Abstract

We study the mechanical stability of a tunable high-finesse microcavity under ambient conditions and investigate light-induced effects that can both suppress and excite mechanical fluctuations. As an enabling step, we demonstrate the ultra-precise electronic stabilization of a microcavity. We then show that photothermal mirror expansion can provide high-bandwidth feedback and improve cavity stability by almost two orders of magnitude. At high intracavity power, we observe self-oscillations of mechanical resonances of the cavity. We explain the observations by a dynamic photothermal instability, leading to parametric driving of mechanical motion. For an optimized combination of electronic and photothermal stabilization, we achieve a feedback bandwidth of 500 kHz and a noise level of 1.1 × 10−13 m rms.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Feedback control of ultra-high-Q microcavities: application to micro-Raman lasers and micro-parametric oscillators

Tal Carmon, Tobias J. Kippenberg, Lan Yang, Hosein Rokhsari, Sean Spillane, and Kerry J. Vahala
Opt. Express 13(9) 3558-3566 (2005)

Cavity Opto-Mechanics

T.J. Kippenberg and K.J. Vahala
Opt. Express 15(25) 17172-17205 (2007)

Simple delay-limited sideband locking with heterodyne readout

Christoph Reinhardt, Tina Müller, and Jack C. Sankey
Opt. Express 25(2) 1582-1597 (2017)

References

  • View by:
  • |
  • |
  • |

  1. M. Trupke, E. A. Hinds, S. Eriksson, E. A. Curtis, Z. Moktadir, E. Kukharenka, and M. Kraft, “Microfabricated high-finesse optical cavity with open access and small mode volume,” Appl. Phys. Lett. 87, 211106 (2005).
    [Crossref]
  2. A. Muller, E. B. Flagg, M. Metcalfe, J. Lawall, and G. S. Solomon, “Coupling an epitaxial quantum dot to a fiber-based external-mirror microcavity,” Appl. Phys. Lett. 95, 173101 (2009).
    [Crossref]
  3. D. Hunger, T. Steinmetz, Y. Colombe, C. Deutsch, T. W. Hänsch, and J. Reichel, “Fiber Fabry-Perot cavity with high finesse,” New J. Phys. 12, 065038 (2010).
    [Crossref]
  4. C. Toninelli, Y. Delley, T. Stöferle, A. Renn, S. Götzinger, and V. Sandoghdar, “A scanning microcavity for in situ control of single-molecule emission,” Appl. Phys. Lett. 97, 021107 (2010).
    [Crossref]
  5. P. R. Dolan, G. M. Hughes, F. Grazioso, B. R. Patton, and J. M. Smith, “Femtoliter tunable optical cavity arrays,” Opt. Lett. 35, 3556 (2010).
    [Crossref] [PubMed]
  6. R. J. Barbour, P. A. Dalgarno, A. Curran, K. M. Nowak, H. J. Baker, D. R. Hall, N. G. Stoltz, P. M. Petroff, and R. J. Warburton, “A tunable microcavity,” J. Appl. Phys. 110, 053107 (2011).
    [Crossref]
  7. Y. Colombe, T. Steinmetz, G. Dubois, F. Linke, D. Hunger, and J. Reichel, “Strong atom-field coupling for Bose-Einstein condensates in an optical cavity on a chip,” Nature 450, 272 (2007).
    [Crossref] [PubMed]
  8. M. Steiner, H. M. Meyer, C. Deutsch, J. Reichel, and M. Köhl, “Single ion coupled to an optical fiber cavity,” Phys. Rev. Lett. 110, 043003 (2013).
    [Crossref] [PubMed]
  9. R. Albrecht, A. Bommer, C. Deutsch, J. Reichel, and C. Becher, “Coupling of a singl NV-center in diamond to a fiber-based microcavity,” Phys. Rev. Lett. 110, 243602 (2013).
    [Crossref]
  10. H. Kaupp, C. Deutsch, H.-C. Chang, J. Reichel, T. W. Hänsch, and D. Hunger, “Scaling laws of the cavity enhancement for nitrogen-vacancy centers in diamond,” Phys. Rev. A 88, 053812 (2013).
    [Crossref]
  11. J. Miguel-Sánchez, A. Reinhard, E. Togan, T. Volz, A. Imamoğlu, B. Bresga, J. Reichel, and J. Estève, “Cavity quantum electrodynamics with charge-controlled quantum dots coupled to a fiber Fabry-Perot cavity,” New J. Phys. 15, 045002 (2013).
    [Crossref]
  12. S. Johnson, P. R. Dolan, T. Grange, A. A. P. Trichet, G. Hornecker, Y. C. Chen, L. Weng, G. M. Hughes, A. A. R. Watt, A. Auffeves, and J. M. Smith, “Tunable cavity coupling of the zero phonon line of a nitrogen-vacancy defect in diamond,” New J. Phys. 17, 122003 (2015).
    [Crossref]
  13. I. Favero, S. Stapfner, D. Hunger, P. Paulitschke, J. Reichel, H. Lorenz, E. M. Weig, and K. Karrai, “Fluctuating nanomechanical system in a high finesse optical microcavity,” Opt. Express 17, 12813–12820 (2009).
    [Crossref] [PubMed]
  14. S. Stapfner, L. Ost, D. Hunger, J. Reichel, I. Favero, and E. Weig, “Cavity-enhanced optical detection of carbon nanotube Brownian motion,” Appl. Phys. Lett. 102, 151910 (2013).
    [Crossref]
  15. N. E. Flowers-Jacobs, S. W. Hoch, J. C. Sankey, A. Kashkanova, A. M. Jayich, C. Deutsch, J. Reichel, and J. G. E. Harris, “Fiber-cavity-based optomechanical device,” Appl. Phys. Lett. 101, 2012 (2012).
    [Crossref]
  16. M. Mader, J. Reichel, T. W. Hänsch, and D. Hunger, “A scanning cavity microscope,” Nat. Commun. 6, 7249 (2015).
    [Crossref] [PubMed]
  17. T. Hümmer, J. Noe, M. S. Hofmann, T. W. Hänsch, A. Högele, and D. Hunger, “Cavity-enhanced Raman microscopy of individual carbon nanotubes,” Nat. Commun. 7, 12155 (2016).
    [Crossref] [PubMed]
  18. J. Gallego, S. Gosh, S. K. Alavi, W. Alt, M. Martinez-Dorantes, D. Meschede, and L. Ratschbacher, “High-finesse fiber Fabry-Perot cavities: stabilization and mode matching analysis,” Appl. Phys. B 122, 47 (2016).
    [Crossref]
  19. L. Greuter, S. Starosielec, D. Najer, A. Ludwig, L. Duempelmann, D. Rohner, and R. J. Warburton, “A small mode volume tunable microcavity: Development and characterization,” Appl. Phys. Lett. 105, 121105 (2014).
    [Crossref]
  20. D. Hunger, C. Deutsch, R. J. Barbour, R. J. Warburton, and J. Reichel, “Laser micro-fabrication of concave, low-roughness features in silica,” AIP Adv. 2, 012119 (2012).
    [Crossref]
  21. T. C. Briles, D. C. Yost, A. Cingöz, J. Ye, and T. R. Schibli, “Simple piezoelectric-actuated mirror with 180 kHz servo bandwidth,” Opt. Express 18, 9739–9746 (2010).
    [Crossref] [PubMed]
  22. M. Uphoff, M. Brekenfeld, G. Rempe, and S. Ritter, “Frequency splitting of polarization eigenmodes in microscopic Fabry-Perot cavities,” New J. Phys. 17, 013053 (2015).
    [Crossref]
  23. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
    [Crossref]
  24. E. D. Black, “An introduction to Pound–Drever–Hall laser frequency stabilization,” Am. J. Phys. 69, 79–87 (2001).
    [Crossref]
  25. K. An, B. A. Sones, C. Fang-Yen, R. R. Dasari, and M. S. Feld, “Optical bistability induced by mirror absorption: Measurement of absorption coefficients at the sub-ppm level,” Opt. Lett. 22, 1433–1435 (1997).
    [Crossref]
  26. V. Braginsky, M. Gorodetsky, and S. Vyatchanin, “Thermodynamical fluctuations and photo-thermal shot noise in gravitational wave antennae,” Phys. Lett. A 264, 1–10 (1999).
    [Crossref]
  27. H. Rokhsari, S. M. Spillane, and K. J. Vahala, “Loss characterization in microcavities using the thermal bistability effect,” Appl. Phys. Lett. 85, 3029 (2004).
    [Crossref]
  28. A. Farsi, M. Siciliani de Cumis, F. Marino, and F. Marin, “Photothermal and thermo-refractive effects in high reflectivity mirrors at room and cryogenic temperature,” J. App. Phys. 111, 043101 (2012).
    [Crossref]
  29. T. Carmon, L. Yang, and K. Vahala, “Dynamical thermal behavior and thermal self-stability of microcavities,” Opt. Express 12, 4742–4750 (2004).
    [Crossref] [PubMed]
  30. T. G. McRae, K. H. Lee, M. McGovern, D. Gwyther, and W. P. Bowen, “Thermo-optic locking of a semiconductor laser to a microcavity resonance,” Opt. Express 17, 21977–21985 (2009).
    [Crossref] [PubMed]
  31. M. Cerdonio, L. Conti, A. Heidmann, and M. Pinard, “Thermoelastic effects at low temperatures and quantum limits in displacement measurements,” Phys. Rev. D 63, 082003 (2001).
    [Crossref]
  32. M. D. Rosa, L. Conti, M. Cerdonio, M. Pinard, and F. Marin, “Experimental measurement of the dynamic photothermal effect in fabry-perot cavities for gravitational wave detectors,” Phys. Rev. Lett. 89, 237402 (2002).
    [Crossref] [PubMed]
  33. E. D. Black, I. S. Grudinin, S. R. Rao, and K. G. Libbrecht, “Enhanced photothermal displacement spectroscopy for thin-film characterization using a fabry-perot resonator,” J. Appl. Phys. 95, 7655 (2004).
    [Crossref]
  34. C. Metzger, I. Favero, A. Ortlieb, and K. Karrai, “Optical self cooling of a deformable Fabry-Perot cavity in the classical limit,” Phys. Rev. B 78, 035309 (2008).
    [Crossref]
  35. T. Grange, G. Hornecker, D. Hunger, J.-P. Poizat, J.-M. Gerard, P. Senellart, and A. Auffeves, “Cavity-funneled generation of indistinguishable single photons from strongly dissipative quantum emitters,” Phys. Rev. Lett. 114, 193601 (2015).
    [Crossref] [PubMed]
  36. M. Hossein-Zadeh, H. Rokhsari, A. Hajimiri, and K. J. Vahala, “Characterization of a radiation-pressure-driven micomechanical oscillator,” Phys. Rev. A 74, 023813 (2006).
    [Crossref]
  37. S. Tallur, S. Sridaran, and S. A. Bhave, “A monolithic radiation-pressure driven, low phase noise silicon nitride opto-mechanical oscillator,” Opt. Express 19, 24522 (2011).
    [Crossref] [PubMed]

2016 (2)

T. Hümmer, J. Noe, M. S. Hofmann, T. W. Hänsch, A. Högele, and D. Hunger, “Cavity-enhanced Raman microscopy of individual carbon nanotubes,” Nat. Commun. 7, 12155 (2016).
[Crossref] [PubMed]

J. Gallego, S. Gosh, S. K. Alavi, W. Alt, M. Martinez-Dorantes, D. Meschede, and L. Ratschbacher, “High-finesse fiber Fabry-Perot cavities: stabilization and mode matching analysis,” Appl. Phys. B 122, 47 (2016).
[Crossref]

2015 (4)

S. Johnson, P. R. Dolan, T. Grange, A. A. P. Trichet, G. Hornecker, Y. C. Chen, L. Weng, G. M. Hughes, A. A. R. Watt, A. Auffeves, and J. M. Smith, “Tunable cavity coupling of the zero phonon line of a nitrogen-vacancy defect in diamond,” New J. Phys. 17, 122003 (2015).
[Crossref]

M. Uphoff, M. Brekenfeld, G. Rempe, and S. Ritter, “Frequency splitting of polarization eigenmodes in microscopic Fabry-Perot cavities,” New J. Phys. 17, 013053 (2015).
[Crossref]

M. Mader, J. Reichel, T. W. Hänsch, and D. Hunger, “A scanning cavity microscope,” Nat. Commun. 6, 7249 (2015).
[Crossref] [PubMed]

T. Grange, G. Hornecker, D. Hunger, J.-P. Poizat, J.-M. Gerard, P. Senellart, and A. Auffeves, “Cavity-funneled generation of indistinguishable single photons from strongly dissipative quantum emitters,” Phys. Rev. Lett. 114, 193601 (2015).
[Crossref] [PubMed]

2014 (1)

L. Greuter, S. Starosielec, D. Najer, A. Ludwig, L. Duempelmann, D. Rohner, and R. J. Warburton, “A small mode volume tunable microcavity: Development and characterization,” Appl. Phys. Lett. 105, 121105 (2014).
[Crossref]

2013 (5)

M. Steiner, H. M. Meyer, C. Deutsch, J. Reichel, and M. Köhl, “Single ion coupled to an optical fiber cavity,” Phys. Rev. Lett. 110, 043003 (2013).
[Crossref] [PubMed]

R. Albrecht, A. Bommer, C. Deutsch, J. Reichel, and C. Becher, “Coupling of a singl NV-center in diamond to a fiber-based microcavity,” Phys. Rev. Lett. 110, 243602 (2013).
[Crossref]

H. Kaupp, C. Deutsch, H.-C. Chang, J. Reichel, T. W. Hänsch, and D. Hunger, “Scaling laws of the cavity enhancement for nitrogen-vacancy centers in diamond,” Phys. Rev. A 88, 053812 (2013).
[Crossref]

J. Miguel-Sánchez, A. Reinhard, E. Togan, T. Volz, A. Imamoğlu, B. Bresga, J. Reichel, and J. Estève, “Cavity quantum electrodynamics with charge-controlled quantum dots coupled to a fiber Fabry-Perot cavity,” New J. Phys. 15, 045002 (2013).
[Crossref]

S. Stapfner, L. Ost, D. Hunger, J. Reichel, I. Favero, and E. Weig, “Cavity-enhanced optical detection of carbon nanotube Brownian motion,” Appl. Phys. Lett. 102, 151910 (2013).
[Crossref]

2012 (3)

N. E. Flowers-Jacobs, S. W. Hoch, J. C. Sankey, A. Kashkanova, A. M. Jayich, C. Deutsch, J. Reichel, and J. G. E. Harris, “Fiber-cavity-based optomechanical device,” Appl. Phys. Lett. 101, 2012 (2012).
[Crossref]

A. Farsi, M. Siciliani de Cumis, F. Marino, and F. Marin, “Photothermal and thermo-refractive effects in high reflectivity mirrors at room and cryogenic temperature,” J. App. Phys. 111, 043101 (2012).
[Crossref]

D. Hunger, C. Deutsch, R. J. Barbour, R. J. Warburton, and J. Reichel, “Laser micro-fabrication of concave, low-roughness features in silica,” AIP Adv. 2, 012119 (2012).
[Crossref]

2011 (2)

R. J. Barbour, P. A. Dalgarno, A. Curran, K. M. Nowak, H. J. Baker, D. R. Hall, N. G. Stoltz, P. M. Petroff, and R. J. Warburton, “A tunable microcavity,” J. Appl. Phys. 110, 053107 (2011).
[Crossref]

S. Tallur, S. Sridaran, and S. A. Bhave, “A monolithic radiation-pressure driven, low phase noise silicon nitride opto-mechanical oscillator,” Opt. Express 19, 24522 (2011).
[Crossref] [PubMed]

2010 (4)

T. C. Briles, D. C. Yost, A. Cingöz, J. Ye, and T. R. Schibli, “Simple piezoelectric-actuated mirror with 180 kHz servo bandwidth,” Opt. Express 18, 9739–9746 (2010).
[Crossref] [PubMed]

D. Hunger, T. Steinmetz, Y. Colombe, C. Deutsch, T. W. Hänsch, and J. Reichel, “Fiber Fabry-Perot cavity with high finesse,” New J. Phys. 12, 065038 (2010).
[Crossref]

C. Toninelli, Y. Delley, T. Stöferle, A. Renn, S. Götzinger, and V. Sandoghdar, “A scanning microcavity for in situ control of single-molecule emission,” Appl. Phys. Lett. 97, 021107 (2010).
[Crossref]

P. R. Dolan, G. M. Hughes, F. Grazioso, B. R. Patton, and J. M. Smith, “Femtoliter tunable optical cavity arrays,” Opt. Lett. 35, 3556 (2010).
[Crossref] [PubMed]

2009 (3)

2008 (1)

C. Metzger, I. Favero, A. Ortlieb, and K. Karrai, “Optical self cooling of a deformable Fabry-Perot cavity in the classical limit,” Phys. Rev. B 78, 035309 (2008).
[Crossref]

2007 (1)

Y. Colombe, T. Steinmetz, G. Dubois, F. Linke, D. Hunger, and J. Reichel, “Strong atom-field coupling for Bose-Einstein condensates in an optical cavity on a chip,” Nature 450, 272 (2007).
[Crossref] [PubMed]

2006 (1)

M. Hossein-Zadeh, H. Rokhsari, A. Hajimiri, and K. J. Vahala, “Characterization of a radiation-pressure-driven micomechanical oscillator,” Phys. Rev. A 74, 023813 (2006).
[Crossref]

2005 (1)

M. Trupke, E. A. Hinds, S. Eriksson, E. A. Curtis, Z. Moktadir, E. Kukharenka, and M. Kraft, “Microfabricated high-finesse optical cavity with open access and small mode volume,” Appl. Phys. Lett. 87, 211106 (2005).
[Crossref]

2004 (3)

E. D. Black, I. S. Grudinin, S. R. Rao, and K. G. Libbrecht, “Enhanced photothermal displacement spectroscopy for thin-film characterization using a fabry-perot resonator,” J. Appl. Phys. 95, 7655 (2004).
[Crossref]

H. Rokhsari, S. M. Spillane, and K. J. Vahala, “Loss characterization in microcavities using the thermal bistability effect,” Appl. Phys. Lett. 85, 3029 (2004).
[Crossref]

T. Carmon, L. Yang, and K. Vahala, “Dynamical thermal behavior and thermal self-stability of microcavities,” Opt. Express 12, 4742–4750 (2004).
[Crossref] [PubMed]

2002 (1)

M. D. Rosa, L. Conti, M. Cerdonio, M. Pinard, and F. Marin, “Experimental measurement of the dynamic photothermal effect in fabry-perot cavities for gravitational wave detectors,” Phys. Rev. Lett. 89, 237402 (2002).
[Crossref] [PubMed]

2001 (2)

M. Cerdonio, L. Conti, A. Heidmann, and M. Pinard, “Thermoelastic effects at low temperatures and quantum limits in displacement measurements,” Phys. Rev. D 63, 082003 (2001).
[Crossref]

E. D. Black, “An introduction to Pound–Drever–Hall laser frequency stabilization,” Am. J. Phys. 69, 79–87 (2001).
[Crossref]

1999 (1)

V. Braginsky, M. Gorodetsky, and S. Vyatchanin, “Thermodynamical fluctuations and photo-thermal shot noise in gravitational wave antennae,” Phys. Lett. A 264, 1–10 (1999).
[Crossref]

1997 (1)

1983 (1)

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

Alavi, S. K.

J. Gallego, S. Gosh, S. K. Alavi, W. Alt, M. Martinez-Dorantes, D. Meschede, and L. Ratschbacher, “High-finesse fiber Fabry-Perot cavities: stabilization and mode matching analysis,” Appl. Phys. B 122, 47 (2016).
[Crossref]

Albrecht, R.

R. Albrecht, A. Bommer, C. Deutsch, J. Reichel, and C. Becher, “Coupling of a singl NV-center in diamond to a fiber-based microcavity,” Phys. Rev. Lett. 110, 243602 (2013).
[Crossref]

Alt, W.

J. Gallego, S. Gosh, S. K. Alavi, W. Alt, M. Martinez-Dorantes, D. Meschede, and L. Ratschbacher, “High-finesse fiber Fabry-Perot cavities: stabilization and mode matching analysis,” Appl. Phys. B 122, 47 (2016).
[Crossref]

An, K.

Auffeves, A.

T. Grange, G. Hornecker, D. Hunger, J.-P. Poizat, J.-M. Gerard, P. Senellart, and A. Auffeves, “Cavity-funneled generation of indistinguishable single photons from strongly dissipative quantum emitters,” Phys. Rev. Lett. 114, 193601 (2015).
[Crossref] [PubMed]

S. Johnson, P. R. Dolan, T. Grange, A. A. P. Trichet, G. Hornecker, Y. C. Chen, L. Weng, G. M. Hughes, A. A. R. Watt, A. Auffeves, and J. M. Smith, “Tunable cavity coupling of the zero phonon line of a nitrogen-vacancy defect in diamond,” New J. Phys. 17, 122003 (2015).
[Crossref]

Baker, H. J.

R. J. Barbour, P. A. Dalgarno, A. Curran, K. M. Nowak, H. J. Baker, D. R. Hall, N. G. Stoltz, P. M. Petroff, and R. J. Warburton, “A tunable microcavity,” J. Appl. Phys. 110, 053107 (2011).
[Crossref]

Barbour, R. J.

D. Hunger, C. Deutsch, R. J. Barbour, R. J. Warburton, and J. Reichel, “Laser micro-fabrication of concave, low-roughness features in silica,” AIP Adv. 2, 012119 (2012).
[Crossref]

R. J. Barbour, P. A. Dalgarno, A. Curran, K. M. Nowak, H. J. Baker, D. R. Hall, N. G. Stoltz, P. M. Petroff, and R. J. Warburton, “A tunable microcavity,” J. Appl. Phys. 110, 053107 (2011).
[Crossref]

Becher, C.

R. Albrecht, A. Bommer, C. Deutsch, J. Reichel, and C. Becher, “Coupling of a singl NV-center in diamond to a fiber-based microcavity,” Phys. Rev. Lett. 110, 243602 (2013).
[Crossref]

Bhave, S. A.

Black, E. D.

E. D. Black, I. S. Grudinin, S. R. Rao, and K. G. Libbrecht, “Enhanced photothermal displacement spectroscopy for thin-film characterization using a fabry-perot resonator,” J. Appl. Phys. 95, 7655 (2004).
[Crossref]

E. D. Black, “An introduction to Pound–Drever–Hall laser frequency stabilization,” Am. J. Phys. 69, 79–87 (2001).
[Crossref]

Bommer, A.

R. Albrecht, A. Bommer, C. Deutsch, J. Reichel, and C. Becher, “Coupling of a singl NV-center in diamond to a fiber-based microcavity,” Phys. Rev. Lett. 110, 243602 (2013).
[Crossref]

Bowen, W. P.

Braginsky, V.

V. Braginsky, M. Gorodetsky, and S. Vyatchanin, “Thermodynamical fluctuations and photo-thermal shot noise in gravitational wave antennae,” Phys. Lett. A 264, 1–10 (1999).
[Crossref]

Brekenfeld, M.

M. Uphoff, M. Brekenfeld, G. Rempe, and S. Ritter, “Frequency splitting of polarization eigenmodes in microscopic Fabry-Perot cavities,” New J. Phys. 17, 013053 (2015).
[Crossref]

Bresga, B.

J. Miguel-Sánchez, A. Reinhard, E. Togan, T. Volz, A. Imamoğlu, B. Bresga, J. Reichel, and J. Estève, “Cavity quantum electrodynamics with charge-controlled quantum dots coupled to a fiber Fabry-Perot cavity,” New J. Phys. 15, 045002 (2013).
[Crossref]

Briles, T. C.

Carmon, T.

Cerdonio, M.

M. D. Rosa, L. Conti, M. Cerdonio, M. Pinard, and F. Marin, “Experimental measurement of the dynamic photothermal effect in fabry-perot cavities for gravitational wave detectors,” Phys. Rev. Lett. 89, 237402 (2002).
[Crossref] [PubMed]

M. Cerdonio, L. Conti, A. Heidmann, and M. Pinard, “Thermoelastic effects at low temperatures and quantum limits in displacement measurements,” Phys. Rev. D 63, 082003 (2001).
[Crossref]

Chang, H.-C.

H. Kaupp, C. Deutsch, H.-C. Chang, J. Reichel, T. W. Hänsch, and D. Hunger, “Scaling laws of the cavity enhancement for nitrogen-vacancy centers in diamond,” Phys. Rev. A 88, 053812 (2013).
[Crossref]

Chen, Y. C.

S. Johnson, P. R. Dolan, T. Grange, A. A. P. Trichet, G. Hornecker, Y. C. Chen, L. Weng, G. M. Hughes, A. A. R. Watt, A. Auffeves, and J. M. Smith, “Tunable cavity coupling of the zero phonon line of a nitrogen-vacancy defect in diamond,” New J. Phys. 17, 122003 (2015).
[Crossref]

Cingöz, A.

Colombe, Y.

D. Hunger, T. Steinmetz, Y. Colombe, C. Deutsch, T. W. Hänsch, and J. Reichel, “Fiber Fabry-Perot cavity with high finesse,” New J. Phys. 12, 065038 (2010).
[Crossref]

Y. Colombe, T. Steinmetz, G. Dubois, F. Linke, D. Hunger, and J. Reichel, “Strong atom-field coupling for Bose-Einstein condensates in an optical cavity on a chip,” Nature 450, 272 (2007).
[Crossref] [PubMed]

Conti, L.

M. D. Rosa, L. Conti, M. Cerdonio, M. Pinard, and F. Marin, “Experimental measurement of the dynamic photothermal effect in fabry-perot cavities for gravitational wave detectors,” Phys. Rev. Lett. 89, 237402 (2002).
[Crossref] [PubMed]

M. Cerdonio, L. Conti, A. Heidmann, and M. Pinard, “Thermoelastic effects at low temperatures and quantum limits in displacement measurements,” Phys. Rev. D 63, 082003 (2001).
[Crossref]

Curran, A.

R. J. Barbour, P. A. Dalgarno, A. Curran, K. M. Nowak, H. J. Baker, D. R. Hall, N. G. Stoltz, P. M. Petroff, and R. J. Warburton, “A tunable microcavity,” J. Appl. Phys. 110, 053107 (2011).
[Crossref]

Curtis, E. A.

M. Trupke, E. A. Hinds, S. Eriksson, E. A. Curtis, Z. Moktadir, E. Kukharenka, and M. Kraft, “Microfabricated high-finesse optical cavity with open access and small mode volume,” Appl. Phys. Lett. 87, 211106 (2005).
[Crossref]

Dalgarno, P. A.

R. J. Barbour, P. A. Dalgarno, A. Curran, K. M. Nowak, H. J. Baker, D. R. Hall, N. G. Stoltz, P. M. Petroff, and R. J. Warburton, “A tunable microcavity,” J. Appl. Phys. 110, 053107 (2011).
[Crossref]

Dasari, R. R.

Delley, Y.

C. Toninelli, Y. Delley, T. Stöferle, A. Renn, S. Götzinger, and V. Sandoghdar, “A scanning microcavity for in situ control of single-molecule emission,” Appl. Phys. Lett. 97, 021107 (2010).
[Crossref]

Deutsch, C.

R. Albrecht, A. Bommer, C. Deutsch, J. Reichel, and C. Becher, “Coupling of a singl NV-center in diamond to a fiber-based microcavity,” Phys. Rev. Lett. 110, 243602 (2013).
[Crossref]

M. Steiner, H. M. Meyer, C. Deutsch, J. Reichel, and M. Köhl, “Single ion coupled to an optical fiber cavity,” Phys. Rev. Lett. 110, 043003 (2013).
[Crossref] [PubMed]

H. Kaupp, C. Deutsch, H.-C. Chang, J. Reichel, T. W. Hänsch, and D. Hunger, “Scaling laws of the cavity enhancement for nitrogen-vacancy centers in diamond,” Phys. Rev. A 88, 053812 (2013).
[Crossref]

D. Hunger, C. Deutsch, R. J. Barbour, R. J. Warburton, and J. Reichel, “Laser micro-fabrication of concave, low-roughness features in silica,” AIP Adv. 2, 012119 (2012).
[Crossref]

N. E. Flowers-Jacobs, S. W. Hoch, J. C. Sankey, A. Kashkanova, A. M. Jayich, C. Deutsch, J. Reichel, and J. G. E. Harris, “Fiber-cavity-based optomechanical device,” Appl. Phys. Lett. 101, 2012 (2012).
[Crossref]

D. Hunger, T. Steinmetz, Y. Colombe, C. Deutsch, T. W. Hänsch, and J. Reichel, “Fiber Fabry-Perot cavity with high finesse,” New J. Phys. 12, 065038 (2010).
[Crossref]

Dolan, P. R.

S. Johnson, P. R. Dolan, T. Grange, A. A. P. Trichet, G. Hornecker, Y. C. Chen, L. Weng, G. M. Hughes, A. A. R. Watt, A. Auffeves, and J. M. Smith, “Tunable cavity coupling of the zero phonon line of a nitrogen-vacancy defect in diamond,” New J. Phys. 17, 122003 (2015).
[Crossref]

P. R. Dolan, G. M. Hughes, F. Grazioso, B. R. Patton, and J. M. Smith, “Femtoliter tunable optical cavity arrays,” Opt. Lett. 35, 3556 (2010).
[Crossref] [PubMed]

Drever, R. W. P.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

Dubois, G.

Y. Colombe, T. Steinmetz, G. Dubois, F. Linke, D. Hunger, and J. Reichel, “Strong atom-field coupling for Bose-Einstein condensates in an optical cavity on a chip,” Nature 450, 272 (2007).
[Crossref] [PubMed]

Duempelmann, L.

L. Greuter, S. Starosielec, D. Najer, A. Ludwig, L. Duempelmann, D. Rohner, and R. J. Warburton, “A small mode volume tunable microcavity: Development and characterization,” Appl. Phys. Lett. 105, 121105 (2014).
[Crossref]

Eriksson, S.

M. Trupke, E. A. Hinds, S. Eriksson, E. A. Curtis, Z. Moktadir, E. Kukharenka, and M. Kraft, “Microfabricated high-finesse optical cavity with open access and small mode volume,” Appl. Phys. Lett. 87, 211106 (2005).
[Crossref]

Estève, J.

J. Miguel-Sánchez, A. Reinhard, E. Togan, T. Volz, A. Imamoğlu, B. Bresga, J. Reichel, and J. Estève, “Cavity quantum electrodynamics with charge-controlled quantum dots coupled to a fiber Fabry-Perot cavity,” New J. Phys. 15, 045002 (2013).
[Crossref]

Fang-Yen, C.

Farsi, A.

A. Farsi, M. Siciliani de Cumis, F. Marino, and F. Marin, “Photothermal and thermo-refractive effects in high reflectivity mirrors at room and cryogenic temperature,” J. App. Phys. 111, 043101 (2012).
[Crossref]

Favero, I.

S. Stapfner, L. Ost, D. Hunger, J. Reichel, I. Favero, and E. Weig, “Cavity-enhanced optical detection of carbon nanotube Brownian motion,” Appl. Phys. Lett. 102, 151910 (2013).
[Crossref]

I. Favero, S. Stapfner, D. Hunger, P. Paulitschke, J. Reichel, H. Lorenz, E. M. Weig, and K. Karrai, “Fluctuating nanomechanical system in a high finesse optical microcavity,” Opt. Express 17, 12813–12820 (2009).
[Crossref] [PubMed]

C. Metzger, I. Favero, A. Ortlieb, and K. Karrai, “Optical self cooling of a deformable Fabry-Perot cavity in the classical limit,” Phys. Rev. B 78, 035309 (2008).
[Crossref]

Feld, M. S.

Flagg, E. B.

A. Muller, E. B. Flagg, M. Metcalfe, J. Lawall, and G. S. Solomon, “Coupling an epitaxial quantum dot to a fiber-based external-mirror microcavity,” Appl. Phys. Lett. 95, 173101 (2009).
[Crossref]

Flowers-Jacobs, N. E.

N. E. Flowers-Jacobs, S. W. Hoch, J. C. Sankey, A. Kashkanova, A. M. Jayich, C. Deutsch, J. Reichel, and J. G. E. Harris, “Fiber-cavity-based optomechanical device,” Appl. Phys. Lett. 101, 2012 (2012).
[Crossref]

Ford, G. M.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

Gallego, J.

J. Gallego, S. Gosh, S. K. Alavi, W. Alt, M. Martinez-Dorantes, D. Meschede, and L. Ratschbacher, “High-finesse fiber Fabry-Perot cavities: stabilization and mode matching analysis,” Appl. Phys. B 122, 47 (2016).
[Crossref]

Gerard, J.-M.

T. Grange, G. Hornecker, D. Hunger, J.-P. Poizat, J.-M. Gerard, P. Senellart, and A. Auffeves, “Cavity-funneled generation of indistinguishable single photons from strongly dissipative quantum emitters,” Phys. Rev. Lett. 114, 193601 (2015).
[Crossref] [PubMed]

Gorodetsky, M.

V. Braginsky, M. Gorodetsky, and S. Vyatchanin, “Thermodynamical fluctuations and photo-thermal shot noise in gravitational wave antennae,” Phys. Lett. A 264, 1–10 (1999).
[Crossref]

Gosh, S.

J. Gallego, S. Gosh, S. K. Alavi, W. Alt, M. Martinez-Dorantes, D. Meschede, and L. Ratschbacher, “High-finesse fiber Fabry-Perot cavities: stabilization and mode matching analysis,” Appl. Phys. B 122, 47 (2016).
[Crossref]

Götzinger, S.

C. Toninelli, Y. Delley, T. Stöferle, A. Renn, S. Götzinger, and V. Sandoghdar, “A scanning microcavity for in situ control of single-molecule emission,” Appl. Phys. Lett. 97, 021107 (2010).
[Crossref]

Grange, T.

S. Johnson, P. R. Dolan, T. Grange, A. A. P. Trichet, G. Hornecker, Y. C. Chen, L. Weng, G. M. Hughes, A. A. R. Watt, A. Auffeves, and J. M. Smith, “Tunable cavity coupling of the zero phonon line of a nitrogen-vacancy defect in diamond,” New J. Phys. 17, 122003 (2015).
[Crossref]

T. Grange, G. Hornecker, D. Hunger, J.-P. Poizat, J.-M. Gerard, P. Senellart, and A. Auffeves, “Cavity-funneled generation of indistinguishable single photons from strongly dissipative quantum emitters,” Phys. Rev. Lett. 114, 193601 (2015).
[Crossref] [PubMed]

Grazioso, F.

Greuter, L.

L. Greuter, S. Starosielec, D. Najer, A. Ludwig, L. Duempelmann, D. Rohner, and R. J. Warburton, “A small mode volume tunable microcavity: Development and characterization,” Appl. Phys. Lett. 105, 121105 (2014).
[Crossref]

Grudinin, I. S.

E. D. Black, I. S. Grudinin, S. R. Rao, and K. G. Libbrecht, “Enhanced photothermal displacement spectroscopy for thin-film characterization using a fabry-perot resonator,” J. Appl. Phys. 95, 7655 (2004).
[Crossref]

Gwyther, D.

Hajimiri, A.

M. Hossein-Zadeh, H. Rokhsari, A. Hajimiri, and K. J. Vahala, “Characterization of a radiation-pressure-driven micomechanical oscillator,” Phys. Rev. A 74, 023813 (2006).
[Crossref]

Hall, D. R.

R. J. Barbour, P. A. Dalgarno, A. Curran, K. M. Nowak, H. J. Baker, D. R. Hall, N. G. Stoltz, P. M. Petroff, and R. J. Warburton, “A tunable microcavity,” J. Appl. Phys. 110, 053107 (2011).
[Crossref]

Hall, J. L.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

Hänsch, T. W.

T. Hümmer, J. Noe, M. S. Hofmann, T. W. Hänsch, A. Högele, and D. Hunger, “Cavity-enhanced Raman microscopy of individual carbon nanotubes,” Nat. Commun. 7, 12155 (2016).
[Crossref] [PubMed]

M. Mader, J. Reichel, T. W. Hänsch, and D. Hunger, “A scanning cavity microscope,” Nat. Commun. 6, 7249 (2015).
[Crossref] [PubMed]

H. Kaupp, C. Deutsch, H.-C. Chang, J. Reichel, T. W. Hänsch, and D. Hunger, “Scaling laws of the cavity enhancement for nitrogen-vacancy centers in diamond,” Phys. Rev. A 88, 053812 (2013).
[Crossref]

D. Hunger, T. Steinmetz, Y. Colombe, C. Deutsch, T. W. Hänsch, and J. Reichel, “Fiber Fabry-Perot cavity with high finesse,” New J. Phys. 12, 065038 (2010).
[Crossref]

Harris, J. G. E.

N. E. Flowers-Jacobs, S. W. Hoch, J. C. Sankey, A. Kashkanova, A. M. Jayich, C. Deutsch, J. Reichel, and J. G. E. Harris, “Fiber-cavity-based optomechanical device,” Appl. Phys. Lett. 101, 2012 (2012).
[Crossref]

Heidmann, A.

M. Cerdonio, L. Conti, A. Heidmann, and M. Pinard, “Thermoelastic effects at low temperatures and quantum limits in displacement measurements,” Phys. Rev. D 63, 082003 (2001).
[Crossref]

Hinds, E. A.

M. Trupke, E. A. Hinds, S. Eriksson, E. A. Curtis, Z. Moktadir, E. Kukharenka, and M. Kraft, “Microfabricated high-finesse optical cavity with open access and small mode volume,” Appl. Phys. Lett. 87, 211106 (2005).
[Crossref]

Hoch, S. W.

N. E. Flowers-Jacobs, S. W. Hoch, J. C. Sankey, A. Kashkanova, A. M. Jayich, C. Deutsch, J. Reichel, and J. G. E. Harris, “Fiber-cavity-based optomechanical device,” Appl. Phys. Lett. 101, 2012 (2012).
[Crossref]

Hofmann, M. S.

T. Hümmer, J. Noe, M. S. Hofmann, T. W. Hänsch, A. Högele, and D. Hunger, “Cavity-enhanced Raman microscopy of individual carbon nanotubes,” Nat. Commun. 7, 12155 (2016).
[Crossref] [PubMed]

Högele, A.

T. Hümmer, J. Noe, M. S. Hofmann, T. W. Hänsch, A. Högele, and D. Hunger, “Cavity-enhanced Raman microscopy of individual carbon nanotubes,” Nat. Commun. 7, 12155 (2016).
[Crossref] [PubMed]

Hornecker, G.

S. Johnson, P. R. Dolan, T. Grange, A. A. P. Trichet, G. Hornecker, Y. C. Chen, L. Weng, G. M. Hughes, A. A. R. Watt, A. Auffeves, and J. M. Smith, “Tunable cavity coupling of the zero phonon line of a nitrogen-vacancy defect in diamond,” New J. Phys. 17, 122003 (2015).
[Crossref]

T. Grange, G. Hornecker, D. Hunger, J.-P. Poizat, J.-M. Gerard, P. Senellart, and A. Auffeves, “Cavity-funneled generation of indistinguishable single photons from strongly dissipative quantum emitters,” Phys. Rev. Lett. 114, 193601 (2015).
[Crossref] [PubMed]

Hossein-Zadeh, M.

M. Hossein-Zadeh, H. Rokhsari, A. Hajimiri, and K. J. Vahala, “Characterization of a radiation-pressure-driven micomechanical oscillator,” Phys. Rev. A 74, 023813 (2006).
[Crossref]

Hough, J.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

Hughes, G. M.

S. Johnson, P. R. Dolan, T. Grange, A. A. P. Trichet, G. Hornecker, Y. C. Chen, L. Weng, G. M. Hughes, A. A. R. Watt, A. Auffeves, and J. M. Smith, “Tunable cavity coupling of the zero phonon line of a nitrogen-vacancy defect in diamond,” New J. Phys. 17, 122003 (2015).
[Crossref]

P. R. Dolan, G. M. Hughes, F. Grazioso, B. R. Patton, and J. M. Smith, “Femtoliter tunable optical cavity arrays,” Opt. Lett. 35, 3556 (2010).
[Crossref] [PubMed]

Hümmer, T.

T. Hümmer, J. Noe, M. S. Hofmann, T. W. Hänsch, A. Högele, and D. Hunger, “Cavity-enhanced Raman microscopy of individual carbon nanotubes,” Nat. Commun. 7, 12155 (2016).
[Crossref] [PubMed]

Hunger, D.

T. Hümmer, J. Noe, M. S. Hofmann, T. W. Hänsch, A. Högele, and D. Hunger, “Cavity-enhanced Raman microscopy of individual carbon nanotubes,” Nat. Commun. 7, 12155 (2016).
[Crossref] [PubMed]

M. Mader, J. Reichel, T. W. Hänsch, and D. Hunger, “A scanning cavity microscope,” Nat. Commun. 6, 7249 (2015).
[Crossref] [PubMed]

T. Grange, G. Hornecker, D. Hunger, J.-P. Poizat, J.-M. Gerard, P. Senellart, and A. Auffeves, “Cavity-funneled generation of indistinguishable single photons from strongly dissipative quantum emitters,” Phys. Rev. Lett. 114, 193601 (2015).
[Crossref] [PubMed]

S. Stapfner, L. Ost, D. Hunger, J. Reichel, I. Favero, and E. Weig, “Cavity-enhanced optical detection of carbon nanotube Brownian motion,” Appl. Phys. Lett. 102, 151910 (2013).
[Crossref]

H. Kaupp, C. Deutsch, H.-C. Chang, J. Reichel, T. W. Hänsch, and D. Hunger, “Scaling laws of the cavity enhancement for nitrogen-vacancy centers in diamond,” Phys. Rev. A 88, 053812 (2013).
[Crossref]

D. Hunger, C. Deutsch, R. J. Barbour, R. J. Warburton, and J. Reichel, “Laser micro-fabrication of concave, low-roughness features in silica,” AIP Adv. 2, 012119 (2012).
[Crossref]

D. Hunger, T. Steinmetz, Y. Colombe, C. Deutsch, T. W. Hänsch, and J. Reichel, “Fiber Fabry-Perot cavity with high finesse,” New J. Phys. 12, 065038 (2010).
[Crossref]

I. Favero, S. Stapfner, D. Hunger, P. Paulitschke, J. Reichel, H. Lorenz, E. M. Weig, and K. Karrai, “Fluctuating nanomechanical system in a high finesse optical microcavity,” Opt. Express 17, 12813–12820 (2009).
[Crossref] [PubMed]

Y. Colombe, T. Steinmetz, G. Dubois, F. Linke, D. Hunger, and J. Reichel, “Strong atom-field coupling for Bose-Einstein condensates in an optical cavity on a chip,” Nature 450, 272 (2007).
[Crossref] [PubMed]

Imamoglu, A.

J. Miguel-Sánchez, A. Reinhard, E. Togan, T. Volz, A. Imamoğlu, B. Bresga, J. Reichel, and J. Estève, “Cavity quantum electrodynamics with charge-controlled quantum dots coupled to a fiber Fabry-Perot cavity,” New J. Phys. 15, 045002 (2013).
[Crossref]

Jayich, A. M.

N. E. Flowers-Jacobs, S. W. Hoch, J. C. Sankey, A. Kashkanova, A. M. Jayich, C. Deutsch, J. Reichel, and J. G. E. Harris, “Fiber-cavity-based optomechanical device,” Appl. Phys. Lett. 101, 2012 (2012).
[Crossref]

Johnson, S.

S. Johnson, P. R. Dolan, T. Grange, A. A. P. Trichet, G. Hornecker, Y. C. Chen, L. Weng, G. M. Hughes, A. A. R. Watt, A. Auffeves, and J. M. Smith, “Tunable cavity coupling of the zero phonon line of a nitrogen-vacancy defect in diamond,” New J. Phys. 17, 122003 (2015).
[Crossref]

Karrai, K.

I. Favero, S. Stapfner, D. Hunger, P. Paulitschke, J. Reichel, H. Lorenz, E. M. Weig, and K. Karrai, “Fluctuating nanomechanical system in a high finesse optical microcavity,” Opt. Express 17, 12813–12820 (2009).
[Crossref] [PubMed]

C. Metzger, I. Favero, A. Ortlieb, and K. Karrai, “Optical self cooling of a deformable Fabry-Perot cavity in the classical limit,” Phys. Rev. B 78, 035309 (2008).
[Crossref]

Kashkanova, A.

N. E. Flowers-Jacobs, S. W. Hoch, J. C. Sankey, A. Kashkanova, A. M. Jayich, C. Deutsch, J. Reichel, and J. G. E. Harris, “Fiber-cavity-based optomechanical device,” Appl. Phys. Lett. 101, 2012 (2012).
[Crossref]

Kaupp, H.

H. Kaupp, C. Deutsch, H.-C. Chang, J. Reichel, T. W. Hänsch, and D. Hunger, “Scaling laws of the cavity enhancement for nitrogen-vacancy centers in diamond,” Phys. Rev. A 88, 053812 (2013).
[Crossref]

Köhl, M.

M. Steiner, H. M. Meyer, C. Deutsch, J. Reichel, and M. Köhl, “Single ion coupled to an optical fiber cavity,” Phys. Rev. Lett. 110, 043003 (2013).
[Crossref] [PubMed]

Kowalski, F. V.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

Kraft, M.

M. Trupke, E. A. Hinds, S. Eriksson, E. A. Curtis, Z. Moktadir, E. Kukharenka, and M. Kraft, “Microfabricated high-finesse optical cavity with open access and small mode volume,” Appl. Phys. Lett. 87, 211106 (2005).
[Crossref]

Kukharenka, E.

M. Trupke, E. A. Hinds, S. Eriksson, E. A. Curtis, Z. Moktadir, E. Kukharenka, and M. Kraft, “Microfabricated high-finesse optical cavity with open access and small mode volume,” Appl. Phys. Lett. 87, 211106 (2005).
[Crossref]

Lawall, J.

A. Muller, E. B. Flagg, M. Metcalfe, J. Lawall, and G. S. Solomon, “Coupling an epitaxial quantum dot to a fiber-based external-mirror microcavity,” Appl. Phys. Lett. 95, 173101 (2009).
[Crossref]

Lee, K. H.

Libbrecht, K. G.

E. D. Black, I. S. Grudinin, S. R. Rao, and K. G. Libbrecht, “Enhanced photothermal displacement spectroscopy for thin-film characterization using a fabry-perot resonator,” J. Appl. Phys. 95, 7655 (2004).
[Crossref]

Linke, F.

Y. Colombe, T. Steinmetz, G. Dubois, F. Linke, D. Hunger, and J. Reichel, “Strong atom-field coupling for Bose-Einstein condensates in an optical cavity on a chip,” Nature 450, 272 (2007).
[Crossref] [PubMed]

Lorenz, H.

Ludwig, A.

L. Greuter, S. Starosielec, D. Najer, A. Ludwig, L. Duempelmann, D. Rohner, and R. J. Warburton, “A small mode volume tunable microcavity: Development and characterization,” Appl. Phys. Lett. 105, 121105 (2014).
[Crossref]

Mader, M.

M. Mader, J. Reichel, T. W. Hänsch, and D. Hunger, “A scanning cavity microscope,” Nat. Commun. 6, 7249 (2015).
[Crossref] [PubMed]

Marin, F.

A. Farsi, M. Siciliani de Cumis, F. Marino, and F. Marin, “Photothermal and thermo-refractive effects in high reflectivity mirrors at room and cryogenic temperature,” J. App. Phys. 111, 043101 (2012).
[Crossref]

M. D. Rosa, L. Conti, M. Cerdonio, M. Pinard, and F. Marin, “Experimental measurement of the dynamic photothermal effect in fabry-perot cavities for gravitational wave detectors,” Phys. Rev. Lett. 89, 237402 (2002).
[Crossref] [PubMed]

Marino, F.

A. Farsi, M. Siciliani de Cumis, F. Marino, and F. Marin, “Photothermal and thermo-refractive effects in high reflectivity mirrors at room and cryogenic temperature,” J. App. Phys. 111, 043101 (2012).
[Crossref]

Martinez-Dorantes, M.

J. Gallego, S. Gosh, S. K. Alavi, W. Alt, M. Martinez-Dorantes, D. Meschede, and L. Ratschbacher, “High-finesse fiber Fabry-Perot cavities: stabilization and mode matching analysis,” Appl. Phys. B 122, 47 (2016).
[Crossref]

McGovern, M.

McRae, T. G.

Meschede, D.

J. Gallego, S. Gosh, S. K. Alavi, W. Alt, M. Martinez-Dorantes, D. Meschede, and L. Ratschbacher, “High-finesse fiber Fabry-Perot cavities: stabilization and mode matching analysis,” Appl. Phys. B 122, 47 (2016).
[Crossref]

Metcalfe, M.

A. Muller, E. B. Flagg, M. Metcalfe, J. Lawall, and G. S. Solomon, “Coupling an epitaxial quantum dot to a fiber-based external-mirror microcavity,” Appl. Phys. Lett. 95, 173101 (2009).
[Crossref]

Metzger, C.

C. Metzger, I. Favero, A. Ortlieb, and K. Karrai, “Optical self cooling of a deformable Fabry-Perot cavity in the classical limit,” Phys. Rev. B 78, 035309 (2008).
[Crossref]

Meyer, H. M.

M. Steiner, H. M. Meyer, C. Deutsch, J. Reichel, and M. Köhl, “Single ion coupled to an optical fiber cavity,” Phys. Rev. Lett. 110, 043003 (2013).
[Crossref] [PubMed]

Miguel-Sánchez, J.

J. Miguel-Sánchez, A. Reinhard, E. Togan, T. Volz, A. Imamoğlu, B. Bresga, J. Reichel, and J. Estève, “Cavity quantum electrodynamics with charge-controlled quantum dots coupled to a fiber Fabry-Perot cavity,” New J. Phys. 15, 045002 (2013).
[Crossref]

Moktadir, Z.

M. Trupke, E. A. Hinds, S. Eriksson, E. A. Curtis, Z. Moktadir, E. Kukharenka, and M. Kraft, “Microfabricated high-finesse optical cavity with open access and small mode volume,” Appl. Phys. Lett. 87, 211106 (2005).
[Crossref]

Muller, A.

A. Muller, E. B. Flagg, M. Metcalfe, J. Lawall, and G. S. Solomon, “Coupling an epitaxial quantum dot to a fiber-based external-mirror microcavity,” Appl. Phys. Lett. 95, 173101 (2009).
[Crossref]

Munley, A. J.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

Najer, D.

L. Greuter, S. Starosielec, D. Najer, A. Ludwig, L. Duempelmann, D. Rohner, and R. J. Warburton, “A small mode volume tunable microcavity: Development and characterization,” Appl. Phys. Lett. 105, 121105 (2014).
[Crossref]

Noe, J.

T. Hümmer, J. Noe, M. S. Hofmann, T. W. Hänsch, A. Högele, and D. Hunger, “Cavity-enhanced Raman microscopy of individual carbon nanotubes,” Nat. Commun. 7, 12155 (2016).
[Crossref] [PubMed]

Nowak, K. M.

R. J. Barbour, P. A. Dalgarno, A. Curran, K. M. Nowak, H. J. Baker, D. R. Hall, N. G. Stoltz, P. M. Petroff, and R. J. Warburton, “A tunable microcavity,” J. Appl. Phys. 110, 053107 (2011).
[Crossref]

Ortlieb, A.

C. Metzger, I. Favero, A. Ortlieb, and K. Karrai, “Optical self cooling of a deformable Fabry-Perot cavity in the classical limit,” Phys. Rev. B 78, 035309 (2008).
[Crossref]

Ost, L.

S. Stapfner, L. Ost, D. Hunger, J. Reichel, I. Favero, and E. Weig, “Cavity-enhanced optical detection of carbon nanotube Brownian motion,” Appl. Phys. Lett. 102, 151910 (2013).
[Crossref]

Patton, B. R.

Paulitschke, P.

Petroff, P. M.

R. J. Barbour, P. A. Dalgarno, A. Curran, K. M. Nowak, H. J. Baker, D. R. Hall, N. G. Stoltz, P. M. Petroff, and R. J. Warburton, “A tunable microcavity,” J. Appl. Phys. 110, 053107 (2011).
[Crossref]

Pinard, M.

M. D. Rosa, L. Conti, M. Cerdonio, M. Pinard, and F. Marin, “Experimental measurement of the dynamic photothermal effect in fabry-perot cavities for gravitational wave detectors,” Phys. Rev. Lett. 89, 237402 (2002).
[Crossref] [PubMed]

M. Cerdonio, L. Conti, A. Heidmann, and M. Pinard, “Thermoelastic effects at low temperatures and quantum limits in displacement measurements,” Phys. Rev. D 63, 082003 (2001).
[Crossref]

Poizat, J.-P.

T. Grange, G. Hornecker, D. Hunger, J.-P. Poizat, J.-M. Gerard, P. Senellart, and A. Auffeves, “Cavity-funneled generation of indistinguishable single photons from strongly dissipative quantum emitters,” Phys. Rev. Lett. 114, 193601 (2015).
[Crossref] [PubMed]

Rao, S. R.

E. D. Black, I. S. Grudinin, S. R. Rao, and K. G. Libbrecht, “Enhanced photothermal displacement spectroscopy for thin-film characterization using a fabry-perot resonator,” J. Appl. Phys. 95, 7655 (2004).
[Crossref]

Ratschbacher, L.

J. Gallego, S. Gosh, S. K. Alavi, W. Alt, M. Martinez-Dorantes, D. Meschede, and L. Ratschbacher, “High-finesse fiber Fabry-Perot cavities: stabilization and mode matching analysis,” Appl. Phys. B 122, 47 (2016).
[Crossref]

Reichel, J.

M. Mader, J. Reichel, T. W. Hänsch, and D. Hunger, “A scanning cavity microscope,” Nat. Commun. 6, 7249 (2015).
[Crossref] [PubMed]

S. Stapfner, L. Ost, D. Hunger, J. Reichel, I. Favero, and E. Weig, “Cavity-enhanced optical detection of carbon nanotube Brownian motion,” Appl. Phys. Lett. 102, 151910 (2013).
[Crossref]

M. Steiner, H. M. Meyer, C. Deutsch, J. Reichel, and M. Köhl, “Single ion coupled to an optical fiber cavity,” Phys. Rev. Lett. 110, 043003 (2013).
[Crossref] [PubMed]

R. Albrecht, A. Bommer, C. Deutsch, J. Reichel, and C. Becher, “Coupling of a singl NV-center in diamond to a fiber-based microcavity,” Phys. Rev. Lett. 110, 243602 (2013).
[Crossref]

H. Kaupp, C. Deutsch, H.-C. Chang, J. Reichel, T. W. Hänsch, and D. Hunger, “Scaling laws of the cavity enhancement for nitrogen-vacancy centers in diamond,” Phys. Rev. A 88, 053812 (2013).
[Crossref]

J. Miguel-Sánchez, A. Reinhard, E. Togan, T. Volz, A. Imamoğlu, B. Bresga, J. Reichel, and J. Estève, “Cavity quantum electrodynamics with charge-controlled quantum dots coupled to a fiber Fabry-Perot cavity,” New J. Phys. 15, 045002 (2013).
[Crossref]

N. E. Flowers-Jacobs, S. W. Hoch, J. C. Sankey, A. Kashkanova, A. M. Jayich, C. Deutsch, J. Reichel, and J. G. E. Harris, “Fiber-cavity-based optomechanical device,” Appl. Phys. Lett. 101, 2012 (2012).
[Crossref]

D. Hunger, C. Deutsch, R. J. Barbour, R. J. Warburton, and J. Reichel, “Laser micro-fabrication of concave, low-roughness features in silica,” AIP Adv. 2, 012119 (2012).
[Crossref]

D. Hunger, T. Steinmetz, Y. Colombe, C. Deutsch, T. W. Hänsch, and J. Reichel, “Fiber Fabry-Perot cavity with high finesse,” New J. Phys. 12, 065038 (2010).
[Crossref]

I. Favero, S. Stapfner, D. Hunger, P. Paulitschke, J. Reichel, H. Lorenz, E. M. Weig, and K. Karrai, “Fluctuating nanomechanical system in a high finesse optical microcavity,” Opt. Express 17, 12813–12820 (2009).
[Crossref] [PubMed]

Y. Colombe, T. Steinmetz, G. Dubois, F. Linke, D. Hunger, and J. Reichel, “Strong atom-field coupling for Bose-Einstein condensates in an optical cavity on a chip,” Nature 450, 272 (2007).
[Crossref] [PubMed]

Reinhard, A.

J. Miguel-Sánchez, A. Reinhard, E. Togan, T. Volz, A. Imamoğlu, B. Bresga, J. Reichel, and J. Estève, “Cavity quantum electrodynamics with charge-controlled quantum dots coupled to a fiber Fabry-Perot cavity,” New J. Phys. 15, 045002 (2013).
[Crossref]

Rempe, G.

M. Uphoff, M. Brekenfeld, G. Rempe, and S. Ritter, “Frequency splitting of polarization eigenmodes in microscopic Fabry-Perot cavities,” New J. Phys. 17, 013053 (2015).
[Crossref]

Renn, A.

C. Toninelli, Y. Delley, T. Stöferle, A. Renn, S. Götzinger, and V. Sandoghdar, “A scanning microcavity for in situ control of single-molecule emission,” Appl. Phys. Lett. 97, 021107 (2010).
[Crossref]

Ritter, S.

M. Uphoff, M. Brekenfeld, G. Rempe, and S. Ritter, “Frequency splitting of polarization eigenmodes in microscopic Fabry-Perot cavities,” New J. Phys. 17, 013053 (2015).
[Crossref]

Rohner, D.

L. Greuter, S. Starosielec, D. Najer, A. Ludwig, L. Duempelmann, D. Rohner, and R. J. Warburton, “A small mode volume tunable microcavity: Development and characterization,” Appl. Phys. Lett. 105, 121105 (2014).
[Crossref]

Rokhsari, H.

M. Hossein-Zadeh, H. Rokhsari, A. Hajimiri, and K. J. Vahala, “Characterization of a radiation-pressure-driven micomechanical oscillator,” Phys. Rev. A 74, 023813 (2006).
[Crossref]

H. Rokhsari, S. M. Spillane, and K. J. Vahala, “Loss characterization in microcavities using the thermal bistability effect,” Appl. Phys. Lett. 85, 3029 (2004).
[Crossref]

Rosa, M. D.

M. D. Rosa, L. Conti, M. Cerdonio, M. Pinard, and F. Marin, “Experimental measurement of the dynamic photothermal effect in fabry-perot cavities for gravitational wave detectors,” Phys. Rev. Lett. 89, 237402 (2002).
[Crossref] [PubMed]

Sandoghdar, V.

C. Toninelli, Y. Delley, T. Stöferle, A. Renn, S. Götzinger, and V. Sandoghdar, “A scanning microcavity for in situ control of single-molecule emission,” Appl. Phys. Lett. 97, 021107 (2010).
[Crossref]

Sankey, J. C.

N. E. Flowers-Jacobs, S. W. Hoch, J. C. Sankey, A. Kashkanova, A. M. Jayich, C. Deutsch, J. Reichel, and J. G. E. Harris, “Fiber-cavity-based optomechanical device,” Appl. Phys. Lett. 101, 2012 (2012).
[Crossref]

Schibli, T. R.

Senellart, P.

T. Grange, G. Hornecker, D. Hunger, J.-P. Poizat, J.-M. Gerard, P. Senellart, and A. Auffeves, “Cavity-funneled generation of indistinguishable single photons from strongly dissipative quantum emitters,” Phys. Rev. Lett. 114, 193601 (2015).
[Crossref] [PubMed]

Siciliani de Cumis, M.

A. Farsi, M. Siciliani de Cumis, F. Marino, and F. Marin, “Photothermal and thermo-refractive effects in high reflectivity mirrors at room and cryogenic temperature,” J. App. Phys. 111, 043101 (2012).
[Crossref]

Smith, J. M.

S. Johnson, P. R. Dolan, T. Grange, A. A. P. Trichet, G. Hornecker, Y. C. Chen, L. Weng, G. M. Hughes, A. A. R. Watt, A. Auffeves, and J. M. Smith, “Tunable cavity coupling of the zero phonon line of a nitrogen-vacancy defect in diamond,” New J. Phys. 17, 122003 (2015).
[Crossref]

P. R. Dolan, G. M. Hughes, F. Grazioso, B. R. Patton, and J. M. Smith, “Femtoliter tunable optical cavity arrays,” Opt. Lett. 35, 3556 (2010).
[Crossref] [PubMed]

Solomon, G. S.

A. Muller, E. B. Flagg, M. Metcalfe, J. Lawall, and G. S. Solomon, “Coupling an epitaxial quantum dot to a fiber-based external-mirror microcavity,” Appl. Phys. Lett. 95, 173101 (2009).
[Crossref]

Sones, B. A.

Spillane, S. M.

H. Rokhsari, S. M. Spillane, and K. J. Vahala, “Loss characterization in microcavities using the thermal bistability effect,” Appl. Phys. Lett. 85, 3029 (2004).
[Crossref]

Sridaran, S.

Stapfner, S.

S. Stapfner, L. Ost, D. Hunger, J. Reichel, I. Favero, and E. Weig, “Cavity-enhanced optical detection of carbon nanotube Brownian motion,” Appl. Phys. Lett. 102, 151910 (2013).
[Crossref]

I. Favero, S. Stapfner, D. Hunger, P. Paulitschke, J. Reichel, H. Lorenz, E. M. Weig, and K. Karrai, “Fluctuating nanomechanical system in a high finesse optical microcavity,” Opt. Express 17, 12813–12820 (2009).
[Crossref] [PubMed]

Starosielec, S.

L. Greuter, S. Starosielec, D. Najer, A. Ludwig, L. Duempelmann, D. Rohner, and R. J. Warburton, “A small mode volume tunable microcavity: Development and characterization,” Appl. Phys. Lett. 105, 121105 (2014).
[Crossref]

Steiner, M.

M. Steiner, H. M. Meyer, C. Deutsch, J. Reichel, and M. Köhl, “Single ion coupled to an optical fiber cavity,” Phys. Rev. Lett. 110, 043003 (2013).
[Crossref] [PubMed]

Steinmetz, T.

D. Hunger, T. Steinmetz, Y. Colombe, C. Deutsch, T. W. Hänsch, and J. Reichel, “Fiber Fabry-Perot cavity with high finesse,” New J. Phys. 12, 065038 (2010).
[Crossref]

Y. Colombe, T. Steinmetz, G. Dubois, F. Linke, D. Hunger, and J. Reichel, “Strong atom-field coupling for Bose-Einstein condensates in an optical cavity on a chip,” Nature 450, 272 (2007).
[Crossref] [PubMed]

Stöferle, T.

C. Toninelli, Y. Delley, T. Stöferle, A. Renn, S. Götzinger, and V. Sandoghdar, “A scanning microcavity for in situ control of single-molecule emission,” Appl. Phys. Lett. 97, 021107 (2010).
[Crossref]

Stoltz, N. G.

R. J. Barbour, P. A. Dalgarno, A. Curran, K. M. Nowak, H. J. Baker, D. R. Hall, N. G. Stoltz, P. M. Petroff, and R. J. Warburton, “A tunable microcavity,” J. Appl. Phys. 110, 053107 (2011).
[Crossref]

Tallur, S.

Togan, E.

J. Miguel-Sánchez, A. Reinhard, E. Togan, T. Volz, A. Imamoğlu, B. Bresga, J. Reichel, and J. Estève, “Cavity quantum electrodynamics with charge-controlled quantum dots coupled to a fiber Fabry-Perot cavity,” New J. Phys. 15, 045002 (2013).
[Crossref]

Toninelli, C.

C. Toninelli, Y. Delley, T. Stöferle, A. Renn, S. Götzinger, and V. Sandoghdar, “A scanning microcavity for in situ control of single-molecule emission,” Appl. Phys. Lett. 97, 021107 (2010).
[Crossref]

Trichet, A. A. P.

S. Johnson, P. R. Dolan, T. Grange, A. A. P. Trichet, G. Hornecker, Y. C. Chen, L. Weng, G. M. Hughes, A. A. R. Watt, A. Auffeves, and J. M. Smith, “Tunable cavity coupling of the zero phonon line of a nitrogen-vacancy defect in diamond,” New J. Phys. 17, 122003 (2015).
[Crossref]

Trupke, M.

M. Trupke, E. A. Hinds, S. Eriksson, E. A. Curtis, Z. Moktadir, E. Kukharenka, and M. Kraft, “Microfabricated high-finesse optical cavity with open access and small mode volume,” Appl. Phys. Lett. 87, 211106 (2005).
[Crossref]

Uphoff, M.

M. Uphoff, M. Brekenfeld, G. Rempe, and S. Ritter, “Frequency splitting of polarization eigenmodes in microscopic Fabry-Perot cavities,” New J. Phys. 17, 013053 (2015).
[Crossref]

Vahala, K.

Vahala, K. J.

M. Hossein-Zadeh, H. Rokhsari, A. Hajimiri, and K. J. Vahala, “Characterization of a radiation-pressure-driven micomechanical oscillator,” Phys. Rev. A 74, 023813 (2006).
[Crossref]

H. Rokhsari, S. M. Spillane, and K. J. Vahala, “Loss characterization in microcavities using the thermal bistability effect,” Appl. Phys. Lett. 85, 3029 (2004).
[Crossref]

Volz, T.

J. Miguel-Sánchez, A. Reinhard, E. Togan, T. Volz, A. Imamoğlu, B. Bresga, J. Reichel, and J. Estève, “Cavity quantum electrodynamics with charge-controlled quantum dots coupled to a fiber Fabry-Perot cavity,” New J. Phys. 15, 045002 (2013).
[Crossref]

Vyatchanin, S.

V. Braginsky, M. Gorodetsky, and S. Vyatchanin, “Thermodynamical fluctuations and photo-thermal shot noise in gravitational wave antennae,” Phys. Lett. A 264, 1–10 (1999).
[Crossref]

Warburton, R. J.

L. Greuter, S. Starosielec, D. Najer, A. Ludwig, L. Duempelmann, D. Rohner, and R. J. Warburton, “A small mode volume tunable microcavity: Development and characterization,” Appl. Phys. Lett. 105, 121105 (2014).
[Crossref]

D. Hunger, C. Deutsch, R. J. Barbour, R. J. Warburton, and J. Reichel, “Laser micro-fabrication of concave, low-roughness features in silica,” AIP Adv. 2, 012119 (2012).
[Crossref]

R. J. Barbour, P. A. Dalgarno, A. Curran, K. M. Nowak, H. J. Baker, D. R. Hall, N. G. Stoltz, P. M. Petroff, and R. J. Warburton, “A tunable microcavity,” J. Appl. Phys. 110, 053107 (2011).
[Crossref]

Ward, H.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

Watt, A. A. R.

S. Johnson, P. R. Dolan, T. Grange, A. A. P. Trichet, G. Hornecker, Y. C. Chen, L. Weng, G. M. Hughes, A. A. R. Watt, A. Auffeves, and J. M. Smith, “Tunable cavity coupling of the zero phonon line of a nitrogen-vacancy defect in diamond,” New J. Phys. 17, 122003 (2015).
[Crossref]

Weig, E.

S. Stapfner, L. Ost, D. Hunger, J. Reichel, I. Favero, and E. Weig, “Cavity-enhanced optical detection of carbon nanotube Brownian motion,” Appl. Phys. Lett. 102, 151910 (2013).
[Crossref]

Weig, E. M.

Weng, L.

S. Johnson, P. R. Dolan, T. Grange, A. A. P. Trichet, G. Hornecker, Y. C. Chen, L. Weng, G. M. Hughes, A. A. R. Watt, A. Auffeves, and J. M. Smith, “Tunable cavity coupling of the zero phonon line of a nitrogen-vacancy defect in diamond,” New J. Phys. 17, 122003 (2015).
[Crossref]

Yang, L.

Ye, J.

Yost, D. C.

AIP Adv. (1)

D. Hunger, C. Deutsch, R. J. Barbour, R. J. Warburton, and J. Reichel, “Laser micro-fabrication of concave, low-roughness features in silica,” AIP Adv. 2, 012119 (2012).
[Crossref]

Am. J. Phys. (1)

E. D. Black, “An introduction to Pound–Drever–Hall laser frequency stabilization,” Am. J. Phys. 69, 79–87 (2001).
[Crossref]

Appl. Phys. B (2)

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

J. Gallego, S. Gosh, S. K. Alavi, W. Alt, M. Martinez-Dorantes, D. Meschede, and L. Ratschbacher, “High-finesse fiber Fabry-Perot cavities: stabilization and mode matching analysis,” Appl. Phys. B 122, 47 (2016).
[Crossref]

Appl. Phys. Lett. (7)

L. Greuter, S. Starosielec, D. Najer, A. Ludwig, L. Duempelmann, D. Rohner, and R. J. Warburton, “A small mode volume tunable microcavity: Development and characterization,” Appl. Phys. Lett. 105, 121105 (2014).
[Crossref]

S. Stapfner, L. Ost, D. Hunger, J. Reichel, I. Favero, and E. Weig, “Cavity-enhanced optical detection of carbon nanotube Brownian motion,” Appl. Phys. Lett. 102, 151910 (2013).
[Crossref]

N. E. Flowers-Jacobs, S. W. Hoch, J. C. Sankey, A. Kashkanova, A. M. Jayich, C. Deutsch, J. Reichel, and J. G. E. Harris, “Fiber-cavity-based optomechanical device,” Appl. Phys. Lett. 101, 2012 (2012).
[Crossref]

M. Trupke, E. A. Hinds, S. Eriksson, E. A. Curtis, Z. Moktadir, E. Kukharenka, and M. Kraft, “Microfabricated high-finesse optical cavity with open access and small mode volume,” Appl. Phys. Lett. 87, 211106 (2005).
[Crossref]

A. Muller, E. B. Flagg, M. Metcalfe, J. Lawall, and G. S. Solomon, “Coupling an epitaxial quantum dot to a fiber-based external-mirror microcavity,” Appl. Phys. Lett. 95, 173101 (2009).
[Crossref]

C. Toninelli, Y. Delley, T. Stöferle, A. Renn, S. Götzinger, and V. Sandoghdar, “A scanning microcavity for in situ control of single-molecule emission,” Appl. Phys. Lett. 97, 021107 (2010).
[Crossref]

H. Rokhsari, S. M. Spillane, and K. J. Vahala, “Loss characterization in microcavities using the thermal bistability effect,” Appl. Phys. Lett. 85, 3029 (2004).
[Crossref]

J. App. Phys. (1)

A. Farsi, M. Siciliani de Cumis, F. Marino, and F. Marin, “Photothermal and thermo-refractive effects in high reflectivity mirrors at room and cryogenic temperature,” J. App. Phys. 111, 043101 (2012).
[Crossref]

J. Appl. Phys. (2)

E. D. Black, I. S. Grudinin, S. R. Rao, and K. G. Libbrecht, “Enhanced photothermal displacement spectroscopy for thin-film characterization using a fabry-perot resonator,” J. Appl. Phys. 95, 7655 (2004).
[Crossref]

R. J. Barbour, P. A. Dalgarno, A. Curran, K. M. Nowak, H. J. Baker, D. R. Hall, N. G. Stoltz, P. M. Petroff, and R. J. Warburton, “A tunable microcavity,” J. Appl. Phys. 110, 053107 (2011).
[Crossref]

Nat. Commun. (2)

M. Mader, J. Reichel, T. W. Hänsch, and D. Hunger, “A scanning cavity microscope,” Nat. Commun. 6, 7249 (2015).
[Crossref] [PubMed]

T. Hümmer, J. Noe, M. S. Hofmann, T. W. Hänsch, A. Högele, and D. Hunger, “Cavity-enhanced Raman microscopy of individual carbon nanotubes,” Nat. Commun. 7, 12155 (2016).
[Crossref] [PubMed]

Nature (1)

Y. Colombe, T. Steinmetz, G. Dubois, F. Linke, D. Hunger, and J. Reichel, “Strong atom-field coupling for Bose-Einstein condensates in an optical cavity on a chip,” Nature 450, 272 (2007).
[Crossref] [PubMed]

New J. Phys. (4)

D. Hunger, T. Steinmetz, Y. Colombe, C. Deutsch, T. W. Hänsch, and J. Reichel, “Fiber Fabry-Perot cavity with high finesse,” New J. Phys. 12, 065038 (2010).
[Crossref]

J. Miguel-Sánchez, A. Reinhard, E. Togan, T. Volz, A. Imamoğlu, B. Bresga, J. Reichel, and J. Estève, “Cavity quantum electrodynamics with charge-controlled quantum dots coupled to a fiber Fabry-Perot cavity,” New J. Phys. 15, 045002 (2013).
[Crossref]

S. Johnson, P. R. Dolan, T. Grange, A. A. P. Trichet, G. Hornecker, Y. C. Chen, L. Weng, G. M. Hughes, A. A. R. Watt, A. Auffeves, and J. M. Smith, “Tunable cavity coupling of the zero phonon line of a nitrogen-vacancy defect in diamond,” New J. Phys. 17, 122003 (2015).
[Crossref]

M. Uphoff, M. Brekenfeld, G. Rempe, and S. Ritter, “Frequency splitting of polarization eigenmodes in microscopic Fabry-Perot cavities,” New J. Phys. 17, 013053 (2015).
[Crossref]

Opt. Express (5)

Opt. Lett. (2)

Phys. Lett. A (1)

V. Braginsky, M. Gorodetsky, and S. Vyatchanin, “Thermodynamical fluctuations and photo-thermal shot noise in gravitational wave antennae,” Phys. Lett. A 264, 1–10 (1999).
[Crossref]

Phys. Rev. A (2)

M. Hossein-Zadeh, H. Rokhsari, A. Hajimiri, and K. J. Vahala, “Characterization of a radiation-pressure-driven micomechanical oscillator,” Phys. Rev. A 74, 023813 (2006).
[Crossref]

H. Kaupp, C. Deutsch, H.-C. Chang, J. Reichel, T. W. Hänsch, and D. Hunger, “Scaling laws of the cavity enhancement for nitrogen-vacancy centers in diamond,” Phys. Rev. A 88, 053812 (2013).
[Crossref]

Phys. Rev. B (1)

C. Metzger, I. Favero, A. Ortlieb, and K. Karrai, “Optical self cooling of a deformable Fabry-Perot cavity in the classical limit,” Phys. Rev. B 78, 035309 (2008).
[Crossref]

Phys. Rev. D (1)

M. Cerdonio, L. Conti, A. Heidmann, and M. Pinard, “Thermoelastic effects at low temperatures and quantum limits in displacement measurements,” Phys. Rev. D 63, 082003 (2001).
[Crossref]

Phys. Rev. Lett. (4)

M. D. Rosa, L. Conti, M. Cerdonio, M. Pinard, and F. Marin, “Experimental measurement of the dynamic photothermal effect in fabry-perot cavities for gravitational wave detectors,” Phys. Rev. Lett. 89, 237402 (2002).
[Crossref] [PubMed]

T. Grange, G. Hornecker, D. Hunger, J.-P. Poizat, J.-M. Gerard, P. Senellart, and A. Auffeves, “Cavity-funneled generation of indistinguishable single photons from strongly dissipative quantum emitters,” Phys. Rev. Lett. 114, 193601 (2015).
[Crossref] [PubMed]

M. Steiner, H. M. Meyer, C. Deutsch, J. Reichel, and M. Köhl, “Single ion coupled to an optical fiber cavity,” Phys. Rev. Lett. 110, 043003 (2013).
[Crossref] [PubMed]

R. Albrecht, A. Bommer, C. Deutsch, J. Reichel, and C. Becher, “Coupling of a singl NV-center in diamond to a fiber-based microcavity,” Phys. Rev. Lett. 110, 243602 (2013).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Schematic of the microresonator consisting of a micro-machined and mirror-coated fiber mounted on a piezo shear plate and a 1/2″ planar mirror with a stacked piezo. (b) Scheme of the experimental setup. For Pound-Drever-Hall stabilization, the light at 856 nm is phase modulated using a fiber-coupled electro-optical modulator. Modulation sidebands were also used to determine the resonator linewidth. PBS: Polarizing beam splitter, M: mirror, FP: Fiber port, PD: Photo diode, BS: nonpolarizing beam splitter, APD: Avalanche photo diode, D: dichroic mirror, L: Lens.

Fig. 2
Fig. 2

Noise spectral density of the relative mirror separation for the actively stabilized resonator. The rms precision of length stability is 153 fm (rms), evaluated in the frequency interval from 0.1 Hz to 10 MHz. We conservatively estimate an error of +100, −50 fm for this value. In the optimized setting, the feedback bandwidth was set to 1.1 kHz.

Fig. 3
Fig. 3

(a) Examples of recorded lineshapes when ramping the mirror separation at different speeds across the resonance for an intracavity power of 38 W. (b) Evaluated line shift β as a function of ramp speed. The solid line is a fit of Eq. 1 with βad = 0.30 nm and τ = 0.5 µs.

Fig. 4
Fig. 4

Upper graph: improvement of a low gain electronic stabilization (red) by photothermal self-stabilization (black). The rms noise is 400 pm (6.49 pm) for the red (black) spectrum. Mechanical resonances of the optical fiber end are assigned to spectral features. Lower graph: Ratio of noise amplitudes apt(f)/a0(f). Low frequency mechanical noise is suppressed by up to a factor 100, while high frequency oscillations are amplified at high intracavity power.

Fig. 5
Fig. 5

(a) Compression mode at 4.5 MHz for intracavity powers of 30.7 W (black) and 60 mW (red). (b) Transmission time traces of the stabilized resonator (black) and when increasing the cavity length across a resonance (red). Horizontal axis are color coded. Peak intracavity power is 38 W. (c) Power dependence of the rms amplitude of the compression mode (black data points). The solid line is a fit. (d) Noise spectral densities with (black) and without (red) photothermal self-stabilization in an optimized setting. An intracavity power of 3.7 W reduces the rms amplitude from 153 fm to 114 fm rms (integrated from 0.1 Hz to 10 MHz).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

β ( x ) = β ad 1 + x τ .

Metrics