sens. J. 8(3), 281–285 (2008).
[Crossref]

Hernáez, M.

M. Hernáez, C. R. Zamarreño, I. R. Matías, and F. J. Arregui, “Optical fiber humidity sensor based on surface plasmon resonance in the infra-red region,” JPCS 178, 012019 (2009).

Holler, S.

Hua, S.

M. Yinping, L. Bo, Z. Hao, L. Yuan, Z. Haibin, S. Hua, Z. Weihua, and Z. Qida, “Relative humidity sensor based on tilted fiber Bragg grating with polyvinyl alcohol coating,” IEEE Photonics Technol. Lett. 21(7), 441–443 (2009).
[Crossref]

Hupp, J. T.

W. Fang, D. B. Buchholz, R. C. Bailey, J. T. Hupp, R. P. H. Chang, and H. Cao, “Detection of chemical species using ultraviolet microdisk lasers,” Appl. Phys. Lett. 85(17), 3666–3668 (2004).
[Crossref]

Iglesias, O.

O. Iglesias, A. Garcıa, M. Roques, and J. L. Bueno, “Drying of water gels: determination of the characteristic curve of agar–agar,” Dry. Technol. 11(3), 571–587 (1993).
[Crossref]

Ilchenko, V. S.

V. S. Ilchenko, P. S. Volikov, V. L. Velichansky, F. Treussart, V. Lefèvre-Seguin, J.-M. Raimond, and S. Haroche, “Strain tunable High-Q optical microsphere resonator,” Opt. Commun. 145(1-6), 86–90 (1998).
[Crossref]

M. L. Gorodetsky, A. A. Savchenkov, and V. S. Ilchenko, “Ultimate Q of optical microsphere resonators,” Opt. Lett. 21(7), 453–455 (1996).
[Crossref] [PubMed]

Inci, M. N.

S. Acikgoz, B. Bilen, M. M. Demir, Y. Z. Menceloglu, Y. Skarlatos, G. Aktas, and M. N. Inci, “Use of polyethylene glycol coatings for optical fiber humidity sensing,” Opt. Rev. 15(2), 84–90 (2008).
[Crossref]

Jiang, L.

Khoshsima, M.

S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, and F. Vollmer, “Shift of whispering-gallery modes in microspheres by protein adsorption,” Opt. Lett. 28(4), 272–274 (2003).
[Crossref] [PubMed]

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant micro cavity,” Appl. Phys. Lett. 80(21), 4057–4059 (2002).
[Crossref]

Klunder, D. J. W.

Krioukov, E.

Kurihara, H.

H. Kurihara, S. Torigoe, M. Omura, K. Saito, M. Kurihara, and S. Matsubara, “DNA fragmentation induced by a cytoplasmic extract from irradiated cells,” Radiat. Res. 150(3), 269–274 (1998).
[Crossref] [PubMed]

Kurihara, M.

H. Kurihara, S. Torigoe, M. Omura, K. Saito, M. Kurihara, and S. Matsubara, “DNA fragmentation induced by a cytoplasmic extract from irradiated cells,” Radiat. Res. 150(3), 269–274 (1998).
[Crossref] [PubMed]

Laine, J.-P.

Lee, K. J.

K. J. Lee, D. Wawro, P. S. Priambodo, and R. Magnusson, “Agarose-gel based guided-mode resonance humidity sensor,” IEEE Sens. J. 7(3), 409–414 (2007).
[Crossref]

Lefèvre-Seguin, V.

V. S. Ilchenko, P. S. Volikov, V. L. Velichansky, F. Treussart, V. Lefèvre-Seguin, J.-M. Raimond, and S. Haroche, “Strain tunable High-Q optical microsphere resonator,” Opt. Commun. 145(1-6), 86–90 (1998).
[Crossref]

Li, Y. W.

T. A. Birks and Y. W. Li, “The shape of fiber tapers,” J. Lightwave Technol. 10(4), 432–438 (1992).
[Crossref]

Libchaber, A.

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant micro cavity,” Appl. Phys. Lett. 80(21), 4057–4059 (2002).
[Crossref]

Lin, N.

Ling, T.

Little, B. E.

Liu, B.

Liu, Y.

Lopez-Amo, M.

C. Barian, I. Matias, F. Arregui, and M. Lopez-Amo, “Optical fiber humidity sensor based on a tapered fiber coated with agarose gel,” Sens. Actuator. Biol. Chem. 69, 127–131 (2000).

Lu, C.

Z. Chen and C. Lu, “Humidity sensors: a review of materials and mechanisms,” Sens. Lett. 3(4), 274–295 (2005).
[Crossref]

Lu, Y.

Magnusson, R.

K. J. Lee, D. Wawro, P. S. Priambodo, and R. Magnusson, “Agarose-gel based guided-mode resonance humidity sensor,” IEEE Sens. J. 7(3), 409–414 (2007).
[Crossref]

Mathew, J.

Matias, I.

C. Barian, I. Matias, F. Arregui, and M. Lopez-Amo, “Optical fiber humidity sensor based on a tapered fiber coated with agarose gel,” Sens. Actuator. Biol. Chem. 69, 127–131 (2000).

Matias, I. R.

J. M. Corres, I. R. Matias, M. Hernaez, J. Bravo, and F. J. Arregui, “Optical Fiber Humidity Sensors Using Nano structured Coatings of SiO2 Nano particles,” IEEE Sens. J. 8(3), 281–285 (2008).
[Crossref]

F. J. Arregui, I. R. Matias, K. L. Cooper, and R. O. Claus, “Simultaneous measurement of humidity and temperature by combining a reflective intensity-based optical fiber sensor and a fiber Bragg grating,” IEEE Sens. J. 2(5), 482–487 (2002).
[Crossref]

Matías, I. R.

M. Hernáez, C. R. Zamarreño, I. R. Matías, and F. J. Arregui, “Optical fiber humidity sensor based on surface plasmon resonance in the infra-red region,” JPCS 178, 012019 (2009).

Matsubara, S.

H. Kurihara, S. Torigoe, M. Omura, K. Saito, M. Kurihara, and S. Matsubara, “DNA fragmentation induced by a cytoplasmic extract from irradiated cells,” Radiat. Res. 150(3), 269–274 (1998).
[Crossref] [PubMed]

Menceloglu, Y. Z.

S. Acikgoz, B. Bilen, M. M. Demir, Y. Z. Menceloglu, Y. Skarlatos, G. Aktas, and M. N. Inci, “Use of polyethylene glycol coatings for optical fiber humidity sensing,” Opt. Rev. 15(2), 84–90 (2008).
[Crossref]

Miao, Y.

Mileham, R. D.

P. R. Story, D. W. Galipeau, and R. D. Mileham, “A study of low-cost sensors for measuring low relative humidity,” Sens. Actuator. Biol. Chem. 25(1–3), 681–685 (1995).

Omura, M.

H. Kurihara, S. Torigoe, M. Omura, K. Saito, M. Kurihara, and S. Matsubara, “DNA fragmentation induced by a cytoplasmic extract from irradiated cells,” Radiat. Res. 150(3), 269–274 (1998).
[Crossref] [PubMed]

Osbakken, M. D.

N. M. Doliba, S. L. Wehrli, A. M. Babsky, N. M. Doliba, and M. D. Osbakken, “Encapsulation and perfusion of mitochondria in agarose beads for functional studies with P-NMR spectroscopy,” Magn. Reson. Med. 39(5), 679–684 (1998).
[Crossref] [PubMed]

Otto, C.

Pérez, F.

Posch, H. E.

H. E. Posch and O. S. Wolfbeis, “Optical sensors, 13: fibre-optic humidity sensor based on fluorescence quenching,” Sens. Actuators 15(1), 77–83 (1988).
[Crossref]

Priambodo, P. S.

K. J. Lee, D. Wawro, P. S. Priambodo, and R. Magnusson, “Agarose-gel based guided-mode resonance humidity sensor,” IEEE Sens. J. 7(3), 409–414 (2007).
[Crossref]

Qida, Z.

M. Yinping, L. Bo, Z. Hao, L. Yuan, Z. Haibin, S. Hua, Z. Weihua, and Z. Qida, “Relative humidity sensor based on tilted fiber Bragg grating with polyvinyl alcohol coating,” IEEE Photonics Technol. Lett. 21(7), 441–443 (2009).
[Crossref]

Raimond, J.-M.

V. S. Ilchenko, P. S. Volikov, V. L. Velichansky, F. Treussart, V. Lefèvre-Seguin, J.-M. Raimond, and S. Haroche, “Strain tunable High-Q optical microsphere resonator,” Opt. Commun. 145(1-6), 86–90 (1998).
[Crossref]

Rajan, G.

J. Mathew, Y. Semenova, G. Rajan, P. Wang, and G. Farrell, “Improving the sensitivity of a humidity sensor based on fiber bend coated with a hygroscopic coating,” Opt. Laser Technol. 43(7), 1301–1305 (2011).
[Crossref]

Richardson, D.

Roques, M.

O. Iglesias, A. Garcıa, M. Roques, and J. L. Bueno, “Drying of water gels: determination of the characteristic curve of agar–agar,” Dry. Technol. 11(3), 571–587 (1993).
[Crossref]

Saito, K.

H. Kurihara, S. Torigoe, M. Omura, K. Saito, M. Kurihara, and S. Matsubara, “DNA fragmentation induced by a cytoplasmic extract from irradiated cells,” Radiat. Res. 150(3), 269–274 (1998).
[Crossref] [PubMed]

Savchenkov, A. A.

Semenova, Y.

Sevilla, J.

Skarlatos, Y.

S. Acikgoz, B. Bilen, M. M. Demir, Y. Z. Menceloglu, Y. Skarlatos, G. Aktas, and M. N. Inci, “Use of polyethylene glycol coatings for optical fiber humidity sensing,” Opt. Rev. 15(2), 84–90 (2008).
[Crossref]

Story, P. R.

P. R. Story, D. W. Galipeau, and R. D. Mileham, “A study of low-cost sensors for measuring low relative humidity,” Sens. Actuator. Biol. Chem. 25(1–3), 681–685 (1995).

Teraoka, I.

S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, and F. Vollmer, “Shift of whispering-gallery modes in microspheres by protein adsorption,” Opt. Lett. 28(4), 272–274 (2003).
[Crossref] [PubMed]

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant micro cavity,” Appl. Phys. Lett. 80(21), 4057–4059 (2002).
[Crossref]

Torigoe, S.

H. Kurihara, S. Torigoe, M. Omura, K. Saito, M. Kurihara, and S. Matsubara, “DNA fragmentation induced by a cytoplasmic extract from irradiated cells,” Radiat. Res. 150(3), 269–274 (1998).
[Crossref] [PubMed]

Treussart, F.

V. S. Ilchenko, P. S. Volikov, V. L. Velichansky, F. Treussart, V. Lefèvre-Seguin, J.-M. Raimond, and S. Haroche, “Strain tunable High-Q optical microsphere resonator,” Opt. Commun. 145(1-6), 86–90 (1998).
[Crossref]

Tsai, H.

Velichansky, V. L.

V. S. Ilchenko, P. S. Volikov, V. L. Velichansky, F. Treussart, V. Lefèvre-Seguin, J.-M. Raimond, and S. Haroche, “Strain tunable High-Q optical microsphere resonator,” Opt. Commun. 145(1-6), 86–90 (1998).
[Crossref]

Volikov, P. S.

V. S. Ilchenko, P. S. Volikov, V. L. Velichansky, F. Treussart, V. Lefèvre-Seguin, J.-M. Raimond, and S. Haroche, “Strain tunable High-Q optical microsphere resonator,” Opt. Commun. 145(1-6), 86–90 (1998).
[Crossref]

Vollmer, F.

S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, and F. Vollmer, “Shift of whispering-gallery modes in microspheres by protein adsorption,” Opt. Lett. 28(4), 272–274 (2003).
[Crossref] [PubMed]

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant micro cavity,” Appl. Phys. Lett. 80(21), 4057–4059 (2002).
[Crossref]

Wang, P.

Q. Wu, Y. Semenova, J. Mathew, P. Wang, and G. Farrell, “Humidity sensor based on a single-mode hetero-core fiber structure,” Opt. Lett. 36(10), 1752–1754 (2011).
[Crossref] [PubMed]

J. Mathew, Y. Semenova, G. Rajan, P. Wang, and G. Farrell, “Improving the sensitivity of a humidity sensor based on fiber bend coated with a hygroscopic coating,” Opt. Laser Technol. 43(7), 1301–1305 (2011).
[Crossref]

Wang, S.

Wawro, D.

K. J. Lee, D. Wawro, P. S. Priambodo, and R. Magnusson, “Agarose-gel based guided-mode resonance humidity sensor,” IEEE Sens. J. 7(3), 409–414 (2007).
[Crossref]

Wehrli, S. L.

N. M. Doliba, S. L. Wehrli, A. M. Babsky, N. M. Doliba, and M. D. Osbakken, “Encapsulation and perfusion of mitochondria in agarose beads for functional studies with P-NMR spectroscopy,” Magn. Reson. Med. 39(5), 679–684 (1998).
[Crossref] [PubMed]

Weihua, Z.

M. Yinping, L. Bo, Z. Hao, L. Yuan, Z. Haibin, S. Hua, Z. Weihua, and Z. Qida, “Relative humidity sensor based on tilted fiber Bragg grating with polyvinyl alcohol coating,” IEEE Photonics Technol. Lett. 21(7), 441–443 (2009).
[Crossref]

White, I. M.

Wolfbeis, O. S.

H. E. Posch and O. S. Wolfbeis, “Optical sensors, 13: fibre-optic humidity sensor based on fluorescence quenching,” Sens. Actuators 15(1), 77–83 (1988).
[Crossref]

Wu, Q.

Xiao, H.

Yao, J.

Yinping, M.

M. Yinping, L. Bo, Z. Hao, L. Yuan, Z. Haibin, S. Hua, Z. Weihua, and Z. Qida, “Relative humidity sensor based on tilted fiber Bragg grating with polyvinyl alcohol coating,” IEEE Photonics Technol. Lett. 21(7), 441–443 (2009).
[Crossref]

Yuam, Y.

Yuan, L.

M. Yinping, L. Bo, Z. Hao, L. Yuan, Z. Haibin, S. Hua, Z. Weihua, and Z. Qida, “Relative humidity sensor based on tilted fiber Bragg grating with polyvinyl alcohol coating,” IEEE Photonics Technol. Lett. 21(7), 441–443 (2009).
[Crossref]

Zamarreño, C. R.

M. Hernáez, C. R. Zamarreño, I. R. Matías, and F. J. Arregui, “Optical fiber humidity sensor based on surface plasmon resonance in the infra-red region,” JPCS 178, 012019 (2009).

Zhang, H.

Zhang, K.

Appl. Opt. (4)

Appl. Phys. Lett. (2)

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant micro cavity,” Appl. Phys. Lett. 80(21), 4057–4059 (2002).
[Crossref]

W. Fang, D. B. Buchholz, R. C. Bailey, J. T. Hupp, R. P. H. Chang, and H. Cao, “Detection of chemical species using ultraviolet microdisk lasers,” Appl. Phys. Lett. 85(17), 3666–3668 (2004).
[Crossref]

Dry. Technol. (1)

O. Iglesias, A. Garcıa, M. Roques, and J. L. Bueno, “Drying of water gels: determination of the characteristic curve of agar–agar,” Dry. Technol. 11(3), 571–587 (1993).
[Crossref]

IEEE Photonics Technol. Lett. (1)

M. Yinping, L. Bo, Z. Hao, L. Yuan, Z. Haibin, S. Hua, Z. Weihua, and Z. Qida, “Relative humidity sensor based on tilted fiber Bragg grating with polyvinyl alcohol coating,” IEEE Photonics Technol. Lett. 21(7), 441–443 (2009).
[Crossref]

IEEE Sens. J. (3)

F. J. Arregui, I. R. Matias, K. L. Cooper, and R. O. Claus, “Simultaneous measurement of humidity and temperature by combining a reflective intensity-based optical fiber sensor and a fiber Bragg grating,” IEEE Sens. J. 2(5), 482–487 (2002).
[Crossref]

J. M. Corres, I. R. Matias, M. Hernaez, J. Bravo, and F. J. Arregui, “Optical Fiber Humidity Sensors Using Nano structured Coatings of SiO2 Nano particles,” IEEE Sens. J. 8(3), 281–285 (2008).
[Crossref]

K. J. Lee, D. Wawro, P. S. Priambodo, and R. Magnusson, “Agarose-gel based guided-mode resonance humidity sensor,” IEEE Sens. J. 7(3), 409–414 (2007).
[Crossref]

J. Lightwave Technol. (2)

JPCS (1)

M. Hernáez, C. R. Zamarreño, I. R. Matías, and F. J. Arregui, “Optical fiber humidity sensor based on surface plasmon resonance in the infra-red region,” JPCS 178, 012019 (2009).

Magn. Reson. Med. (1)

N. M. Doliba, S. L. Wehrli, A. M. Babsky, N. M. Doliba, and M. D. Osbakken, “Encapsulation and perfusion of mitochondria in agarose beads for functional studies with P-NMR spectroscopy,” Magn. Reson. Med. 39(5), 679–684 (1998).
[Crossref] [PubMed]

Opt. Commun. (1)

V. S. Ilchenko, P. S. Volikov, V. L. Velichansky, F. Treussart, V. Lefèvre-Seguin, J.-M. Raimond, and S. Haroche, “Strain tunable High-Q optical microsphere resonator,” Opt. Commun. 145(1-6), 86–90 (1998).
[Crossref]

Opt. Express (3)

Opt. Laser Technol. (1)

J. Mathew, Y. Semenova, G. Rajan, P. Wang, and G. Farrell, “Improving the sensitivity of a humidity sensor based on fiber bend coated with a hygroscopic coating,” Opt. Laser Technol. 43(7), 1301–1305 (2011).
[Crossref]

Opt. Lett. (4)

Opt. Rev. (1)

S. Acikgoz, B. Bilen, M. M. Demir, Y. Z. Menceloglu, Y. Skarlatos, G. Aktas, and M. N. Inci, “Use of polyethylene glycol coatings for optical fiber humidity sensing,” Opt. Rev. 15(2), 84–90 (2008).
[Crossref]

Radiat. Res. (1)

H. Kurihara, S. Torigoe, M. Omura, K. Saito, M. Kurihara, and S. Matsubara, “DNA fragmentation induced by a cytoplasmic extract from irradiated cells,” Radiat. Res. 150(3), 269–274 (1998).
[Crossref] [PubMed]

Sens. Actuator. Biol. Chem. (2)

C. Barian, I. Matias, F. Arregui, and M. Lopez-Amo, “Optical fiber humidity sensor based on a tapered fiber coated with agarose gel,” Sens. Actuator. Biol. Chem. 69, 127–131 (2000).

P. R. Story, D. W. Galipeau, and R. D. Mileham, “A study of low-cost sensors for measuring low relative humidity,” Sens. Actuator. Biol. Chem. 25(1–3), 681–685 (1995).

Sens. Actuators (1)

H. E. Posch and O. S. Wolfbeis, “Optical sensors, 13: fibre-optic humidity sensor based on fluorescence quenching,” Sens. Actuators 15(1), 77–83 (1988).
[Crossref]

Sens. Lett. (1)

Z. Chen and C. Lu, “Humidity sensors: a review of materials and mechanisms,” Sens. Lett. 3(4), 274–295 (2005).
[Crossref]

Other (1)

A. Raichur and H. Pedersen, “Fiber optic moisture sensor for baking and drying process control,” Proc. Food Processing Automation IV, Am. Soc. Agric. Eng. 180–189 (1995).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Schematic diagram of the tapered fiber used for coupling the light into the microsphere. The waist diameter W = 3.3 µm, waist length L1 = 2 mm, full taper length L2 = 12 mm and the length of the taper between the cured epoxy droplets on the microscope slide L3 = 4 cm.
Fig. 2
Fig. 2 Optical microscope image of the microsphere with the diameter of 171 µm used in the experiment.
Fig. 3
Fig. 3 Experimental set-up used for RH measurement using spherical microresonator.
Fig. 4
Fig. 4 Transmission spectrum recorded with an Agarose coated microsphere with a diameter of 171 µm.
Fig. 5
Fig. 5 Experimental results for the WGM resonator based on a 171 µm diameter microsphere coated with 2.25% Agarose gel coupled with a 3.3 µm tapered fiber in the range of humidity from 35% to 81% RH at a constant temperature of 25 °C. (a) WGM spectra at different RH levels; (b) wavelength shift of the WGM spectrum versus RH; (c) humidity response of the WGM spectrum for an uncoated microsphere resonator; (d) spectral shift versus RH for the sensors based on the same diameter microsphere coated with the Agarose solutions of different concentrations.
Fig. 6
Fig. 6 Experimental spectra and Lorentzian fitting for a 100 µm diameter microsphere coated with 2.25% Agarose hydrogel: a) after one coating cycle; b) after three coating cycles; c) Q-factor versus the number of coating cycles.
Fig. 7
Fig. 7 (a) RH response of the sensor based on a 100 µm diameter microsphere with a different number of Agarose layers: (b) Q-factor and estimated RH sensitivity for the 100 µm diameter microsphere with a different number of Agarose coating layers.
Fig. 8
Fig. 8 (a) Relative humidity responses of the sensor, measurements recorded seven days apart; (b) studies of the sensor hysteresis: humidity response for the 171 µm microspheres coated with different Agarose concentration coatings during RH increase-decrease cycle at 25°C.
Fig. 9
Fig. 9 Resonance wavelength shift versus temperature for the 171 µm microsphere coated with 2.25% wt./vol. Agarose solution at 41% RH.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

F.S.R λ 0 2 πD n eff
1 Q in = 1 Q rad + 1 ( Q abs ) silica + 1 ( Q abs ) agarose + 1 Q s.s + 1 Q coupling
R=3 ( σ ampnoise 2 + σ tempinduced 2 + σ spectres 2 )
σ ampnoise Δλ 4.5(SN R 0.25 )

Metrics