Abstract

We demonstrate the enhancement of resolution and image quality in terahertz (THz) lens-free in-line digital holography by sub-pixel sampling with double-distance reconstruction. Multiple sub-pixel shifted low-resolution (LR) holograms recorded by a pyroelectric array detector (100 μm × 100 μm pixel pitch, 124 × 124 pixels) are aligned precisely to synthesize a high-resolution (HR) hologram. By this method, the lateral resolution is no more limited by the pixel pitch, and lateral resolution of 150 μm is obtained, which corresponds to 1.26λ with respect to the illuminating wavelength of 118.8 μm (2.52 THz). Compared with other published works, to date, this is the highest resolution in THz digital holography when considering the illuminating wavelength. In addition, to suppress the twin-image and zero-order artifacts, the complex amplitude distributions of both object and illuminaing background wave fields are reconstructed simultaneously. This is achieved by iterative phase retrieval between the double HR holograms and background images at two recording planes, which does not require any constraints on object plane or a priori knowledge of the sample.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Sparsity-based continuous wave terahertz lens-free on-chip holography with sub-wavelength resolution

Zeyu Li, Qiang Yan, Yu Qin, Weipeng Kong, Guangbin Li, Mingrui Zou, Du Wang, Zhisheng You, and Xun Zhou
Opt. Express 27(2) 702-713 (2019)

Terahertz synthetic aperture in-line holography with intensity correction and sparsity autofocusing reconstruction

Zeyu Li, Ruijiao Zou, Weipeng Kong, Xuemin Wang, Qinghua Deng, Qiang Yan, Yu Qin, Weidong Wu, and Xun Zhou
Photon. Res. 7(12) 1391-1399 (2019)

Terahertz in-line digital holography of dragonfly hindwing: amplitude and phase reconstruction at enhanced resolution by extrapolation

Lu Rong, Tatiana Latychevskaia, Dayong Wang, Xun Zhou, Haochong Huang, Zeyu Li, and Yunxin Wang
Opt. Express 22(14) 17236-17245 (2014)

References

  • View by:
  • |
  • |
  • |

  1. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
    [Crossref]
  2. W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys. 70(8), 1325–1379 (2007).
    [Crossref]
  3. X. Yin, B. W.-H. Ng, and D. Abbott, Terahertz Imaging for Biomedical Applications: Pattern Recognition and Tomographic Reconstruction (Springer, 2012).
  4. S. Hunsche, M. Koch, I. Brener, and M. C. Nuss, “THz near-field imaging,” Opt. Commun. 150(1–6), 22–26 (1998).
    [Crossref]
  5. B. B. Hu and M. C. Nuss, “Imaging with terahertz waves,” Opt. Lett. 20(16), 1716–1718 (1995).
    [Crossref] [PubMed]
  6. A. W. M. Lee and Q. Hu, “Real-time, continuous-wave terahertz imaging by use of a microbolometer focal-plane array,” Opt. Lett. 30(19), 2563–2565 (2005).
    [Crossref] [PubMed]
  7. Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett. 86(24), 241116 (2005).
    [Crossref]
  8. B. Ferguson, S. Wang, D. Gray, D. Abbot, and X.-C. Zhang, “T-ray computed tomography,” Opt. Lett. 27(15), 1312–1314 (2002).
    [Crossref] [PubMed]
  9. R. J. Mahon, J. A. Murphy, and W. Lanigan, “Digital holography at millimetre wavelengths,” Opt. Commun. 260(2), 469–473 (2006).
    [Crossref]
  10. M. S. Heimbeck, M. K. Kim, D. A. Gregory, and H. O. Everitt, “Terahertz digital holography using angular spectrum and dual wavelength reconstruction methods,” Opt. Express 19(10), 9192–9200 (2011).
    [Crossref] [PubMed]
  11. S. H. Ding, Q. Li, Y. D. Li, and Q. Wang, “Continuous-wave terahertz digital holography by use of a pyroelectric array camera,” Opt. Lett. 36(11), 1993–1995 (2011).
    [Crossref] [PubMed]
  12. E. Hack and P. Zolliker, “Terahertz holography for imaging amplitude and phase objects,” Opt. Express 22(13), 16079–16086 (2014).
    [Crossref] [PubMed]
  13. P. Zolliker and E. Hack, “THz holography in reflection using a high resolution microbolometer array,” Opt. Express 23(9), 10957–10967 (2015).
    [Crossref] [PubMed]
  14. M. Locatelli, M. Ravaro, S. Bartalini, L. Consolino, M. S. Vitiello, R. Cicchi, F. Pavone, and P. De Natale, “Real-time terahertz digital holography with a quantum cascade laser,” Sci. Rep. 5, 13566 (2015).
    [Crossref] [PubMed]
  15. K. Xue, Q. Li, Y. D. Li, and Q. Wang, “Continuous-wave terahertz in-line digital holography,” Opt. Lett. 37(15), 3228–3230 (2012).
    [Crossref] [PubMed]
  16. Q. Li, K. Xue, Y. D. Li, and Q. Wang, “Experimental research on terahertz Gabor inline digital holography of concealed objects,” Appl. Opt. 51(29), 7052–7058 (2012).
    [Crossref] [PubMed]
  17. L. Rong, T. Latychevskaia, D. Wang, X. Zhou, H. Huang, Z. Li, and Y. Wang, “Terahertz in-line digital holography of dragonfly hindwing: amplitude and phase reconstruction at enhanced resolution by extrapolation,” Opt. Express 22(14), 17236–17245 (2014).
    [Crossref] [PubMed]
  18. J. Hu, Q. Li, and S. Cui, “Research on object-plane constraints and hologram expansion in phase retrieval algorithms for continuous-wave terahertz inline digital holography reconstruction,” Appl. Opt. 53(30), 7112–7119 (2014).
    [Crossref] [PubMed]
  19. L. Rong, T. Latychevskaia, C. Chen, D. Wang, Z. Yu, X. Zhou, Z. Li, H. Huang, Y. Wang, and Z. Zhou, “Terahertz in-line digital holography of human hepatocellular carcinoma tissue,” Sci. Rep. 5, 8445 (2015).
    [Crossref] [PubMed]
  20. H. Huang, L. Rong, D. Wang, W. Li, Q. Deng, B. Li, Y. Wang, Z. Zhan, X. Wang, and W. Wu, “Synthetic aperture in terahertz in-line digital holography for resolution enhancement,” Appl. Opt. 55(3), A43–A48 (2016).
    [Crossref] [PubMed]
  21. J. Q. Hu, Q. Li, and G. H. Chen, “Reconstruction of double-exposed terahertz hologram of non-isolated object,” J. Infrared Milli. Terahz. Waves 37(4), 328–339 (2016).
    [Crossref]
  22. T. Latychevskaia and H.-W. Fink, “Resolution enhancement in digital holography by self-extrapolation of holograms,” Opt. Express 21(6), 7726–7733 (2013).
    [Crossref] [PubMed]
  23. S. C. Park, M. K. Park, and M. G. Kang, “Super-resolution image reconstruction: a technical overview,” IEEE Signal Process. Mag. 20(3), 21–36 (2003).
    [Crossref]
  24. W. Bishara, T. W. Su, A. F. Coskun, and A. Ozcan, “Lensfree on-chip microscopy over a wide field-of-view using pixel super-resolution,” Opt. Express 18(11), 11181–11191 (2010).
    [Crossref] [PubMed]
  25. L. Denis, C. Fournier, T. Fournel, and C. Ducottet, “Twin-image noise reduction by phase retrieval in in-line digital holography,” Proc. SPIE 5914, 148–161 (2005).
    [Crossref]
  26. T. Latychevskaia and H.-W. Fink, “Solution to the twin image problem in holography,” Phys. Rev. Lett. 98(23), 233901 (2007).
    [Crossref] [PubMed]
  27. L. Rong, F. Pan, W. Xiao, Y. Li, and F. J. Wang, “Twin image elimination from two in-line holograms via phase retrieval,” Chin. Opt. Lett. 10(6), 060902 (2012).
    [Crossref]
  28. L. Allen and M. Oxley, “Phase retrieval from series of images obtained by defocus variation,” Opt. Commun. 199(1–4), 65–75 (2001).
    [Crossref]
  29. J. Hagemann, A. L. Robisch, D. R. Luke, C. Homann, T. Hohage, P. Cloetens, H. Suhonen, and T. Salditt, “Reconstruction of wave front and object for inline holography from a set of detection planes,” Opt. Express 22(10), 11552–11569 (2014).
    [Crossref] [PubMed]
  30. Y. Zhang, G. Pedrini, W. Osten, and H. Tiziani, “Whole optical wave field reconstruction from double or multi in-line holograms by phase retrieval algorithm,” Opt. Express 11(24), 3234–3241 (2003).
    [Crossref] [PubMed]
  31. M. Guizar-Sicairos, S. T. Thurman, and J. R. Fienup, “Efficient subpixel image registration algorithms,” Opt. Lett. 33(2), 156–158 (2008).
    [Crossref] [PubMed]
  32. P. Vandewalle, S. Süsstrunk, and M. Vetterli, “A frequency domain approach to registration of aliased images with application to super-resolution,” EURASIP J. Appl. Signal Process. 2006, 71459 (2006).
    [Crossref]
  33. H. Knutsson and C.-F. Westin, “Normalized and differential convolution,” in Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition (IEEE, 1993), pp. 515–523.
    [Crossref]
  34. T. Q. Pham, L. J. Van Vliet, and K. Schutte, “Robust fusion of irregularly sampled data using adaptive normalized convolution,” EURASIP J. Adv. Sig. Pr. 2006, 1–12 (2006).
    [Crossref]
  35. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1996).

2016 (2)

J. Q. Hu, Q. Li, and G. H. Chen, “Reconstruction of double-exposed terahertz hologram of non-isolated object,” J. Infrared Milli. Terahz. Waves 37(4), 328–339 (2016).
[Crossref]

H. Huang, L. Rong, D. Wang, W. Li, Q. Deng, B. Li, Y. Wang, Z. Zhan, X. Wang, and W. Wu, “Synthetic aperture in terahertz in-line digital holography for resolution enhancement,” Appl. Opt. 55(3), A43–A48 (2016).
[Crossref] [PubMed]

2015 (3)

P. Zolliker and E. Hack, “THz holography in reflection using a high resolution microbolometer array,” Opt. Express 23(9), 10957–10967 (2015).
[Crossref] [PubMed]

L. Rong, T. Latychevskaia, C. Chen, D. Wang, Z. Yu, X. Zhou, Z. Li, H. Huang, Y. Wang, and Z. Zhou, “Terahertz in-line digital holography of human hepatocellular carcinoma tissue,” Sci. Rep. 5, 8445 (2015).
[Crossref] [PubMed]

M. Locatelli, M. Ravaro, S. Bartalini, L. Consolino, M. S. Vitiello, R. Cicchi, F. Pavone, and P. De Natale, “Real-time terahertz digital holography with a quantum cascade laser,” Sci. Rep. 5, 13566 (2015).
[Crossref] [PubMed]

2014 (4)

2013 (1)

2012 (3)

2011 (2)

2010 (1)

2008 (1)

2007 (3)

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys. 70(8), 1325–1379 (2007).
[Crossref]

T. Latychevskaia and H.-W. Fink, “Solution to the twin image problem in holography,” Phys. Rev. Lett. 98(23), 233901 (2007).
[Crossref] [PubMed]

2006 (3)

P. Vandewalle, S. Süsstrunk, and M. Vetterli, “A frequency domain approach to registration of aliased images with application to super-resolution,” EURASIP J. Appl. Signal Process. 2006, 71459 (2006).
[Crossref]

T. Q. Pham, L. J. Van Vliet, and K. Schutte, “Robust fusion of irregularly sampled data using adaptive normalized convolution,” EURASIP J. Adv. Sig. Pr. 2006, 1–12 (2006).
[Crossref]

R. J. Mahon, J. A. Murphy, and W. Lanigan, “Digital holography at millimetre wavelengths,” Opt. Commun. 260(2), 469–473 (2006).
[Crossref]

2005 (3)

Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett. 86(24), 241116 (2005).
[Crossref]

L. Denis, C. Fournier, T. Fournel, and C. Ducottet, “Twin-image noise reduction by phase retrieval in in-line digital holography,” Proc. SPIE 5914, 148–161 (2005).
[Crossref]

A. W. M. Lee and Q. Hu, “Real-time, continuous-wave terahertz imaging by use of a microbolometer focal-plane array,” Opt. Lett. 30(19), 2563–2565 (2005).
[Crossref] [PubMed]

2003 (2)

S. C. Park, M. K. Park, and M. G. Kang, “Super-resolution image reconstruction: a technical overview,” IEEE Signal Process. Mag. 20(3), 21–36 (2003).
[Crossref]

Y. Zhang, G. Pedrini, W. Osten, and H. Tiziani, “Whole optical wave field reconstruction from double or multi in-line holograms by phase retrieval algorithm,” Opt. Express 11(24), 3234–3241 (2003).
[Crossref] [PubMed]

2002 (1)

2001 (1)

L. Allen and M. Oxley, “Phase retrieval from series of images obtained by defocus variation,” Opt. Commun. 199(1–4), 65–75 (2001).
[Crossref]

1998 (1)

S. Hunsche, M. Koch, I. Brener, and M. C. Nuss, “THz near-field imaging,” Opt. Commun. 150(1–6), 22–26 (1998).
[Crossref]

1995 (1)

Abbot, D.

Allen, L.

L. Allen and M. Oxley, “Phase retrieval from series of images obtained by defocus variation,” Opt. Commun. 199(1–4), 65–75 (2001).
[Crossref]

Bartalini, S.

M. Locatelli, M. Ravaro, S. Bartalini, L. Consolino, M. S. Vitiello, R. Cicchi, F. Pavone, and P. De Natale, “Real-time terahertz digital holography with a quantum cascade laser,” Sci. Rep. 5, 13566 (2015).
[Crossref] [PubMed]

Bishara, W.

Brener, I.

S. Hunsche, M. Koch, I. Brener, and M. C. Nuss, “THz near-field imaging,” Opt. Commun. 150(1–6), 22–26 (1998).
[Crossref]

Chan, W. L.

W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys. 70(8), 1325–1379 (2007).
[Crossref]

Chen, C.

L. Rong, T. Latychevskaia, C. Chen, D. Wang, Z. Yu, X. Zhou, Z. Li, H. Huang, Y. Wang, and Z. Zhou, “Terahertz in-line digital holography of human hepatocellular carcinoma tissue,” Sci. Rep. 5, 8445 (2015).
[Crossref] [PubMed]

Chen, G. H.

J. Q. Hu, Q. Li, and G. H. Chen, “Reconstruction of double-exposed terahertz hologram of non-isolated object,” J. Infrared Milli. Terahz. Waves 37(4), 328–339 (2016).
[Crossref]

Cicchi, R.

M. Locatelli, M. Ravaro, S. Bartalini, L. Consolino, M. S. Vitiello, R. Cicchi, F. Pavone, and P. De Natale, “Real-time terahertz digital holography with a quantum cascade laser,” Sci. Rep. 5, 13566 (2015).
[Crossref] [PubMed]

Cloetens, P.

Cole, B. E.

Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett. 86(24), 241116 (2005).
[Crossref]

Consolino, L.

M. Locatelli, M. Ravaro, S. Bartalini, L. Consolino, M. S. Vitiello, R. Cicchi, F. Pavone, and P. De Natale, “Real-time terahertz digital holography with a quantum cascade laser,” Sci. Rep. 5, 13566 (2015).
[Crossref] [PubMed]

Coskun, A. F.

Cui, S.

De Natale, P.

M. Locatelli, M. Ravaro, S. Bartalini, L. Consolino, M. S. Vitiello, R. Cicchi, F. Pavone, and P. De Natale, “Real-time terahertz digital holography with a quantum cascade laser,” Sci. Rep. 5, 13566 (2015).
[Crossref] [PubMed]

Deibel, J.

W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys. 70(8), 1325–1379 (2007).
[Crossref]

Deng, Q.

Denis, L.

L. Denis, C. Fournier, T. Fournel, and C. Ducottet, “Twin-image noise reduction by phase retrieval in in-line digital holography,” Proc. SPIE 5914, 148–161 (2005).
[Crossref]

Ding, S. H.

Ducottet, C.

L. Denis, C. Fournier, T. Fournel, and C. Ducottet, “Twin-image noise reduction by phase retrieval in in-line digital holography,” Proc. SPIE 5914, 148–161 (2005).
[Crossref]

Everitt, H. O.

Ferguson, B.

Fienup, J. R.

Fink, H.-W.

Fournel, T.

L. Denis, C. Fournier, T. Fournel, and C. Ducottet, “Twin-image noise reduction by phase retrieval in in-line digital holography,” Proc. SPIE 5914, 148–161 (2005).
[Crossref]

Fournier, C.

L. Denis, C. Fournier, T. Fournel, and C. Ducottet, “Twin-image noise reduction by phase retrieval in in-line digital holography,” Proc. SPIE 5914, 148–161 (2005).
[Crossref]

Gray, D.

Gregory, D. A.

Guizar-Sicairos, M.

Hack, E.

Hagemann, J.

Heimbeck, M. S.

Hohage, T.

Homann, C.

Hu, B. B.

Hu, J.

Hu, J. Q.

J. Q. Hu, Q. Li, and G. H. Chen, “Reconstruction of double-exposed terahertz hologram of non-isolated object,” J. Infrared Milli. Terahz. Waves 37(4), 328–339 (2016).
[Crossref]

Hu, Q.

Huang, H.

Hunsche, S.

S. Hunsche, M. Koch, I. Brener, and M. C. Nuss, “THz near-field imaging,” Opt. Commun. 150(1–6), 22–26 (1998).
[Crossref]

Kang, M. G.

S. C. Park, M. K. Park, and M. G. Kang, “Super-resolution image reconstruction: a technical overview,” IEEE Signal Process. Mag. 20(3), 21–36 (2003).
[Crossref]

Kemp, M. C.

Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett. 86(24), 241116 (2005).
[Crossref]

Kim, M. K.

Knutsson, H.

H. Knutsson and C.-F. Westin, “Normalized and differential convolution,” in Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition (IEEE, 1993), pp. 515–523.
[Crossref]

Koch, M.

S. Hunsche, M. Koch, I. Brener, and M. C. Nuss, “THz near-field imaging,” Opt. Commun. 150(1–6), 22–26 (1998).
[Crossref]

Lanigan, W.

R. J. Mahon, J. A. Murphy, and W. Lanigan, “Digital holography at millimetre wavelengths,” Opt. Commun. 260(2), 469–473 (2006).
[Crossref]

Latychevskaia, T.

L. Rong, T. Latychevskaia, C. Chen, D. Wang, Z. Yu, X. Zhou, Z. Li, H. Huang, Y. Wang, and Z. Zhou, “Terahertz in-line digital holography of human hepatocellular carcinoma tissue,” Sci. Rep. 5, 8445 (2015).
[Crossref] [PubMed]

L. Rong, T. Latychevskaia, D. Wang, X. Zhou, H. Huang, Z. Li, and Y. Wang, “Terahertz in-line digital holography of dragonfly hindwing: amplitude and phase reconstruction at enhanced resolution by extrapolation,” Opt. Express 22(14), 17236–17245 (2014).
[Crossref] [PubMed]

T. Latychevskaia and H.-W. Fink, “Resolution enhancement in digital holography by self-extrapolation of holograms,” Opt. Express 21(6), 7726–7733 (2013).
[Crossref] [PubMed]

T. Latychevskaia and H.-W. Fink, “Solution to the twin image problem in holography,” Phys. Rev. Lett. 98(23), 233901 (2007).
[Crossref] [PubMed]

Lee, A. W. M.

Li, B.

Li, Q.

Li, W.

Li, Y.

Li, Y. D.

Li, Z.

L. Rong, T. Latychevskaia, C. Chen, D. Wang, Z. Yu, X. Zhou, Z. Li, H. Huang, Y. Wang, and Z. Zhou, “Terahertz in-line digital holography of human hepatocellular carcinoma tissue,” Sci. Rep. 5, 8445 (2015).
[Crossref] [PubMed]

L. Rong, T. Latychevskaia, D. Wang, X. Zhou, H. Huang, Z. Li, and Y. Wang, “Terahertz in-line digital holography of dragonfly hindwing: amplitude and phase reconstruction at enhanced resolution by extrapolation,” Opt. Express 22(14), 17236–17245 (2014).
[Crossref] [PubMed]

Lo, T.

Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett. 86(24), 241116 (2005).
[Crossref]

Locatelli, M.

M. Locatelli, M. Ravaro, S. Bartalini, L. Consolino, M. S. Vitiello, R. Cicchi, F. Pavone, and P. De Natale, “Real-time terahertz digital holography with a quantum cascade laser,” Sci. Rep. 5, 13566 (2015).
[Crossref] [PubMed]

Luke, D. R.

Mahon, R. J.

R. J. Mahon, J. A. Murphy, and W. Lanigan, “Digital holography at millimetre wavelengths,” Opt. Commun. 260(2), 469–473 (2006).
[Crossref]

Mittleman, D. M.

W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys. 70(8), 1325–1379 (2007).
[Crossref]

Murphy, J. A.

R. J. Mahon, J. A. Murphy, and W. Lanigan, “Digital holography at millimetre wavelengths,” Opt. Commun. 260(2), 469–473 (2006).
[Crossref]

Nuss, M. C.

S. Hunsche, M. Koch, I. Brener, and M. C. Nuss, “THz near-field imaging,” Opt. Commun. 150(1–6), 22–26 (1998).
[Crossref]

B. B. Hu and M. C. Nuss, “Imaging with terahertz waves,” Opt. Lett. 20(16), 1716–1718 (1995).
[Crossref] [PubMed]

Osten, W.

Oxley, M.

L. Allen and M. Oxley, “Phase retrieval from series of images obtained by defocus variation,” Opt. Commun. 199(1–4), 65–75 (2001).
[Crossref]

Ozcan, A.

Pan, F.

Park, M. K.

S. C. Park, M. K. Park, and M. G. Kang, “Super-resolution image reconstruction: a technical overview,” IEEE Signal Process. Mag. 20(3), 21–36 (2003).
[Crossref]

Park, S. C.

S. C. Park, M. K. Park, and M. G. Kang, “Super-resolution image reconstruction: a technical overview,” IEEE Signal Process. Mag. 20(3), 21–36 (2003).
[Crossref]

Pavone, F.

M. Locatelli, M. Ravaro, S. Bartalini, L. Consolino, M. S. Vitiello, R. Cicchi, F. Pavone, and P. De Natale, “Real-time terahertz digital holography with a quantum cascade laser,” Sci. Rep. 5, 13566 (2015).
[Crossref] [PubMed]

Pedrini, G.

Pham, T. Q.

T. Q. Pham, L. J. Van Vliet, and K. Schutte, “Robust fusion of irregularly sampled data using adaptive normalized convolution,” EURASIP J. Adv. Sig. Pr. 2006, 1–12 (2006).
[Crossref]

Ravaro, M.

M. Locatelli, M. Ravaro, S. Bartalini, L. Consolino, M. S. Vitiello, R. Cicchi, F. Pavone, and P. De Natale, “Real-time terahertz digital holography with a quantum cascade laser,” Sci. Rep. 5, 13566 (2015).
[Crossref] [PubMed]

Robisch, A. L.

Rong, L.

Salditt, T.

Schutte, K.

T. Q. Pham, L. J. Van Vliet, and K. Schutte, “Robust fusion of irregularly sampled data using adaptive normalized convolution,” EURASIP J. Adv. Sig. Pr. 2006, 1–12 (2006).
[Crossref]

Shen, Y. C.

Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett. 86(24), 241116 (2005).
[Crossref]

Su, T. W.

Suhonen, H.

Süsstrunk, S.

P. Vandewalle, S. Süsstrunk, and M. Vetterli, “A frequency domain approach to registration of aliased images with application to super-resolution,” EURASIP J. Appl. Signal Process. 2006, 71459 (2006).
[Crossref]

Taday, P. F.

Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett. 86(24), 241116 (2005).
[Crossref]

Thurman, S. T.

Tiziani, H.

Tonouchi, M.

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

Tribe, W. R.

Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett. 86(24), 241116 (2005).
[Crossref]

Van Vliet, L. J.

T. Q. Pham, L. J. Van Vliet, and K. Schutte, “Robust fusion of irregularly sampled data using adaptive normalized convolution,” EURASIP J. Adv. Sig. Pr. 2006, 1–12 (2006).
[Crossref]

Vandewalle, P.

P. Vandewalle, S. Süsstrunk, and M. Vetterli, “A frequency domain approach to registration of aliased images with application to super-resolution,” EURASIP J. Appl. Signal Process. 2006, 71459 (2006).
[Crossref]

Vetterli, M.

P. Vandewalle, S. Süsstrunk, and M. Vetterli, “A frequency domain approach to registration of aliased images with application to super-resolution,” EURASIP J. Appl. Signal Process. 2006, 71459 (2006).
[Crossref]

Vitiello, M. S.

M. Locatelli, M. Ravaro, S. Bartalini, L. Consolino, M. S. Vitiello, R. Cicchi, F. Pavone, and P. De Natale, “Real-time terahertz digital holography with a quantum cascade laser,” Sci. Rep. 5, 13566 (2015).
[Crossref] [PubMed]

Wang, D.

Wang, F. J.

Wang, Q.

Wang, S.

Wang, X.

Wang, Y.

Westin, C.-F.

H. Knutsson and C.-F. Westin, “Normalized and differential convolution,” in Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition (IEEE, 1993), pp. 515–523.
[Crossref]

Wu, W.

Xiao, W.

Xue, K.

Yu, Z.

L. Rong, T. Latychevskaia, C. Chen, D. Wang, Z. Yu, X. Zhou, Z. Li, H. Huang, Y. Wang, and Z. Zhou, “Terahertz in-line digital holography of human hepatocellular carcinoma tissue,” Sci. Rep. 5, 8445 (2015).
[Crossref] [PubMed]

Zhan, Z.

Zhang, X.-C.

Zhang, Y.

Zhou, X.

L. Rong, T. Latychevskaia, C. Chen, D. Wang, Z. Yu, X. Zhou, Z. Li, H. Huang, Y. Wang, and Z. Zhou, “Terahertz in-line digital holography of human hepatocellular carcinoma tissue,” Sci. Rep. 5, 8445 (2015).
[Crossref] [PubMed]

L. Rong, T. Latychevskaia, D. Wang, X. Zhou, H. Huang, Z. Li, and Y. Wang, “Terahertz in-line digital holography of dragonfly hindwing: amplitude and phase reconstruction at enhanced resolution by extrapolation,” Opt. Express 22(14), 17236–17245 (2014).
[Crossref] [PubMed]

Zhou, Z.

L. Rong, T. Latychevskaia, C. Chen, D. Wang, Z. Yu, X. Zhou, Z. Li, H. Huang, Y. Wang, and Z. Zhou, “Terahertz in-line digital holography of human hepatocellular carcinoma tissue,” Sci. Rep. 5, 8445 (2015).
[Crossref] [PubMed]

Zolliker, P.

Appl. Opt. (3)

Appl. Phys. Lett. (1)

Y. C. Shen, T. Lo, P. F. Taday, B. E. Cole, W. R. Tribe, and M. C. Kemp, “Detection and identification of explosives using terahertz pulsed spectroscopic imaging,” Appl. Phys. Lett. 86(24), 241116 (2005).
[Crossref]

Chin. Opt. Lett. (1)

EURASIP J. Adv. Sig. Pr. (1)

T. Q. Pham, L. J. Van Vliet, and K. Schutte, “Robust fusion of irregularly sampled data using adaptive normalized convolution,” EURASIP J. Adv. Sig. Pr. 2006, 1–12 (2006).
[Crossref]

EURASIP J. Appl. Signal Process. (1)

P. Vandewalle, S. Süsstrunk, and M. Vetterli, “A frequency domain approach to registration of aliased images with application to super-resolution,” EURASIP J. Appl. Signal Process. 2006, 71459 (2006).
[Crossref]

IEEE Signal Process. Mag. (1)

S. C. Park, M. K. Park, and M. G. Kang, “Super-resolution image reconstruction: a technical overview,” IEEE Signal Process. Mag. 20(3), 21–36 (2003).
[Crossref]

J. Infrared Milli. Terahz. Waves (1)

J. Q. Hu, Q. Li, and G. H. Chen, “Reconstruction of double-exposed terahertz hologram of non-isolated object,” J. Infrared Milli. Terahz. Waves 37(4), 328–339 (2016).
[Crossref]

Nat. Photonics (1)

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

Opt. Commun. (3)

S. Hunsche, M. Koch, I. Brener, and M. C. Nuss, “THz near-field imaging,” Opt. Commun. 150(1–6), 22–26 (1998).
[Crossref]

R. J. Mahon, J. A. Murphy, and W. Lanigan, “Digital holography at millimetre wavelengths,” Opt. Commun. 260(2), 469–473 (2006).
[Crossref]

L. Allen and M. Oxley, “Phase retrieval from series of images obtained by defocus variation,” Opt. Commun. 199(1–4), 65–75 (2001).
[Crossref]

Opt. Express (8)

P. Zolliker and E. Hack, “THz holography in reflection using a high resolution microbolometer array,” Opt. Express 23(9), 10957–10967 (2015).
[Crossref] [PubMed]

T. Latychevskaia and H.-W. Fink, “Resolution enhancement in digital holography by self-extrapolation of holograms,” Opt. Express 21(6), 7726–7733 (2013).
[Crossref] [PubMed]

J. Hagemann, A. L. Robisch, D. R. Luke, C. Homann, T. Hohage, P. Cloetens, H. Suhonen, and T. Salditt, “Reconstruction of wave front and object for inline holography from a set of detection planes,” Opt. Express 22(10), 11552–11569 (2014).
[Crossref] [PubMed]

E. Hack and P. Zolliker, “Terahertz holography for imaging amplitude and phase objects,” Opt. Express 22(13), 16079–16086 (2014).
[Crossref] [PubMed]

L. Rong, T. Latychevskaia, D. Wang, X. Zhou, H. Huang, Z. Li, and Y. Wang, “Terahertz in-line digital holography of dragonfly hindwing: amplitude and phase reconstruction at enhanced resolution by extrapolation,” Opt. Express 22(14), 17236–17245 (2014).
[Crossref] [PubMed]

Y. Zhang, G. Pedrini, W. Osten, and H. Tiziani, “Whole optical wave field reconstruction from double or multi in-line holograms by phase retrieval algorithm,” Opt. Express 11(24), 3234–3241 (2003).
[Crossref] [PubMed]

W. Bishara, T. W. Su, A. F. Coskun, and A. Ozcan, “Lensfree on-chip microscopy over a wide field-of-view using pixel super-resolution,” Opt. Express 18(11), 11181–11191 (2010).
[Crossref] [PubMed]

M. S. Heimbeck, M. K. Kim, D. A. Gregory, and H. O. Everitt, “Terahertz digital holography using angular spectrum and dual wavelength reconstruction methods,” Opt. Express 19(10), 9192–9200 (2011).
[Crossref] [PubMed]

Opt. Lett. (6)

Phys. Rev. Lett. (1)

T. Latychevskaia and H.-W. Fink, “Solution to the twin image problem in holography,” Phys. Rev. Lett. 98(23), 233901 (2007).
[Crossref] [PubMed]

Proc. SPIE (1)

L. Denis, C. Fournier, T. Fournel, and C. Ducottet, “Twin-image noise reduction by phase retrieval in in-line digital holography,” Proc. SPIE 5914, 148–161 (2005).
[Crossref]

Rep. Prog. Phys. (1)

W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys. 70(8), 1325–1379 (2007).
[Crossref]

Sci. Rep. (2)

M. Locatelli, M. Ravaro, S. Bartalini, L. Consolino, M. S. Vitiello, R. Cicchi, F. Pavone, and P. De Natale, “Real-time terahertz digital holography with a quantum cascade laser,” Sci. Rep. 5, 13566 (2015).
[Crossref] [PubMed]

L. Rong, T. Latychevskaia, C. Chen, D. Wang, Z. Yu, X. Zhou, Z. Li, H. Huang, Y. Wang, and Z. Zhou, “Terahertz in-line digital holography of human hepatocellular carcinoma tissue,” Sci. Rep. 5, 8445 (2015).
[Crossref] [PubMed]

Other (3)

X. Yin, B. W.-H. Ng, and D. Abbott, Terahertz Imaging for Biomedical Applications: Pattern Recognition and Tomographic Reconstruction (Springer, 2012).

H. Knutsson and C.-F. Westin, “Normalized and differential convolution,” in Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition (IEEE, 1993), pp. 515–523.
[Crossref]

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1996).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Top view of the experimental setup. THz array detector is mounted on a 3D motorized translational stage (not shown in the figure). PM1 and PM2 are two parabolic mirrors.
Fig. 2
Fig. 2 Frequency filtering before registration. (a) Raw LR hologram of 150 μm resolution sample with obvious noisy horizontal fringes. (b) Frequency spectrum of (a), where the main frequencies of the noisy-fringe are marked by red arrows. (c) Hologram after band-pass filtering.
Fig. 3
Fig. 3 A schematic diagram of double-distance reconstruction.
Fig. 4
Fig. 4 Photos of the 150 μm resolution chart taken by (a) a digital optical microscopy (10x), and (b) a digital camera.
Fig. 5
Fig. 5 Holograms of the 150 μm resolution chart with (a) low and (c) high resolutions. (b) and (d) are the blow-ups of the areas in red dash boxes in (a) and (c), respectively.
Fig. 6
Fig. 6 Reconstructed results of the 150 μm resolution sample by ASP method. (a), (c) The amplitude and phase-contrast reconstructions from a LR hologram at recording plane 1. (e), (g) The amplitude and phase-contrast reconstructions from the synthesized HR hologram. (b), (d), (f) and (h) are the blow-ups of the areas in red dash boxes in (a), (c), (e), and (g), respectively.
Fig. 7
Fig. 7 Reconstructed results of the ‘THz’ pattern sample. (a), (b) The amplitude and phase-contrast distributions reconstructed by back propagating the single HR hologram at the first recording plane using ASP method. (c), (d) Reconstructed wavefront of the exit wave field I·O by the proposed double-distance phase retrieval algorithm. (e), (f) Reconstructed complex amplitude of the illuminating background I. (g), (h) The final complex amplitude of the sample retrieved from division of exit wave field I·O by illuminating background field I.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

R N A = 0.5 λ N A = λ 2 sin α m a x = λ 2 1 + ( 2 z N Δ s ) 2 ,
sin α m a x λ = N A λ = 1 2 R N A < 1 2 Δ s .
X s _ H R = ( X s _ L R + Δ X ) × F u s , Y s _ H R = ( Y s _ L R + Δ Y ) × F u s ,
f ' ( x ) = p 1 + p 2 × x + p 3 × y + p 4 × x 2 + p 5 × x y + p 6 × y 2 ,
ε ( s 0 ) = s t ( f ( s ) f ' ( s ) ) 2 c ( s ) a ( s s 0 ) .
P = ( B T W B ) - 1 B T W f ,
a = r α cos β ( π r 2 r max ) , r < r max ,
U 1 , 0 ( I O ) = H 1 .
U 2 , k ( I O ) = H 2 e i φ ( U 2 , k ' ( I O ) ) ,
U 1 , k + 1 ( I O ) = H 1 e i φ ( U 1 , k ' ( I O ) ) .

Metrics