Abstract

Plasmon assisted photoelectric hot electron collection in a metal-semiconductor junction can allow for sub-bandgap optical to electrical energy conversion. Here we report hot electron collection by wafer-scale Au/TiO2 metallic-semiconductor photonic crystals (MSPhC), with a broadband photoresponse below the bandgap of TiO2. Multiple absorption modes supported by the 2D nano-cavity structure of the MSPhC extend the photon-metal interaction time and fulfill a broadband light absorption. The surface plasmon absorption mode provides access to enhanced electric field oscillation and hot electron generation at the interface between Au and TiO2. A broadband sub-bandgap photoresponse centered at 590 nm was achieved due to surface plasmon absorption. Gold nanorods were deposited on the surface of MSPhC to study localized surface plasmon (LSP) mode absorption and subsequent injection to the TiO2 catalyst at different wavelengths. Applications of these results could lead to low-cost and robust photo-electrochemical applications such as more efficient solar water splitting.

© 2016 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. U. Khan, M. Al-Shahry, and W. B. Ingler., “Efficient photochemical water splitting by a chemically modified n-TiO2,” Science 297(5590), 2243–2245 (2002).
    [Crossref] [PubMed]
  2. W.-J. Yin, H. Tang, S.-H. Wei, M. M. Al-Jassim, J. Turner, and Y. Yan, “Band structure engineering of semiconductors for enhanced photoelectrochemical water splitting: the case of TiO 2,” Phys. Rev. B Condens. Matter 82(4), 045106 (2010).
    [Crossref]
  3. J. Nowotny, Oxide Semiconductors for Solar Energy Conversion: Titanium Dioxide (CRC, 2011).
  4. C. Scales and P. Berini, “Thin-film schottky barrier photodetector models,” IEEE J. Quantum Electron. 46(5), 633–643 (2010).
    [Crossref]
  5. M. L. Brongersma, N. J. Halas, and P. Nordlander, “Plasmon-induced hot carrier science and technology,” Nat. Nanotechnol. 10(1), 25–34 (2015).
    [Crossref] [PubMed]
  6. A. M. Brown, R. Sundararaman, P. Narang, W. A. Goddard, and H. A. Atwater, “Nonradiative plasmon decay and hot carrier dynamics: effects of phonons, surfaces, and geometry,” ACS Nano 10(1), 957–966 (2016).
    [PubMed]
  7. A. O. Govorov, H. Zhang, and Y. K. Gun’ko, “Theory of photoinjection of hot plasmonic carriers from metal nanostructures into semiconductors and surface molecules,” J. Phys. Chem. C 117(32), 16616–16631 (2013).
    [Crossref]
  8. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer Science and Business Media, 2007).
  9. C. Clavero, “Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices,” Nat. Photonics 8(2), 95–103 (2014).
    [Crossref]
  10. Y. Nishijima, K. Ueno, Y. Yokota, K. Murakoshi, and H. Misawa, “Plasmon-assisted photocurrent generation from visible to near-infrared wavelength using a Au-nanorods/TiO2 electrode,” J. Phys. Chem. Lett. 1(13), 2031–2036 (2010).
    [Crossref]
  11. W. Li and J. Valentine, “Metamaterial perfect absorber based hot electron photodetection,” Nano Lett. 14(6), 3510–3514 (2014).
    [Crossref] [PubMed]
  12. F. P. García de Arquer, A. Mihi, and G. Konstantatos, “Large-Area Plasmonic-Crystal–Hot-Electron-Based Photodetectors,” ACS Photonics 2(7), 950–957 (2015).
    [Crossref]
  13. S. Linic, P. Christopher, and D. B. Ingram, “Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy,” Nat. Mater. 10(12), 911–921 (2011).
    [Crossref] [PubMed]
  14. J. Lee, S. Mubeen, X. Ji, G. D. Stucky, and M. Moskovits, “Plasmonic photoanodes for solar water splitting with visible light,” Nano Lett. 12(9), 5014–5019 (2012).
    [Crossref] [PubMed]
  15. J. B. Chou, Y. X. Yeng, Y. E. Lee, A. Lenert, V. Rinnerbauer, I. Celanovic, M. Soljačić, N. X. Fang, E. N. Wang, and S. G. Kim, “Enabling ideal selective solar absorption with 2D metallic dielectric photonic crystals,” Adv. Mater. 26(47), 8041–8045 (2014).
    [Crossref] [PubMed]
  16. J. B. Chou, Y. X. Yeng, A. Lenert, V. Rinnerbauer, I. Celanovic, M. Soljačić, E. N. Wang, and S.-G. Kim, “Design of wide-angle selective absorbers/emitters with dielectric filled metallic photonic crystals for energy applications,” Opt. Express 22(S1Suppl 1), A144–A154 (2014).
    [Crossref] [PubMed]
  17. J. B. Chou, D. P. Fenning, Y. Wang, M. A. M. Polanco, J. Hwang, A. El-Faer, F. Sammoura, J. Viegas, M. Rasras, and A. M. Kolpak, “Broadband photoelectric hot carrier collection with wafer-scale metallic-semiconductor photonic crystals,” in 2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC) (IEEE, 2015), pp. 1–6.
    [Crossref]
  18. F. Wang and N. A. Melosh, “Power-independent wavelength determination by hot carrier collection in metal-insulator-metal devices,” Nat. Commun. 4, 1711 (2013).
    [Crossref] [PubMed]
  19. D. Englund, I. Fushman, and J. Vucković, “General recipe for designing photonic crystal cavities,” Opt. Express 13(16), 5961–5975 (2005).
    [Crossref] [PubMed]
  20. F. Lemarchand, A. Sentenac, E. Cambril, and H. Giovannini, “Study of the resonant behaviour of waveguide gratings: increasing the angular tolerance of guided-mode filters,” J. Opt. A, Pure Appl. Opt. 1(4), 545–551 (1999).
    [Crossref]
  21. J. T. Stuckless and M. Moskovits, “Enhanced two-photon photoemission from coldly deposited silver films,” Phys. Rev. B Condens. Matter 40(14), 9997–9998 (1989).
    [Crossref] [PubMed]
  22. R. H. Fowler, “The analysis of photoelectric sensitivity curves for clean metals at various temperatures,” Phys. Rev. 38(1), 45–56 (1931).
    [Crossref]
  23. Y. K. Lee, C. H. Jung, J. Park, H. Seo, G. A. Somorjai, and J. Y. Park, “Surface plasmon-driven hot electron flow probed with metal-semiconductor nanodiodes,” Nano Lett. 11(10), 4251–4255 (2011).
    [Crossref] [PubMed]
  24. M. Bernardi, J. Mustafa, J. B. Neaton, and S. G. Louie, “Theory and computation of hot carriers generated by surface plasmon polaritons in noble metals,” Nat. Commun. 6, 7044 (2015).
    [Crossref] [PubMed]
  25. R. Sundararaman, P. Narang, A. S. Jermyn, W. A. Goddard, and H. A. Atwater, “Theoretical predictions for hot-carrier generation from surface plasmon decay,” Nat. Commun. 5, 5788 (2014).
    [Crossref] [PubMed]
  26. A. Manjavacas, J. G. Liu, V. Kulkarni, and P. Nordlander, “Plasmon-induced hot carriers in metallic nanoparticles,” ACS Nano 8(8), 7630–7638 (2014).
    [Crossref] [PubMed]
  27. A. V. Uskov, I. E. Protsenko, R. S. Ikhsanov, V. E. Babicheva, S. V. Zhukovsky, A. V. Lavrinenko, E. P. O’Reilly, and H. Xu, “Internal photoemission from plasmonic nanoparticles: comparison between surface and volume photoelectric effects,” Nanoscale 6(9), 4716–4727 (2014).
    [Crossref] [PubMed]
  28. D. Jin, Q. Hu, D. Neuhauser, F. von Cube, Y. Yang, R. Sachan, T. S. Luk, D. C. Bell, and N. X. Fang, “Quantum-spillover-enhanced surface-plasmonic absorption at the interface of silver and high-index dielectrics,” Phys. Rev. Lett. 115(19), 193901 (2015).
    [Crossref] [PubMed]
  29. K. Wu, J. Chen, J. R. McBride, and T. Lian, “Efficient hot-electron transfer by a plasmon-induced interfacial charge-transfer transition,” Science 349(6248), 632–635 (2015).
    [Crossref] [PubMed]
  30. B. Y. Zheng, H. Zhao, A. Manjavacas, M. McClain, P. Nordlander, and N. J. Halas, “Distinguishing between plasmon-induced and photoexcited carriers in a device geometry,” Nat. Commun. 6, 7797 (2015).
    [Crossref] [PubMed]
  31. W. Li, Z. J. Coppens, L. V. Besteiro, W. Wang, A. O. Govorov, and J. Valentine, “Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials,” Nat. Commun. 6, 8379 (2015).
    [Crossref] [PubMed]
  32. M. W. Knight, Y. Wang, A. S. Urban, A. Sobhani, B. Y. Zheng, P. Nordlander, and N. J. Halas, “Embedding plasmonic nanostructure diodes enhances hot electron emission,” Nano Lett. 13(4), 1687–1692 (2013).
    [Crossref] [PubMed]
  33. Y. Tian and T. Tatsuma, “Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles,” J. Am. Chem. Soc. 127(20), 7632–7637 (2005).
    [Crossref] [PubMed]
  34. A. Elfaer, Y. Wang, X. Li, J. Chou, and S. Kim, “Gold nanorods coated metallic photonic crystal for enhanced hot electron transfer in electrochemical cells,” MRS Adv. 1(13), 831–837 (2016).
    [Crossref]

2016 (2)

A. M. Brown, R. Sundararaman, P. Narang, W. A. Goddard, and H. A. Atwater, “Nonradiative plasmon decay and hot carrier dynamics: effects of phonons, surfaces, and geometry,” ACS Nano 10(1), 957–966 (2016).
[PubMed]

A. Elfaer, Y. Wang, X. Li, J. Chou, and S. Kim, “Gold nanorods coated metallic photonic crystal for enhanced hot electron transfer in electrochemical cells,” MRS Adv. 1(13), 831–837 (2016).
[Crossref]

2015 (7)

M. Bernardi, J. Mustafa, J. B. Neaton, and S. G. Louie, “Theory and computation of hot carriers generated by surface plasmon polaritons in noble metals,” Nat. Commun. 6, 7044 (2015).
[Crossref] [PubMed]

D. Jin, Q. Hu, D. Neuhauser, F. von Cube, Y. Yang, R. Sachan, T. S. Luk, D. C. Bell, and N. X. Fang, “Quantum-spillover-enhanced surface-plasmonic absorption at the interface of silver and high-index dielectrics,” Phys. Rev. Lett. 115(19), 193901 (2015).
[Crossref] [PubMed]

K. Wu, J. Chen, J. R. McBride, and T. Lian, “Efficient hot-electron transfer by a plasmon-induced interfacial charge-transfer transition,” Science 349(6248), 632–635 (2015).
[Crossref] [PubMed]

B. Y. Zheng, H. Zhao, A. Manjavacas, M. McClain, P. Nordlander, and N. J. Halas, “Distinguishing between plasmon-induced and photoexcited carriers in a device geometry,” Nat. Commun. 6, 7797 (2015).
[Crossref] [PubMed]

W. Li, Z. J. Coppens, L. V. Besteiro, W. Wang, A. O. Govorov, and J. Valentine, “Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials,” Nat. Commun. 6, 8379 (2015).
[Crossref] [PubMed]

M. L. Brongersma, N. J. Halas, and P. Nordlander, “Plasmon-induced hot carrier science and technology,” Nat. Nanotechnol. 10(1), 25–34 (2015).
[Crossref] [PubMed]

F. P. García de Arquer, A. Mihi, and G. Konstantatos, “Large-Area Plasmonic-Crystal–Hot-Electron-Based Photodetectors,” ACS Photonics 2(7), 950–957 (2015).
[Crossref]

2014 (7)

W. Li and J. Valentine, “Metamaterial perfect absorber based hot electron photodetection,” Nano Lett. 14(6), 3510–3514 (2014).
[Crossref] [PubMed]

J. B. Chou, Y. X. Yeng, Y. E. Lee, A. Lenert, V. Rinnerbauer, I. Celanovic, M. Soljačić, N. X. Fang, E. N. Wang, and S. G. Kim, “Enabling ideal selective solar absorption with 2D metallic dielectric photonic crystals,” Adv. Mater. 26(47), 8041–8045 (2014).
[Crossref] [PubMed]

J. B. Chou, Y. X. Yeng, A. Lenert, V. Rinnerbauer, I. Celanovic, M. Soljačić, E. N. Wang, and S.-G. Kim, “Design of wide-angle selective absorbers/emitters with dielectric filled metallic photonic crystals for energy applications,” Opt. Express 22(S1Suppl 1), A144–A154 (2014).
[Crossref] [PubMed]

C. Clavero, “Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices,” Nat. Photonics 8(2), 95–103 (2014).
[Crossref]

R. Sundararaman, P. Narang, A. S. Jermyn, W. A. Goddard, and H. A. Atwater, “Theoretical predictions for hot-carrier generation from surface plasmon decay,” Nat. Commun. 5, 5788 (2014).
[Crossref] [PubMed]

A. Manjavacas, J. G. Liu, V. Kulkarni, and P. Nordlander, “Plasmon-induced hot carriers in metallic nanoparticles,” ACS Nano 8(8), 7630–7638 (2014).
[Crossref] [PubMed]

A. V. Uskov, I. E. Protsenko, R. S. Ikhsanov, V. E. Babicheva, S. V. Zhukovsky, A. V. Lavrinenko, E. P. O’Reilly, and H. Xu, “Internal photoemission from plasmonic nanoparticles: comparison between surface and volume photoelectric effects,” Nanoscale 6(9), 4716–4727 (2014).
[Crossref] [PubMed]

2013 (3)

M. W. Knight, Y. Wang, A. S. Urban, A. Sobhani, B. Y. Zheng, P. Nordlander, and N. J. Halas, “Embedding plasmonic nanostructure diodes enhances hot electron emission,” Nano Lett. 13(4), 1687–1692 (2013).
[Crossref] [PubMed]

A. O. Govorov, H. Zhang, and Y. K. Gun’ko, “Theory of photoinjection of hot plasmonic carriers from metal nanostructures into semiconductors and surface molecules,” J. Phys. Chem. C 117(32), 16616–16631 (2013).
[Crossref]

F. Wang and N. A. Melosh, “Power-independent wavelength determination by hot carrier collection in metal-insulator-metal devices,” Nat. Commun. 4, 1711 (2013).
[Crossref] [PubMed]

2012 (1)

J. Lee, S. Mubeen, X. Ji, G. D. Stucky, and M. Moskovits, “Plasmonic photoanodes for solar water splitting with visible light,” Nano Lett. 12(9), 5014–5019 (2012).
[Crossref] [PubMed]

2011 (2)

S. Linic, P. Christopher, and D. B. Ingram, “Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy,” Nat. Mater. 10(12), 911–921 (2011).
[Crossref] [PubMed]

Y. K. Lee, C. H. Jung, J. Park, H. Seo, G. A. Somorjai, and J. Y. Park, “Surface plasmon-driven hot electron flow probed with metal-semiconductor nanodiodes,” Nano Lett. 11(10), 4251–4255 (2011).
[Crossref] [PubMed]

2010 (3)

Y. Nishijima, K. Ueno, Y. Yokota, K. Murakoshi, and H. Misawa, “Plasmon-assisted photocurrent generation from visible to near-infrared wavelength using a Au-nanorods/TiO2 electrode,” J. Phys. Chem. Lett. 1(13), 2031–2036 (2010).
[Crossref]

W.-J. Yin, H. Tang, S.-H. Wei, M. M. Al-Jassim, J. Turner, and Y. Yan, “Band structure engineering of semiconductors for enhanced photoelectrochemical water splitting: the case of TiO 2,” Phys. Rev. B Condens. Matter 82(4), 045106 (2010).
[Crossref]

C. Scales and P. Berini, “Thin-film schottky barrier photodetector models,” IEEE J. Quantum Electron. 46(5), 633–643 (2010).
[Crossref]

2005 (2)

D. Englund, I. Fushman, and J. Vucković, “General recipe for designing photonic crystal cavities,” Opt. Express 13(16), 5961–5975 (2005).
[Crossref] [PubMed]

Y. Tian and T. Tatsuma, “Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles,” J. Am. Chem. Soc. 127(20), 7632–7637 (2005).
[Crossref] [PubMed]

2002 (1)

S. U. Khan, M. Al-Shahry, and W. B. Ingler., “Efficient photochemical water splitting by a chemically modified n-TiO2,” Science 297(5590), 2243–2245 (2002).
[Crossref] [PubMed]

1999 (1)

F. Lemarchand, A. Sentenac, E. Cambril, and H. Giovannini, “Study of the resonant behaviour of waveguide gratings: increasing the angular tolerance of guided-mode filters,” J. Opt. A, Pure Appl. Opt. 1(4), 545–551 (1999).
[Crossref]

1989 (1)

J. T. Stuckless and M. Moskovits, “Enhanced two-photon photoemission from coldly deposited silver films,” Phys. Rev. B Condens. Matter 40(14), 9997–9998 (1989).
[Crossref] [PubMed]

1931 (1)

R. H. Fowler, “The analysis of photoelectric sensitivity curves for clean metals at various temperatures,” Phys. Rev. 38(1), 45–56 (1931).
[Crossref]

Al-Jassim, M. M.

W.-J. Yin, H. Tang, S.-H. Wei, M. M. Al-Jassim, J. Turner, and Y. Yan, “Band structure engineering of semiconductors for enhanced photoelectrochemical water splitting: the case of TiO 2,” Phys. Rev. B Condens. Matter 82(4), 045106 (2010).
[Crossref]

Al-Shahry, M.

S. U. Khan, M. Al-Shahry, and W. B. Ingler., “Efficient photochemical water splitting by a chemically modified n-TiO2,” Science 297(5590), 2243–2245 (2002).
[Crossref] [PubMed]

Atwater, H. A.

A. M. Brown, R. Sundararaman, P. Narang, W. A. Goddard, and H. A. Atwater, “Nonradiative plasmon decay and hot carrier dynamics: effects of phonons, surfaces, and geometry,” ACS Nano 10(1), 957–966 (2016).
[PubMed]

R. Sundararaman, P. Narang, A. S. Jermyn, W. A. Goddard, and H. A. Atwater, “Theoretical predictions for hot-carrier generation from surface plasmon decay,” Nat. Commun. 5, 5788 (2014).
[Crossref] [PubMed]

Babicheva, V. E.

A. V. Uskov, I. E. Protsenko, R. S. Ikhsanov, V. E. Babicheva, S. V. Zhukovsky, A. V. Lavrinenko, E. P. O’Reilly, and H. Xu, “Internal photoemission from plasmonic nanoparticles: comparison between surface and volume photoelectric effects,” Nanoscale 6(9), 4716–4727 (2014).
[Crossref] [PubMed]

Bell, D. C.

D. Jin, Q. Hu, D. Neuhauser, F. von Cube, Y. Yang, R. Sachan, T. S. Luk, D. C. Bell, and N. X. Fang, “Quantum-spillover-enhanced surface-plasmonic absorption at the interface of silver and high-index dielectrics,” Phys. Rev. Lett. 115(19), 193901 (2015).
[Crossref] [PubMed]

Berini, P.

C. Scales and P. Berini, “Thin-film schottky barrier photodetector models,” IEEE J. Quantum Electron. 46(5), 633–643 (2010).
[Crossref]

Bernardi, M.

M. Bernardi, J. Mustafa, J. B. Neaton, and S. G. Louie, “Theory and computation of hot carriers generated by surface plasmon polaritons in noble metals,” Nat. Commun. 6, 7044 (2015).
[Crossref] [PubMed]

Besteiro, L. V.

W. Li, Z. J. Coppens, L. V. Besteiro, W. Wang, A. O. Govorov, and J. Valentine, “Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials,” Nat. Commun. 6, 8379 (2015).
[Crossref] [PubMed]

Brongersma, M. L.

M. L. Brongersma, N. J. Halas, and P. Nordlander, “Plasmon-induced hot carrier science and technology,” Nat. Nanotechnol. 10(1), 25–34 (2015).
[Crossref] [PubMed]

Brown, A. M.

A. M. Brown, R. Sundararaman, P. Narang, W. A. Goddard, and H. A. Atwater, “Nonradiative plasmon decay and hot carrier dynamics: effects of phonons, surfaces, and geometry,” ACS Nano 10(1), 957–966 (2016).
[PubMed]

Cambril, E.

F. Lemarchand, A. Sentenac, E. Cambril, and H. Giovannini, “Study of the resonant behaviour of waveguide gratings: increasing the angular tolerance of guided-mode filters,” J. Opt. A, Pure Appl. Opt. 1(4), 545–551 (1999).
[Crossref]

Celanovic, I.

J. B. Chou, Y. X. Yeng, Y. E. Lee, A. Lenert, V. Rinnerbauer, I. Celanovic, M. Soljačić, N. X. Fang, E. N. Wang, and S. G. Kim, “Enabling ideal selective solar absorption with 2D metallic dielectric photonic crystals,” Adv. Mater. 26(47), 8041–8045 (2014).
[Crossref] [PubMed]

J. B. Chou, Y. X. Yeng, A. Lenert, V. Rinnerbauer, I. Celanovic, M. Soljačić, E. N. Wang, and S.-G. Kim, “Design of wide-angle selective absorbers/emitters with dielectric filled metallic photonic crystals for energy applications,” Opt. Express 22(S1Suppl 1), A144–A154 (2014).
[Crossref] [PubMed]

Chen, J.

K. Wu, J. Chen, J. R. McBride, and T. Lian, “Efficient hot-electron transfer by a plasmon-induced interfacial charge-transfer transition,” Science 349(6248), 632–635 (2015).
[Crossref] [PubMed]

Chou, J.

A. Elfaer, Y. Wang, X. Li, J. Chou, and S. Kim, “Gold nanorods coated metallic photonic crystal for enhanced hot electron transfer in electrochemical cells,” MRS Adv. 1(13), 831–837 (2016).
[Crossref]

Chou, J. B.

J. B. Chou, Y. X. Yeng, A. Lenert, V. Rinnerbauer, I. Celanovic, M. Soljačić, E. N. Wang, and S.-G. Kim, “Design of wide-angle selective absorbers/emitters with dielectric filled metallic photonic crystals for energy applications,” Opt. Express 22(S1Suppl 1), A144–A154 (2014).
[Crossref] [PubMed]

J. B. Chou, Y. X. Yeng, Y. E. Lee, A. Lenert, V. Rinnerbauer, I. Celanovic, M. Soljačić, N. X. Fang, E. N. Wang, and S. G. Kim, “Enabling ideal selective solar absorption with 2D metallic dielectric photonic crystals,” Adv. Mater. 26(47), 8041–8045 (2014).
[Crossref] [PubMed]

Christopher, P.

S. Linic, P. Christopher, and D. B. Ingram, “Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy,” Nat. Mater. 10(12), 911–921 (2011).
[Crossref] [PubMed]

Clavero, C.

C. Clavero, “Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices,” Nat. Photonics 8(2), 95–103 (2014).
[Crossref]

Coppens, Z. J.

W. Li, Z. J. Coppens, L. V. Besteiro, W. Wang, A. O. Govorov, and J. Valentine, “Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials,” Nat. Commun. 6, 8379 (2015).
[Crossref] [PubMed]

Elfaer, A.

A. Elfaer, Y. Wang, X. Li, J. Chou, and S. Kim, “Gold nanorods coated metallic photonic crystal for enhanced hot electron transfer in electrochemical cells,” MRS Adv. 1(13), 831–837 (2016).
[Crossref]

Englund, D.

Fang, N. X.

D. Jin, Q. Hu, D. Neuhauser, F. von Cube, Y. Yang, R. Sachan, T. S. Luk, D. C. Bell, and N. X. Fang, “Quantum-spillover-enhanced surface-plasmonic absorption at the interface of silver and high-index dielectrics,” Phys. Rev. Lett. 115(19), 193901 (2015).
[Crossref] [PubMed]

J. B. Chou, Y. X. Yeng, Y. E. Lee, A. Lenert, V. Rinnerbauer, I. Celanovic, M. Soljačić, N. X. Fang, E. N. Wang, and S. G. Kim, “Enabling ideal selective solar absorption with 2D metallic dielectric photonic crystals,” Adv. Mater. 26(47), 8041–8045 (2014).
[Crossref] [PubMed]

Fowler, R. H.

R. H. Fowler, “The analysis of photoelectric sensitivity curves for clean metals at various temperatures,” Phys. Rev. 38(1), 45–56 (1931).
[Crossref]

Fushman, I.

García de Arquer, F. P.

F. P. García de Arquer, A. Mihi, and G. Konstantatos, “Large-Area Plasmonic-Crystal–Hot-Electron-Based Photodetectors,” ACS Photonics 2(7), 950–957 (2015).
[Crossref]

Giovannini, H.

F. Lemarchand, A. Sentenac, E. Cambril, and H. Giovannini, “Study of the resonant behaviour of waveguide gratings: increasing the angular tolerance of guided-mode filters,” J. Opt. A, Pure Appl. Opt. 1(4), 545–551 (1999).
[Crossref]

Goddard, W. A.

A. M. Brown, R. Sundararaman, P. Narang, W. A. Goddard, and H. A. Atwater, “Nonradiative plasmon decay and hot carrier dynamics: effects of phonons, surfaces, and geometry,” ACS Nano 10(1), 957–966 (2016).
[PubMed]

R. Sundararaman, P. Narang, A. S. Jermyn, W. A. Goddard, and H. A. Atwater, “Theoretical predictions for hot-carrier generation from surface plasmon decay,” Nat. Commun. 5, 5788 (2014).
[Crossref] [PubMed]

Govorov, A. O.

W. Li, Z. J. Coppens, L. V. Besteiro, W. Wang, A. O. Govorov, and J. Valentine, “Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials,” Nat. Commun. 6, 8379 (2015).
[Crossref] [PubMed]

A. O. Govorov, H. Zhang, and Y. K. Gun’ko, “Theory of photoinjection of hot plasmonic carriers from metal nanostructures into semiconductors and surface molecules,” J. Phys. Chem. C 117(32), 16616–16631 (2013).
[Crossref]

Gun’ko, Y. K.

A. O. Govorov, H. Zhang, and Y. K. Gun’ko, “Theory of photoinjection of hot plasmonic carriers from metal nanostructures into semiconductors and surface molecules,” J. Phys. Chem. C 117(32), 16616–16631 (2013).
[Crossref]

Halas, N. J.

M. L. Brongersma, N. J. Halas, and P. Nordlander, “Plasmon-induced hot carrier science and technology,” Nat. Nanotechnol. 10(1), 25–34 (2015).
[Crossref] [PubMed]

B. Y. Zheng, H. Zhao, A. Manjavacas, M. McClain, P. Nordlander, and N. J. Halas, “Distinguishing between plasmon-induced and photoexcited carriers in a device geometry,” Nat. Commun. 6, 7797 (2015).
[Crossref] [PubMed]

M. W. Knight, Y. Wang, A. S. Urban, A. Sobhani, B. Y. Zheng, P. Nordlander, and N. J. Halas, “Embedding plasmonic nanostructure diodes enhances hot electron emission,” Nano Lett. 13(4), 1687–1692 (2013).
[Crossref] [PubMed]

Hu, Q.

D. Jin, Q. Hu, D. Neuhauser, F. von Cube, Y. Yang, R. Sachan, T. S. Luk, D. C. Bell, and N. X. Fang, “Quantum-spillover-enhanced surface-plasmonic absorption at the interface of silver and high-index dielectrics,” Phys. Rev. Lett. 115(19), 193901 (2015).
[Crossref] [PubMed]

Ikhsanov, R. S.

A. V. Uskov, I. E. Protsenko, R. S. Ikhsanov, V. E. Babicheva, S. V. Zhukovsky, A. V. Lavrinenko, E. P. O’Reilly, and H. Xu, “Internal photoemission from plasmonic nanoparticles: comparison between surface and volume photoelectric effects,” Nanoscale 6(9), 4716–4727 (2014).
[Crossref] [PubMed]

Ingler, W. B.

S. U. Khan, M. Al-Shahry, and W. B. Ingler., “Efficient photochemical water splitting by a chemically modified n-TiO2,” Science 297(5590), 2243–2245 (2002).
[Crossref] [PubMed]

Ingram, D. B.

S. Linic, P. Christopher, and D. B. Ingram, “Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy,” Nat. Mater. 10(12), 911–921 (2011).
[Crossref] [PubMed]

Jermyn, A. S.

R. Sundararaman, P. Narang, A. S. Jermyn, W. A. Goddard, and H. A. Atwater, “Theoretical predictions for hot-carrier generation from surface plasmon decay,” Nat. Commun. 5, 5788 (2014).
[Crossref] [PubMed]

Ji, X.

J. Lee, S. Mubeen, X. Ji, G. D. Stucky, and M. Moskovits, “Plasmonic photoanodes for solar water splitting with visible light,” Nano Lett. 12(9), 5014–5019 (2012).
[Crossref] [PubMed]

Jin, D.

D. Jin, Q. Hu, D. Neuhauser, F. von Cube, Y. Yang, R. Sachan, T. S. Luk, D. C. Bell, and N. X. Fang, “Quantum-spillover-enhanced surface-plasmonic absorption at the interface of silver and high-index dielectrics,” Phys. Rev. Lett. 115(19), 193901 (2015).
[Crossref] [PubMed]

Jung, C. H.

Y. K. Lee, C. H. Jung, J. Park, H. Seo, G. A. Somorjai, and J. Y. Park, “Surface plasmon-driven hot electron flow probed with metal-semiconductor nanodiodes,” Nano Lett. 11(10), 4251–4255 (2011).
[Crossref] [PubMed]

Khan, S. U.

S. U. Khan, M. Al-Shahry, and W. B. Ingler., “Efficient photochemical water splitting by a chemically modified n-TiO2,” Science 297(5590), 2243–2245 (2002).
[Crossref] [PubMed]

Kim, S.

A. Elfaer, Y. Wang, X. Li, J. Chou, and S. Kim, “Gold nanorods coated metallic photonic crystal for enhanced hot electron transfer in electrochemical cells,” MRS Adv. 1(13), 831–837 (2016).
[Crossref]

Kim, S. G.

J. B. Chou, Y. X. Yeng, Y. E. Lee, A. Lenert, V. Rinnerbauer, I. Celanovic, M. Soljačić, N. X. Fang, E. N. Wang, and S. G. Kim, “Enabling ideal selective solar absorption with 2D metallic dielectric photonic crystals,” Adv. Mater. 26(47), 8041–8045 (2014).
[Crossref] [PubMed]

Kim, S.-G.

Knight, M. W.

M. W. Knight, Y. Wang, A. S. Urban, A. Sobhani, B. Y. Zheng, P. Nordlander, and N. J. Halas, “Embedding plasmonic nanostructure diodes enhances hot electron emission,” Nano Lett. 13(4), 1687–1692 (2013).
[Crossref] [PubMed]

Konstantatos, G.

F. P. García de Arquer, A. Mihi, and G. Konstantatos, “Large-Area Plasmonic-Crystal–Hot-Electron-Based Photodetectors,” ACS Photonics 2(7), 950–957 (2015).
[Crossref]

Kulkarni, V.

A. Manjavacas, J. G. Liu, V. Kulkarni, and P. Nordlander, “Plasmon-induced hot carriers in metallic nanoparticles,” ACS Nano 8(8), 7630–7638 (2014).
[Crossref] [PubMed]

Lavrinenko, A. V.

A. V. Uskov, I. E. Protsenko, R. S. Ikhsanov, V. E. Babicheva, S. V. Zhukovsky, A. V. Lavrinenko, E. P. O’Reilly, and H. Xu, “Internal photoemission from plasmonic nanoparticles: comparison between surface and volume photoelectric effects,” Nanoscale 6(9), 4716–4727 (2014).
[Crossref] [PubMed]

Lee, J.

J. Lee, S. Mubeen, X. Ji, G. D. Stucky, and M. Moskovits, “Plasmonic photoanodes for solar water splitting with visible light,” Nano Lett. 12(9), 5014–5019 (2012).
[Crossref] [PubMed]

Lee, Y. E.

J. B. Chou, Y. X. Yeng, Y. E. Lee, A. Lenert, V. Rinnerbauer, I. Celanovic, M. Soljačić, N. X. Fang, E. N. Wang, and S. G. Kim, “Enabling ideal selective solar absorption with 2D metallic dielectric photonic crystals,” Adv. Mater. 26(47), 8041–8045 (2014).
[Crossref] [PubMed]

Lee, Y. K.

Y. K. Lee, C. H. Jung, J. Park, H. Seo, G. A. Somorjai, and J. Y. Park, “Surface plasmon-driven hot electron flow probed with metal-semiconductor nanodiodes,” Nano Lett. 11(10), 4251–4255 (2011).
[Crossref] [PubMed]

Lemarchand, F.

F. Lemarchand, A. Sentenac, E. Cambril, and H. Giovannini, “Study of the resonant behaviour of waveguide gratings: increasing the angular tolerance of guided-mode filters,” J. Opt. A, Pure Appl. Opt. 1(4), 545–551 (1999).
[Crossref]

Lenert, A.

J. B. Chou, Y. X. Yeng, Y. E. Lee, A. Lenert, V. Rinnerbauer, I. Celanovic, M. Soljačić, N. X. Fang, E. N. Wang, and S. G. Kim, “Enabling ideal selective solar absorption with 2D metallic dielectric photonic crystals,” Adv. Mater. 26(47), 8041–8045 (2014).
[Crossref] [PubMed]

J. B. Chou, Y. X. Yeng, A. Lenert, V. Rinnerbauer, I. Celanovic, M. Soljačić, E. N. Wang, and S.-G. Kim, “Design of wide-angle selective absorbers/emitters with dielectric filled metallic photonic crystals for energy applications,” Opt. Express 22(S1Suppl 1), A144–A154 (2014).
[Crossref] [PubMed]

Li, W.

W. Li, Z. J. Coppens, L. V. Besteiro, W. Wang, A. O. Govorov, and J. Valentine, “Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials,” Nat. Commun. 6, 8379 (2015).
[Crossref] [PubMed]

W. Li and J. Valentine, “Metamaterial perfect absorber based hot electron photodetection,” Nano Lett. 14(6), 3510–3514 (2014).
[Crossref] [PubMed]

Li, X.

A. Elfaer, Y. Wang, X. Li, J. Chou, and S. Kim, “Gold nanorods coated metallic photonic crystal for enhanced hot electron transfer in electrochemical cells,” MRS Adv. 1(13), 831–837 (2016).
[Crossref]

Lian, T.

K. Wu, J. Chen, J. R. McBride, and T. Lian, “Efficient hot-electron transfer by a plasmon-induced interfacial charge-transfer transition,” Science 349(6248), 632–635 (2015).
[Crossref] [PubMed]

Linic, S.

S. Linic, P. Christopher, and D. B. Ingram, “Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy,” Nat. Mater. 10(12), 911–921 (2011).
[Crossref] [PubMed]

Liu, J. G.

A. Manjavacas, J. G. Liu, V. Kulkarni, and P. Nordlander, “Plasmon-induced hot carriers in metallic nanoparticles,” ACS Nano 8(8), 7630–7638 (2014).
[Crossref] [PubMed]

Louie, S. G.

M. Bernardi, J. Mustafa, J. B. Neaton, and S. G. Louie, “Theory and computation of hot carriers generated by surface plasmon polaritons in noble metals,” Nat. Commun. 6, 7044 (2015).
[Crossref] [PubMed]

Luk, T. S.

D. Jin, Q. Hu, D. Neuhauser, F. von Cube, Y. Yang, R. Sachan, T. S. Luk, D. C. Bell, and N. X. Fang, “Quantum-spillover-enhanced surface-plasmonic absorption at the interface of silver and high-index dielectrics,” Phys. Rev. Lett. 115(19), 193901 (2015).
[Crossref] [PubMed]

Manjavacas, A.

B. Y. Zheng, H. Zhao, A. Manjavacas, M. McClain, P. Nordlander, and N. J. Halas, “Distinguishing between plasmon-induced and photoexcited carriers in a device geometry,” Nat. Commun. 6, 7797 (2015).
[Crossref] [PubMed]

A. Manjavacas, J. G. Liu, V. Kulkarni, and P. Nordlander, “Plasmon-induced hot carriers in metallic nanoparticles,” ACS Nano 8(8), 7630–7638 (2014).
[Crossref] [PubMed]

McBride, J. R.

K. Wu, J. Chen, J. R. McBride, and T. Lian, “Efficient hot-electron transfer by a plasmon-induced interfacial charge-transfer transition,” Science 349(6248), 632–635 (2015).
[Crossref] [PubMed]

McClain, M.

B. Y. Zheng, H. Zhao, A. Manjavacas, M. McClain, P. Nordlander, and N. J. Halas, “Distinguishing between plasmon-induced and photoexcited carriers in a device geometry,” Nat. Commun. 6, 7797 (2015).
[Crossref] [PubMed]

Melosh, N. A.

F. Wang and N. A. Melosh, “Power-independent wavelength determination by hot carrier collection in metal-insulator-metal devices,” Nat. Commun. 4, 1711 (2013).
[Crossref] [PubMed]

Mihi, A.

F. P. García de Arquer, A. Mihi, and G. Konstantatos, “Large-Area Plasmonic-Crystal–Hot-Electron-Based Photodetectors,” ACS Photonics 2(7), 950–957 (2015).
[Crossref]

Misawa, H.

Y. Nishijima, K. Ueno, Y. Yokota, K. Murakoshi, and H. Misawa, “Plasmon-assisted photocurrent generation from visible to near-infrared wavelength using a Au-nanorods/TiO2 electrode,” J. Phys. Chem. Lett. 1(13), 2031–2036 (2010).
[Crossref]

Moskovits, M.

J. Lee, S. Mubeen, X. Ji, G. D. Stucky, and M. Moskovits, “Plasmonic photoanodes for solar water splitting with visible light,” Nano Lett. 12(9), 5014–5019 (2012).
[Crossref] [PubMed]

J. T. Stuckless and M. Moskovits, “Enhanced two-photon photoemission from coldly deposited silver films,” Phys. Rev. B Condens. Matter 40(14), 9997–9998 (1989).
[Crossref] [PubMed]

Mubeen, S.

J. Lee, S. Mubeen, X. Ji, G. D. Stucky, and M. Moskovits, “Plasmonic photoanodes for solar water splitting with visible light,” Nano Lett. 12(9), 5014–5019 (2012).
[Crossref] [PubMed]

Murakoshi, K.

Y. Nishijima, K. Ueno, Y. Yokota, K. Murakoshi, and H. Misawa, “Plasmon-assisted photocurrent generation from visible to near-infrared wavelength using a Au-nanorods/TiO2 electrode,” J. Phys. Chem. Lett. 1(13), 2031–2036 (2010).
[Crossref]

Mustafa, J.

M. Bernardi, J. Mustafa, J. B. Neaton, and S. G. Louie, “Theory and computation of hot carriers generated by surface plasmon polaritons in noble metals,” Nat. Commun. 6, 7044 (2015).
[Crossref] [PubMed]

Narang, P.

A. M. Brown, R. Sundararaman, P. Narang, W. A. Goddard, and H. A. Atwater, “Nonradiative plasmon decay and hot carrier dynamics: effects of phonons, surfaces, and geometry,” ACS Nano 10(1), 957–966 (2016).
[PubMed]

R. Sundararaman, P. Narang, A. S. Jermyn, W. A. Goddard, and H. A. Atwater, “Theoretical predictions for hot-carrier generation from surface plasmon decay,” Nat. Commun. 5, 5788 (2014).
[Crossref] [PubMed]

Neaton, J. B.

M. Bernardi, J. Mustafa, J. B. Neaton, and S. G. Louie, “Theory and computation of hot carriers generated by surface plasmon polaritons in noble metals,” Nat. Commun. 6, 7044 (2015).
[Crossref] [PubMed]

Neuhauser, D.

D. Jin, Q. Hu, D. Neuhauser, F. von Cube, Y. Yang, R. Sachan, T. S. Luk, D. C. Bell, and N. X. Fang, “Quantum-spillover-enhanced surface-plasmonic absorption at the interface of silver and high-index dielectrics,” Phys. Rev. Lett. 115(19), 193901 (2015).
[Crossref] [PubMed]

Nishijima, Y.

Y. Nishijima, K. Ueno, Y. Yokota, K. Murakoshi, and H. Misawa, “Plasmon-assisted photocurrent generation from visible to near-infrared wavelength using a Au-nanorods/TiO2 electrode,” J. Phys. Chem. Lett. 1(13), 2031–2036 (2010).
[Crossref]

Nordlander, P.

M. L. Brongersma, N. J. Halas, and P. Nordlander, “Plasmon-induced hot carrier science and technology,” Nat. Nanotechnol. 10(1), 25–34 (2015).
[Crossref] [PubMed]

B. Y. Zheng, H. Zhao, A. Manjavacas, M. McClain, P. Nordlander, and N. J. Halas, “Distinguishing between plasmon-induced and photoexcited carriers in a device geometry,” Nat. Commun. 6, 7797 (2015).
[Crossref] [PubMed]

A. Manjavacas, J. G. Liu, V. Kulkarni, and P. Nordlander, “Plasmon-induced hot carriers in metallic nanoparticles,” ACS Nano 8(8), 7630–7638 (2014).
[Crossref] [PubMed]

M. W. Knight, Y. Wang, A. S. Urban, A. Sobhani, B. Y. Zheng, P. Nordlander, and N. J. Halas, “Embedding plasmonic nanostructure diodes enhances hot electron emission,” Nano Lett. 13(4), 1687–1692 (2013).
[Crossref] [PubMed]

O’Reilly, E. P.

A. V. Uskov, I. E. Protsenko, R. S. Ikhsanov, V. E. Babicheva, S. V. Zhukovsky, A. V. Lavrinenko, E. P. O’Reilly, and H. Xu, “Internal photoemission from plasmonic nanoparticles: comparison between surface and volume photoelectric effects,” Nanoscale 6(9), 4716–4727 (2014).
[Crossref] [PubMed]

Park, J.

Y. K. Lee, C. H. Jung, J. Park, H. Seo, G. A. Somorjai, and J. Y. Park, “Surface plasmon-driven hot electron flow probed with metal-semiconductor nanodiodes,” Nano Lett. 11(10), 4251–4255 (2011).
[Crossref] [PubMed]

Park, J. Y.

Y. K. Lee, C. H. Jung, J. Park, H. Seo, G. A. Somorjai, and J. Y. Park, “Surface plasmon-driven hot electron flow probed with metal-semiconductor nanodiodes,” Nano Lett. 11(10), 4251–4255 (2011).
[Crossref] [PubMed]

Protsenko, I. E.

A. V. Uskov, I. E. Protsenko, R. S. Ikhsanov, V. E. Babicheva, S. V. Zhukovsky, A. V. Lavrinenko, E. P. O’Reilly, and H. Xu, “Internal photoemission from plasmonic nanoparticles: comparison between surface and volume photoelectric effects,” Nanoscale 6(9), 4716–4727 (2014).
[Crossref] [PubMed]

Rinnerbauer, V.

J. B. Chou, Y. X. Yeng, Y. E. Lee, A. Lenert, V. Rinnerbauer, I. Celanovic, M. Soljačić, N. X. Fang, E. N. Wang, and S. G. Kim, “Enabling ideal selective solar absorption with 2D metallic dielectric photonic crystals,” Adv. Mater. 26(47), 8041–8045 (2014).
[Crossref] [PubMed]

J. B. Chou, Y. X. Yeng, A. Lenert, V. Rinnerbauer, I. Celanovic, M. Soljačić, E. N. Wang, and S.-G. Kim, “Design of wide-angle selective absorbers/emitters with dielectric filled metallic photonic crystals for energy applications,” Opt. Express 22(S1Suppl 1), A144–A154 (2014).
[Crossref] [PubMed]

Sachan, R.

D. Jin, Q. Hu, D. Neuhauser, F. von Cube, Y. Yang, R. Sachan, T. S. Luk, D. C. Bell, and N. X. Fang, “Quantum-spillover-enhanced surface-plasmonic absorption at the interface of silver and high-index dielectrics,” Phys. Rev. Lett. 115(19), 193901 (2015).
[Crossref] [PubMed]

Scales, C.

C. Scales and P. Berini, “Thin-film schottky barrier photodetector models,” IEEE J. Quantum Electron. 46(5), 633–643 (2010).
[Crossref]

Sentenac, A.

F. Lemarchand, A. Sentenac, E. Cambril, and H. Giovannini, “Study of the resonant behaviour of waveguide gratings: increasing the angular tolerance of guided-mode filters,” J. Opt. A, Pure Appl. Opt. 1(4), 545–551 (1999).
[Crossref]

Seo, H.

Y. K. Lee, C. H. Jung, J. Park, H. Seo, G. A. Somorjai, and J. Y. Park, “Surface plasmon-driven hot electron flow probed with metal-semiconductor nanodiodes,” Nano Lett. 11(10), 4251–4255 (2011).
[Crossref] [PubMed]

Sobhani, A.

M. W. Knight, Y. Wang, A. S. Urban, A. Sobhani, B. Y. Zheng, P. Nordlander, and N. J. Halas, “Embedding plasmonic nanostructure diodes enhances hot electron emission,” Nano Lett. 13(4), 1687–1692 (2013).
[Crossref] [PubMed]

Soljacic, M.

J. B. Chou, Y. X. Yeng, A. Lenert, V. Rinnerbauer, I. Celanovic, M. Soljačić, E. N. Wang, and S.-G. Kim, “Design of wide-angle selective absorbers/emitters with dielectric filled metallic photonic crystals for energy applications,” Opt. Express 22(S1Suppl 1), A144–A154 (2014).
[Crossref] [PubMed]

J. B. Chou, Y. X. Yeng, Y. E. Lee, A. Lenert, V. Rinnerbauer, I. Celanovic, M. Soljačić, N. X. Fang, E. N. Wang, and S. G. Kim, “Enabling ideal selective solar absorption with 2D metallic dielectric photonic crystals,” Adv. Mater. 26(47), 8041–8045 (2014).
[Crossref] [PubMed]

Somorjai, G. A.

Y. K. Lee, C. H. Jung, J. Park, H. Seo, G. A. Somorjai, and J. Y. Park, “Surface plasmon-driven hot electron flow probed with metal-semiconductor nanodiodes,” Nano Lett. 11(10), 4251–4255 (2011).
[Crossref] [PubMed]

Stuckless, J. T.

J. T. Stuckless and M. Moskovits, “Enhanced two-photon photoemission from coldly deposited silver films,” Phys. Rev. B Condens. Matter 40(14), 9997–9998 (1989).
[Crossref] [PubMed]

Stucky, G. D.

J. Lee, S. Mubeen, X. Ji, G. D. Stucky, and M. Moskovits, “Plasmonic photoanodes for solar water splitting with visible light,” Nano Lett. 12(9), 5014–5019 (2012).
[Crossref] [PubMed]

Sundararaman, R.

A. M. Brown, R. Sundararaman, P. Narang, W. A. Goddard, and H. A. Atwater, “Nonradiative plasmon decay and hot carrier dynamics: effects of phonons, surfaces, and geometry,” ACS Nano 10(1), 957–966 (2016).
[PubMed]

R. Sundararaman, P. Narang, A. S. Jermyn, W. A. Goddard, and H. A. Atwater, “Theoretical predictions for hot-carrier generation from surface plasmon decay,” Nat. Commun. 5, 5788 (2014).
[Crossref] [PubMed]

Tang, H.

W.-J. Yin, H. Tang, S.-H. Wei, M. M. Al-Jassim, J. Turner, and Y. Yan, “Band structure engineering of semiconductors for enhanced photoelectrochemical water splitting: the case of TiO 2,” Phys. Rev. B Condens. Matter 82(4), 045106 (2010).
[Crossref]

Tatsuma, T.

Y. Tian and T. Tatsuma, “Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles,” J. Am. Chem. Soc. 127(20), 7632–7637 (2005).
[Crossref] [PubMed]

Tian, Y.

Y. Tian and T. Tatsuma, “Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles,” J. Am. Chem. Soc. 127(20), 7632–7637 (2005).
[Crossref] [PubMed]

Turner, J.

W.-J. Yin, H. Tang, S.-H. Wei, M. M. Al-Jassim, J. Turner, and Y. Yan, “Band structure engineering of semiconductors for enhanced photoelectrochemical water splitting: the case of TiO 2,” Phys. Rev. B Condens. Matter 82(4), 045106 (2010).
[Crossref]

Ueno, K.

Y. Nishijima, K. Ueno, Y. Yokota, K. Murakoshi, and H. Misawa, “Plasmon-assisted photocurrent generation from visible to near-infrared wavelength using a Au-nanorods/TiO2 electrode,” J. Phys. Chem. Lett. 1(13), 2031–2036 (2010).
[Crossref]

Urban, A. S.

M. W. Knight, Y. Wang, A. S. Urban, A. Sobhani, B. Y. Zheng, P. Nordlander, and N. J. Halas, “Embedding plasmonic nanostructure diodes enhances hot electron emission,” Nano Lett. 13(4), 1687–1692 (2013).
[Crossref] [PubMed]

Uskov, A. V.

A. V. Uskov, I. E. Protsenko, R. S. Ikhsanov, V. E. Babicheva, S. V. Zhukovsky, A. V. Lavrinenko, E. P. O’Reilly, and H. Xu, “Internal photoemission from plasmonic nanoparticles: comparison between surface and volume photoelectric effects,” Nanoscale 6(9), 4716–4727 (2014).
[Crossref] [PubMed]

Valentine, J.

W. Li, Z. J. Coppens, L. V. Besteiro, W. Wang, A. O. Govorov, and J. Valentine, “Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials,” Nat. Commun. 6, 8379 (2015).
[Crossref] [PubMed]

W. Li and J. Valentine, “Metamaterial perfect absorber based hot electron photodetection,” Nano Lett. 14(6), 3510–3514 (2014).
[Crossref] [PubMed]

von Cube, F.

D. Jin, Q. Hu, D. Neuhauser, F. von Cube, Y. Yang, R. Sachan, T. S. Luk, D. C. Bell, and N. X. Fang, “Quantum-spillover-enhanced surface-plasmonic absorption at the interface of silver and high-index dielectrics,” Phys. Rev. Lett. 115(19), 193901 (2015).
[Crossref] [PubMed]

Vuckovic, J.

Wang, E. N.

J. B. Chou, Y. X. Yeng, A. Lenert, V. Rinnerbauer, I. Celanovic, M. Soljačić, E. N. Wang, and S.-G. Kim, “Design of wide-angle selective absorbers/emitters with dielectric filled metallic photonic crystals for energy applications,” Opt. Express 22(S1Suppl 1), A144–A154 (2014).
[Crossref] [PubMed]

J. B. Chou, Y. X. Yeng, Y. E. Lee, A. Lenert, V. Rinnerbauer, I. Celanovic, M. Soljačić, N. X. Fang, E. N. Wang, and S. G. Kim, “Enabling ideal selective solar absorption with 2D metallic dielectric photonic crystals,” Adv. Mater. 26(47), 8041–8045 (2014).
[Crossref] [PubMed]

Wang, F.

F. Wang and N. A. Melosh, “Power-independent wavelength determination by hot carrier collection in metal-insulator-metal devices,” Nat. Commun. 4, 1711 (2013).
[Crossref] [PubMed]

Wang, W.

W. Li, Z. J. Coppens, L. V. Besteiro, W. Wang, A. O. Govorov, and J. Valentine, “Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials,” Nat. Commun. 6, 8379 (2015).
[Crossref] [PubMed]

Wang, Y.

A. Elfaer, Y. Wang, X. Li, J. Chou, and S. Kim, “Gold nanorods coated metallic photonic crystal for enhanced hot electron transfer in electrochemical cells,” MRS Adv. 1(13), 831–837 (2016).
[Crossref]

M. W. Knight, Y. Wang, A. S. Urban, A. Sobhani, B. Y. Zheng, P. Nordlander, and N. J. Halas, “Embedding plasmonic nanostructure diodes enhances hot electron emission,” Nano Lett. 13(4), 1687–1692 (2013).
[Crossref] [PubMed]

Wei, S.-H.

W.-J. Yin, H. Tang, S.-H. Wei, M. M. Al-Jassim, J. Turner, and Y. Yan, “Band structure engineering of semiconductors for enhanced photoelectrochemical water splitting: the case of TiO 2,” Phys. Rev. B Condens. Matter 82(4), 045106 (2010).
[Crossref]

Wu, K.

K. Wu, J. Chen, J. R. McBride, and T. Lian, “Efficient hot-electron transfer by a plasmon-induced interfacial charge-transfer transition,” Science 349(6248), 632–635 (2015).
[Crossref] [PubMed]

Xu, H.

A. V. Uskov, I. E. Protsenko, R. S. Ikhsanov, V. E. Babicheva, S. V. Zhukovsky, A. V. Lavrinenko, E. P. O’Reilly, and H. Xu, “Internal photoemission from plasmonic nanoparticles: comparison between surface and volume photoelectric effects,” Nanoscale 6(9), 4716–4727 (2014).
[Crossref] [PubMed]

Yan, Y.

W.-J. Yin, H. Tang, S.-H. Wei, M. M. Al-Jassim, J. Turner, and Y. Yan, “Band structure engineering of semiconductors for enhanced photoelectrochemical water splitting: the case of TiO 2,” Phys. Rev. B Condens. Matter 82(4), 045106 (2010).
[Crossref]

Yang, Y.

D. Jin, Q. Hu, D. Neuhauser, F. von Cube, Y. Yang, R. Sachan, T. S. Luk, D. C. Bell, and N. X. Fang, “Quantum-spillover-enhanced surface-plasmonic absorption at the interface of silver and high-index dielectrics,” Phys. Rev. Lett. 115(19), 193901 (2015).
[Crossref] [PubMed]

Yeng, Y. X.

J. B. Chou, Y. X. Yeng, A. Lenert, V. Rinnerbauer, I. Celanovic, M. Soljačić, E. N. Wang, and S.-G. Kim, “Design of wide-angle selective absorbers/emitters with dielectric filled metallic photonic crystals for energy applications,” Opt. Express 22(S1Suppl 1), A144–A154 (2014).
[Crossref] [PubMed]

J. B. Chou, Y. X. Yeng, Y. E. Lee, A. Lenert, V. Rinnerbauer, I. Celanovic, M. Soljačić, N. X. Fang, E. N. Wang, and S. G. Kim, “Enabling ideal selective solar absorption with 2D metallic dielectric photonic crystals,” Adv. Mater. 26(47), 8041–8045 (2014).
[Crossref] [PubMed]

Yin, W.-J.

W.-J. Yin, H. Tang, S.-H. Wei, M. M. Al-Jassim, J. Turner, and Y. Yan, “Band structure engineering of semiconductors for enhanced photoelectrochemical water splitting: the case of TiO 2,” Phys. Rev. B Condens. Matter 82(4), 045106 (2010).
[Crossref]

Yokota, Y.

Y. Nishijima, K. Ueno, Y. Yokota, K. Murakoshi, and H. Misawa, “Plasmon-assisted photocurrent generation from visible to near-infrared wavelength using a Au-nanorods/TiO2 electrode,” J. Phys. Chem. Lett. 1(13), 2031–2036 (2010).
[Crossref]

Zhang, H.

A. O. Govorov, H. Zhang, and Y. K. Gun’ko, “Theory of photoinjection of hot plasmonic carriers from metal nanostructures into semiconductors and surface molecules,” J. Phys. Chem. C 117(32), 16616–16631 (2013).
[Crossref]

Zhao, H.

B. Y. Zheng, H. Zhao, A. Manjavacas, M. McClain, P. Nordlander, and N. J. Halas, “Distinguishing between plasmon-induced and photoexcited carriers in a device geometry,” Nat. Commun. 6, 7797 (2015).
[Crossref] [PubMed]

Zheng, B. Y.

B. Y. Zheng, H. Zhao, A. Manjavacas, M. McClain, P. Nordlander, and N. J. Halas, “Distinguishing between plasmon-induced and photoexcited carriers in a device geometry,” Nat. Commun. 6, 7797 (2015).
[Crossref] [PubMed]

M. W. Knight, Y. Wang, A. S. Urban, A. Sobhani, B. Y. Zheng, P. Nordlander, and N. J. Halas, “Embedding plasmonic nanostructure diodes enhances hot electron emission,” Nano Lett. 13(4), 1687–1692 (2013).
[Crossref] [PubMed]

Zhukovsky, S. V.

A. V. Uskov, I. E. Protsenko, R. S. Ikhsanov, V. E. Babicheva, S. V. Zhukovsky, A. V. Lavrinenko, E. P. O’Reilly, and H. Xu, “Internal photoemission from plasmonic nanoparticles: comparison between surface and volume photoelectric effects,” Nanoscale 6(9), 4716–4727 (2014).
[Crossref] [PubMed]

ACS Nano (2)

A. M. Brown, R. Sundararaman, P. Narang, W. A. Goddard, and H. A. Atwater, “Nonradiative plasmon decay and hot carrier dynamics: effects of phonons, surfaces, and geometry,” ACS Nano 10(1), 957–966 (2016).
[PubMed]

A. Manjavacas, J. G. Liu, V. Kulkarni, and P. Nordlander, “Plasmon-induced hot carriers in metallic nanoparticles,” ACS Nano 8(8), 7630–7638 (2014).
[Crossref] [PubMed]

ACS Photonics (1)

F. P. García de Arquer, A. Mihi, and G. Konstantatos, “Large-Area Plasmonic-Crystal–Hot-Electron-Based Photodetectors,” ACS Photonics 2(7), 950–957 (2015).
[Crossref]

Adv. Mater. (1)

J. B. Chou, Y. X. Yeng, Y. E. Lee, A. Lenert, V. Rinnerbauer, I. Celanovic, M. Soljačić, N. X. Fang, E. N. Wang, and S. G. Kim, “Enabling ideal selective solar absorption with 2D metallic dielectric photonic crystals,” Adv. Mater. 26(47), 8041–8045 (2014).
[Crossref] [PubMed]

IEEE J. Quantum Electron. (1)

C. Scales and P. Berini, “Thin-film schottky barrier photodetector models,” IEEE J. Quantum Electron. 46(5), 633–643 (2010).
[Crossref]

J. Am. Chem. Soc. (1)

Y. Tian and T. Tatsuma, “Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles,” J. Am. Chem. Soc. 127(20), 7632–7637 (2005).
[Crossref] [PubMed]

J. Opt. A, Pure Appl. Opt. (1)

F. Lemarchand, A. Sentenac, E. Cambril, and H. Giovannini, “Study of the resonant behaviour of waveguide gratings: increasing the angular tolerance of guided-mode filters,” J. Opt. A, Pure Appl. Opt. 1(4), 545–551 (1999).
[Crossref]

J. Phys. Chem. C (1)

A. O. Govorov, H. Zhang, and Y. K. Gun’ko, “Theory of photoinjection of hot plasmonic carriers from metal nanostructures into semiconductors and surface molecules,” J. Phys. Chem. C 117(32), 16616–16631 (2013).
[Crossref]

J. Phys. Chem. Lett. (1)

Y. Nishijima, K. Ueno, Y. Yokota, K. Murakoshi, and H. Misawa, “Plasmon-assisted photocurrent generation from visible to near-infrared wavelength using a Au-nanorods/TiO2 electrode,” J. Phys. Chem. Lett. 1(13), 2031–2036 (2010).
[Crossref]

MRS Adv. (1)

A. Elfaer, Y. Wang, X. Li, J. Chou, and S. Kim, “Gold nanorods coated metallic photonic crystal for enhanced hot electron transfer in electrochemical cells,” MRS Adv. 1(13), 831–837 (2016).
[Crossref]

Nano Lett. (4)

M. W. Knight, Y. Wang, A. S. Urban, A. Sobhani, B. Y. Zheng, P. Nordlander, and N. J. Halas, “Embedding plasmonic nanostructure diodes enhances hot electron emission,” Nano Lett. 13(4), 1687–1692 (2013).
[Crossref] [PubMed]

Y. K. Lee, C. H. Jung, J. Park, H. Seo, G. A. Somorjai, and J. Y. Park, “Surface plasmon-driven hot electron flow probed with metal-semiconductor nanodiodes,” Nano Lett. 11(10), 4251–4255 (2011).
[Crossref] [PubMed]

J. Lee, S. Mubeen, X. Ji, G. D. Stucky, and M. Moskovits, “Plasmonic photoanodes for solar water splitting with visible light,” Nano Lett. 12(9), 5014–5019 (2012).
[Crossref] [PubMed]

W. Li and J. Valentine, “Metamaterial perfect absorber based hot electron photodetection,” Nano Lett. 14(6), 3510–3514 (2014).
[Crossref] [PubMed]

Nanoscale (1)

A. V. Uskov, I. E. Protsenko, R. S. Ikhsanov, V. E. Babicheva, S. V. Zhukovsky, A. V. Lavrinenko, E. P. O’Reilly, and H. Xu, “Internal photoemission from plasmonic nanoparticles: comparison between surface and volume photoelectric effects,” Nanoscale 6(9), 4716–4727 (2014).
[Crossref] [PubMed]

Nat. Commun. (5)

M. Bernardi, J. Mustafa, J. B. Neaton, and S. G. Louie, “Theory and computation of hot carriers generated by surface plasmon polaritons in noble metals,” Nat. Commun. 6, 7044 (2015).
[Crossref] [PubMed]

R. Sundararaman, P. Narang, A. S. Jermyn, W. A. Goddard, and H. A. Atwater, “Theoretical predictions for hot-carrier generation from surface plasmon decay,” Nat. Commun. 5, 5788 (2014).
[Crossref] [PubMed]

B. Y. Zheng, H. Zhao, A. Manjavacas, M. McClain, P. Nordlander, and N. J. Halas, “Distinguishing between plasmon-induced and photoexcited carriers in a device geometry,” Nat. Commun. 6, 7797 (2015).
[Crossref] [PubMed]

W. Li, Z. J. Coppens, L. V. Besteiro, W. Wang, A. O. Govorov, and J. Valentine, “Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials,” Nat. Commun. 6, 8379 (2015).
[Crossref] [PubMed]

F. Wang and N. A. Melosh, “Power-independent wavelength determination by hot carrier collection in metal-insulator-metal devices,” Nat. Commun. 4, 1711 (2013).
[Crossref] [PubMed]

Nat. Mater. (1)

S. Linic, P. Christopher, and D. B. Ingram, “Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy,” Nat. Mater. 10(12), 911–921 (2011).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

M. L. Brongersma, N. J. Halas, and P. Nordlander, “Plasmon-induced hot carrier science and technology,” Nat. Nanotechnol. 10(1), 25–34 (2015).
[Crossref] [PubMed]

Nat. Photonics (1)

C. Clavero, “Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices,” Nat. Photonics 8(2), 95–103 (2014).
[Crossref]

Opt. Express (2)

Phys. Rev. (1)

R. H. Fowler, “The analysis of photoelectric sensitivity curves for clean metals at various temperatures,” Phys. Rev. 38(1), 45–56 (1931).
[Crossref]

Phys. Rev. B Condens. Matter (2)

J. T. Stuckless and M. Moskovits, “Enhanced two-photon photoemission from coldly deposited silver films,” Phys. Rev. B Condens. Matter 40(14), 9997–9998 (1989).
[Crossref] [PubMed]

W.-J. Yin, H. Tang, S.-H. Wei, M. M. Al-Jassim, J. Turner, and Y. Yan, “Band structure engineering of semiconductors for enhanced photoelectrochemical water splitting: the case of TiO 2,” Phys. Rev. B Condens. Matter 82(4), 045106 (2010).
[Crossref]

Phys. Rev. Lett. (1)

D. Jin, Q. Hu, D. Neuhauser, F. von Cube, Y. Yang, R. Sachan, T. S. Luk, D. C. Bell, and N. X. Fang, “Quantum-spillover-enhanced surface-plasmonic absorption at the interface of silver and high-index dielectrics,” Phys. Rev. Lett. 115(19), 193901 (2015).
[Crossref] [PubMed]

Science (2)

K. Wu, J. Chen, J. R. McBride, and T. Lian, “Efficient hot-electron transfer by a plasmon-induced interfacial charge-transfer transition,” Science 349(6248), 632–635 (2015).
[Crossref] [PubMed]

S. U. Khan, M. Al-Shahry, and W. B. Ingler., “Efficient photochemical water splitting by a chemically modified n-TiO2,” Science 297(5590), 2243–2245 (2002).
[Crossref] [PubMed]

Other (3)

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer Science and Business Media, 2007).

J. Nowotny, Oxide Semiconductors for Solar Energy Conversion: Titanium Dioxide (CRC, 2011).

J. B. Chou, D. P. Fenning, Y. Wang, M. A. M. Polanco, J. Hwang, A. El-Faer, F. Sammoura, J. Viegas, M. Rasras, and A. M. Kolpak, “Broadband photoelectric hot carrier collection with wafer-scale metallic-semiconductor photonic crystals,” in 2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC) (IEEE, 2015), pp. 1–6.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic of MSPhC device. (a) Top view of MSPhC chip. Thick metal (200 nm) are used as contacts in region I and IV. (b) Structure and operation design of region II and III in (a). (c) Cross-section of MSPhC and possible resonance modes. r and d are the radius and depth of the nano-cavity. (d) Layer structure and current path. (e) Band diagram of Au/TiO2 Interface.

Fig. 2
Fig. 2

Structural dependence of total absorption to Au from 200 nm to 2 µm of MSPhC. Two structural parameters were studied by FDTD simulation, which are (a) radius of nano-cavity and (b) depth of nano-cavity.

Fig. 3
Fig. 3

FDTD simulated absorption spectra of MSPhC with various Au thickness from 200 nm to 2 µm.

Fig. 4
Fig. 4

Images of the MSPhC. (a) Top view with SEM and (b) View at 30° angle with FIB. The red dash line denotes the position of cutting plane for cross-section view in Fig. 4(c). (c) Cross-section view of a single nano-cavity with FIB. The diameter, depth and period of the cavities are 500 nm, 1 µm and 840 nm respectively.

Fig. 5
Fig. 5

Reflection spectra of MSPhC via UV-Vis measurement and FDTD simulation.

Fig. 6
Fig. 6

FDTD simulated modal analysis, with two major resonance mode at 500 nm and 600 nm.

Fig. 7
Fig. 7

Intensity of electric field in MSPhC cavity at (a) 500 nm and (b) 600 nm. (c) 750 nm.

Fig. 8
Fig. 8

Laser diode short-circuit photoresponse measurements of the MSPhC at various Au thicknesses of 10 nm, 20 nm, and 30 nm. The black curve is our best reported device with no ITO layer. The green curve is a flat chip with identical films for comparison.

Fig. 9
Fig. 9

High resolution short-circuit photoresponse test on MSPhC, with a FWHM of 235 nm centered at 590 nm. The blue curve is the fitting line via Fowler’s law.

Fig. 10
Fig. 10

Covering MSPhC with gold nanorods to induce multi-band surface plasmon resonance. (a) MSPhC covered with gold nanorods via electrophoretic deposition. (b) Absorption spectra of gold nanorods on flat glass slides with different area density from 2.7% to 38%.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

R= c (hυ φ B ) 2 hυ

Metrics