Abstract

We report a significant breakthrough in the development of fiber-pumped high-power CW laser systems based on Cr2+:ZnS and Cr2+:ZnSe gain media. We demonstrate output power levels of up to 140 W near 2500 nm, and 32 W at 2940 nm with corresponding optical efficiencies of 62% and 29%. Our novel approach is based on rapid simultaneous scanning of the collinear laser mode and pump beam across the Cr:ZnS/Se gain element which allows us to virtually eliminate thermal lensing effects and obtain unprecedented levels of output power with very high optical-to-optical efficiency.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Fabrication and power scaling of a 1.7 W Cr:ZnSe waveguide laser

Patrick A. Berry, John R. Macdonald, Stephen J. Beecher, Sean A. McDaniel, Kenneth L. Schepler, and Ajoy K. Kar
Opt. Mater. Express 3(9) 1250-1258 (2013)

Multi-Watt mid-IR femtosecond polycrystalline Cr2+:ZnS and Cr2+:ZnSe laser amplifiers with the spectrum spanning 2.0–2.6 µm

Sergey Vasilyev, Igor Moskalev, Mike Mirov, Sergey Mirov, and Valentin Gapontsev
Opt. Express 24(2) 1616-1623 (2016)

Erbium fiber laser–pumped continuous-wave microchip Cr2+:ZnS and Cr2+:ZnSe lasers

S. B. Mirov, V. V. Fedorov, K. Graham, I. S. Moskalev, V. V. Badikov, and V. Panyutin
Opt. Lett. 27(11) 909-911 (2002)

References

  • View by:
  • |
  • |
  • |

  1. U. Demirbas and A. Sennaroglu, “Intracavity-pumped Cr2+:ZnSe laser with ultrabroadband tuning range between 1880 and 3100 nm,” Opt. Lett. 31, 2293–2295 (2006).
    [Crossref] [PubMed]
  2. E. Sorokin, I. T. Sorokina, M. S. Mirov, V. V. Fedorov, I. S. Moskalev, and S. B. Mirov, “Ultrabroad continuous-wave tuning of ceramic Cr:ZnSe and Cr:ZnS lasers,” in Adv. Solid-State Photon. (Optical Society of America, 2010), paper AMC.
    [Crossref]
  3. L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, and W. F. Krupke, “Transition metal-doped zinc chalcogenides: Spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quantum Electron. 32(6), 885–895 (1996).
    [Crossref]
  4. R. H. Page, K. I. Shaffers, L. D. DeLoach, G. D. Wilke, F. D. Patel, J. B. Tassano, S. A. Payne, W. F. Krupke, K. T. Chen, and A. Burger, “Cr2+-doped sinc chalcogenides as efficient, widely tunable mid-infrared lasers,” IEEE J. Quantum Electron. 33(4), 609–619 (1997).
    [Crossref]
  5. G. J. Wagner, T. J. Carrig, R. H. Page, K. I. Schaffers, J. Ndap, X. Ma, and A. Burger, “Continuous-wave broadly tunable Cr2+:ZnSe laser,” Opt. Lett. 24, 19–21 (1999).
    [Crossref]
  6. T. J. Carrig, G. J. Wagner, A. Sennaroglu, J. Y. Jeong, and C. R. Pollock, “Mode-locked Cr2+:ZnSe laser,” Opt. Lett. 25, 168–170 (2000).
    [Crossref]
  7. E. Sorokin, I. T. Sorokina, and R. H. Page, “Room-temperature cw diode pumped Cr2+:ZnSe laser,” OSA Trends Opt. Photon. 46, 101–105 (2001).
  8. T. J. Carrig, G. J. Wagner, W. J. Alford, and A. Zakel, “Chromium-doped chalcogenides lasers,” Proc. SPIE, 5460, 74–82 (2004).
    [Crossref]
  9. M. N. Cizmeciyan, H. Cankaya, A. Kurt, and A. Sennaroglu, “Kerr lens mode-locked femtosecond Cr2+:ZnSe laser at 2420 nm,” Opt. Lett. 34, 3056–3058 (2009).
    [Crossref] [PubMed]
  10. P. Moulton and E. Slobodchikov, “1-GW-peak-power, Cr:ZnSe laser,” in CLEO: Appl. Technol.2010, paper PDPA10.
  11. N. Coluccelli, M. Cassinerio, P. Laporta, and G. Galzerano, “100 kHz linewidth Cr2+:ZnSe ring laser tunable from 2.12 to 2.58 μm,” Opt. Lett. 37(24), 5088–5090 (2012).
    [Crossref] [PubMed]
  12. S. Mirov, V. Fedorov, D. Martyshkin, M. M. I. Moskalev, and S. Vasilyev, “Progress in mid-IR lasers based on Cr and Fe doped II–VI chalcogenides,” IEEE J. Sel. Topics Quantum Electron. 21, 1601719 (2015).
    [Crossref]
  13. S. B. Mirov, V. V. Fedorov, I. S. Moskalev, and D. V. Martyshkin, “Recent progress in transition metal doped II–VI mid-IR lasers,” IEEE J. Sel. Topics in Quantum Electron. 13, 810–822 (2007).
    [Crossref]
  14. K. L. Schepler, R. D. Peterson, P. A. Berry, and J. B. McCay, “Thermal effects in Cr2+:ZnSe thin disk laser,” IEEE J. Quantum Electron. 11(3), 713–720 (2005).
    [Crossref]
  15. J. McKay, W. Roh, and K. Schepler, “Thermal lensing in Cr2+:ZnSe face-cooled disks,” OSA Trends in Optics and Photonics, vol. 83 of Advanced Solid-State Photonics, J. Zayhowski, ed. (2003), paper 220.
  16. H. Krol, C. Grezes-Besset, L. Gallais, J. Natoli, and M. Commandre, in “Study of laser-induced damage at 2 microns on coated and uncoated ZnSe substrates,” Proc. SPIE6403, 640316 (2007).
    [Crossref]
  17. S. McDaniel, D. Hobbs, B. MacLeod, E. Sabatino, P. Berry, K. Schepler, W. Mitchell, and G. Cook, “Cr:ZnSe laser incorporating anti-reflection microstructures exhibiting low-loss, damage-resistant lasing at near quantum limit efficiency,” “Opt. Mater. Express”,  4, 2225–2232 (2014).
    [Crossref]
  18. IPG Photonics, “Specifications sheets of Mid-IR lasers,” http://www.ipgphotonics.com/Mid_ir_lasers.htm .
  19. S. Mirov, V. Fedorov, D. Martyshkin, I. Moskalev, M. Mirov, and V. Gapontsev, “Progress in Cr and Fe doped ZnSe and ZnS polycrystalline materials and lasers,” in Advanced Solid State Lasers, OSA Technical Digest, (Optical Society of America, 2014), Paper AM4A.
  20. H. H. Li, “Refractive index of ZnS, ZnSe, ZnTe and its wavelength and temperature derivatives,” J. Phys. Chem. 13(1), 103–150 (1984).
  21. V. V. Fedorov, I. S. Moskalev, M. S. Mirov, S. B. Mirov, T. J. Wagner, M. J. Bohn, P. A. Berry, and K. L. Schepler, “Energy scaling of nanosecond gain-switched Cr2+:ZnSe lasers,” Proc. SPIE7912, 79121E (2011).
    [Crossref]
  22. S. Basu and R. L. Bayer, “Diode-pumped moving disk laser: a new configuration for high average power generation,” Opt. and Quant. Electron. 22, 833–837 (1990).
    [Crossref]
  23. S. Basu, “Nd-YAG and Yb-YAG rotary disk lasers,” IEEE J. Selected Topics in Quant. Electron. 11, 626–630 (2005).
    [Crossref]
  24. S. Basu, “A 7.5-mJ, 21-ns, 7-kHz green rotary disk laser with diffraction limited beam quality,” in Solid State Lasers XXV: Technology and Devices, Proc. SPIE, 9726(2016).
  25. “Gaussian beams and the knife-edge measurement,” http://massey.dur.ac.uk/resources/grad_skills/KnifeEdge.pdf .
  26. S. Vasilyev, I. Moskalev, M. Mirov, S. Mirov, and V. Gapontsev, “Multi-watt mid-ir femtosecond polycrystalline Cr2+:ZnS and Cr2+:ZnSe laser amplifiers with the spectrum spanning 2.0–2.6 μm,” Opt. Express 24, 1616–1623 (2016).
    [Crossref] [PubMed]

2016 (1)

2015 (1)

S. Mirov, V. Fedorov, D. Martyshkin, M. M. I. Moskalev, and S. Vasilyev, “Progress in mid-IR lasers based on Cr and Fe doped II–VI chalcogenides,” IEEE J. Sel. Topics Quantum Electron. 21, 1601719 (2015).
[Crossref]

2014 (1)

2012 (1)

2009 (1)

2007 (1)

S. B. Mirov, V. V. Fedorov, I. S. Moskalev, and D. V. Martyshkin, “Recent progress in transition metal doped II–VI mid-IR lasers,” IEEE J. Sel. Topics in Quantum Electron. 13, 810–822 (2007).
[Crossref]

2006 (1)

2005 (2)

K. L. Schepler, R. D. Peterson, P. A. Berry, and J. B. McCay, “Thermal effects in Cr2+:ZnSe thin disk laser,” IEEE J. Quantum Electron. 11(3), 713–720 (2005).
[Crossref]

S. Basu, “Nd-YAG and Yb-YAG rotary disk lasers,” IEEE J. Selected Topics in Quant. Electron. 11, 626–630 (2005).
[Crossref]

2001 (1)

E. Sorokin, I. T. Sorokina, and R. H. Page, “Room-temperature cw diode pumped Cr2+:ZnSe laser,” OSA Trends Opt. Photon. 46, 101–105 (2001).

2000 (1)

1999 (1)

1997 (1)

R. H. Page, K. I. Shaffers, L. D. DeLoach, G. D. Wilke, F. D. Patel, J. B. Tassano, S. A. Payne, W. F. Krupke, K. T. Chen, and A. Burger, “Cr2+-doped sinc chalcogenides as efficient, widely tunable mid-infrared lasers,” IEEE J. Quantum Electron. 33(4), 609–619 (1997).
[Crossref]

1996 (1)

L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, and W. F. Krupke, “Transition metal-doped zinc chalcogenides: Spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quantum Electron. 32(6), 885–895 (1996).
[Crossref]

1990 (1)

S. Basu and R. L. Bayer, “Diode-pumped moving disk laser: a new configuration for high average power generation,” Opt. and Quant. Electron. 22, 833–837 (1990).
[Crossref]

1984 (1)

H. H. Li, “Refractive index of ZnS, ZnSe, ZnTe and its wavelength and temperature derivatives,” J. Phys. Chem. 13(1), 103–150 (1984).

Alford, W. J.

T. J. Carrig, G. J. Wagner, W. J. Alford, and A. Zakel, “Chromium-doped chalcogenides lasers,” Proc. SPIE, 5460, 74–82 (2004).
[Crossref]

Basu, S.

S. Basu, “Nd-YAG and Yb-YAG rotary disk lasers,” IEEE J. Selected Topics in Quant. Electron. 11, 626–630 (2005).
[Crossref]

S. Basu and R. L. Bayer, “Diode-pumped moving disk laser: a new configuration for high average power generation,” Opt. and Quant. Electron. 22, 833–837 (1990).
[Crossref]

S. Basu, “A 7.5-mJ, 21-ns, 7-kHz green rotary disk laser with diffraction limited beam quality,” in Solid State Lasers XXV: Technology and Devices, Proc. SPIE, 9726(2016).

Bayer, R. L.

S. Basu and R. L. Bayer, “Diode-pumped moving disk laser: a new configuration for high average power generation,” Opt. and Quant. Electron. 22, 833–837 (1990).
[Crossref]

Berry, P.

Berry, P. A.

K. L. Schepler, R. D. Peterson, P. A. Berry, and J. B. McCay, “Thermal effects in Cr2+:ZnSe thin disk laser,” IEEE J. Quantum Electron. 11(3), 713–720 (2005).
[Crossref]

V. V. Fedorov, I. S. Moskalev, M. S. Mirov, S. B. Mirov, T. J. Wagner, M. J. Bohn, P. A. Berry, and K. L. Schepler, “Energy scaling of nanosecond gain-switched Cr2+:ZnSe lasers,” Proc. SPIE7912, 79121E (2011).
[Crossref]

Bohn, M. J.

V. V. Fedorov, I. S. Moskalev, M. S. Mirov, S. B. Mirov, T. J. Wagner, M. J. Bohn, P. A. Berry, and K. L. Schepler, “Energy scaling of nanosecond gain-switched Cr2+:ZnSe lasers,” Proc. SPIE7912, 79121E (2011).
[Crossref]

Burger, A.

G. J. Wagner, T. J. Carrig, R. H. Page, K. I. Schaffers, J. Ndap, X. Ma, and A. Burger, “Continuous-wave broadly tunable Cr2+:ZnSe laser,” Opt. Lett. 24, 19–21 (1999).
[Crossref]

R. H. Page, K. I. Shaffers, L. D. DeLoach, G. D. Wilke, F. D. Patel, J. B. Tassano, S. A. Payne, W. F. Krupke, K. T. Chen, and A. Burger, “Cr2+-doped sinc chalcogenides as efficient, widely tunable mid-infrared lasers,” IEEE J. Quantum Electron. 33(4), 609–619 (1997).
[Crossref]

Cankaya, H.

Carrig, T. J.

Cassinerio, M.

Chen, K. T.

R. H. Page, K. I. Shaffers, L. D. DeLoach, G. D. Wilke, F. D. Patel, J. B. Tassano, S. A. Payne, W. F. Krupke, K. T. Chen, and A. Burger, “Cr2+-doped sinc chalcogenides as efficient, widely tunable mid-infrared lasers,” IEEE J. Quantum Electron. 33(4), 609–619 (1997).
[Crossref]

Cizmeciyan, M. N.

Coluccelli, N.

Commandre, M.

H. Krol, C. Grezes-Besset, L. Gallais, J. Natoli, and M. Commandre, in “Study of laser-induced damage at 2 microns on coated and uncoated ZnSe substrates,” Proc. SPIE6403, 640316 (2007).
[Crossref]

Cook, G.

DeLoach, L. D.

R. H. Page, K. I. Shaffers, L. D. DeLoach, G. D. Wilke, F. D. Patel, J. B. Tassano, S. A. Payne, W. F. Krupke, K. T. Chen, and A. Burger, “Cr2+-doped sinc chalcogenides as efficient, widely tunable mid-infrared lasers,” IEEE J. Quantum Electron. 33(4), 609–619 (1997).
[Crossref]

L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, and W. F. Krupke, “Transition metal-doped zinc chalcogenides: Spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quantum Electron. 32(6), 885–895 (1996).
[Crossref]

Demirbas, U.

Fedorov, V.

S. Mirov, V. Fedorov, D. Martyshkin, M. M. I. Moskalev, and S. Vasilyev, “Progress in mid-IR lasers based on Cr and Fe doped II–VI chalcogenides,” IEEE J. Sel. Topics Quantum Electron. 21, 1601719 (2015).
[Crossref]

S. Mirov, V. Fedorov, D. Martyshkin, I. Moskalev, M. Mirov, and V. Gapontsev, “Progress in Cr and Fe doped ZnSe and ZnS polycrystalline materials and lasers,” in Advanced Solid State Lasers, OSA Technical Digest, (Optical Society of America, 2014), Paper AM4A.

Fedorov, V. V.

S. B. Mirov, V. V. Fedorov, I. S. Moskalev, and D. V. Martyshkin, “Recent progress in transition metal doped II–VI mid-IR lasers,” IEEE J. Sel. Topics in Quantum Electron. 13, 810–822 (2007).
[Crossref]

V. V. Fedorov, I. S. Moskalev, M. S. Mirov, S. B. Mirov, T. J. Wagner, M. J. Bohn, P. A. Berry, and K. L. Schepler, “Energy scaling of nanosecond gain-switched Cr2+:ZnSe lasers,” Proc. SPIE7912, 79121E (2011).
[Crossref]

E. Sorokin, I. T. Sorokina, M. S. Mirov, V. V. Fedorov, I. S. Moskalev, and S. B. Mirov, “Ultrabroad continuous-wave tuning of ceramic Cr:ZnSe and Cr:ZnS lasers,” in Adv. Solid-State Photon. (Optical Society of America, 2010), paper AMC.
[Crossref]

Gallais, L.

H. Krol, C. Grezes-Besset, L. Gallais, J. Natoli, and M. Commandre, in “Study of laser-induced damage at 2 microns on coated and uncoated ZnSe substrates,” Proc. SPIE6403, 640316 (2007).
[Crossref]

Galzerano, G.

Gapontsev, V.

S. Vasilyev, I. Moskalev, M. Mirov, S. Mirov, and V. Gapontsev, “Multi-watt mid-ir femtosecond polycrystalline Cr2+:ZnS and Cr2+:ZnSe laser amplifiers with the spectrum spanning 2.0–2.6 μm,” Opt. Express 24, 1616–1623 (2016).
[Crossref] [PubMed]

S. Mirov, V. Fedorov, D. Martyshkin, I. Moskalev, M. Mirov, and V. Gapontsev, “Progress in Cr and Fe doped ZnSe and ZnS polycrystalline materials and lasers,” in Advanced Solid State Lasers, OSA Technical Digest, (Optical Society of America, 2014), Paper AM4A.

Grezes-Besset, C.

H. Krol, C. Grezes-Besset, L. Gallais, J. Natoli, and M. Commandre, in “Study of laser-induced damage at 2 microns on coated and uncoated ZnSe substrates,” Proc. SPIE6403, 640316 (2007).
[Crossref]

Hobbs, D.

Jeong, J. Y.

Krol, H.

H. Krol, C. Grezes-Besset, L. Gallais, J. Natoli, and M. Commandre, in “Study of laser-induced damage at 2 microns on coated and uncoated ZnSe substrates,” Proc. SPIE6403, 640316 (2007).
[Crossref]

Krupke, W. F.

R. H. Page, K. I. Shaffers, L. D. DeLoach, G. D. Wilke, F. D. Patel, J. B. Tassano, S. A. Payne, W. F. Krupke, K. T. Chen, and A. Burger, “Cr2+-doped sinc chalcogenides as efficient, widely tunable mid-infrared lasers,” IEEE J. Quantum Electron. 33(4), 609–619 (1997).
[Crossref]

L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, and W. F. Krupke, “Transition metal-doped zinc chalcogenides: Spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quantum Electron. 32(6), 885–895 (1996).
[Crossref]

Kurt, A.

Laporta, P.

Li, H. H.

H. H. Li, “Refractive index of ZnS, ZnSe, ZnTe and its wavelength and temperature derivatives,” J. Phys. Chem. 13(1), 103–150 (1984).

Ma, X.

MacLeod, B.

Martyshkin, D.

S. Mirov, V. Fedorov, D. Martyshkin, M. M. I. Moskalev, and S. Vasilyev, “Progress in mid-IR lasers based on Cr and Fe doped II–VI chalcogenides,” IEEE J. Sel. Topics Quantum Electron. 21, 1601719 (2015).
[Crossref]

S. Mirov, V. Fedorov, D. Martyshkin, I. Moskalev, M. Mirov, and V. Gapontsev, “Progress in Cr and Fe doped ZnSe and ZnS polycrystalline materials and lasers,” in Advanced Solid State Lasers, OSA Technical Digest, (Optical Society of America, 2014), Paper AM4A.

Martyshkin, D. V.

S. B. Mirov, V. V. Fedorov, I. S. Moskalev, and D. V. Martyshkin, “Recent progress in transition metal doped II–VI mid-IR lasers,” IEEE J. Sel. Topics in Quantum Electron. 13, 810–822 (2007).
[Crossref]

McCay, J. B.

K. L. Schepler, R. D. Peterson, P. A. Berry, and J. B. McCay, “Thermal effects in Cr2+:ZnSe thin disk laser,” IEEE J. Quantum Electron. 11(3), 713–720 (2005).
[Crossref]

McDaniel, S.

McKay, J.

J. McKay, W. Roh, and K. Schepler, “Thermal lensing in Cr2+:ZnSe face-cooled disks,” OSA Trends in Optics and Photonics, vol. 83 of Advanced Solid-State Photonics, J. Zayhowski, ed. (2003), paper 220.

Mirov, M.

S. Vasilyev, I. Moskalev, M. Mirov, S. Mirov, and V. Gapontsev, “Multi-watt mid-ir femtosecond polycrystalline Cr2+:ZnS and Cr2+:ZnSe laser amplifiers with the spectrum spanning 2.0–2.6 μm,” Opt. Express 24, 1616–1623 (2016).
[Crossref] [PubMed]

S. Mirov, V. Fedorov, D. Martyshkin, I. Moskalev, M. Mirov, and V. Gapontsev, “Progress in Cr and Fe doped ZnSe and ZnS polycrystalline materials and lasers,” in Advanced Solid State Lasers, OSA Technical Digest, (Optical Society of America, 2014), Paper AM4A.

Mirov, M. S.

V. V. Fedorov, I. S. Moskalev, M. S. Mirov, S. B. Mirov, T. J. Wagner, M. J. Bohn, P. A. Berry, and K. L. Schepler, “Energy scaling of nanosecond gain-switched Cr2+:ZnSe lasers,” Proc. SPIE7912, 79121E (2011).
[Crossref]

E. Sorokin, I. T. Sorokina, M. S. Mirov, V. V. Fedorov, I. S. Moskalev, and S. B. Mirov, “Ultrabroad continuous-wave tuning of ceramic Cr:ZnSe and Cr:ZnS lasers,” in Adv. Solid-State Photon. (Optical Society of America, 2010), paper AMC.
[Crossref]

Mirov, S.

S. Vasilyev, I. Moskalev, M. Mirov, S. Mirov, and V. Gapontsev, “Multi-watt mid-ir femtosecond polycrystalline Cr2+:ZnS and Cr2+:ZnSe laser amplifiers with the spectrum spanning 2.0–2.6 μm,” Opt. Express 24, 1616–1623 (2016).
[Crossref] [PubMed]

S. Mirov, V. Fedorov, D. Martyshkin, M. M. I. Moskalev, and S. Vasilyev, “Progress in mid-IR lasers based on Cr and Fe doped II–VI chalcogenides,” IEEE J. Sel. Topics Quantum Electron. 21, 1601719 (2015).
[Crossref]

S. Mirov, V. Fedorov, D. Martyshkin, I. Moskalev, M. Mirov, and V. Gapontsev, “Progress in Cr and Fe doped ZnSe and ZnS polycrystalline materials and lasers,” in Advanced Solid State Lasers, OSA Technical Digest, (Optical Society of America, 2014), Paper AM4A.

Mirov, S. B.

S. B. Mirov, V. V. Fedorov, I. S. Moskalev, and D. V. Martyshkin, “Recent progress in transition metal doped II–VI mid-IR lasers,” IEEE J. Sel. Topics in Quantum Electron. 13, 810–822 (2007).
[Crossref]

V. V. Fedorov, I. S. Moskalev, M. S. Mirov, S. B. Mirov, T. J. Wagner, M. J. Bohn, P. A. Berry, and K. L. Schepler, “Energy scaling of nanosecond gain-switched Cr2+:ZnSe lasers,” Proc. SPIE7912, 79121E (2011).
[Crossref]

E. Sorokin, I. T. Sorokina, M. S. Mirov, V. V. Fedorov, I. S. Moskalev, and S. B. Mirov, “Ultrabroad continuous-wave tuning of ceramic Cr:ZnSe and Cr:ZnS lasers,” in Adv. Solid-State Photon. (Optical Society of America, 2010), paper AMC.
[Crossref]

Mitchell, W.

Moskalev, I.

S. Vasilyev, I. Moskalev, M. Mirov, S. Mirov, and V. Gapontsev, “Multi-watt mid-ir femtosecond polycrystalline Cr2+:ZnS and Cr2+:ZnSe laser amplifiers with the spectrum spanning 2.0–2.6 μm,” Opt. Express 24, 1616–1623 (2016).
[Crossref] [PubMed]

S. Mirov, V. Fedorov, D. Martyshkin, I. Moskalev, M. Mirov, and V. Gapontsev, “Progress in Cr and Fe doped ZnSe and ZnS polycrystalline materials and lasers,” in Advanced Solid State Lasers, OSA Technical Digest, (Optical Society of America, 2014), Paper AM4A.

Moskalev, I. S.

S. B. Mirov, V. V. Fedorov, I. S. Moskalev, and D. V. Martyshkin, “Recent progress in transition metal doped II–VI mid-IR lasers,” IEEE J. Sel. Topics in Quantum Electron. 13, 810–822 (2007).
[Crossref]

V. V. Fedorov, I. S. Moskalev, M. S. Mirov, S. B. Mirov, T. J. Wagner, M. J. Bohn, P. A. Berry, and K. L. Schepler, “Energy scaling of nanosecond gain-switched Cr2+:ZnSe lasers,” Proc. SPIE7912, 79121E (2011).
[Crossref]

E. Sorokin, I. T. Sorokina, M. S. Mirov, V. V. Fedorov, I. S. Moskalev, and S. B. Mirov, “Ultrabroad continuous-wave tuning of ceramic Cr:ZnSe and Cr:ZnS lasers,” in Adv. Solid-State Photon. (Optical Society of America, 2010), paper AMC.
[Crossref]

Moskalev, M. M. I.

S. Mirov, V. Fedorov, D. Martyshkin, M. M. I. Moskalev, and S. Vasilyev, “Progress in mid-IR lasers based on Cr and Fe doped II–VI chalcogenides,” IEEE J. Sel. Topics Quantum Electron. 21, 1601719 (2015).
[Crossref]

Moulton, P.

P. Moulton and E. Slobodchikov, “1-GW-peak-power, Cr:ZnSe laser,” in CLEO: Appl. Technol.2010, paper PDPA10.

Natoli, J.

H. Krol, C. Grezes-Besset, L. Gallais, J. Natoli, and M. Commandre, in “Study of laser-induced damage at 2 microns on coated and uncoated ZnSe substrates,” Proc. SPIE6403, 640316 (2007).
[Crossref]

Ndap, J.

Page, R. H.

E. Sorokin, I. T. Sorokina, and R. H. Page, “Room-temperature cw diode pumped Cr2+:ZnSe laser,” OSA Trends Opt. Photon. 46, 101–105 (2001).

G. J. Wagner, T. J. Carrig, R. H. Page, K. I. Schaffers, J. Ndap, X. Ma, and A. Burger, “Continuous-wave broadly tunable Cr2+:ZnSe laser,” Opt. Lett. 24, 19–21 (1999).
[Crossref]

R. H. Page, K. I. Shaffers, L. D. DeLoach, G. D. Wilke, F. D. Patel, J. B. Tassano, S. A. Payne, W. F. Krupke, K. T. Chen, and A. Burger, “Cr2+-doped sinc chalcogenides as efficient, widely tunable mid-infrared lasers,” IEEE J. Quantum Electron. 33(4), 609–619 (1997).
[Crossref]

L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, and W. F. Krupke, “Transition metal-doped zinc chalcogenides: Spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quantum Electron. 32(6), 885–895 (1996).
[Crossref]

Patel, F. D.

R. H. Page, K. I. Shaffers, L. D. DeLoach, G. D. Wilke, F. D. Patel, J. B. Tassano, S. A. Payne, W. F. Krupke, K. T. Chen, and A. Burger, “Cr2+-doped sinc chalcogenides as efficient, widely tunable mid-infrared lasers,” IEEE J. Quantum Electron. 33(4), 609–619 (1997).
[Crossref]

Payne, S. A.

R. H. Page, K. I. Shaffers, L. D. DeLoach, G. D. Wilke, F. D. Patel, J. B. Tassano, S. A. Payne, W. F. Krupke, K. T. Chen, and A. Burger, “Cr2+-doped sinc chalcogenides as efficient, widely tunable mid-infrared lasers,” IEEE J. Quantum Electron. 33(4), 609–619 (1997).
[Crossref]

L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, and W. F. Krupke, “Transition metal-doped zinc chalcogenides: Spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quantum Electron. 32(6), 885–895 (1996).
[Crossref]

Peterson, R. D.

K. L. Schepler, R. D. Peterson, P. A. Berry, and J. B. McCay, “Thermal effects in Cr2+:ZnSe thin disk laser,” IEEE J. Quantum Electron. 11(3), 713–720 (2005).
[Crossref]

Pollock, C. R.

Roh, W.

J. McKay, W. Roh, and K. Schepler, “Thermal lensing in Cr2+:ZnSe face-cooled disks,” OSA Trends in Optics and Photonics, vol. 83 of Advanced Solid-State Photonics, J. Zayhowski, ed. (2003), paper 220.

Sabatino, E.

Schaffers, K. I.

Schepler, K.

S. McDaniel, D. Hobbs, B. MacLeod, E. Sabatino, P. Berry, K. Schepler, W. Mitchell, and G. Cook, “Cr:ZnSe laser incorporating anti-reflection microstructures exhibiting low-loss, damage-resistant lasing at near quantum limit efficiency,” “Opt. Mater. Express”,  4, 2225–2232 (2014).
[Crossref]

J. McKay, W. Roh, and K. Schepler, “Thermal lensing in Cr2+:ZnSe face-cooled disks,” OSA Trends in Optics and Photonics, vol. 83 of Advanced Solid-State Photonics, J. Zayhowski, ed. (2003), paper 220.

Schepler, K. L.

K. L. Schepler, R. D. Peterson, P. A. Berry, and J. B. McCay, “Thermal effects in Cr2+:ZnSe thin disk laser,” IEEE J. Quantum Electron. 11(3), 713–720 (2005).
[Crossref]

V. V. Fedorov, I. S. Moskalev, M. S. Mirov, S. B. Mirov, T. J. Wagner, M. J. Bohn, P. A. Berry, and K. L. Schepler, “Energy scaling of nanosecond gain-switched Cr2+:ZnSe lasers,” Proc. SPIE7912, 79121E (2011).
[Crossref]

Sennaroglu, A.

Shaffers, K. I.

R. H. Page, K. I. Shaffers, L. D. DeLoach, G. D. Wilke, F. D. Patel, J. B. Tassano, S. A. Payne, W. F. Krupke, K. T. Chen, and A. Burger, “Cr2+-doped sinc chalcogenides as efficient, widely tunable mid-infrared lasers,” IEEE J. Quantum Electron. 33(4), 609–619 (1997).
[Crossref]

Slobodchikov, E.

P. Moulton and E. Slobodchikov, “1-GW-peak-power, Cr:ZnSe laser,” in CLEO: Appl. Technol.2010, paper PDPA10.

Sorokin, E.

E. Sorokin, I. T. Sorokina, and R. H. Page, “Room-temperature cw diode pumped Cr2+:ZnSe laser,” OSA Trends Opt. Photon. 46, 101–105 (2001).

E. Sorokin, I. T. Sorokina, M. S. Mirov, V. V. Fedorov, I. S. Moskalev, and S. B. Mirov, “Ultrabroad continuous-wave tuning of ceramic Cr:ZnSe and Cr:ZnS lasers,” in Adv. Solid-State Photon. (Optical Society of America, 2010), paper AMC.
[Crossref]

Sorokina, I. T.

E. Sorokin, I. T. Sorokina, and R. H. Page, “Room-temperature cw diode pumped Cr2+:ZnSe laser,” OSA Trends Opt. Photon. 46, 101–105 (2001).

E. Sorokin, I. T. Sorokina, M. S. Mirov, V. V. Fedorov, I. S. Moskalev, and S. B. Mirov, “Ultrabroad continuous-wave tuning of ceramic Cr:ZnSe and Cr:ZnS lasers,” in Adv. Solid-State Photon. (Optical Society of America, 2010), paper AMC.
[Crossref]

Tassano, J. B.

R. H. Page, K. I. Shaffers, L. D. DeLoach, G. D. Wilke, F. D. Patel, J. B. Tassano, S. A. Payne, W. F. Krupke, K. T. Chen, and A. Burger, “Cr2+-doped sinc chalcogenides as efficient, widely tunable mid-infrared lasers,” IEEE J. Quantum Electron. 33(4), 609–619 (1997).
[Crossref]

Vasilyev, S.

S. Vasilyev, I. Moskalev, M. Mirov, S. Mirov, and V. Gapontsev, “Multi-watt mid-ir femtosecond polycrystalline Cr2+:ZnS and Cr2+:ZnSe laser amplifiers with the spectrum spanning 2.0–2.6 μm,” Opt. Express 24, 1616–1623 (2016).
[Crossref] [PubMed]

S. Mirov, V. Fedorov, D. Martyshkin, M. M. I. Moskalev, and S. Vasilyev, “Progress in mid-IR lasers based on Cr and Fe doped II–VI chalcogenides,” IEEE J. Sel. Topics Quantum Electron. 21, 1601719 (2015).
[Crossref]

Wagner, G. J.

Wagner, T. J.

V. V. Fedorov, I. S. Moskalev, M. S. Mirov, S. B. Mirov, T. J. Wagner, M. J. Bohn, P. A. Berry, and K. L. Schepler, “Energy scaling of nanosecond gain-switched Cr2+:ZnSe lasers,” Proc. SPIE7912, 79121E (2011).
[Crossref]

Wilke, G. D.

R. H. Page, K. I. Shaffers, L. D. DeLoach, G. D. Wilke, F. D. Patel, J. B. Tassano, S. A. Payne, W. F. Krupke, K. T. Chen, and A. Burger, “Cr2+-doped sinc chalcogenides as efficient, widely tunable mid-infrared lasers,” IEEE J. Quantum Electron. 33(4), 609–619 (1997).
[Crossref]

L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, and W. F. Krupke, “Transition metal-doped zinc chalcogenides: Spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quantum Electron. 32(6), 885–895 (1996).
[Crossref]

Zakel, A.

T. J. Carrig, G. J. Wagner, W. J. Alford, and A. Zakel, “Chromium-doped chalcogenides lasers,” Proc. SPIE, 5460, 74–82 (2004).
[Crossref]

IEEE J. Quantum Electron. (3)

L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, and W. F. Krupke, “Transition metal-doped zinc chalcogenides: Spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quantum Electron. 32(6), 885–895 (1996).
[Crossref]

R. H. Page, K. I. Shaffers, L. D. DeLoach, G. D. Wilke, F. D. Patel, J. B. Tassano, S. A. Payne, W. F. Krupke, K. T. Chen, and A. Burger, “Cr2+-doped sinc chalcogenides as efficient, widely tunable mid-infrared lasers,” IEEE J. Quantum Electron. 33(4), 609–619 (1997).
[Crossref]

K. L. Schepler, R. D. Peterson, P. A. Berry, and J. B. McCay, “Thermal effects in Cr2+:ZnSe thin disk laser,” IEEE J. Quantum Electron. 11(3), 713–720 (2005).
[Crossref]

IEEE J. Sel. Topics in Quantum Electron. (1)

S. B. Mirov, V. V. Fedorov, I. S. Moskalev, and D. V. Martyshkin, “Recent progress in transition metal doped II–VI mid-IR lasers,” IEEE J. Sel. Topics in Quantum Electron. 13, 810–822 (2007).
[Crossref]

IEEE J. Sel. Topics Quantum Electron. (1)

S. Mirov, V. Fedorov, D. Martyshkin, M. M. I. Moskalev, and S. Vasilyev, “Progress in mid-IR lasers based on Cr and Fe doped II–VI chalcogenides,” IEEE J. Sel. Topics Quantum Electron. 21, 1601719 (2015).
[Crossref]

IEEE J. Selected Topics in Quant. Electron. (1)

S. Basu, “Nd-YAG and Yb-YAG rotary disk lasers,” IEEE J. Selected Topics in Quant. Electron. 11, 626–630 (2005).
[Crossref]

J. Phys. Chem. (1)

H. H. Li, “Refractive index of ZnS, ZnSe, ZnTe and its wavelength and temperature derivatives,” J. Phys. Chem. 13(1), 103–150 (1984).

Opt. and Quant. Electron. (1)

S. Basu and R. L. Bayer, “Diode-pumped moving disk laser: a new configuration for high average power generation,” Opt. and Quant. Electron. 22, 833–837 (1990).
[Crossref]

Opt. Express (1)

Opt. Lett. (5)

Opt. Mater. Express (1)

OSA Trends Opt. Photon. (1)

E. Sorokin, I. T. Sorokina, and R. H. Page, “Room-temperature cw diode pumped Cr2+:ZnSe laser,” OSA Trends Opt. Photon. 46, 101–105 (2001).

Other (10)

T. J. Carrig, G. J. Wagner, W. J. Alford, and A. Zakel, “Chromium-doped chalcogenides lasers,” Proc. SPIE, 5460, 74–82 (2004).
[Crossref]

P. Moulton and E. Slobodchikov, “1-GW-peak-power, Cr:ZnSe laser,” in CLEO: Appl. Technol.2010, paper PDPA10.

E. Sorokin, I. T. Sorokina, M. S. Mirov, V. V. Fedorov, I. S. Moskalev, and S. B. Mirov, “Ultrabroad continuous-wave tuning of ceramic Cr:ZnSe and Cr:ZnS lasers,” in Adv. Solid-State Photon. (Optical Society of America, 2010), paper AMC.
[Crossref]

IPG Photonics, “Specifications sheets of Mid-IR lasers,” http://www.ipgphotonics.com/Mid_ir_lasers.htm .

S. Mirov, V. Fedorov, D. Martyshkin, I. Moskalev, M. Mirov, and V. Gapontsev, “Progress in Cr and Fe doped ZnSe and ZnS polycrystalline materials and lasers,” in Advanced Solid State Lasers, OSA Technical Digest, (Optical Society of America, 2014), Paper AM4A.

V. V. Fedorov, I. S. Moskalev, M. S. Mirov, S. B. Mirov, T. J. Wagner, M. J. Bohn, P. A. Berry, and K. L. Schepler, “Energy scaling of nanosecond gain-switched Cr2+:ZnSe lasers,” Proc. SPIE7912, 79121E (2011).
[Crossref]

J. McKay, W. Roh, and K. Schepler, “Thermal lensing in Cr2+:ZnSe face-cooled disks,” OSA Trends in Optics and Photonics, vol. 83 of Advanced Solid-State Photonics, J. Zayhowski, ed. (2003), paper 220.

H. Krol, C. Grezes-Besset, L. Gallais, J. Natoli, and M. Commandre, in “Study of laser-induced damage at 2 microns on coated and uncoated ZnSe substrates,” Proc. SPIE6403, 640316 (2007).
[Crossref]

S. Basu, “A 7.5-mJ, 21-ns, 7-kHz green rotary disk laser with diffraction limited beam quality,” in Solid State Lasers XXV: Technology and Devices, Proc. SPIE, 9726(2016).

“Gaussian beams and the knife-edge measurement,” http://massey.dur.ac.uk/resources/grad_skills/KnifeEdge.pdf .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (17)

Fig. 1
Fig. 1 Design of proof-of-concept laser resonator. The laser resonator is formed by the end mirror, cavity/pump lens, dichroic mirror, and output coupler (OC). The pump beam and laser mode are collinear and coupled through the dichroic mirror (AR@1908 nm, HR@2400–3000 nm). The spinning octagon mirror and fixed angular retro-reflector scan the laser mode and the pump beam across the AR-coated Cr2+:ZnSe gain element at normal incidence. Two octagon angular positions, corresponding to extreme locations of the laser mode and pump beam in the gain element, are shown.
Fig. 2
Fig. 2 Input-Output characteristics of pure CW (scanner is OFF) and QCW (scanners is ON) regimes of operation of the laser system shown in Fig. 1. In QCW regime of operation the duty cycle is ∼9%, linear scan speed is ∼1 m/s. The graph insert shows QCW trace recorded with a fast optical detector.
Fig. 3
Fig. 3 Test design of the spinning ring gain element system: (A) Technical drawing (front and side views) of the Cr2+:ZnSe spinning ring gain element with key dimensions. The Cr dopant concentration is 5 × 1018 cm−3, gain element thickness is 7 mm. The ring gain element has been manufactured with the following specifications and tolerances: (1) Scratch-Dig: 40/20; (2) Flatness: 1/6 wave at 632 nm; (3) Wedge: <10 arc sec; (4) Concentricity error between the external and internal circumferences: <0.05 mm; (5) AR coating specifications (measured per surface): R<0.2% @1.9 μm, R<0.8% @1.9–2.8 μm, R<0.5%@2.94 μm. (B) Expanded view of the test opto-mechanical system. The spinning ring is mounted between 2 cooling flanges. Indium foil (not shown in the scheme) is used to provide improved thermal contact between the gain element ring and flanges. The spinning flanges are self-cooled in open air at moderate heat loads (up to 100 W of total incident pump power). The flanges are additionally cooled with 2 compressed air jets directed from one side. The ring is spinning at a nominal speed of ∼9500 RPM. (C) Side broken view if the test opto-mechanical system also showing additional cooling air jets and numbering scheme of the cooling fins for thermal analysis. The fins of cooling flanges are numbered with integers, the grooves are numbered with fractions, numbers −0.5, 0, 0.5 designate the locations at the Cr2+:ZnSe gain element where surface temperature was measured. The pump radiation enters the spinning ring from direction of fin −6 (left in this drawing).
Fig. 4
Fig. 4 Schematic diagram of the test MOPA laser system based on the spinning ring gain element approach (relative scale is preserved, optomechanical mounts are not shown). The laser system consists of a simple master oscillator and a single-pass power amplifier. The system is pumped with two 100 W Tm-fiber lasers (IPG TLR-100-1908-WC models). The output wavelength is generally determined by the spectral curve of the output coupler. In the range of 1950–2400 nm, narrow-linewidth radiation (δλ ≤ 0.25 nm) is obtained by spectral control with volumetric Bragg gratings (VBG).
Fig. 5
Fig. 5 Schematic diagram of high-power 2940 nm laser system based on the spinning ring gain element laser technology. Wavelength selection is performed by the output coupler and a triple dichroic mirror set (input mirror and 2 intracavity mirrors) which force the laser to oscillate near 2940 nm. Due to relatively low gain of Cr2+:ZnS and Cr2+:ZnSe laser media near 3 μm, strict wavelength control is essential to prevent the laser from free-running oscillation near its gain maximum within the range of 2300–2500 nm.
Fig. 6
Fig. 6 Schematic diagram of a laser resonator design based on the spinning ring gain element laser technology with dual pump source. This laser system can also be used as the basis for high power tunable lasers when the end mirror is replaced with diffraction grating in the Littrow or Littman mount configurations. A tuning prism or Liot filters can also be used for wavelength control within a limited spectral range.
Fig. 7
Fig. 7 Input-Output characteristics of the Cr2+:ZnSe master oscillator at different output wavelengths. The laser demonstrates ∼ 63% absolute and ∼ 65% slope efficiencies near 2.5 μm in free-running CW regime of operation with bradband 50% output coupler (FR); ∼ 59% absolute and ∼ 62% slope efficiencies at 2.3 μm where the central wavelength is selected with 50% efficient VBG designed for 2300 nm (VBG); and ∼ 29% absolute and ∼31% slope efficiencies near 2.94 μm, where the output spectrum is determined by the 4-mirror intracavity selector (MS). The data labels show maximum output power values (the label values are rounded to whole Watts).
Fig. 8
Fig. 8 Measured output spectrum of the master oscillator near central wavelength of 2500 nm. The laser is operating in free-running CW regime with a broadband output coupler (OC) and the output wavelength is determined by the location of the gain maximum of Cr2+:ZnSe gain media. In this free-running mode, the laser shows approximately 40 nm linewidth FWHM.
Fig. 9
Fig. 9 Measured output spectrum of the master oscillator at 2300 nm. The central wavelength is determined by a specific custom-made VBG output coupler with ∼ 50% reflectivity. The VBG OC results in extremely narrow output linewidth of less than 0.25 nm (which is actually the upper estimate determined by the resolution of available laser spectrum analyzer, Bristol 721).
Fig. 10
Fig. 10 Measured output spectrum near 2.94 μm. The output spectrum is determined by intracavity 3-mirror selector and specific output coupler in the laser resonator design shown in Fig. 5. Due to relatively broad slopes of the cut-off edges of the selector mirrors and OC dielectric coatings, the laser demonstrates relatively broad linewidth of approximately 30 nm FWHM.
Fig. 11
Fig. 11 Input-Output characteristic of MOPA system operating at 2300 nm. The laser demonstrates ∼ 55% absolute and ∼ 57% slope efficiencies at 2.3 μm
Fig. 12
Fig. 12 Calculated gain of single-pass power amplifier as a function of incident master oscillator power. The gain is calculated as the ratio of output power to the master oscillator incident power. The amplifier incident pump power is constant and equals approximately 117 W.
Fig. 13
Fig. 13 Performance of two beam-combined maser oscillators and 4-lens laser cavity with dual-pump source in single spinning ring laser system. The complete absence of thermal rollover demonstrates unsaturated pump power capability of these laser systems and indicates further power scaling potential for reaching kW levels of output power.
Fig. 14
Fig. 14 Typical power stabilization curves after cold start of high-power Cr2+:ZnSe laser systems based on the spinning ring gain element approach. Power stabilization of 4-lens free-running laser resonator operating near 2.5 μm and 2.94 μm master oscillators are shown.
Fig. 15
Fig. 15 Typical beam profiles of the spinning ring laser systems in various configurations. The beam profiles were acquired with Pyrocam III™ pyroelectric laser beam analyser located approximately 0.5 m from the laser output mirror. The camera was operated in CW laser mode.
Fig. 16
Fig. 16 Measurement results of beam quality M2 of the 32 W master oscillator operating near 2.95 μm. The fitting parameter A 0 w 0 2 is the beam waist radius, the fitting parameter A1 is the offset of w0 from relative measurement origin, the fitting parameter A2 is the confocal range. The value of M2 ≈ 1.77 is estimated from the fitting parameter A0 and A2 as: M 2 π A 0 / ( λ A 2 1 / 2 ), where λ ∼ 2.95 μm is the output wavelength.
Fig. 17
Fig. 17 Temperature profiles of the cooling flanges and spinning ring gain element of dual-pump, 4-lens laser system. The x–axis indicates fin/spot numbers as shown in Fig. 3(C). The “Simulation” curve is given for illustrative purposes and corresponds to thermal profile obtained using Solidworks™ thermal simulation package. The measurements at zero pump level (green curve) show a gradual heating of the right cooling flange due to operation of the DC motor.

Metrics