Abstract

Integrated quantum photonic chips are promising for scalable, photonic based quantum information processing. Although on-chip quantum photon sources and single photon detectors have been demostrated separately, the full integration of these components on single chip is hindered by the background photons from the strong classical pump light. Here we design and fabricate an on-chip long-pass filter which can provide 70 dB attenuation for visible light near 775 nm with less than 3 dB insertion loss for light in the telecom C-band near 1550 nm. The adiabatic design makes this device broadband and robust against fabrication errors as well as working conditions. Combined with the previously demonstrated non-classical on-chip source based on spontaneous parametric down conversion on the same material system, this platform could enable 100 dB suppression of pump light and holds promise in realizing fully integrated quantum photonic chips where the sources, filters and detectors are monolithically integrated.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Silicon photonic filters with high rejection of both TE and TM modes for on-chip four wave mixing applications

Giuseppe Cantarella, Charalambos Klitis, Marc Sorel, and Michael J. Strain
Opt. Express 25(17) 19711-19720 (2017)

Broadband on-chip polarization mode splitters in lithium niobate integrated adiabatic couplers

Hung-Pin Chung, Chieh-Hsun Lee, Kuang-Hsu Huang, Sung-Lin Yang, Kai Wang, Alexander S. Solntsev, Andrey A. Sukhorukov, Frank Setzpfandt, and Yen-Hung Chen
Opt. Express 27(2) 1632-1645 (2019)

Efficient parametric frequency conversion in lithium niobate nanophotonic chips

Jia-yang Chen, Yong Meng Sua, Zhao-hui Ma, Chao Tang, Zhan Li, and Yu-ping Huang
OSA Continuum 2(10) 2914-2924 (2019)

References

  • View by:
  • |
  • |
  • |

  1. E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
    [Crossref] [PubMed]
  2. P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007).
    [Crossref]
  3. J. L. O’Brien, A. Furusawa, and J. Vuckovic, “Photonic quantum technologies,” Nature Photon. 3, 687–695 (2009).
    [Crossref]
  4. D. X. Dai, J. Bauters, and J. E. Bowers, “Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction,” Light: Science and Applications 1, e1 (2012).
    [Crossref]
  5. J. E. Sharping, K. F. Lee, M. A. Foster, A. C. Turner, B. S. Schmidt, M. Lipson, A. L. Gaeta, and P. Kumar, “Generation of correlated photons in nanoscale silicon waveguides,” Opt. Express 14, 12388 (2006).
    [Crossref] [PubMed]
  6. J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nature Photon. 8, 104–108 (2014).
    [Crossref]
  7. N. C. Harris, D. Grassani, A. Simbula, M. Pant, M. Galli, T. Baehr-Jones, M. Hochberg, D. Englund, D. Bajoni, and C. Galland, “Integrated Source of Spectrally Filtered Correlated Photons for Large-Scale Quantum Photonic Systems,” Phys. Rev. X 4, 041047 (2014).
  8. X. Guo, C. Zou, C. Schuck, H. Jung, R. Cheng, and H. X. Tang, “Parametric down-conversion photon pair source on a nanophotonic chip,” arXiv:1603.03726 (2016).
  9. W. H. P. Pernice, C. Schuck, O. Minaeva, M. Li, G. N. Goltsman, A. V Sergienko, and H. X. Tang, “High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits,” Nature Commun. 3, 1325 (2012).
    [Crossref]
  10. J. P. Sprengers, A. Gaggero, D. Sahin, S. Jahanmirinejad, G. Frucci, F. Mattioli, R. Leoni, J. Beetz, M. Lermer, M. Kamp, S. Hfling, R. Sanjines, and A. Fiore, “Waveguide superconducting single-photon detectors for integrated quantum photonic circuits,” Appl. Phys. Lett. 99, 181110 (2011).
    [Crossref]
  11. C. Schuck, W. H. P. Pernice, and H. X. Tang, “Waveguide integrated low noise NbTiN nanowire single-photon detectors with milli-Hz dark count rate,” Sci. Rep. 3, 1893 (2013).
    [Crossref] [PubMed]
  12. E. Schelew, M. K. Akhlaghi, and J. F. Young, “Waveguide integrated superconducting single-photon detectors implemented as near-perfect absorbers of coherent radiation,” Nature Commun. 6, 1–8 (2015).
  13. C. Schuck, X. Guo, L. Fan, X. Ma, M. Poot, and H. X. Tang, “Quantum interference in heterogeneous superconducting-photonic circuits on a silicon chip,” Nature Commun. 7, 10352 (2016).
    [Crossref]
  14. D. C. Burnham and D. L. Weinberg, “Observation of Simultaneity in Parametric Production of Optical Photon Pairs,” Phys. Rev. Lett. 25, 84–87 (1970).
    [Crossref]
  15. P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V Sergienko, and Y. Shih, “New High-Intensity Source of Polarization-Entangled Photon Pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
    [Crossref] [PubMed]
  16. G. Reithmaier, M. Kaniber, F. Flassig, S. Lichtmannecker, K. Müller, A. Andrejew, J. Vučković, R. Gross, and J. J. Finley, “On-Chip Generation, Routing, and Detection of Resonance Fluorescence,” Nano Lett. 15, 5208–5213 (2015).
    [Crossref] [PubMed]
  17. M. Poot, C. Schuck, X. Ma, X. Guo, and H. X. Tang, “Design and characterization of integrated components for SiN photonic quantum circuits,” Opt. Express 24, 6843 (2016).
    [Crossref] [PubMed]
  18. H. W. Chen, A. W. Fang, J. Bovington, J. D. Peters, and J. E. Bowers, “Hybrid silicon tunable filter based on a Mach-Zehnder interferometer and ring resonantor,” 2009 Int. Top. Meet. Microw. Photonics14–17 (2009).
  19. Y. Ding, M. Pu, L. Liu, J. Xu, C. Peucheret, X. Zhang, D. Huang, and H. Ou, “Bandwidth and wavelength-tunable optical bandpass filter based on silicon microring-MZI structure,” Opt. Express 19, 6462–6470 (2011).
    [Crossref] [PubMed]
  20. C. V. Poulton, X. Zeng, M. T. Wade, and M. A. Popović, “Channel add – drop filter based on dual photonic crystal cavities in push – pull mode,” Opt. Lett. 40, 4206–4209 (2015).
    [Crossref] [PubMed]
  21. M. A. Popović, T. Barwicz, M. R. Watts, P. T. Rakich, L. Socci, E. P. Ippen, F. X. Kartner, and H. I. Smith, “Multistage high-order microring-resonator add-drop filters,” Opt. Lett. 31, 2571–2573 (2006).
    [Crossref]
  22. J. R. Ong, R. Kumar, and S. Mookherjea, “Ultra-high-contrast and tunable-bandwidth filter using cascaded high-order silicon microring filters,” IEEE Photonics Technol. Lett. 25, 1543–1546 (2013).
    [Crossref]
  23. X. Wang, W. Shi, H. Yun, S. Grist, N. a. F. Jaeger, and L. Chrostowski, “Narrow-band waveguide Bragg gratings on SOI wafers with CMOS-compatible fabrication process,” Opt. Express 20, 15547 (2012).
    [Crossref] [PubMed]
  24. D. Dai and J. E. Bowers, “Novel concept for ultracompact polarization splitter-rotator based on silicon nanowires,” Opt. Express 19, 10940–10949 (2011).
    [Crossref] [PubMed]
  25. Y. Ding, J. Xu, F. Da Ros, B. Huang, H. Ou, and C. Peucheret, “On-chip two-mode division multiplexing using tapered directional coupler-based mode multiplexer and demultiplexer,” Opt. Express 21, 10376–10382 (2013).
    [Crossref] [PubMed]
  26. Z. Zhang, X. Hu, and J. Wang, “On-chip optical mode exchange using tapered directional coupler,” Sci. Rep. 5, 16072 (2015).
    [Crossref] [PubMed]
  27. Y. Luo, Y. Yu, M. Ye, C. Sun, and X. Zhang, “Integrated dual-mode 3 dB power coupler based on tapered directional coupler,” Sci. Rep. 6, 23516 (2016).
    [Crossref]
  28. S. G. Johnson, P. Bienstman, M. A. Skorobogatiy, M. Ibanescu, E. Lidorikis, and J. D. Joannopoulos, “Adiabatic theorem and continuous coupled-mode theory for efficient taper transitions in photonic crystals,” Phys. Rev. E. 66, 066608 (2002).
    [Crossref]
  29. X. Xiong, C.-L. Zou, X.-F. Ren, and G.-C. Guo, “Integrated polarization rotator/converter by stimulated Raman adiabatic passage,” Opt. Express 21, 17097 (2013).
    [Crossref] [PubMed]
  30. L.-T. Feng, M. Zhang, Z.-Y. Zhou, M. Li, X. Xiong, L. Yu, B.-S. Shi, G.-P. Guo, D.-X. Dai, X.-F. Ren, and G.-C. Guo, “On-chip coherent conversion of photonic quantum signals between different degrees of freedom,” Nature Commun. 7, 11985 (2016).
    [Crossref]
  31. A. Oskooi, A. Mutapcic, S. Noda, J. D. Joannopoulos, S. P. Boyd, and S. G. Johnson, “Robust optimization of adiabatic tapers for coupling to slow-light photonic-crystal waveguides,” Opt. Express 20, 21558 (2012).
    [Crossref] [PubMed]
  32. C.-L. Zou, X.-D. Chen, X. Xiong, F.-W. Sun, X.-B. Zou, Z.-F. Han, and G.-C. Guo, “Photonic simulation of system-environment interaction: Non-Markovian processes and dynamical decoupling,” Phys. Rev. A 88, 063806 (2013).
    [Crossref]
  33. C. J. Wittig, “The LandauZener Formula,” Phys. Chem. B 109, 84288430 (2005).
    [Crossref]
  34. A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-Silicon Waveguide Quantum Circuits,” Science 320, 646–649 (2008).
    [Crossref] [PubMed]
  35. J. C. F. Matthews, A. Politi, A. Stefanov, and J. L. O’Brien, “Manipulation of multiphoton entanglement in waveguide quantum circuits,” Nature Photon. 3, 346–350 (2009).
    [Crossref]
  36. J. Shadbolt, R. Verde, A. Peruzzo, A. Politi, A. Laing, M. Lobino, J. C. F. Matthews, M. G. Thompson, and J. L. O’Brien, “Generating, manipulating and measuring entanglement and mixture with a reconfigurable photonic circuit,” Nature Photon. 6, 45–49 (2012).
    [Crossref]
  37. M. Poot and H. X. Tang, “Broadband nanoelectromechanical phase shifting of light on a chip,” Appl. Phys. Lett. 104, 061101 (2014).
    [Crossref]
  38. X. Xiong, C. C.-L. Zou, X. X.-F. Ren, and G.-C. G. Guo, “Broadband plasmonic absorber for photonic integrated circuits,” Photonics Technol. Lett. 26, 1726–1729 (2013).
    [Crossref]

2016 (4)

C. Schuck, X. Guo, L. Fan, X. Ma, M. Poot, and H. X. Tang, “Quantum interference in heterogeneous superconducting-photonic circuits on a silicon chip,” Nature Commun. 7, 10352 (2016).
[Crossref]

M. Poot, C. Schuck, X. Ma, X. Guo, and H. X. Tang, “Design and characterization of integrated components for SiN photonic quantum circuits,” Opt. Express 24, 6843 (2016).
[Crossref] [PubMed]

Y. Luo, Y. Yu, M. Ye, C. Sun, and X. Zhang, “Integrated dual-mode 3 dB power coupler based on tapered directional coupler,” Sci. Rep. 6, 23516 (2016).
[Crossref]

L.-T. Feng, M. Zhang, Z.-Y. Zhou, M. Li, X. Xiong, L. Yu, B.-S. Shi, G.-P. Guo, D.-X. Dai, X.-F. Ren, and G.-C. Guo, “On-chip coherent conversion of photonic quantum signals between different degrees of freedom,” Nature Commun. 7, 11985 (2016).
[Crossref]

2015 (4)

Z. Zhang, X. Hu, and J. Wang, “On-chip optical mode exchange using tapered directional coupler,” Sci. Rep. 5, 16072 (2015).
[Crossref] [PubMed]

G. Reithmaier, M. Kaniber, F. Flassig, S. Lichtmannecker, K. Müller, A. Andrejew, J. Vučković, R. Gross, and J. J. Finley, “On-Chip Generation, Routing, and Detection of Resonance Fluorescence,” Nano Lett. 15, 5208–5213 (2015).
[Crossref] [PubMed]

C. V. Poulton, X. Zeng, M. T. Wade, and M. A. Popović, “Channel add – drop filter based on dual photonic crystal cavities in push – pull mode,” Opt. Lett. 40, 4206–4209 (2015).
[Crossref] [PubMed]

E. Schelew, M. K. Akhlaghi, and J. F. Young, “Waveguide integrated superconducting single-photon detectors implemented as near-perfect absorbers of coherent radiation,” Nature Commun. 6, 1–8 (2015).

2014 (3)

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nature Photon. 8, 104–108 (2014).
[Crossref]

N. C. Harris, D. Grassani, A. Simbula, M. Pant, M. Galli, T. Baehr-Jones, M. Hochberg, D. Englund, D. Bajoni, and C. Galland, “Integrated Source of Spectrally Filtered Correlated Photons for Large-Scale Quantum Photonic Systems,” Phys. Rev. X 4, 041047 (2014).

M. Poot and H. X. Tang, “Broadband nanoelectromechanical phase shifting of light on a chip,” Appl. Phys. Lett. 104, 061101 (2014).
[Crossref]

2013 (6)

X. Xiong, C. C.-L. Zou, X. X.-F. Ren, and G.-C. G. Guo, “Broadband plasmonic absorber for photonic integrated circuits,” Photonics Technol. Lett. 26, 1726–1729 (2013).
[Crossref]

C. Schuck, W. H. P. Pernice, and H. X. Tang, “Waveguide integrated low noise NbTiN nanowire single-photon detectors with milli-Hz dark count rate,” Sci. Rep. 3, 1893 (2013).
[Crossref] [PubMed]

J. R. Ong, R. Kumar, and S. Mookherjea, “Ultra-high-contrast and tunable-bandwidth filter using cascaded high-order silicon microring filters,” IEEE Photonics Technol. Lett. 25, 1543–1546 (2013).
[Crossref]

Y. Ding, J. Xu, F. Da Ros, B. Huang, H. Ou, and C. Peucheret, “On-chip two-mode division multiplexing using tapered directional coupler-based mode multiplexer and demultiplexer,” Opt. Express 21, 10376–10382 (2013).
[Crossref] [PubMed]

X. Xiong, C.-L. Zou, X.-F. Ren, and G.-C. Guo, “Integrated polarization rotator/converter by stimulated Raman adiabatic passage,” Opt. Express 21, 17097 (2013).
[Crossref] [PubMed]

C.-L. Zou, X.-D. Chen, X. Xiong, F.-W. Sun, X.-B. Zou, Z.-F. Han, and G.-C. Guo, “Photonic simulation of system-environment interaction: Non-Markovian processes and dynamical decoupling,” Phys. Rev. A 88, 063806 (2013).
[Crossref]

2012 (5)

A. Oskooi, A. Mutapcic, S. Noda, J. D. Joannopoulos, S. P. Boyd, and S. G. Johnson, “Robust optimization of adiabatic tapers for coupling to slow-light photonic-crystal waveguides,” Opt. Express 20, 21558 (2012).
[Crossref] [PubMed]

X. Wang, W. Shi, H. Yun, S. Grist, N. a. F. Jaeger, and L. Chrostowski, “Narrow-band waveguide Bragg gratings on SOI wafers with CMOS-compatible fabrication process,” Opt. Express 20, 15547 (2012).
[Crossref] [PubMed]

W. H. P. Pernice, C. Schuck, O. Minaeva, M. Li, G. N. Goltsman, A. V Sergienko, and H. X. Tang, “High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits,” Nature Commun. 3, 1325 (2012).
[Crossref]

D. X. Dai, J. Bauters, and J. E. Bowers, “Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction,” Light: Science and Applications 1, e1 (2012).
[Crossref]

J. Shadbolt, R. Verde, A. Peruzzo, A. Politi, A. Laing, M. Lobino, J. C. F. Matthews, M. G. Thompson, and J. L. O’Brien, “Generating, manipulating and measuring entanglement and mixture with a reconfigurable photonic circuit,” Nature Photon. 6, 45–49 (2012).
[Crossref]

2011 (3)

J. P. Sprengers, A. Gaggero, D. Sahin, S. Jahanmirinejad, G. Frucci, F. Mattioli, R. Leoni, J. Beetz, M. Lermer, M. Kamp, S. Hfling, R. Sanjines, and A. Fiore, “Waveguide superconducting single-photon detectors for integrated quantum photonic circuits,” Appl. Phys. Lett. 99, 181110 (2011).
[Crossref]

Y. Ding, M. Pu, L. Liu, J. Xu, C. Peucheret, X. Zhang, D. Huang, and H. Ou, “Bandwidth and wavelength-tunable optical bandpass filter based on silicon microring-MZI structure,” Opt. Express 19, 6462–6470 (2011).
[Crossref] [PubMed]

D. Dai and J. E. Bowers, “Novel concept for ultracompact polarization splitter-rotator based on silicon nanowires,” Opt. Express 19, 10940–10949 (2011).
[Crossref] [PubMed]

2009 (2)

J. C. F. Matthews, A. Politi, A. Stefanov, and J. L. O’Brien, “Manipulation of multiphoton entanglement in waveguide quantum circuits,” Nature Photon. 3, 346–350 (2009).
[Crossref]

J. L. O’Brien, A. Furusawa, and J. Vuckovic, “Photonic quantum technologies,” Nature Photon. 3, 687–695 (2009).
[Crossref]

2008 (1)

A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-Silicon Waveguide Quantum Circuits,” Science 320, 646–649 (2008).
[Crossref] [PubMed]

2007 (1)

P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007).
[Crossref]

2006 (2)

2005 (1)

C. J. Wittig, “The LandauZener Formula,” Phys. Chem. B 109, 84288430 (2005).
[Crossref]

2002 (1)

S. G. Johnson, P. Bienstman, M. A. Skorobogatiy, M. Ibanescu, E. Lidorikis, and J. D. Joannopoulos, “Adiabatic theorem and continuous coupled-mode theory for efficient taper transitions in photonic crystals,” Phys. Rev. E. 66, 066608 (2002).
[Crossref]

2001 (1)

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[Crossref] [PubMed]

1995 (1)

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V Sergienko, and Y. Shih, “New High-Intensity Source of Polarization-Entangled Photon Pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[Crossref] [PubMed]

1970 (1)

D. C. Burnham and D. L. Weinberg, “Observation of Simultaneity in Parametric Production of Optical Photon Pairs,” Phys. Rev. Lett. 25, 84–87 (1970).
[Crossref]

Akhlaghi, M. K.

E. Schelew, M. K. Akhlaghi, and J. F. Young, “Waveguide integrated superconducting single-photon detectors implemented as near-perfect absorbers of coherent radiation,” Nature Commun. 6, 1–8 (2015).

Andrejew, A.

G. Reithmaier, M. Kaniber, F. Flassig, S. Lichtmannecker, K. Müller, A. Andrejew, J. Vučković, R. Gross, and J. J. Finley, “On-Chip Generation, Routing, and Detection of Resonance Fluorescence,” Nano Lett. 15, 5208–5213 (2015).
[Crossref] [PubMed]

Baehr-Jones, T.

N. C. Harris, D. Grassani, A. Simbula, M. Pant, M. Galli, T. Baehr-Jones, M. Hochberg, D. Englund, D. Bajoni, and C. Galland, “Integrated Source of Spectrally Filtered Correlated Photons for Large-Scale Quantum Photonic Systems,” Phys. Rev. X 4, 041047 (2014).

Bajoni, D.

N. C. Harris, D. Grassani, A. Simbula, M. Pant, M. Galli, T. Baehr-Jones, M. Hochberg, D. Englund, D. Bajoni, and C. Galland, “Integrated Source of Spectrally Filtered Correlated Photons for Large-Scale Quantum Photonic Systems,” Phys. Rev. X 4, 041047 (2014).

Barwicz, T.

Bauters, J.

D. X. Dai, J. Bauters, and J. E. Bowers, “Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction,” Light: Science and Applications 1, e1 (2012).
[Crossref]

Beetz, J.

J. P. Sprengers, A. Gaggero, D. Sahin, S. Jahanmirinejad, G. Frucci, F. Mattioli, R. Leoni, J. Beetz, M. Lermer, M. Kamp, S. Hfling, R. Sanjines, and A. Fiore, “Waveguide superconducting single-photon detectors for integrated quantum photonic circuits,” Appl. Phys. Lett. 99, 181110 (2011).
[Crossref]

Bienstman, P.

S. G. Johnson, P. Bienstman, M. A. Skorobogatiy, M. Ibanescu, E. Lidorikis, and J. D. Joannopoulos, “Adiabatic theorem and continuous coupled-mode theory for efficient taper transitions in photonic crystals,” Phys. Rev. E. 66, 066608 (2002).
[Crossref]

Bonneau, D.

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nature Photon. 8, 104–108 (2014).
[Crossref]

Bovington, J.

H. W. Chen, A. W. Fang, J. Bovington, J. D. Peters, and J. E. Bowers, “Hybrid silicon tunable filter based on a Mach-Zehnder interferometer and ring resonantor,” 2009 Int. Top. Meet. Microw. Photonics14–17 (2009).

Bowers, J. E.

D. X. Dai, J. Bauters, and J. E. Bowers, “Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction,” Light: Science and Applications 1, e1 (2012).
[Crossref]

D. Dai and J. E. Bowers, “Novel concept for ultracompact polarization splitter-rotator based on silicon nanowires,” Opt. Express 19, 10940–10949 (2011).
[Crossref] [PubMed]

H. W. Chen, A. W. Fang, J. Bovington, J. D. Peters, and J. E. Bowers, “Hybrid silicon tunable filter based on a Mach-Zehnder interferometer and ring resonantor,” 2009 Int. Top. Meet. Microw. Photonics14–17 (2009).

Boyd, S. P.

Burnham, D. C.

D. C. Burnham and D. L. Weinberg, “Observation of Simultaneity in Parametric Production of Optical Photon Pairs,” Phys. Rev. Lett. 25, 84–87 (1970).
[Crossref]

Chen, H. W.

H. W. Chen, A. W. Fang, J. Bovington, J. D. Peters, and J. E. Bowers, “Hybrid silicon tunable filter based on a Mach-Zehnder interferometer and ring resonantor,” 2009 Int. Top. Meet. Microw. Photonics14–17 (2009).

Chen, X.-D.

C.-L. Zou, X.-D. Chen, X. Xiong, F.-W. Sun, X.-B. Zou, Z.-F. Han, and G.-C. Guo, “Photonic simulation of system-environment interaction: Non-Markovian processes and dynamical decoupling,” Phys. Rev. A 88, 063806 (2013).
[Crossref]

Cheng, R.

X. Guo, C. Zou, C. Schuck, H. Jung, R. Cheng, and H. X. Tang, “Parametric down-conversion photon pair source on a nanophotonic chip,” arXiv:1603.03726 (2016).

Chrostowski, L.

Cryan, M. J.

A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-Silicon Waveguide Quantum Circuits,” Science 320, 646–649 (2008).
[Crossref] [PubMed]

Da Ros, F.

Dai, D.

Dai, D. X.

D. X. Dai, J. Bauters, and J. E. Bowers, “Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction,” Light: Science and Applications 1, e1 (2012).
[Crossref]

Dai, D.-X.

L.-T. Feng, M. Zhang, Z.-Y. Zhou, M. Li, X. Xiong, L. Yu, B.-S. Shi, G.-P. Guo, D.-X. Dai, X.-F. Ren, and G.-C. Guo, “On-chip coherent conversion of photonic quantum signals between different degrees of freedom,” Nature Commun. 7, 11985 (2016).
[Crossref]

Ding, Y.

Dowling, J. P.

P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007).
[Crossref]

Englund, D.

N. C. Harris, D. Grassani, A. Simbula, M. Pant, M. Galli, T. Baehr-Jones, M. Hochberg, D. Englund, D. Bajoni, and C. Galland, “Integrated Source of Spectrally Filtered Correlated Photons for Large-Scale Quantum Photonic Systems,” Phys. Rev. X 4, 041047 (2014).

Ezaki, M.

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nature Photon. 8, 104–108 (2014).
[Crossref]

Fan, L.

C. Schuck, X. Guo, L. Fan, X. Ma, M. Poot, and H. X. Tang, “Quantum interference in heterogeneous superconducting-photonic circuits on a silicon chip,” Nature Commun. 7, 10352 (2016).
[Crossref]

Fang, A. W.

H. W. Chen, A. W. Fang, J. Bovington, J. D. Peters, and J. E. Bowers, “Hybrid silicon tunable filter based on a Mach-Zehnder interferometer and ring resonantor,” 2009 Int. Top. Meet. Microw. Photonics14–17 (2009).

Feng, L.-T.

L.-T. Feng, M. Zhang, Z.-Y. Zhou, M. Li, X. Xiong, L. Yu, B.-S. Shi, G.-P. Guo, D.-X. Dai, X.-F. Ren, and G.-C. Guo, “On-chip coherent conversion of photonic quantum signals between different degrees of freedom,” Nature Commun. 7, 11985 (2016).
[Crossref]

Finley, J. J.

G. Reithmaier, M. Kaniber, F. Flassig, S. Lichtmannecker, K. Müller, A. Andrejew, J. Vučković, R. Gross, and J. J. Finley, “On-Chip Generation, Routing, and Detection of Resonance Fluorescence,” Nano Lett. 15, 5208–5213 (2015).
[Crossref] [PubMed]

Fiore, A.

J. P. Sprengers, A. Gaggero, D. Sahin, S. Jahanmirinejad, G. Frucci, F. Mattioli, R. Leoni, J. Beetz, M. Lermer, M. Kamp, S. Hfling, R. Sanjines, and A. Fiore, “Waveguide superconducting single-photon detectors for integrated quantum photonic circuits,” Appl. Phys. Lett. 99, 181110 (2011).
[Crossref]

Flassig, F.

G. Reithmaier, M. Kaniber, F. Flassig, S. Lichtmannecker, K. Müller, A. Andrejew, J. Vučković, R. Gross, and J. J. Finley, “On-Chip Generation, Routing, and Detection of Resonance Fluorescence,” Nano Lett. 15, 5208–5213 (2015).
[Crossref] [PubMed]

Foster, M. A.

Frucci, G.

J. P. Sprengers, A. Gaggero, D. Sahin, S. Jahanmirinejad, G. Frucci, F. Mattioli, R. Leoni, J. Beetz, M. Lermer, M. Kamp, S. Hfling, R. Sanjines, and A. Fiore, “Waveguide superconducting single-photon detectors for integrated quantum photonic circuits,” Appl. Phys. Lett. 99, 181110 (2011).
[Crossref]

Furusawa, A.

J. L. O’Brien, A. Furusawa, and J. Vuckovic, “Photonic quantum technologies,” Nature Photon. 3, 687–695 (2009).
[Crossref]

Gaeta, A. L.

Gaggero, A.

J. P. Sprengers, A. Gaggero, D. Sahin, S. Jahanmirinejad, G. Frucci, F. Mattioli, R. Leoni, J. Beetz, M. Lermer, M. Kamp, S. Hfling, R. Sanjines, and A. Fiore, “Waveguide superconducting single-photon detectors for integrated quantum photonic circuits,” Appl. Phys. Lett. 99, 181110 (2011).
[Crossref]

Galland, C.

N. C. Harris, D. Grassani, A. Simbula, M. Pant, M. Galli, T. Baehr-Jones, M. Hochberg, D. Englund, D. Bajoni, and C. Galland, “Integrated Source of Spectrally Filtered Correlated Photons for Large-Scale Quantum Photonic Systems,” Phys. Rev. X 4, 041047 (2014).

Galli, M.

N. C. Harris, D. Grassani, A. Simbula, M. Pant, M. Galli, T. Baehr-Jones, M. Hochberg, D. Englund, D. Bajoni, and C. Galland, “Integrated Source of Spectrally Filtered Correlated Photons for Large-Scale Quantum Photonic Systems,” Phys. Rev. X 4, 041047 (2014).

Goltsman, G. N.

W. H. P. Pernice, C. Schuck, O. Minaeva, M. Li, G. N. Goltsman, A. V Sergienko, and H. X. Tang, “High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits,” Nature Commun. 3, 1325 (2012).
[Crossref]

Grassani, D.

N. C. Harris, D. Grassani, A. Simbula, M. Pant, M. Galli, T. Baehr-Jones, M. Hochberg, D. Englund, D. Bajoni, and C. Galland, “Integrated Source of Spectrally Filtered Correlated Photons for Large-Scale Quantum Photonic Systems,” Phys. Rev. X 4, 041047 (2014).

Grist, S.

Gross, R.

G. Reithmaier, M. Kaniber, F. Flassig, S. Lichtmannecker, K. Müller, A. Andrejew, J. Vučković, R. Gross, and J. J. Finley, “On-Chip Generation, Routing, and Detection of Resonance Fluorescence,” Nano Lett. 15, 5208–5213 (2015).
[Crossref] [PubMed]

Guo, G.-C.

L.-T. Feng, M. Zhang, Z.-Y. Zhou, M. Li, X. Xiong, L. Yu, B.-S. Shi, G.-P. Guo, D.-X. Dai, X.-F. Ren, and G.-C. Guo, “On-chip coherent conversion of photonic quantum signals between different degrees of freedom,” Nature Commun. 7, 11985 (2016).
[Crossref]

X. Xiong, C.-L. Zou, X.-F. Ren, and G.-C. Guo, “Integrated polarization rotator/converter by stimulated Raman adiabatic passage,” Opt. Express 21, 17097 (2013).
[Crossref] [PubMed]

C.-L. Zou, X.-D. Chen, X. Xiong, F.-W. Sun, X.-B. Zou, Z.-F. Han, and G.-C. Guo, “Photonic simulation of system-environment interaction: Non-Markovian processes and dynamical decoupling,” Phys. Rev. A 88, 063806 (2013).
[Crossref]

Guo, G.-C. G.

X. Xiong, C. C.-L. Zou, X. X.-F. Ren, and G.-C. G. Guo, “Broadband plasmonic absorber for photonic integrated circuits,” Photonics Technol. Lett. 26, 1726–1729 (2013).
[Crossref]

Guo, G.-P.

L.-T. Feng, M. Zhang, Z.-Y. Zhou, M. Li, X. Xiong, L. Yu, B.-S. Shi, G.-P. Guo, D.-X. Dai, X.-F. Ren, and G.-C. Guo, “On-chip coherent conversion of photonic quantum signals between different degrees of freedom,” Nature Commun. 7, 11985 (2016).
[Crossref]

Guo, X.

M. Poot, C. Schuck, X. Ma, X. Guo, and H. X. Tang, “Design and characterization of integrated components for SiN photonic quantum circuits,” Opt. Express 24, 6843 (2016).
[Crossref] [PubMed]

C. Schuck, X. Guo, L. Fan, X. Ma, M. Poot, and H. X. Tang, “Quantum interference in heterogeneous superconducting-photonic circuits on a silicon chip,” Nature Commun. 7, 10352 (2016).
[Crossref]

X. Guo, C. Zou, C. Schuck, H. Jung, R. Cheng, and H. X. Tang, “Parametric down-conversion photon pair source on a nanophotonic chip,” arXiv:1603.03726 (2016).

Hadfield, R. H.

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nature Photon. 8, 104–108 (2014).
[Crossref]

Han, Z.-F.

C.-L. Zou, X.-D. Chen, X. Xiong, F.-W. Sun, X.-B. Zou, Z.-F. Han, and G.-C. Guo, “Photonic simulation of system-environment interaction: Non-Markovian processes and dynamical decoupling,” Phys. Rev. A 88, 063806 (2013).
[Crossref]

Harris, N. C.

N. C. Harris, D. Grassani, A. Simbula, M. Pant, M. Galli, T. Baehr-Jones, M. Hochberg, D. Englund, D. Bajoni, and C. Galland, “Integrated Source of Spectrally Filtered Correlated Photons for Large-Scale Quantum Photonic Systems,” Phys. Rev. X 4, 041047 (2014).

Hfling, S.

J. P. Sprengers, A. Gaggero, D. Sahin, S. Jahanmirinejad, G. Frucci, F. Mattioli, R. Leoni, J. Beetz, M. Lermer, M. Kamp, S. Hfling, R. Sanjines, and A. Fiore, “Waveguide superconducting single-photon detectors for integrated quantum photonic circuits,” Appl. Phys. Lett. 99, 181110 (2011).
[Crossref]

Hochberg, M.

N. C. Harris, D. Grassani, A. Simbula, M. Pant, M. Galli, T. Baehr-Jones, M. Hochberg, D. Englund, D. Bajoni, and C. Galland, “Integrated Source of Spectrally Filtered Correlated Photons for Large-Scale Quantum Photonic Systems,” Phys. Rev. X 4, 041047 (2014).

Hu, X.

Z. Zhang, X. Hu, and J. Wang, “On-chip optical mode exchange using tapered directional coupler,” Sci. Rep. 5, 16072 (2015).
[Crossref] [PubMed]

Huang, B.

Huang, D.

Ibanescu, M.

S. G. Johnson, P. Bienstman, M. A. Skorobogatiy, M. Ibanescu, E. Lidorikis, and J. D. Joannopoulos, “Adiabatic theorem and continuous coupled-mode theory for efficient taper transitions in photonic crystals,” Phys. Rev. E. 66, 066608 (2002).
[Crossref]

Iizuka, N.

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nature Photon. 8, 104–108 (2014).
[Crossref]

Ippen, E. P.

Jaeger, N. a. F.

Jahanmirinejad, S.

J. P. Sprengers, A. Gaggero, D. Sahin, S. Jahanmirinejad, G. Frucci, F. Mattioli, R. Leoni, J. Beetz, M. Lermer, M. Kamp, S. Hfling, R. Sanjines, and A. Fiore, “Waveguide superconducting single-photon detectors for integrated quantum photonic circuits,” Appl. Phys. Lett. 99, 181110 (2011).
[Crossref]

Joannopoulos, J. D.

A. Oskooi, A. Mutapcic, S. Noda, J. D. Joannopoulos, S. P. Boyd, and S. G. Johnson, “Robust optimization of adiabatic tapers for coupling to slow-light photonic-crystal waveguides,” Opt. Express 20, 21558 (2012).
[Crossref] [PubMed]

S. G. Johnson, P. Bienstman, M. A. Skorobogatiy, M. Ibanescu, E. Lidorikis, and J. D. Joannopoulos, “Adiabatic theorem and continuous coupled-mode theory for efficient taper transitions in photonic crystals,” Phys. Rev. E. 66, 066608 (2002).
[Crossref]

Johnson, S. G.

A. Oskooi, A. Mutapcic, S. Noda, J. D. Joannopoulos, S. P. Boyd, and S. G. Johnson, “Robust optimization of adiabatic tapers for coupling to slow-light photonic-crystal waveguides,” Opt. Express 20, 21558 (2012).
[Crossref] [PubMed]

S. G. Johnson, P. Bienstman, M. A. Skorobogatiy, M. Ibanescu, E. Lidorikis, and J. D. Joannopoulos, “Adiabatic theorem and continuous coupled-mode theory for efficient taper transitions in photonic crystals,” Phys. Rev. E. 66, 066608 (2002).
[Crossref]

Jung, H.

X. Guo, C. Zou, C. Schuck, H. Jung, R. Cheng, and H. X. Tang, “Parametric down-conversion photon pair source on a nanophotonic chip,” arXiv:1603.03726 (2016).

Kamp, M.

J. P. Sprengers, A. Gaggero, D. Sahin, S. Jahanmirinejad, G. Frucci, F. Mattioli, R. Leoni, J. Beetz, M. Lermer, M. Kamp, S. Hfling, R. Sanjines, and A. Fiore, “Waveguide superconducting single-photon detectors for integrated quantum photonic circuits,” Appl. Phys. Lett. 99, 181110 (2011).
[Crossref]

Kaniber, M.

G. Reithmaier, M. Kaniber, F. Flassig, S. Lichtmannecker, K. Müller, A. Andrejew, J. Vučković, R. Gross, and J. J. Finley, “On-Chip Generation, Routing, and Detection of Resonance Fluorescence,” Nano Lett. 15, 5208–5213 (2015).
[Crossref] [PubMed]

Kartner, F. X.

Knill, E.

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[Crossref] [PubMed]

Kok, P.

P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007).
[Crossref]

Kumar, P.

Kumar, R.

J. R. Ong, R. Kumar, and S. Mookherjea, “Ultra-high-contrast and tunable-bandwidth filter using cascaded high-order silicon microring filters,” IEEE Photonics Technol. Lett. 25, 1543–1546 (2013).
[Crossref]

Kwiat, P. G.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V Sergienko, and Y. Shih, “New High-Intensity Source of Polarization-Entangled Photon Pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[Crossref] [PubMed]

Laflamme, R.

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[Crossref] [PubMed]

Laing, A.

J. Shadbolt, R. Verde, A. Peruzzo, A. Politi, A. Laing, M. Lobino, J. C. F. Matthews, M. G. Thompson, and J. L. O’Brien, “Generating, manipulating and measuring entanglement and mixture with a reconfigurable photonic circuit,” Nature Photon. 6, 45–49 (2012).
[Crossref]

Lee, K. F.

Leoni, R.

J. P. Sprengers, A. Gaggero, D. Sahin, S. Jahanmirinejad, G. Frucci, F. Mattioli, R. Leoni, J. Beetz, M. Lermer, M. Kamp, S. Hfling, R. Sanjines, and A. Fiore, “Waveguide superconducting single-photon detectors for integrated quantum photonic circuits,” Appl. Phys. Lett. 99, 181110 (2011).
[Crossref]

Lermer, M.

J. P. Sprengers, A. Gaggero, D. Sahin, S. Jahanmirinejad, G. Frucci, F. Mattioli, R. Leoni, J. Beetz, M. Lermer, M. Kamp, S. Hfling, R. Sanjines, and A. Fiore, “Waveguide superconducting single-photon detectors for integrated quantum photonic circuits,” Appl. Phys. Lett. 99, 181110 (2011).
[Crossref]

Li, M.

L.-T. Feng, M. Zhang, Z.-Y. Zhou, M. Li, X. Xiong, L. Yu, B.-S. Shi, G.-P. Guo, D.-X. Dai, X.-F. Ren, and G.-C. Guo, “On-chip coherent conversion of photonic quantum signals between different degrees of freedom,” Nature Commun. 7, 11985 (2016).
[Crossref]

W. H. P. Pernice, C. Schuck, O. Minaeva, M. Li, G. N. Goltsman, A. V Sergienko, and H. X. Tang, “High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits,” Nature Commun. 3, 1325 (2012).
[Crossref]

Lichtmannecker, S.

G. Reithmaier, M. Kaniber, F. Flassig, S. Lichtmannecker, K. Müller, A. Andrejew, J. Vučković, R. Gross, and J. J. Finley, “On-Chip Generation, Routing, and Detection of Resonance Fluorescence,” Nano Lett. 15, 5208–5213 (2015).
[Crossref] [PubMed]

Lidorikis, E.

S. G. Johnson, P. Bienstman, M. A. Skorobogatiy, M. Ibanescu, E. Lidorikis, and J. D. Joannopoulos, “Adiabatic theorem and continuous coupled-mode theory for efficient taper transitions in photonic crystals,” Phys. Rev. E. 66, 066608 (2002).
[Crossref]

Lipson, M.

Liu, L.

Lobino, M.

J. Shadbolt, R. Verde, A. Peruzzo, A. Politi, A. Laing, M. Lobino, J. C. F. Matthews, M. G. Thompson, and J. L. O’Brien, “Generating, manipulating and measuring entanglement and mixture with a reconfigurable photonic circuit,” Nature Photon. 6, 45–49 (2012).
[Crossref]

Luo, Y.

Y. Luo, Y. Yu, M. Ye, C. Sun, and X. Zhang, “Integrated dual-mode 3 dB power coupler based on tapered directional coupler,” Sci. Rep. 6, 23516 (2016).
[Crossref]

Ma, X.

C. Schuck, X. Guo, L. Fan, X. Ma, M. Poot, and H. X. Tang, “Quantum interference in heterogeneous superconducting-photonic circuits on a silicon chip,” Nature Commun. 7, 10352 (2016).
[Crossref]

M. Poot, C. Schuck, X. Ma, X. Guo, and H. X. Tang, “Design and characterization of integrated components for SiN photonic quantum circuits,” Opt. Express 24, 6843 (2016).
[Crossref] [PubMed]

Marshall, G. D.

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nature Photon. 8, 104–108 (2014).
[Crossref]

Matthews, J. C. F.

J. Shadbolt, R. Verde, A. Peruzzo, A. Politi, A. Laing, M. Lobino, J. C. F. Matthews, M. G. Thompson, and J. L. O’Brien, “Generating, manipulating and measuring entanglement and mixture with a reconfigurable photonic circuit,” Nature Photon. 6, 45–49 (2012).
[Crossref]

J. C. F. Matthews, A. Politi, A. Stefanov, and J. L. O’Brien, “Manipulation of multiphoton entanglement in waveguide quantum circuits,” Nature Photon. 3, 346–350 (2009).
[Crossref]

Mattioli, F.

J. P. Sprengers, A. Gaggero, D. Sahin, S. Jahanmirinejad, G. Frucci, F. Mattioli, R. Leoni, J. Beetz, M. Lermer, M. Kamp, S. Hfling, R. Sanjines, and A. Fiore, “Waveguide superconducting single-photon detectors for integrated quantum photonic circuits,” Appl. Phys. Lett. 99, 181110 (2011).
[Crossref]

Mattle, K.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V Sergienko, and Y. Shih, “New High-Intensity Source of Polarization-Entangled Photon Pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[Crossref] [PubMed]

Milburn, G. J.

P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007).
[Crossref]

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[Crossref] [PubMed]

Minaeva, O.

W. H. P. Pernice, C. Schuck, O. Minaeva, M. Li, G. N. Goltsman, A. V Sergienko, and H. X. Tang, “High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits,” Nature Commun. 3, 1325 (2012).
[Crossref]

Mookherjea, S.

J. R. Ong, R. Kumar, and S. Mookherjea, “Ultra-high-contrast and tunable-bandwidth filter using cascaded high-order silicon microring filters,” IEEE Photonics Technol. Lett. 25, 1543–1546 (2013).
[Crossref]

Müller, K.

G. Reithmaier, M. Kaniber, F. Flassig, S. Lichtmannecker, K. Müller, A. Andrejew, J. Vučković, R. Gross, and J. J. Finley, “On-Chip Generation, Routing, and Detection of Resonance Fluorescence,” Nano Lett. 15, 5208–5213 (2015).
[Crossref] [PubMed]

Munro, W. J.

P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007).
[Crossref]

Mutapcic, A.

Natarajan, C. M.

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nature Photon. 8, 104–108 (2014).
[Crossref]

Nemoto, K.

P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007).
[Crossref]

Noda, S.

O’Brien, J. L.

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nature Photon. 8, 104–108 (2014).
[Crossref]

J. Shadbolt, R. Verde, A. Peruzzo, A. Politi, A. Laing, M. Lobino, J. C. F. Matthews, M. G. Thompson, and J. L. O’Brien, “Generating, manipulating and measuring entanglement and mixture with a reconfigurable photonic circuit,” Nature Photon. 6, 45–49 (2012).
[Crossref]

J. L. O’Brien, A. Furusawa, and J. Vuckovic, “Photonic quantum technologies,” Nature Photon. 3, 687–695 (2009).
[Crossref]

J. C. F. Matthews, A. Politi, A. Stefanov, and J. L. O’Brien, “Manipulation of multiphoton entanglement in waveguide quantum circuits,” Nature Photon. 3, 346–350 (2009).
[Crossref]

A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-Silicon Waveguide Quantum Circuits,” Science 320, 646–649 (2008).
[Crossref] [PubMed]

Ohira, K.

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nature Photon. 8, 104–108 (2014).
[Crossref]

Ong, J. R.

J. R. Ong, R. Kumar, and S. Mookherjea, “Ultra-high-contrast and tunable-bandwidth filter using cascaded high-order silicon microring filters,” IEEE Photonics Technol. Lett. 25, 1543–1546 (2013).
[Crossref]

Oskooi, A.

Ou, H.

Pant, M.

N. C. Harris, D. Grassani, A. Simbula, M. Pant, M. Galli, T. Baehr-Jones, M. Hochberg, D. Englund, D. Bajoni, and C. Galland, “Integrated Source of Spectrally Filtered Correlated Photons for Large-Scale Quantum Photonic Systems,” Phys. Rev. X 4, 041047 (2014).

Pernice, W. H. P.

C. Schuck, W. H. P. Pernice, and H. X. Tang, “Waveguide integrated low noise NbTiN nanowire single-photon detectors with milli-Hz dark count rate,” Sci. Rep. 3, 1893 (2013).
[Crossref] [PubMed]

W. H. P. Pernice, C. Schuck, O. Minaeva, M. Li, G. N. Goltsman, A. V Sergienko, and H. X. Tang, “High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits,” Nature Commun. 3, 1325 (2012).
[Crossref]

Peruzzo, A.

J. Shadbolt, R. Verde, A. Peruzzo, A. Politi, A. Laing, M. Lobino, J. C. F. Matthews, M. G. Thompson, and J. L. O’Brien, “Generating, manipulating and measuring entanglement and mixture with a reconfigurable photonic circuit,” Nature Photon. 6, 45–49 (2012).
[Crossref]

Peters, J. D.

H. W. Chen, A. W. Fang, J. Bovington, J. D. Peters, and J. E. Bowers, “Hybrid silicon tunable filter based on a Mach-Zehnder interferometer and ring resonantor,” 2009 Int. Top. Meet. Microw. Photonics14–17 (2009).

Peucheret, C.

Politi, A.

J. Shadbolt, R. Verde, A. Peruzzo, A. Politi, A. Laing, M. Lobino, J. C. F. Matthews, M. G. Thompson, and J. L. O’Brien, “Generating, manipulating and measuring entanglement and mixture with a reconfigurable photonic circuit,” Nature Photon. 6, 45–49 (2012).
[Crossref]

J. C. F. Matthews, A. Politi, A. Stefanov, and J. L. O’Brien, “Manipulation of multiphoton entanglement in waveguide quantum circuits,” Nature Photon. 3, 346–350 (2009).
[Crossref]

A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-Silicon Waveguide Quantum Circuits,” Science 320, 646–649 (2008).
[Crossref] [PubMed]

Poot, M.

C. Schuck, X. Guo, L. Fan, X. Ma, M. Poot, and H. X. Tang, “Quantum interference in heterogeneous superconducting-photonic circuits on a silicon chip,” Nature Commun. 7, 10352 (2016).
[Crossref]

M. Poot, C. Schuck, X. Ma, X. Guo, and H. X. Tang, “Design and characterization of integrated components for SiN photonic quantum circuits,” Opt. Express 24, 6843 (2016).
[Crossref] [PubMed]

M. Poot and H. X. Tang, “Broadband nanoelectromechanical phase shifting of light on a chip,” Appl. Phys. Lett. 104, 061101 (2014).
[Crossref]

Popovic, M. A.

Poulton, C. V.

Pu, M.

Rakich, P. T.

Ralph, T. C.

P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007).
[Crossref]

Rarity, J. G.

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nature Photon. 8, 104–108 (2014).
[Crossref]

A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-Silicon Waveguide Quantum Circuits,” Science 320, 646–649 (2008).
[Crossref] [PubMed]

Reithmaier, G.

G. Reithmaier, M. Kaniber, F. Flassig, S. Lichtmannecker, K. Müller, A. Andrejew, J. Vučković, R. Gross, and J. J. Finley, “On-Chip Generation, Routing, and Detection of Resonance Fluorescence,” Nano Lett. 15, 5208–5213 (2015).
[Crossref] [PubMed]

Ren, X. X.-F.

X. Xiong, C. C.-L. Zou, X. X.-F. Ren, and G.-C. G. Guo, “Broadband plasmonic absorber for photonic integrated circuits,” Photonics Technol. Lett. 26, 1726–1729 (2013).
[Crossref]

Ren, X.-F.

L.-T. Feng, M. Zhang, Z.-Y. Zhou, M. Li, X. Xiong, L. Yu, B.-S. Shi, G.-P. Guo, D.-X. Dai, X.-F. Ren, and G.-C. Guo, “On-chip coherent conversion of photonic quantum signals between different degrees of freedom,” Nature Commun. 7, 11985 (2016).
[Crossref]

X. Xiong, C.-L. Zou, X.-F. Ren, and G.-C. Guo, “Integrated polarization rotator/converter by stimulated Raman adiabatic passage,” Opt. Express 21, 17097 (2013).
[Crossref] [PubMed]

Sahin, D.

J. P. Sprengers, A. Gaggero, D. Sahin, S. Jahanmirinejad, G. Frucci, F. Mattioli, R. Leoni, J. Beetz, M. Lermer, M. Kamp, S. Hfling, R. Sanjines, and A. Fiore, “Waveguide superconducting single-photon detectors for integrated quantum photonic circuits,” Appl. Phys. Lett. 99, 181110 (2011).
[Crossref]

Sanjines, R.

J. P. Sprengers, A. Gaggero, D. Sahin, S. Jahanmirinejad, G. Frucci, F. Mattioli, R. Leoni, J. Beetz, M. Lermer, M. Kamp, S. Hfling, R. Sanjines, and A. Fiore, “Waveguide superconducting single-photon detectors for integrated quantum photonic circuits,” Appl. Phys. Lett. 99, 181110 (2011).
[Crossref]

Schelew, E.

E. Schelew, M. K. Akhlaghi, and J. F. Young, “Waveguide integrated superconducting single-photon detectors implemented as near-perfect absorbers of coherent radiation,” Nature Commun. 6, 1–8 (2015).

Schmidt, B. S.

Schuck, C.

M. Poot, C. Schuck, X. Ma, X. Guo, and H. X. Tang, “Design and characterization of integrated components for SiN photonic quantum circuits,” Opt. Express 24, 6843 (2016).
[Crossref] [PubMed]

C. Schuck, X. Guo, L. Fan, X. Ma, M. Poot, and H. X. Tang, “Quantum interference in heterogeneous superconducting-photonic circuits on a silicon chip,” Nature Commun. 7, 10352 (2016).
[Crossref]

C. Schuck, W. H. P. Pernice, and H. X. Tang, “Waveguide integrated low noise NbTiN nanowire single-photon detectors with milli-Hz dark count rate,” Sci. Rep. 3, 1893 (2013).
[Crossref] [PubMed]

W. H. P. Pernice, C. Schuck, O. Minaeva, M. Li, G. N. Goltsman, A. V Sergienko, and H. X. Tang, “High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits,” Nature Commun. 3, 1325 (2012).
[Crossref]

X. Guo, C. Zou, C. Schuck, H. Jung, R. Cheng, and H. X. Tang, “Parametric down-conversion photon pair source on a nanophotonic chip,” arXiv:1603.03726 (2016).

Sergienko, A. V

W. H. P. Pernice, C. Schuck, O. Minaeva, M. Li, G. N. Goltsman, A. V Sergienko, and H. X. Tang, “High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits,” Nature Commun. 3, 1325 (2012).
[Crossref]

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V Sergienko, and Y. Shih, “New High-Intensity Source of Polarization-Entangled Photon Pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[Crossref] [PubMed]

Shadbolt, J.

J. Shadbolt, R. Verde, A. Peruzzo, A. Politi, A. Laing, M. Lobino, J. C. F. Matthews, M. G. Thompson, and J. L. O’Brien, “Generating, manipulating and measuring entanglement and mixture with a reconfigurable photonic circuit,” Nature Photon. 6, 45–49 (2012).
[Crossref]

Sharping, J. E.

Shi, B.-S.

L.-T. Feng, M. Zhang, Z.-Y. Zhou, M. Li, X. Xiong, L. Yu, B.-S. Shi, G.-P. Guo, D.-X. Dai, X.-F. Ren, and G.-C. Guo, “On-chip coherent conversion of photonic quantum signals between different degrees of freedom,” Nature Commun. 7, 11985 (2016).
[Crossref]

Shi, W.

Shih, Y.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V Sergienko, and Y. Shih, “New High-Intensity Source of Polarization-Entangled Photon Pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[Crossref] [PubMed]

Silverstone, J. W.

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nature Photon. 8, 104–108 (2014).
[Crossref]

Simbula, A.

N. C. Harris, D. Grassani, A. Simbula, M. Pant, M. Galli, T. Baehr-Jones, M. Hochberg, D. Englund, D. Bajoni, and C. Galland, “Integrated Source of Spectrally Filtered Correlated Photons for Large-Scale Quantum Photonic Systems,” Phys. Rev. X 4, 041047 (2014).

Skorobogatiy, M. A.

S. G. Johnson, P. Bienstman, M. A. Skorobogatiy, M. Ibanescu, E. Lidorikis, and J. D. Joannopoulos, “Adiabatic theorem and continuous coupled-mode theory for efficient taper transitions in photonic crystals,” Phys. Rev. E. 66, 066608 (2002).
[Crossref]

Smith, H. I.

Socci, L.

Sprengers, J. P.

J. P. Sprengers, A. Gaggero, D. Sahin, S. Jahanmirinejad, G. Frucci, F. Mattioli, R. Leoni, J. Beetz, M. Lermer, M. Kamp, S. Hfling, R. Sanjines, and A. Fiore, “Waveguide superconducting single-photon detectors for integrated quantum photonic circuits,” Appl. Phys. Lett. 99, 181110 (2011).
[Crossref]

Stefanov, A.

J. C. F. Matthews, A. Politi, A. Stefanov, and J. L. O’Brien, “Manipulation of multiphoton entanglement in waveguide quantum circuits,” Nature Photon. 3, 346–350 (2009).
[Crossref]

Sun, C.

Y. Luo, Y. Yu, M. Ye, C. Sun, and X. Zhang, “Integrated dual-mode 3 dB power coupler based on tapered directional coupler,” Sci. Rep. 6, 23516 (2016).
[Crossref]

Sun, F.-W.

C.-L. Zou, X.-D. Chen, X. Xiong, F.-W. Sun, X.-B. Zou, Z.-F. Han, and G.-C. Guo, “Photonic simulation of system-environment interaction: Non-Markovian processes and dynamical decoupling,” Phys. Rev. A 88, 063806 (2013).
[Crossref]

Suzuki, N.

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nature Photon. 8, 104–108 (2014).
[Crossref]

Tang, H. X.

C. Schuck, X. Guo, L. Fan, X. Ma, M. Poot, and H. X. Tang, “Quantum interference in heterogeneous superconducting-photonic circuits on a silicon chip,” Nature Commun. 7, 10352 (2016).
[Crossref]

M. Poot, C. Schuck, X. Ma, X. Guo, and H. X. Tang, “Design and characterization of integrated components for SiN photonic quantum circuits,” Opt. Express 24, 6843 (2016).
[Crossref] [PubMed]

M. Poot and H. X. Tang, “Broadband nanoelectromechanical phase shifting of light on a chip,” Appl. Phys. Lett. 104, 061101 (2014).
[Crossref]

C. Schuck, W. H. P. Pernice, and H. X. Tang, “Waveguide integrated low noise NbTiN nanowire single-photon detectors with milli-Hz dark count rate,” Sci. Rep. 3, 1893 (2013).
[Crossref] [PubMed]

W. H. P. Pernice, C. Schuck, O. Minaeva, M. Li, G. N. Goltsman, A. V Sergienko, and H. X. Tang, “High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits,” Nature Commun. 3, 1325 (2012).
[Crossref]

X. Guo, C. Zou, C. Schuck, H. Jung, R. Cheng, and H. X. Tang, “Parametric down-conversion photon pair source on a nanophotonic chip,” arXiv:1603.03726 (2016).

Tanner, M. G.

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nature Photon. 8, 104–108 (2014).
[Crossref]

Thompson, M. G.

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nature Photon. 8, 104–108 (2014).
[Crossref]

J. Shadbolt, R. Verde, A. Peruzzo, A. Politi, A. Laing, M. Lobino, J. C. F. Matthews, M. G. Thompson, and J. L. O’Brien, “Generating, manipulating and measuring entanglement and mixture with a reconfigurable photonic circuit,” Nature Photon. 6, 45–49 (2012).
[Crossref]

Turner, A. C.

Verde, R.

J. Shadbolt, R. Verde, A. Peruzzo, A. Politi, A. Laing, M. Lobino, J. C. F. Matthews, M. G. Thompson, and J. L. O’Brien, “Generating, manipulating and measuring entanglement and mixture with a reconfigurable photonic circuit,” Nature Photon. 6, 45–49 (2012).
[Crossref]

Vuckovic, J.

G. Reithmaier, M. Kaniber, F. Flassig, S. Lichtmannecker, K. Müller, A. Andrejew, J. Vučković, R. Gross, and J. J. Finley, “On-Chip Generation, Routing, and Detection of Resonance Fluorescence,” Nano Lett. 15, 5208–5213 (2015).
[Crossref] [PubMed]

J. L. O’Brien, A. Furusawa, and J. Vuckovic, “Photonic quantum technologies,” Nature Photon. 3, 687–695 (2009).
[Crossref]

Wade, M. T.

Wang, J.

Z. Zhang, X. Hu, and J. Wang, “On-chip optical mode exchange using tapered directional coupler,” Sci. Rep. 5, 16072 (2015).
[Crossref] [PubMed]

Wang, X.

Watts, M. R.

Weinberg, D. L.

D. C. Burnham and D. L. Weinberg, “Observation of Simultaneity in Parametric Production of Optical Photon Pairs,” Phys. Rev. Lett. 25, 84–87 (1970).
[Crossref]

Weinfurter, H.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V Sergienko, and Y. Shih, “New High-Intensity Source of Polarization-Entangled Photon Pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[Crossref] [PubMed]

Wittig, C. J.

C. J. Wittig, “The LandauZener Formula,” Phys. Chem. B 109, 84288430 (2005).
[Crossref]

Xiong, X.

L.-T. Feng, M. Zhang, Z.-Y. Zhou, M. Li, X. Xiong, L. Yu, B.-S. Shi, G.-P. Guo, D.-X. Dai, X.-F. Ren, and G.-C. Guo, “On-chip coherent conversion of photonic quantum signals between different degrees of freedom,” Nature Commun. 7, 11985 (2016).
[Crossref]

X. Xiong, C. C.-L. Zou, X. X.-F. Ren, and G.-C. G. Guo, “Broadband plasmonic absorber for photonic integrated circuits,” Photonics Technol. Lett. 26, 1726–1729 (2013).
[Crossref]

X. Xiong, C.-L. Zou, X.-F. Ren, and G.-C. Guo, “Integrated polarization rotator/converter by stimulated Raman adiabatic passage,” Opt. Express 21, 17097 (2013).
[Crossref] [PubMed]

C.-L. Zou, X.-D. Chen, X. Xiong, F.-W. Sun, X.-B. Zou, Z.-F. Han, and G.-C. Guo, “Photonic simulation of system-environment interaction: Non-Markovian processes and dynamical decoupling,” Phys. Rev. A 88, 063806 (2013).
[Crossref]

Xu, J.

Ye, M.

Y. Luo, Y. Yu, M. Ye, C. Sun, and X. Zhang, “Integrated dual-mode 3 dB power coupler based on tapered directional coupler,” Sci. Rep. 6, 23516 (2016).
[Crossref]

Yoshida, H.

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nature Photon. 8, 104–108 (2014).
[Crossref]

Young, J. F.

E. Schelew, M. K. Akhlaghi, and J. F. Young, “Waveguide integrated superconducting single-photon detectors implemented as near-perfect absorbers of coherent radiation,” Nature Commun. 6, 1–8 (2015).

Yu, L.

L.-T. Feng, M. Zhang, Z.-Y. Zhou, M. Li, X. Xiong, L. Yu, B.-S. Shi, G.-P. Guo, D.-X. Dai, X.-F. Ren, and G.-C. Guo, “On-chip coherent conversion of photonic quantum signals between different degrees of freedom,” Nature Commun. 7, 11985 (2016).
[Crossref]

Yu, S.

A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-Silicon Waveguide Quantum Circuits,” Science 320, 646–649 (2008).
[Crossref] [PubMed]

Yu, Y.

Y. Luo, Y. Yu, M. Ye, C. Sun, and X. Zhang, “Integrated dual-mode 3 dB power coupler based on tapered directional coupler,” Sci. Rep. 6, 23516 (2016).
[Crossref]

Yun, H.

Zeilinger, A.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V Sergienko, and Y. Shih, “New High-Intensity Source of Polarization-Entangled Photon Pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[Crossref] [PubMed]

Zeng, X.

Zhang, M.

L.-T. Feng, M. Zhang, Z.-Y. Zhou, M. Li, X. Xiong, L. Yu, B.-S. Shi, G.-P. Guo, D.-X. Dai, X.-F. Ren, and G.-C. Guo, “On-chip coherent conversion of photonic quantum signals between different degrees of freedom,” Nature Commun. 7, 11985 (2016).
[Crossref]

Zhang, X.

Zhang, Z.

Z. Zhang, X. Hu, and J. Wang, “On-chip optical mode exchange using tapered directional coupler,” Sci. Rep. 5, 16072 (2015).
[Crossref] [PubMed]

Zhou, Z.-Y.

L.-T. Feng, M. Zhang, Z.-Y. Zhou, M. Li, X. Xiong, L. Yu, B.-S. Shi, G.-P. Guo, D.-X. Dai, X.-F. Ren, and G.-C. Guo, “On-chip coherent conversion of photonic quantum signals between different degrees of freedom,” Nature Commun. 7, 11985 (2016).
[Crossref]

Zou, C.

X. Guo, C. Zou, C. Schuck, H. Jung, R. Cheng, and H. X. Tang, “Parametric down-conversion photon pair source on a nanophotonic chip,” arXiv:1603.03726 (2016).

Zou, C. C.-L.

X. Xiong, C. C.-L. Zou, X. X.-F. Ren, and G.-C. G. Guo, “Broadband plasmonic absorber for photonic integrated circuits,” Photonics Technol. Lett. 26, 1726–1729 (2013).
[Crossref]

Zou, C.-L.

X. Xiong, C.-L. Zou, X.-F. Ren, and G.-C. Guo, “Integrated polarization rotator/converter by stimulated Raman adiabatic passage,” Opt. Express 21, 17097 (2013).
[Crossref] [PubMed]

C.-L. Zou, X.-D. Chen, X. Xiong, F.-W. Sun, X.-B. Zou, Z.-F. Han, and G.-C. Guo, “Photonic simulation of system-environment interaction: Non-Markovian processes and dynamical decoupling,” Phys. Rev. A 88, 063806 (2013).
[Crossref]

Zou, X.-B.

C.-L. Zou, X.-D. Chen, X. Xiong, F.-W. Sun, X.-B. Zou, Z.-F. Han, and G.-C. Guo, “Photonic simulation of system-environment interaction: Non-Markovian processes and dynamical decoupling,” Phys. Rev. A 88, 063806 (2013).
[Crossref]

Zwiller, V.

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nature Photon. 8, 104–108 (2014).
[Crossref]

Appl. Phys. Lett. (2)

J. P. Sprengers, A. Gaggero, D. Sahin, S. Jahanmirinejad, G. Frucci, F. Mattioli, R. Leoni, J. Beetz, M. Lermer, M. Kamp, S. Hfling, R. Sanjines, and A. Fiore, “Waveguide superconducting single-photon detectors for integrated quantum photonic circuits,” Appl. Phys. Lett. 99, 181110 (2011).
[Crossref]

M. Poot and H. X. Tang, “Broadband nanoelectromechanical phase shifting of light on a chip,” Appl. Phys. Lett. 104, 061101 (2014).
[Crossref]

IEEE Photonics Technol. Lett. (1)

J. R. Ong, R. Kumar, and S. Mookherjea, “Ultra-high-contrast and tunable-bandwidth filter using cascaded high-order silicon microring filters,” IEEE Photonics Technol. Lett. 25, 1543–1546 (2013).
[Crossref]

Light: Science and Applications (1)

D. X. Dai, J. Bauters, and J. E. Bowers, “Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction,” Light: Science and Applications 1, e1 (2012).
[Crossref]

Nano Lett. (1)

G. Reithmaier, M. Kaniber, F. Flassig, S. Lichtmannecker, K. Müller, A. Andrejew, J. Vučković, R. Gross, and J. J. Finley, “On-Chip Generation, Routing, and Detection of Resonance Fluorescence,” Nano Lett. 15, 5208–5213 (2015).
[Crossref] [PubMed]

Nature (1)

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[Crossref] [PubMed]

Nature Commun. (4)

W. H. P. Pernice, C. Schuck, O. Minaeva, M. Li, G. N. Goltsman, A. V Sergienko, and H. X. Tang, “High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits,” Nature Commun. 3, 1325 (2012).
[Crossref]

E. Schelew, M. K. Akhlaghi, and J. F. Young, “Waveguide integrated superconducting single-photon detectors implemented as near-perfect absorbers of coherent radiation,” Nature Commun. 6, 1–8 (2015).

C. Schuck, X. Guo, L. Fan, X. Ma, M. Poot, and H. X. Tang, “Quantum interference in heterogeneous superconducting-photonic circuits on a silicon chip,” Nature Commun. 7, 10352 (2016).
[Crossref]

L.-T. Feng, M. Zhang, Z.-Y. Zhou, M. Li, X. Xiong, L. Yu, B.-S. Shi, G.-P. Guo, D.-X. Dai, X.-F. Ren, and G.-C. Guo, “On-chip coherent conversion of photonic quantum signals between different degrees of freedom,” Nature Commun. 7, 11985 (2016).
[Crossref]

Nature Photon. (4)

J. C. F. Matthews, A. Politi, A. Stefanov, and J. L. O’Brien, “Manipulation of multiphoton entanglement in waveguide quantum circuits,” Nature Photon. 3, 346–350 (2009).
[Crossref]

J. Shadbolt, R. Verde, A. Peruzzo, A. Politi, A. Laing, M. Lobino, J. C. F. Matthews, M. G. Thompson, and J. L. O’Brien, “Generating, manipulating and measuring entanglement and mixture with a reconfigurable photonic circuit,” Nature Photon. 6, 45–49 (2012).
[Crossref]

J. L. O’Brien, A. Furusawa, and J. Vuckovic, “Photonic quantum technologies,” Nature Photon. 3, 687–695 (2009).
[Crossref]

J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O’Brien, and M. G. Thompson, “On-chip quantum interference between silicon photon-pair sources,” Nature Photon. 8, 104–108 (2014).
[Crossref]

Opt. Express (8)

J. E. Sharping, K. F. Lee, M. A. Foster, A. C. Turner, B. S. Schmidt, M. Lipson, A. L. Gaeta, and P. Kumar, “Generation of correlated photons in nanoscale silicon waveguides,” Opt. Express 14, 12388 (2006).
[Crossref] [PubMed]

M. Poot, C. Schuck, X. Ma, X. Guo, and H. X. Tang, “Design and characterization of integrated components for SiN photonic quantum circuits,” Opt. Express 24, 6843 (2016).
[Crossref] [PubMed]

A. Oskooi, A. Mutapcic, S. Noda, J. D. Joannopoulos, S. P. Boyd, and S. G. Johnson, “Robust optimization of adiabatic tapers for coupling to slow-light photonic-crystal waveguides,” Opt. Express 20, 21558 (2012).
[Crossref] [PubMed]

X. Wang, W. Shi, H. Yun, S. Grist, N. a. F. Jaeger, and L. Chrostowski, “Narrow-band waveguide Bragg gratings on SOI wafers with CMOS-compatible fabrication process,” Opt. Express 20, 15547 (2012).
[Crossref] [PubMed]

D. Dai and J. E. Bowers, “Novel concept for ultracompact polarization splitter-rotator based on silicon nanowires,” Opt. Express 19, 10940–10949 (2011).
[Crossref] [PubMed]

Y. Ding, J. Xu, F. Da Ros, B. Huang, H. Ou, and C. Peucheret, “On-chip two-mode division multiplexing using tapered directional coupler-based mode multiplexer and demultiplexer,” Opt. Express 21, 10376–10382 (2013).
[Crossref] [PubMed]

Y. Ding, M. Pu, L. Liu, J. Xu, C. Peucheret, X. Zhang, D. Huang, and H. Ou, “Bandwidth and wavelength-tunable optical bandpass filter based on silicon microring-MZI structure,” Opt. Express 19, 6462–6470 (2011).
[Crossref] [PubMed]

X. Xiong, C.-L. Zou, X.-F. Ren, and G.-C. Guo, “Integrated polarization rotator/converter by stimulated Raman adiabatic passage,” Opt. Express 21, 17097 (2013).
[Crossref] [PubMed]

Opt. Lett. (2)

Photonics Technol. Lett. (1)

X. Xiong, C. C.-L. Zou, X. X.-F. Ren, and G.-C. G. Guo, “Broadband plasmonic absorber for photonic integrated circuits,” Photonics Technol. Lett. 26, 1726–1729 (2013).
[Crossref]

Phys. Chem. B (1)

C. J. Wittig, “The LandauZener Formula,” Phys. Chem. B 109, 84288430 (2005).
[Crossref]

Phys. Rev. A (1)

C.-L. Zou, X.-D. Chen, X. Xiong, F.-W. Sun, X.-B. Zou, Z.-F. Han, and G.-C. Guo, “Photonic simulation of system-environment interaction: Non-Markovian processes and dynamical decoupling,” Phys. Rev. A 88, 063806 (2013).
[Crossref]

Phys. Rev. E. (1)

S. G. Johnson, P. Bienstman, M. A. Skorobogatiy, M. Ibanescu, E. Lidorikis, and J. D. Joannopoulos, “Adiabatic theorem and continuous coupled-mode theory for efficient taper transitions in photonic crystals,” Phys. Rev. E. 66, 066608 (2002).
[Crossref]

Phys. Rev. Lett. (2)

D. C. Burnham and D. L. Weinberg, “Observation of Simultaneity in Parametric Production of Optical Photon Pairs,” Phys. Rev. Lett. 25, 84–87 (1970).
[Crossref]

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V Sergienko, and Y. Shih, “New High-Intensity Source of Polarization-Entangled Photon Pairs,” Phys. Rev. Lett. 75, 4337–4341 (1995).
[Crossref] [PubMed]

Phys. Rev. X (1)

N. C. Harris, D. Grassani, A. Simbula, M. Pant, M. Galli, T. Baehr-Jones, M. Hochberg, D. Englund, D. Bajoni, and C. Galland, “Integrated Source of Spectrally Filtered Correlated Photons for Large-Scale Quantum Photonic Systems,” Phys. Rev. X 4, 041047 (2014).

Rev. Mod. Phys. (1)

P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007).
[Crossref]

Sci. Rep. (3)

C. Schuck, W. H. P. Pernice, and H. X. Tang, “Waveguide integrated low noise NbTiN nanowire single-photon detectors with milli-Hz dark count rate,” Sci. Rep. 3, 1893 (2013).
[Crossref] [PubMed]

Z. Zhang, X. Hu, and J. Wang, “On-chip optical mode exchange using tapered directional coupler,” Sci. Rep. 5, 16072 (2015).
[Crossref] [PubMed]

Y. Luo, Y. Yu, M. Ye, C. Sun, and X. Zhang, “Integrated dual-mode 3 dB power coupler based on tapered directional coupler,” Sci. Rep. 6, 23516 (2016).
[Crossref]

Science (1)

A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-Silicon Waveguide Quantum Circuits,” Science 320, 646–649 (2008).
[Crossref] [PubMed]

Other (2)

H. W. Chen, A. W. Fang, J. Bovington, J. D. Peters, and J. E. Bowers, “Hybrid silicon tunable filter based on a Mach-Zehnder interferometer and ring resonantor,” 2009 Int. Top. Meet. Microw. Photonics14–17 (2009).

X. Guo, C. Zou, C. Schuck, H. Jung, R. Cheng, and H. X. Tang, “Parametric down-conversion photon pair source on a nanophotonic chip,” arXiv:1603.03726 (2016).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 (a) A block diagram of fully integrated quantum photonic chip. Between the non-classical photon source and the single photon detector, a high extinction on-chip filter is needed to block the strong classical pump light from being detected by the single photon detectors. (b) and (c) The simulated effective refractive index curve for the coupled waveguide structure for (b) λ = 1550 nm and (c) λ = 775 nm. Here the left waveguide’s width wt varies from 0 to 1.2 μm, while the right waveguide’s width wf is fixed to be 0.8 μm. The gap is 0.4 μm. Due to the overlap of evanescent field, avoided mode splitting can be observed. The horizontal lines correspond to the modes of the right (fixed) waveguide while the oblique lines correspond to the modes of the left (tapered) waveguide. (d) The design (top panel) of the fundamental visible mode filter (FVMF) and the simulated light field propagation for λ = 1550 nm and λ = 775 nm. Fundamental TM mode near 1550 nm (TM0,telecom) can be efficiently coupled from the bottom waveguide to the top waveguide (second panel), while the fundamental modes near 775 nm (shown here is the TM0,visible mode) will mostly remain in the bottom waveguide (third panel). The high order modes near 775 nm (shown here is the TM1,visible mode), due to its stronger evanescent field, will also couple to the top waveguide with a large portion of energy (bottom). (e) The design (top panel) of the high order visible mode filter (HOVMF) and simulated light field propagation for λ = 1550 nm and λ = 775 nm. The fundamental TM mode near 1550 nm (TM0,telecom) will mostly remain in the bottom waveguide (second panel), while the high order visible mode (shown here is the TM1,visible mode) can be adiabatically coupled into the top waveguide (bottom panel).
Fig. 2
Fig. 2 (a–c) The schematic of a filter set, which composes of four high order visible mode filters (HOVMFs) and one fundamental visible mode filter (FVMF). (a) When the fundamental visible mode (TM(E)0,visible) passes through the waveguide circuitry, most of the energy will leak out through the FVMF, as shown by the blue arrow in the right side. (b) When the high order visible modes (TM(E)x,visible,x = 1, 2, 3, ...) pass through the waveguide circuitry, most of the energy will leak out through the four HOVMFs, as shown by the four blue arrows in the left side. (c) When the fundamental telecom mode (TM0,telecom) passes through the waveguide circuitry, most of the energy will be coupled to the output waveguide, as shown by the red arrow in the right side. (d) A schematic of the cascade of several filter sets.
Fig. 3
Fig. 3 (a) The optical micrograph of a device composing of five cascaded filter sets. (b) Measured telecom light transmission spectra with different numbers of filters sets. (c) Measured visible light transmission spectra with different numbers of filter sets. With five filter sets, the transmitted visible light power is too weak to measure with our detector. (d) The average transmission of telecom (red circles) and visible (blue circles) light with different numbers of filter sets. The blue rectangles represent the average transmission of visible light with different numbers of FVMFs only (no HOVMFs). (e) The enlarged figure of the average transmission of telecom light with different number of filter sets.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

E ( d ) exp [ n eff 2 n c 2 2 π λ d ] = exp [ d / d 0 ] ,
ζ = sin 2 2 π g L λ .
ζ = 1 exp [ 2 π g 2 n eff / z 2 π λ ] .

Metrics