Abstract

We demonstrate the generation of 100 GHz single-cycle pulses with up to 10 MW of peak power using optical rectification and broadband phase matching via the tilted pulse front (TPF) technique in lithium niobate. The optical driver is a cryogenically cooled Yb:YAG amplifier providing tens of mJ energy, ~5 ps long laser pulses. We obtain a high THz pulse energy up to 65 µJ with 31.6 MV/m peak electric field when focused close to its diffraction limit of 2.5 mm diameter. A high optical-to-THz energy conversion efficiency of 0.3% at 85 K is measured in agreement with numerical simulations. This source is of great interest for a broad range of applications, such as nonlinear THz field-matter interaction and charged particle acceleration for ultrafast electron diffraction and table-top X-ray sources.

© 2016 Optical Society of America

Full Article  |  PDF Article

Corrections

6 October 2016: A correction was made to Fig. 3.


OSA Recommended Articles
Highly efficient generation of 0.2 mJ terahertz pulses in lithium niobate at room temperature with sub-50 fs chirped Ti:sapphire laser pulses

Xiao-jun Wu, Jing-long Ma, Bao-long Zhang, Shu-su Chai, Zhao-ji Fang, Chen-Yi Xia, De-yin Kong, Jin-guang Wang, Hao Liu, Chang-Qing Zhu, Xuan Wang, Cun-Jun Ruan, and Yu-Tong Li
Opt. Express 26(6) 7107-7116 (2018)

High conversion efficiency, high energy terahertz pulses by optical rectification in cryogenically cooled lithium niobate

Shu-Wei Huang, Eduardo Granados, Wenqian Ronny Huang, Kyung-Han Hong, Luis E. Zapata, and Franz X. Kärtner
Opt. Lett. 38(5) 796-798 (2013)

Terahertz generation in lithium niobate driven by Ti:sapphire laser pulses and its limitations

Xiaojun Wu, Sergio Carbajo, Koustuban Ravi, Frederike Ahr, Giovanni Cirmi, Yue Zhou, Oliver D. Mücke, and Franz X. Kärtner
Opt. Lett. 39(18) 5403-5406 (2014)

References

  • View by:
  • |
  • |
  • |

  1. T. Maag, A. Bayer, S. Baierl, M. Hohenleutner, T. Korn, C. Schüller, D. Schuh, D. Bougeard, C. Lange, R. Huber, M. Mootz, J. E. Sipe, S. W. Koch, and M. Kira, “Coherent cyclotron motion beyond Kohn’s theorem,” Nat. Phys. 12(2), 119–123 (2015).
    [Crossref]
  2. R. Matsunaga, N. Tsuji, H. Fujita, A. Sugioka, K. Makise, Y. Uzawa, H. Terai, Z. Wang, H. Aoki, and R. Shimano, “Light-induced collective pseudospin precession resonating with Higgs mode in a superconductor,” Science 345(6201), 1145–1149 (2014).
    [Crossref] [PubMed]
  3. M. Sherwin, “Terahertz power,” Nature 420(6912), 131–133 (2002).
    [Crossref] [PubMed]
  4. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
    [Crossref]
  5. O. Schubert, M. Hohenleutner, F. Langer, B. Urbanek, C. Lange, U. Huttner, D. Golde, T. Meier, M. Kira, S. W. Koch, and R. Huber, “Sub-cycle control of terahertz high-harmonic generation by dynamical Bloch oscillations,” Nat. Photonics 8(2), 119–123 (2014).
    [Crossref]
  6. K. Iwaszczuk, M. Zalkovskij, A. C. Strikwerda, and P. U. Jepsen, “Nitrogen plasma formation through terahertz-induced ultrafast electron field emission,” Optica 2(2), 116 (2015).
    [Crossref]
  7. M. R. Siegrist, H. Bindslev, R. Brazis, D. Guyomarc’h, J. P. Hogge, Ph. Moreau, and R. Raguotis, “Development of a high-power THz radiation source for plasma diagnostics,” Infrared Phys. Technol. 40(3), 247–259 (1999).
    [Crossref]
  8. K. N. Egodapitiya, S. Li, and R. R. Jones, “Terahertz-induced field-free orientation of rotationally excited molecules,” Phys. Rev. Lett. 112(10), 103002 (2014).
    [Crossref] [PubMed]
  9. Y.-C. Shen and P. F. Taday, “Development and application of terahertz pulsed imaging for nondestructive inspection of pharmaceutical tablet,” IEEE J. Sel. Top. Quantum Electron. 14(2), 407–415 (2008).
    [Crossref]
  10. E. A. Nanni, W. R. Huang, K.-H. Hong, K. Ravi, A. Fallahi, G. Moriena, R. J. D. Miller, and F. X. Kärtner, “Terahertz-driven linear electron acceleration,” Nat. Commun. 6, 8486 (2015).
    [Crossref] [PubMed]
  11. W. R. Huang, E. A. Nanni, K. Ravi, K.-H. Hong, A. Fallahi, L. J. Wong, P. D. Keathley, L. E. Zapata, and F. X. Kärtner, “Toward a terahertz-driven electron gun,” Sci. Rep. 5, 14899 (2015).
    [Crossref] [PubMed]
  12. C. Kealhofer, W. Schneider, D. Ehberger, A. Ryabov, F. Krausz, and P. Baum, “All-optical control and metrology of electron pulses,” Science 352(6284), 429–433 (2016).
    [Crossref] [PubMed]
  13. A. Zholents, “A new possibility for production of sub-picosecond X-ray pulses using a time dependent radio frequency orbit deflection,” Nucl. Instr. Meth. Phys. Res. 798, 111–116 (2015).
  14. F. X. Kärtner, F. Ahr, A.-L. Calendron, H. Cankaya, S. Carbajo, G. Chang, G. Cirmi, K. Dörner, U. Dorda, A. Fallahi, T. Hartin, M. Hemmer, R. Hobbs, Y. Hua, R. Huang, R. Letrun, N. Matlis, V. Mazalova, O. Mücke, E. Nanni, W. Putnam, K. Ravi, F. Reichert, I. Sarrou, X. Wu, H. Ye, L. Zapata, D. Zhang, C. Zhou, R. J. D. Miller, K. Berggren, H. Graafsma, A. Meents, R. W. Assmann, H. N. Chapman, and P. M.-L. Fromme, “AXSIS: Exploring the Frontiers in Attosecond X-ray Science, Imaging and Spectroscopy,” NIMA Proceedings (2016).
    [Crossref]
  15. A. Fallahi, M. Fakhari, A. Yahaghi, M. Arrieta, and F. X. Kӓrtner, “Short Electron Bunch Generation Using Single-cycle Ultrafast Electron Guns,” arXiv:1606.02153 (2016).
  16. S. H. Gold and G. S. Nusinovich, “Review of high-power microwave source research,” Rev. Sci. Instrum. 68(11), 3945 (1997).
    [Crossref]
  17. N. Yardimici, S.-H. Yang, C. W. Berr, and M. Jarrahi, “High-power terahertz generation using large-area plasmonic photoconductive emitters,” IEEE Trans. THz Sci. and Tech. 5(2), 223–229 (2015).
    [Crossref]
  18. B. Lax, R. L. Aggarwal, and G. Favrot, “Far-infrared step-tunable coherent radiation source: 70µm to 2mm,” Appl. Phys. Lett. 23(12), 679 (1973).
    [Crossref]
  19. C. Vicario, A. V. Ovchinnikov, S. I. Ashitkov, M. B. Agranat, V. E. Fortov, and C. P. Hauri, “Generation of 0.9-mJ THz pulses in DSTMS pumped by a Cr:Mg2SiO4 laser,” Opt. Lett. 39(23), 6632–6635 (2014).
    [Crossref] [PubMed]
  20. M. A. Piestrup, R. N. Fleming, and R. H. Pantell, “Continuously tunable submillimeter wave source,” Appl. Phys. Lett. 26(8), 418 (1975).
    [Crossref]
  21. K. Kawase, M. Sato, T. Tanuichi, and H. Ito, “Coherent tunable THz-wave generation from LiNbO3 with monolithic grating coupler,” Appl. Phys. Lett. 68(18), 2483 (1996).
    [Crossref]
  22. J. Hebling, G. Almasi, I. Kozma, and J. Kuhl, “Velocity matching by pulse front tilting for large area THz-pulse generation,” Opt. Express 10(21), 1161–1166 (2002).
    [Crossref] [PubMed]
  23. J. A. Fülöp, Z. Ollmann, C. Lombosi, C. Skrobol, S. Klingebiel, L. Pálfalvi, F. Krausz, S. Karsch, and J. Hebling, “Efficient generation of THz pulses with 0.4 mJ energy,” Opt. Express 22(17), 20155–20163 (2014).
    [Crossref] [PubMed]
  24. S.-W. Huang, E. Granados, W. R. Huang, K.-H. Hong, L. E. Zapata, and F. X. Kärtner, “High conversion efficiency, high energy terahertz pulses by optical rectification in cryogenically cooled lithium niobate,” Opt. Lett. 38(5), 796–798 (2013).
    [Crossref] [PubMed]
  25. W. R. Huang, S. W. Huang, E. Granados, K. Ravi, K. H. Hong, L. E. Zapata, and F. X. Kärtner, “Highly efficient terahertz pulse generation by optical rectification in stoichiometric and cryo-cooled congruent lithium niobate,” J. Mod. Opt. 62(18), 1486–1493 (2015).
    [Crossref]
  26. L. E. Zapata, F. Reichert, M. Hemmer, and F. X. Kärtner, “250 W average power, 100 kHz repetition rate cryogenic Yb:YAG amplifier for OPCPA pumping,” Opt. Lett. 41(3), 492–495 (2016).
    [Crossref] [PubMed]
  27. C. M. Baumgarten, B. A. Reagan, M. A. Pedicone, H. Bravo, L. Yin, H. Wang, M. Woolston, B. Carr, C. S. Menoni, and J. J. Rocca, “Demonstration of a Compact 500 Hz Repetition Rate Joule-Level Chirped Pulse Amplification Laser,” CLEO Digest, paper STu3M.3 (2016).
  28. J. Hebling, K.-L. Yeh, M. C. Hoffmann, B. Bartal, and K. A. Nelson, “Generation of high-power terahertz pulses by tilted-pulse-front excitation and their application possibilities,” J. Opt. Soc. Am. B 25(7), B6 (2008).
    [Crossref]
  29. M. Unferdorben, Z. Szaller, I. Hajdara, J. Hebling, and L. Pálfalvi, “Measurement of refractive index and absorption coefficient of congruent and stoichiometric lithium niobate in the terahertz range,” J. Infrared Mili Terahz Waves 36(12), 1203–1209 (2015).
    [Crossref]
  30. X. Wu, C. Zhou, W. R. Huang, F. Ahr, and F. X. Kärtner, “Temperature dependent refractive index and absorption coefficient of congruent lithium niobate crystals in the terahertz range,” Opt. Express 23(23), 29729–29737 (2015).
    [Crossref] [PubMed]
  31. K. Ravi, W. R. Huang, S. Carbajo, X. Wu, and F. Kärtner, “Limitations to THz generation by optical rectification using tilted pulse fronts,” Opt. Express 22(17), 20239–20251 (2014).
    [Crossref] [PubMed]
  32. F. Blanchard, X. Ropagnol, H. Hafez, H. Razavipour, M. Bolduc, R. Morandotti, T. Ozaki, and D. G. Cooke, “Effect of extreme pump pulse reshaping on intense terahertz emission in lithium niobate at multimilliJoule pump energies,” Opt. Lett. 39(15), 4333–4336 (2014).
    [Crossref] [PubMed]
  33. K. H. Yang, P. L. Richards, and Y. R. Shen, “Generation of far-infrared radiation by picosecond light pulses in LiNbO3,” Appl. Phys. Lett. 19(9), 320–323 (1971).
    [Crossref]
  34. K. Ravi, W. R. Huang, S. Carbajo, E. A. Nanni, D. N. Schimpf, E. P. Ippen, and F. X. Kärtner, “Theory of terahertz generation by optical rectification using tilted-pulse-fronts,” Opt. Express 23(4), 5253–5276 (2015).
    [Crossref] [PubMed]
  35. A.-L. Calendron, H. Cankaya, and F. X. Kärtner, “High-energy kHz Yb:KYW dual-crystal regenerative amplifier,” Opt. Express 22(20), 24752–24762 (2014).
    [Crossref] [PubMed]
  36. R. S. Weis and T. K. Gaylord, “Lithium niobate: summary of physical properties and crystal structure,” Appl. Phys., A Mater. Sci. Process. 37(4), 191–203 (1985).
    [Crossref]
  37. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Crystals (Berlin Spring Verlag, (1999).
  38. T. Kampfrath, K. Tanaka, and K. A. Nelson, “Resonant and nonresonant control over matter and light by intense terahertz transients,” Nat. Photonics 7(9), 680–690 (2013).
    [Crossref]
  39. C. Lombosi, G. Polónyi, M. Mechler, Z. Ollmann, J. Hebling, and J. A. Fülöp, “Nonlinear distortion of intense THz beams,” New J. Phys. 17(8), 083041 (2015).
    [Crossref]

2016 (2)

C. Kealhofer, W. Schneider, D. Ehberger, A. Ryabov, F. Krausz, and P. Baum, “All-optical control and metrology of electron pulses,” Science 352(6284), 429–433 (2016).
[Crossref] [PubMed]

L. E. Zapata, F. Reichert, M. Hemmer, and F. X. Kärtner, “250 W average power, 100 kHz repetition rate cryogenic Yb:YAG amplifier for OPCPA pumping,” Opt. Lett. 41(3), 492–495 (2016).
[Crossref] [PubMed]

2015 (11)

K. Ravi, W. R. Huang, S. Carbajo, E. A. Nanni, D. N. Schimpf, E. P. Ippen, and F. X. Kärtner, “Theory of terahertz generation by optical rectification using tilted-pulse-fronts,” Opt. Express 23(4), 5253–5276 (2015).
[Crossref] [PubMed]

W. R. Huang, S. W. Huang, E. Granados, K. Ravi, K. H. Hong, L. E. Zapata, and F. X. Kärtner, “Highly efficient terahertz pulse generation by optical rectification in stoichiometric and cryo-cooled congruent lithium niobate,” J. Mod. Opt. 62(18), 1486–1493 (2015).
[Crossref]

C. Lombosi, G. Polónyi, M. Mechler, Z. Ollmann, J. Hebling, and J. A. Fülöp, “Nonlinear distortion of intense THz beams,” New J. Phys. 17(8), 083041 (2015).
[Crossref]

M. Unferdorben, Z. Szaller, I. Hajdara, J. Hebling, and L. Pálfalvi, “Measurement of refractive index and absorption coefficient of congruent and stoichiometric lithium niobate in the terahertz range,” J. Infrared Mili Terahz Waves 36(12), 1203–1209 (2015).
[Crossref]

X. Wu, C. Zhou, W. R. Huang, F. Ahr, and F. X. Kärtner, “Temperature dependent refractive index and absorption coefficient of congruent lithium niobate crystals in the terahertz range,” Opt. Express 23(23), 29729–29737 (2015).
[Crossref] [PubMed]

A. Zholents, “A new possibility for production of sub-picosecond X-ray pulses using a time dependent radio frequency orbit deflection,” Nucl. Instr. Meth. Phys. Res. 798, 111–116 (2015).

E. A. Nanni, W. R. Huang, K.-H. Hong, K. Ravi, A. Fallahi, G. Moriena, R. J. D. Miller, and F. X. Kärtner, “Terahertz-driven linear electron acceleration,” Nat. Commun. 6, 8486 (2015).
[Crossref] [PubMed]

W. R. Huang, E. A. Nanni, K. Ravi, K.-H. Hong, A. Fallahi, L. J. Wong, P. D. Keathley, L. E. Zapata, and F. X. Kärtner, “Toward a terahertz-driven electron gun,” Sci. Rep. 5, 14899 (2015).
[Crossref] [PubMed]

N. Yardimici, S.-H. Yang, C. W. Berr, and M. Jarrahi, “High-power terahertz generation using large-area plasmonic photoconductive emitters,” IEEE Trans. THz Sci. and Tech. 5(2), 223–229 (2015).
[Crossref]

T. Maag, A. Bayer, S. Baierl, M. Hohenleutner, T. Korn, C. Schüller, D. Schuh, D. Bougeard, C. Lange, R. Huber, M. Mootz, J. E. Sipe, S. W. Koch, and M. Kira, “Coherent cyclotron motion beyond Kohn’s theorem,” Nat. Phys. 12(2), 119–123 (2015).
[Crossref]

K. Iwaszczuk, M. Zalkovskij, A. C. Strikwerda, and P. U. Jepsen, “Nitrogen plasma formation through terahertz-induced ultrafast electron field emission,” Optica 2(2), 116 (2015).
[Crossref]

2014 (8)

K. N. Egodapitiya, S. Li, and R. R. Jones, “Terahertz-induced field-free orientation of rotationally excited molecules,” Phys. Rev. Lett. 112(10), 103002 (2014).
[Crossref] [PubMed]

R. Matsunaga, N. Tsuji, H. Fujita, A. Sugioka, K. Makise, Y. Uzawa, H. Terai, Z. Wang, H. Aoki, and R. Shimano, “Light-induced collective pseudospin precession resonating with Higgs mode in a superconductor,” Science 345(6201), 1145–1149 (2014).
[Crossref] [PubMed]

O. Schubert, M. Hohenleutner, F. Langer, B. Urbanek, C. Lange, U. Huttner, D. Golde, T. Meier, M. Kira, S. W. Koch, and R. Huber, “Sub-cycle control of terahertz high-harmonic generation by dynamical Bloch oscillations,” Nat. Photonics 8(2), 119–123 (2014).
[Crossref]

C. Vicario, A. V. Ovchinnikov, S. I. Ashitkov, M. B. Agranat, V. E. Fortov, and C. P. Hauri, “Generation of 0.9-mJ THz pulses in DSTMS pumped by a Cr:Mg2SiO4 laser,” Opt. Lett. 39(23), 6632–6635 (2014).
[Crossref] [PubMed]

K. Ravi, W. R. Huang, S. Carbajo, X. Wu, and F. Kärtner, “Limitations to THz generation by optical rectification using tilted pulse fronts,” Opt. Express 22(17), 20239–20251 (2014).
[Crossref] [PubMed]

F. Blanchard, X. Ropagnol, H. Hafez, H. Razavipour, M. Bolduc, R. Morandotti, T. Ozaki, and D. G. Cooke, “Effect of extreme pump pulse reshaping on intense terahertz emission in lithium niobate at multimilliJoule pump energies,” Opt. Lett. 39(15), 4333–4336 (2014).
[Crossref] [PubMed]

J. A. Fülöp, Z. Ollmann, C. Lombosi, C. Skrobol, S. Klingebiel, L. Pálfalvi, F. Krausz, S. Karsch, and J. Hebling, “Efficient generation of THz pulses with 0.4 mJ energy,” Opt. Express 22(17), 20155–20163 (2014).
[Crossref] [PubMed]

A.-L. Calendron, H. Cankaya, and F. X. Kärtner, “High-energy kHz Yb:KYW dual-crystal regenerative amplifier,” Opt. Express 22(20), 24752–24762 (2014).
[Crossref] [PubMed]

2013 (2)

2008 (2)

J. Hebling, K.-L. Yeh, M. C. Hoffmann, B. Bartal, and K. A. Nelson, “Generation of high-power terahertz pulses by tilted-pulse-front excitation and their application possibilities,” J. Opt. Soc. Am. B 25(7), B6 (2008).
[Crossref]

Y.-C. Shen and P. F. Taday, “Development and application of terahertz pulsed imaging for nondestructive inspection of pharmaceutical tablet,” IEEE J. Sel. Top. Quantum Electron. 14(2), 407–415 (2008).
[Crossref]

2007 (1)

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

2002 (2)

1999 (1)

M. R. Siegrist, H. Bindslev, R. Brazis, D. Guyomarc’h, J. P. Hogge, Ph. Moreau, and R. Raguotis, “Development of a high-power THz radiation source for plasma diagnostics,” Infrared Phys. Technol. 40(3), 247–259 (1999).
[Crossref]

1997 (1)

S. H. Gold and G. S. Nusinovich, “Review of high-power microwave source research,” Rev. Sci. Instrum. 68(11), 3945 (1997).
[Crossref]

1996 (1)

K. Kawase, M. Sato, T. Tanuichi, and H. Ito, “Coherent tunable THz-wave generation from LiNbO3 with monolithic grating coupler,” Appl. Phys. Lett. 68(18), 2483 (1996).
[Crossref]

1985 (1)

R. S. Weis and T. K. Gaylord, “Lithium niobate: summary of physical properties and crystal structure,” Appl. Phys., A Mater. Sci. Process. 37(4), 191–203 (1985).
[Crossref]

1975 (1)

M. A. Piestrup, R. N. Fleming, and R. H. Pantell, “Continuously tunable submillimeter wave source,” Appl. Phys. Lett. 26(8), 418 (1975).
[Crossref]

1973 (1)

B. Lax, R. L. Aggarwal, and G. Favrot, “Far-infrared step-tunable coherent radiation source: 70µm to 2mm,” Appl. Phys. Lett. 23(12), 679 (1973).
[Crossref]

1971 (1)

K. H. Yang, P. L. Richards, and Y. R. Shen, “Generation of far-infrared radiation by picosecond light pulses in LiNbO3,” Appl. Phys. Lett. 19(9), 320–323 (1971).
[Crossref]

Aggarwal, R. L.

B. Lax, R. L. Aggarwal, and G. Favrot, “Far-infrared step-tunable coherent radiation source: 70µm to 2mm,” Appl. Phys. Lett. 23(12), 679 (1973).
[Crossref]

Agranat, M. B.

Ahr, F.

Almasi, G.

Aoki, H.

R. Matsunaga, N. Tsuji, H. Fujita, A. Sugioka, K. Makise, Y. Uzawa, H. Terai, Z. Wang, H. Aoki, and R. Shimano, “Light-induced collective pseudospin precession resonating with Higgs mode in a superconductor,” Science 345(6201), 1145–1149 (2014).
[Crossref] [PubMed]

Ashitkov, S. I.

Baierl, S.

T. Maag, A. Bayer, S. Baierl, M. Hohenleutner, T. Korn, C. Schüller, D. Schuh, D. Bougeard, C. Lange, R. Huber, M. Mootz, J. E. Sipe, S. W. Koch, and M. Kira, “Coherent cyclotron motion beyond Kohn’s theorem,” Nat. Phys. 12(2), 119–123 (2015).
[Crossref]

Bartal, B.

Baum, P.

C. Kealhofer, W. Schneider, D. Ehberger, A. Ryabov, F. Krausz, and P. Baum, “All-optical control and metrology of electron pulses,” Science 352(6284), 429–433 (2016).
[Crossref] [PubMed]

Bayer, A.

T. Maag, A. Bayer, S. Baierl, M. Hohenleutner, T. Korn, C. Schüller, D. Schuh, D. Bougeard, C. Lange, R. Huber, M. Mootz, J. E. Sipe, S. W. Koch, and M. Kira, “Coherent cyclotron motion beyond Kohn’s theorem,” Nat. Phys. 12(2), 119–123 (2015).
[Crossref]

Berr, C. W.

N. Yardimici, S.-H. Yang, C. W. Berr, and M. Jarrahi, “High-power terahertz generation using large-area plasmonic photoconductive emitters,” IEEE Trans. THz Sci. and Tech. 5(2), 223–229 (2015).
[Crossref]

Bindslev, H.

M. R. Siegrist, H. Bindslev, R. Brazis, D. Guyomarc’h, J. P. Hogge, Ph. Moreau, and R. Raguotis, “Development of a high-power THz radiation source for plasma diagnostics,” Infrared Phys. Technol. 40(3), 247–259 (1999).
[Crossref]

Blanchard, F.

Bolduc, M.

Bougeard, D.

T. Maag, A. Bayer, S. Baierl, M. Hohenleutner, T. Korn, C. Schüller, D. Schuh, D. Bougeard, C. Lange, R. Huber, M. Mootz, J. E. Sipe, S. W. Koch, and M. Kira, “Coherent cyclotron motion beyond Kohn’s theorem,” Nat. Phys. 12(2), 119–123 (2015).
[Crossref]

Brazis, R.

M. R. Siegrist, H. Bindslev, R. Brazis, D. Guyomarc’h, J. P. Hogge, Ph. Moreau, and R. Raguotis, “Development of a high-power THz radiation source for plasma diagnostics,” Infrared Phys. Technol. 40(3), 247–259 (1999).
[Crossref]

Calendron, A.-L.

Cankaya, H.

Carbajo, S.

Cooke, D. G.

Egodapitiya, K. N.

K. N. Egodapitiya, S. Li, and R. R. Jones, “Terahertz-induced field-free orientation of rotationally excited molecules,” Phys. Rev. Lett. 112(10), 103002 (2014).
[Crossref] [PubMed]

Ehberger, D.

C. Kealhofer, W. Schneider, D. Ehberger, A. Ryabov, F. Krausz, and P. Baum, “All-optical control and metrology of electron pulses,” Science 352(6284), 429–433 (2016).
[Crossref] [PubMed]

Fallahi, A.

W. R. Huang, E. A. Nanni, K. Ravi, K.-H. Hong, A. Fallahi, L. J. Wong, P. D. Keathley, L. E. Zapata, and F. X. Kärtner, “Toward a terahertz-driven electron gun,” Sci. Rep. 5, 14899 (2015).
[Crossref] [PubMed]

E. A. Nanni, W. R. Huang, K.-H. Hong, K. Ravi, A. Fallahi, G. Moriena, R. J. D. Miller, and F. X. Kärtner, “Terahertz-driven linear electron acceleration,” Nat. Commun. 6, 8486 (2015).
[Crossref] [PubMed]

Favrot, G.

B. Lax, R. L. Aggarwal, and G. Favrot, “Far-infrared step-tunable coherent radiation source: 70µm to 2mm,” Appl. Phys. Lett. 23(12), 679 (1973).
[Crossref]

Fleming, R. N.

M. A. Piestrup, R. N. Fleming, and R. H. Pantell, “Continuously tunable submillimeter wave source,” Appl. Phys. Lett. 26(8), 418 (1975).
[Crossref]

Fortov, V. E.

Fujita, H.

R. Matsunaga, N. Tsuji, H. Fujita, A. Sugioka, K. Makise, Y. Uzawa, H. Terai, Z. Wang, H. Aoki, and R. Shimano, “Light-induced collective pseudospin precession resonating with Higgs mode in a superconductor,” Science 345(6201), 1145–1149 (2014).
[Crossref] [PubMed]

Fülöp, J. A.

Gaylord, T. K.

R. S. Weis and T. K. Gaylord, “Lithium niobate: summary of physical properties and crystal structure,” Appl. Phys., A Mater. Sci. Process. 37(4), 191–203 (1985).
[Crossref]

Gold, S. H.

S. H. Gold and G. S. Nusinovich, “Review of high-power microwave source research,” Rev. Sci. Instrum. 68(11), 3945 (1997).
[Crossref]

Golde, D.

O. Schubert, M. Hohenleutner, F. Langer, B. Urbanek, C. Lange, U. Huttner, D. Golde, T. Meier, M. Kira, S. W. Koch, and R. Huber, “Sub-cycle control of terahertz high-harmonic generation by dynamical Bloch oscillations,” Nat. Photonics 8(2), 119–123 (2014).
[Crossref]

Granados, E.

W. R. Huang, S. W. Huang, E. Granados, K. Ravi, K. H. Hong, L. E. Zapata, and F. X. Kärtner, “Highly efficient terahertz pulse generation by optical rectification in stoichiometric and cryo-cooled congruent lithium niobate,” J. Mod. Opt. 62(18), 1486–1493 (2015).
[Crossref]

S.-W. Huang, E. Granados, W. R. Huang, K.-H. Hong, L. E. Zapata, and F. X. Kärtner, “High conversion efficiency, high energy terahertz pulses by optical rectification in cryogenically cooled lithium niobate,” Opt. Lett. 38(5), 796–798 (2013).
[Crossref] [PubMed]

Guyomarc’h, D.

M. R. Siegrist, H. Bindslev, R. Brazis, D. Guyomarc’h, J. P. Hogge, Ph. Moreau, and R. Raguotis, “Development of a high-power THz radiation source for plasma diagnostics,” Infrared Phys. Technol. 40(3), 247–259 (1999).
[Crossref]

Hafez, H.

Hajdara, I.

M. Unferdorben, Z. Szaller, I. Hajdara, J. Hebling, and L. Pálfalvi, “Measurement of refractive index and absorption coefficient of congruent and stoichiometric lithium niobate in the terahertz range,” J. Infrared Mili Terahz Waves 36(12), 1203–1209 (2015).
[Crossref]

Hauri, C. P.

Hebling, J.

Hemmer, M.

Hoffmann, M. C.

Hogge, J. P.

M. R. Siegrist, H. Bindslev, R. Brazis, D. Guyomarc’h, J. P. Hogge, Ph. Moreau, and R. Raguotis, “Development of a high-power THz radiation source for plasma diagnostics,” Infrared Phys. Technol. 40(3), 247–259 (1999).
[Crossref]

Hohenleutner, M.

T. Maag, A. Bayer, S. Baierl, M. Hohenleutner, T. Korn, C. Schüller, D. Schuh, D. Bougeard, C. Lange, R. Huber, M. Mootz, J. E. Sipe, S. W. Koch, and M. Kira, “Coherent cyclotron motion beyond Kohn’s theorem,” Nat. Phys. 12(2), 119–123 (2015).
[Crossref]

O. Schubert, M. Hohenleutner, F. Langer, B. Urbanek, C. Lange, U. Huttner, D. Golde, T. Meier, M. Kira, S. W. Koch, and R. Huber, “Sub-cycle control of terahertz high-harmonic generation by dynamical Bloch oscillations,” Nat. Photonics 8(2), 119–123 (2014).
[Crossref]

Hong, K. H.

W. R. Huang, S. W. Huang, E. Granados, K. Ravi, K. H. Hong, L. E. Zapata, and F. X. Kärtner, “Highly efficient terahertz pulse generation by optical rectification in stoichiometric and cryo-cooled congruent lithium niobate,” J. Mod. Opt. 62(18), 1486–1493 (2015).
[Crossref]

Hong, K.-H.

W. R. Huang, E. A. Nanni, K. Ravi, K.-H. Hong, A. Fallahi, L. J. Wong, P. D. Keathley, L. E. Zapata, and F. X. Kärtner, “Toward a terahertz-driven electron gun,” Sci. Rep. 5, 14899 (2015).
[Crossref] [PubMed]

E. A. Nanni, W. R. Huang, K.-H. Hong, K. Ravi, A. Fallahi, G. Moriena, R. J. D. Miller, and F. X. Kärtner, “Terahertz-driven linear electron acceleration,” Nat. Commun. 6, 8486 (2015).
[Crossref] [PubMed]

S.-W. Huang, E. Granados, W. R. Huang, K.-H. Hong, L. E. Zapata, and F. X. Kärtner, “High conversion efficiency, high energy terahertz pulses by optical rectification in cryogenically cooled lithium niobate,” Opt. Lett. 38(5), 796–798 (2013).
[Crossref] [PubMed]

Huang, S. W.

W. R. Huang, S. W. Huang, E. Granados, K. Ravi, K. H. Hong, L. E. Zapata, and F. X. Kärtner, “Highly efficient terahertz pulse generation by optical rectification in stoichiometric and cryo-cooled congruent lithium niobate,” J. Mod. Opt. 62(18), 1486–1493 (2015).
[Crossref]

Huang, S.-W.

Huang, W. R.

W. R. Huang, S. W. Huang, E. Granados, K. Ravi, K. H. Hong, L. E. Zapata, and F. X. Kärtner, “Highly efficient terahertz pulse generation by optical rectification in stoichiometric and cryo-cooled congruent lithium niobate,” J. Mod. Opt. 62(18), 1486–1493 (2015).
[Crossref]

X. Wu, C. Zhou, W. R. Huang, F. Ahr, and F. X. Kärtner, “Temperature dependent refractive index and absorption coefficient of congruent lithium niobate crystals in the terahertz range,” Opt. Express 23(23), 29729–29737 (2015).
[Crossref] [PubMed]

W. R. Huang, E. A. Nanni, K. Ravi, K.-H. Hong, A. Fallahi, L. J. Wong, P. D. Keathley, L. E. Zapata, and F. X. Kärtner, “Toward a terahertz-driven electron gun,” Sci. Rep. 5, 14899 (2015).
[Crossref] [PubMed]

E. A. Nanni, W. R. Huang, K.-H. Hong, K. Ravi, A. Fallahi, G. Moriena, R. J. D. Miller, and F. X. Kärtner, “Terahertz-driven linear electron acceleration,” Nat. Commun. 6, 8486 (2015).
[Crossref] [PubMed]

K. Ravi, W. R. Huang, S. Carbajo, E. A. Nanni, D. N. Schimpf, E. P. Ippen, and F. X. Kärtner, “Theory of terahertz generation by optical rectification using tilted-pulse-fronts,” Opt. Express 23(4), 5253–5276 (2015).
[Crossref] [PubMed]

K. Ravi, W. R. Huang, S. Carbajo, X. Wu, and F. Kärtner, “Limitations to THz generation by optical rectification using tilted pulse fronts,” Opt. Express 22(17), 20239–20251 (2014).
[Crossref] [PubMed]

S.-W. Huang, E. Granados, W. R. Huang, K.-H. Hong, L. E. Zapata, and F. X. Kärtner, “High conversion efficiency, high energy terahertz pulses by optical rectification in cryogenically cooled lithium niobate,” Opt. Lett. 38(5), 796–798 (2013).
[Crossref] [PubMed]

Huber, R.

T. Maag, A. Bayer, S. Baierl, M. Hohenleutner, T. Korn, C. Schüller, D. Schuh, D. Bougeard, C. Lange, R. Huber, M. Mootz, J. E. Sipe, S. W. Koch, and M. Kira, “Coherent cyclotron motion beyond Kohn’s theorem,” Nat. Phys. 12(2), 119–123 (2015).
[Crossref]

O. Schubert, M. Hohenleutner, F. Langer, B. Urbanek, C. Lange, U. Huttner, D. Golde, T. Meier, M. Kira, S. W. Koch, and R. Huber, “Sub-cycle control of terahertz high-harmonic generation by dynamical Bloch oscillations,” Nat. Photonics 8(2), 119–123 (2014).
[Crossref]

Huttner, U.

O. Schubert, M. Hohenleutner, F. Langer, B. Urbanek, C. Lange, U. Huttner, D. Golde, T. Meier, M. Kira, S. W. Koch, and R. Huber, “Sub-cycle control of terahertz high-harmonic generation by dynamical Bloch oscillations,” Nat. Photonics 8(2), 119–123 (2014).
[Crossref]

Ippen, E. P.

Ito, H.

K. Kawase, M. Sato, T. Tanuichi, and H. Ito, “Coherent tunable THz-wave generation from LiNbO3 with monolithic grating coupler,” Appl. Phys. Lett. 68(18), 2483 (1996).
[Crossref]

Iwaszczuk, K.

Jarrahi, M.

N. Yardimici, S.-H. Yang, C. W. Berr, and M. Jarrahi, “High-power terahertz generation using large-area plasmonic photoconductive emitters,” IEEE Trans. THz Sci. and Tech. 5(2), 223–229 (2015).
[Crossref]

Jepsen, P. U.

Jones, R. R.

K. N. Egodapitiya, S. Li, and R. R. Jones, “Terahertz-induced field-free orientation of rotationally excited molecules,” Phys. Rev. Lett. 112(10), 103002 (2014).
[Crossref] [PubMed]

Kampfrath, T.

T. Kampfrath, K. Tanaka, and K. A. Nelson, “Resonant and nonresonant control over matter and light by intense terahertz transients,” Nat. Photonics 7(9), 680–690 (2013).
[Crossref]

Karsch, S.

Kärtner, F.

Kärtner, F. X.

L. E. Zapata, F. Reichert, M. Hemmer, and F. X. Kärtner, “250 W average power, 100 kHz repetition rate cryogenic Yb:YAG amplifier for OPCPA pumping,” Opt. Lett. 41(3), 492–495 (2016).
[Crossref] [PubMed]

X. Wu, C. Zhou, W. R. Huang, F. Ahr, and F. X. Kärtner, “Temperature dependent refractive index and absorption coefficient of congruent lithium niobate crystals in the terahertz range,” Opt. Express 23(23), 29729–29737 (2015).
[Crossref] [PubMed]

W. R. Huang, S. W. Huang, E. Granados, K. Ravi, K. H. Hong, L. E. Zapata, and F. X. Kärtner, “Highly efficient terahertz pulse generation by optical rectification in stoichiometric and cryo-cooled congruent lithium niobate,” J. Mod. Opt. 62(18), 1486–1493 (2015).
[Crossref]

E. A. Nanni, W. R. Huang, K.-H. Hong, K. Ravi, A. Fallahi, G. Moriena, R. J. D. Miller, and F. X. Kärtner, “Terahertz-driven linear electron acceleration,” Nat. Commun. 6, 8486 (2015).
[Crossref] [PubMed]

W. R. Huang, E. A. Nanni, K. Ravi, K.-H. Hong, A. Fallahi, L. J. Wong, P. D. Keathley, L. E. Zapata, and F. X. Kärtner, “Toward a terahertz-driven electron gun,” Sci. Rep. 5, 14899 (2015).
[Crossref] [PubMed]

K. Ravi, W. R. Huang, S. Carbajo, E. A. Nanni, D. N. Schimpf, E. P. Ippen, and F. X. Kärtner, “Theory of terahertz generation by optical rectification using tilted-pulse-fronts,” Opt. Express 23(4), 5253–5276 (2015).
[Crossref] [PubMed]

A.-L. Calendron, H. Cankaya, and F. X. Kärtner, “High-energy kHz Yb:KYW dual-crystal regenerative amplifier,” Opt. Express 22(20), 24752–24762 (2014).
[Crossref] [PubMed]

S.-W. Huang, E. Granados, W. R. Huang, K.-H. Hong, L. E. Zapata, and F. X. Kärtner, “High conversion efficiency, high energy terahertz pulses by optical rectification in cryogenically cooled lithium niobate,” Opt. Lett. 38(5), 796–798 (2013).
[Crossref] [PubMed]

Kawase, K.

K. Kawase, M. Sato, T. Tanuichi, and H. Ito, “Coherent tunable THz-wave generation from LiNbO3 with monolithic grating coupler,” Appl. Phys. Lett. 68(18), 2483 (1996).
[Crossref]

Kealhofer, C.

C. Kealhofer, W. Schneider, D. Ehberger, A. Ryabov, F. Krausz, and P. Baum, “All-optical control and metrology of electron pulses,” Science 352(6284), 429–433 (2016).
[Crossref] [PubMed]

Keathley, P. D.

W. R. Huang, E. A. Nanni, K. Ravi, K.-H. Hong, A. Fallahi, L. J. Wong, P. D. Keathley, L. E. Zapata, and F. X. Kärtner, “Toward a terahertz-driven electron gun,” Sci. Rep. 5, 14899 (2015).
[Crossref] [PubMed]

Kira, M.

T. Maag, A. Bayer, S. Baierl, M. Hohenleutner, T. Korn, C. Schüller, D. Schuh, D. Bougeard, C. Lange, R. Huber, M. Mootz, J. E. Sipe, S. W. Koch, and M. Kira, “Coherent cyclotron motion beyond Kohn’s theorem,” Nat. Phys. 12(2), 119–123 (2015).
[Crossref]

O. Schubert, M. Hohenleutner, F. Langer, B. Urbanek, C. Lange, U. Huttner, D. Golde, T. Meier, M. Kira, S. W. Koch, and R. Huber, “Sub-cycle control of terahertz high-harmonic generation by dynamical Bloch oscillations,” Nat. Photonics 8(2), 119–123 (2014).
[Crossref]

Klingebiel, S.

Koch, S. W.

T. Maag, A. Bayer, S. Baierl, M. Hohenleutner, T. Korn, C. Schüller, D. Schuh, D. Bougeard, C. Lange, R. Huber, M. Mootz, J. E. Sipe, S. W. Koch, and M. Kira, “Coherent cyclotron motion beyond Kohn’s theorem,” Nat. Phys. 12(2), 119–123 (2015).
[Crossref]

O. Schubert, M. Hohenleutner, F. Langer, B. Urbanek, C. Lange, U. Huttner, D. Golde, T. Meier, M. Kira, S. W. Koch, and R. Huber, “Sub-cycle control of terahertz high-harmonic generation by dynamical Bloch oscillations,” Nat. Photonics 8(2), 119–123 (2014).
[Crossref]

Korn, T.

T. Maag, A. Bayer, S. Baierl, M. Hohenleutner, T. Korn, C. Schüller, D. Schuh, D. Bougeard, C. Lange, R. Huber, M. Mootz, J. E. Sipe, S. W. Koch, and M. Kira, “Coherent cyclotron motion beyond Kohn’s theorem,” Nat. Phys. 12(2), 119–123 (2015).
[Crossref]

Kozma, I.

Krausz, F.

C. Kealhofer, W. Schneider, D. Ehberger, A. Ryabov, F. Krausz, and P. Baum, “All-optical control and metrology of electron pulses,” Science 352(6284), 429–433 (2016).
[Crossref] [PubMed]

J. A. Fülöp, Z. Ollmann, C. Lombosi, C. Skrobol, S. Klingebiel, L. Pálfalvi, F. Krausz, S. Karsch, and J. Hebling, “Efficient generation of THz pulses with 0.4 mJ energy,” Opt. Express 22(17), 20155–20163 (2014).
[Crossref] [PubMed]

Kuhl, J.

Lange, C.

T. Maag, A. Bayer, S. Baierl, M. Hohenleutner, T. Korn, C. Schüller, D. Schuh, D. Bougeard, C. Lange, R. Huber, M. Mootz, J. E. Sipe, S. W. Koch, and M. Kira, “Coherent cyclotron motion beyond Kohn’s theorem,” Nat. Phys. 12(2), 119–123 (2015).
[Crossref]

O. Schubert, M. Hohenleutner, F. Langer, B. Urbanek, C. Lange, U. Huttner, D. Golde, T. Meier, M. Kira, S. W. Koch, and R. Huber, “Sub-cycle control of terahertz high-harmonic generation by dynamical Bloch oscillations,” Nat. Photonics 8(2), 119–123 (2014).
[Crossref]

Langer, F.

O. Schubert, M. Hohenleutner, F. Langer, B. Urbanek, C. Lange, U. Huttner, D. Golde, T. Meier, M. Kira, S. W. Koch, and R. Huber, “Sub-cycle control of terahertz high-harmonic generation by dynamical Bloch oscillations,” Nat. Photonics 8(2), 119–123 (2014).
[Crossref]

Lax, B.

B. Lax, R. L. Aggarwal, and G. Favrot, “Far-infrared step-tunable coherent radiation source: 70µm to 2mm,” Appl. Phys. Lett. 23(12), 679 (1973).
[Crossref]

Li, S.

K. N. Egodapitiya, S. Li, and R. R. Jones, “Terahertz-induced field-free orientation of rotationally excited molecules,” Phys. Rev. Lett. 112(10), 103002 (2014).
[Crossref] [PubMed]

Lombosi, C.

Maag, T.

T. Maag, A. Bayer, S. Baierl, M. Hohenleutner, T. Korn, C. Schüller, D. Schuh, D. Bougeard, C. Lange, R. Huber, M. Mootz, J. E. Sipe, S. W. Koch, and M. Kira, “Coherent cyclotron motion beyond Kohn’s theorem,” Nat. Phys. 12(2), 119–123 (2015).
[Crossref]

Makise, K.

R. Matsunaga, N. Tsuji, H. Fujita, A. Sugioka, K. Makise, Y. Uzawa, H. Terai, Z. Wang, H. Aoki, and R. Shimano, “Light-induced collective pseudospin precession resonating with Higgs mode in a superconductor,” Science 345(6201), 1145–1149 (2014).
[Crossref] [PubMed]

Matsunaga, R.

R. Matsunaga, N. Tsuji, H. Fujita, A. Sugioka, K. Makise, Y. Uzawa, H. Terai, Z. Wang, H. Aoki, and R. Shimano, “Light-induced collective pseudospin precession resonating with Higgs mode in a superconductor,” Science 345(6201), 1145–1149 (2014).
[Crossref] [PubMed]

Mechler, M.

C. Lombosi, G. Polónyi, M. Mechler, Z. Ollmann, J. Hebling, and J. A. Fülöp, “Nonlinear distortion of intense THz beams,” New J. Phys. 17(8), 083041 (2015).
[Crossref]

Meier, T.

O. Schubert, M. Hohenleutner, F. Langer, B. Urbanek, C. Lange, U. Huttner, D. Golde, T. Meier, M. Kira, S. W. Koch, and R. Huber, “Sub-cycle control of terahertz high-harmonic generation by dynamical Bloch oscillations,” Nat. Photonics 8(2), 119–123 (2014).
[Crossref]

Miller, R. J. D.

E. A. Nanni, W. R. Huang, K.-H. Hong, K. Ravi, A. Fallahi, G. Moriena, R. J. D. Miller, and F. X. Kärtner, “Terahertz-driven linear electron acceleration,” Nat. Commun. 6, 8486 (2015).
[Crossref] [PubMed]

Mootz, M.

T. Maag, A. Bayer, S. Baierl, M. Hohenleutner, T. Korn, C. Schüller, D. Schuh, D. Bougeard, C. Lange, R. Huber, M. Mootz, J. E. Sipe, S. W. Koch, and M. Kira, “Coherent cyclotron motion beyond Kohn’s theorem,” Nat. Phys. 12(2), 119–123 (2015).
[Crossref]

Morandotti, R.

Moreau, Ph.

M. R. Siegrist, H. Bindslev, R. Brazis, D. Guyomarc’h, J. P. Hogge, Ph. Moreau, and R. Raguotis, “Development of a high-power THz radiation source for plasma diagnostics,” Infrared Phys. Technol. 40(3), 247–259 (1999).
[Crossref]

Moriena, G.

E. A. Nanni, W. R. Huang, K.-H. Hong, K. Ravi, A. Fallahi, G. Moriena, R. J. D. Miller, and F. X. Kärtner, “Terahertz-driven linear electron acceleration,” Nat. Commun. 6, 8486 (2015).
[Crossref] [PubMed]

Nanni, E. A.

W. R. Huang, E. A. Nanni, K. Ravi, K.-H. Hong, A. Fallahi, L. J. Wong, P. D. Keathley, L. E. Zapata, and F. X. Kärtner, “Toward a terahertz-driven electron gun,” Sci. Rep. 5, 14899 (2015).
[Crossref] [PubMed]

E. A. Nanni, W. R. Huang, K.-H. Hong, K. Ravi, A. Fallahi, G. Moriena, R. J. D. Miller, and F. X. Kärtner, “Terahertz-driven linear electron acceleration,” Nat. Commun. 6, 8486 (2015).
[Crossref] [PubMed]

K. Ravi, W. R. Huang, S. Carbajo, E. A. Nanni, D. N. Schimpf, E. P. Ippen, and F. X. Kärtner, “Theory of terahertz generation by optical rectification using tilted-pulse-fronts,” Opt. Express 23(4), 5253–5276 (2015).
[Crossref] [PubMed]

Nelson, K. A.

T. Kampfrath, K. Tanaka, and K. A. Nelson, “Resonant and nonresonant control over matter and light by intense terahertz transients,” Nat. Photonics 7(9), 680–690 (2013).
[Crossref]

J. Hebling, K.-L. Yeh, M. C. Hoffmann, B. Bartal, and K. A. Nelson, “Generation of high-power terahertz pulses by tilted-pulse-front excitation and their application possibilities,” J. Opt. Soc. Am. B 25(7), B6 (2008).
[Crossref]

Nusinovich, G. S.

S. H. Gold and G. S. Nusinovich, “Review of high-power microwave source research,” Rev. Sci. Instrum. 68(11), 3945 (1997).
[Crossref]

Ollmann, Z.

Ovchinnikov, A. V.

Ozaki, T.

Pálfalvi, L.

M. Unferdorben, Z. Szaller, I. Hajdara, J. Hebling, and L. Pálfalvi, “Measurement of refractive index and absorption coefficient of congruent and stoichiometric lithium niobate in the terahertz range,” J. Infrared Mili Terahz Waves 36(12), 1203–1209 (2015).
[Crossref]

J. A. Fülöp, Z. Ollmann, C. Lombosi, C. Skrobol, S. Klingebiel, L. Pálfalvi, F. Krausz, S. Karsch, and J. Hebling, “Efficient generation of THz pulses with 0.4 mJ energy,” Opt. Express 22(17), 20155–20163 (2014).
[Crossref] [PubMed]

Pantell, R. H.

M. A. Piestrup, R. N. Fleming, and R. H. Pantell, “Continuously tunable submillimeter wave source,” Appl. Phys. Lett. 26(8), 418 (1975).
[Crossref]

Piestrup, M. A.

M. A. Piestrup, R. N. Fleming, and R. H. Pantell, “Continuously tunable submillimeter wave source,” Appl. Phys. Lett. 26(8), 418 (1975).
[Crossref]

Polónyi, G.

C. Lombosi, G. Polónyi, M. Mechler, Z. Ollmann, J. Hebling, and J. A. Fülöp, “Nonlinear distortion of intense THz beams,” New J. Phys. 17(8), 083041 (2015).
[Crossref]

Raguotis, R.

M. R. Siegrist, H. Bindslev, R. Brazis, D. Guyomarc’h, J. P. Hogge, Ph. Moreau, and R. Raguotis, “Development of a high-power THz radiation source for plasma diagnostics,” Infrared Phys. Technol. 40(3), 247–259 (1999).
[Crossref]

Ravi, K.

W. R. Huang, E. A. Nanni, K. Ravi, K.-H. Hong, A. Fallahi, L. J. Wong, P. D. Keathley, L. E. Zapata, and F. X. Kärtner, “Toward a terahertz-driven electron gun,” Sci. Rep. 5, 14899 (2015).
[Crossref] [PubMed]

E. A. Nanni, W. R. Huang, K.-H. Hong, K. Ravi, A. Fallahi, G. Moriena, R. J. D. Miller, and F. X. Kärtner, “Terahertz-driven linear electron acceleration,” Nat. Commun. 6, 8486 (2015).
[Crossref] [PubMed]

W. R. Huang, S. W. Huang, E. Granados, K. Ravi, K. H. Hong, L. E. Zapata, and F. X. Kärtner, “Highly efficient terahertz pulse generation by optical rectification in stoichiometric and cryo-cooled congruent lithium niobate,” J. Mod. Opt. 62(18), 1486–1493 (2015).
[Crossref]

K. Ravi, W. R. Huang, S. Carbajo, E. A. Nanni, D. N. Schimpf, E. P. Ippen, and F. X. Kärtner, “Theory of terahertz generation by optical rectification using tilted-pulse-fronts,” Opt. Express 23(4), 5253–5276 (2015).
[Crossref] [PubMed]

K. Ravi, W. R. Huang, S. Carbajo, X. Wu, and F. Kärtner, “Limitations to THz generation by optical rectification using tilted pulse fronts,” Opt. Express 22(17), 20239–20251 (2014).
[Crossref] [PubMed]

Razavipour, H.

Reichert, F.

Richards, P. L.

K. H. Yang, P. L. Richards, and Y. R. Shen, “Generation of far-infrared radiation by picosecond light pulses in LiNbO3,” Appl. Phys. Lett. 19(9), 320–323 (1971).
[Crossref]

Ropagnol, X.

Ryabov, A.

C. Kealhofer, W. Schneider, D. Ehberger, A. Ryabov, F. Krausz, and P. Baum, “All-optical control and metrology of electron pulses,” Science 352(6284), 429–433 (2016).
[Crossref] [PubMed]

Sato, M.

K. Kawase, M. Sato, T. Tanuichi, and H. Ito, “Coherent tunable THz-wave generation from LiNbO3 with monolithic grating coupler,” Appl. Phys. Lett. 68(18), 2483 (1996).
[Crossref]

Schimpf, D. N.

Schneider, W.

C. Kealhofer, W. Schneider, D. Ehberger, A. Ryabov, F. Krausz, and P. Baum, “All-optical control and metrology of electron pulses,” Science 352(6284), 429–433 (2016).
[Crossref] [PubMed]

Schubert, O.

O. Schubert, M. Hohenleutner, F. Langer, B. Urbanek, C. Lange, U. Huttner, D. Golde, T. Meier, M. Kira, S. W. Koch, and R. Huber, “Sub-cycle control of terahertz high-harmonic generation by dynamical Bloch oscillations,” Nat. Photonics 8(2), 119–123 (2014).
[Crossref]

Schuh, D.

T. Maag, A. Bayer, S. Baierl, M. Hohenleutner, T. Korn, C. Schüller, D. Schuh, D. Bougeard, C. Lange, R. Huber, M. Mootz, J. E. Sipe, S. W. Koch, and M. Kira, “Coherent cyclotron motion beyond Kohn’s theorem,” Nat. Phys. 12(2), 119–123 (2015).
[Crossref]

Schüller, C.

T. Maag, A. Bayer, S. Baierl, M. Hohenleutner, T. Korn, C. Schüller, D. Schuh, D. Bougeard, C. Lange, R. Huber, M. Mootz, J. E. Sipe, S. W. Koch, and M. Kira, “Coherent cyclotron motion beyond Kohn’s theorem,” Nat. Phys. 12(2), 119–123 (2015).
[Crossref]

Shen, Y. R.

K. H. Yang, P. L. Richards, and Y. R. Shen, “Generation of far-infrared radiation by picosecond light pulses in LiNbO3,” Appl. Phys. Lett. 19(9), 320–323 (1971).
[Crossref]

Shen, Y.-C.

Y.-C. Shen and P. F. Taday, “Development and application of terahertz pulsed imaging for nondestructive inspection of pharmaceutical tablet,” IEEE J. Sel. Top. Quantum Electron. 14(2), 407–415 (2008).
[Crossref]

Sherwin, M.

M. Sherwin, “Terahertz power,” Nature 420(6912), 131–133 (2002).
[Crossref] [PubMed]

Shimano, R.

R. Matsunaga, N. Tsuji, H. Fujita, A. Sugioka, K. Makise, Y. Uzawa, H. Terai, Z. Wang, H. Aoki, and R. Shimano, “Light-induced collective pseudospin precession resonating with Higgs mode in a superconductor,” Science 345(6201), 1145–1149 (2014).
[Crossref] [PubMed]

Siegrist, M. R.

M. R. Siegrist, H. Bindslev, R. Brazis, D. Guyomarc’h, J. P. Hogge, Ph. Moreau, and R. Raguotis, “Development of a high-power THz radiation source for plasma diagnostics,” Infrared Phys. Technol. 40(3), 247–259 (1999).
[Crossref]

Sipe, J. E.

T. Maag, A. Bayer, S. Baierl, M. Hohenleutner, T. Korn, C. Schüller, D. Schuh, D. Bougeard, C. Lange, R. Huber, M. Mootz, J. E. Sipe, S. W. Koch, and M. Kira, “Coherent cyclotron motion beyond Kohn’s theorem,” Nat. Phys. 12(2), 119–123 (2015).
[Crossref]

Skrobol, C.

Strikwerda, A. C.

Sugioka, A.

R. Matsunaga, N. Tsuji, H. Fujita, A. Sugioka, K. Makise, Y. Uzawa, H. Terai, Z. Wang, H. Aoki, and R. Shimano, “Light-induced collective pseudospin precession resonating with Higgs mode in a superconductor,” Science 345(6201), 1145–1149 (2014).
[Crossref] [PubMed]

Szaller, Z.

M. Unferdorben, Z. Szaller, I. Hajdara, J. Hebling, and L. Pálfalvi, “Measurement of refractive index and absorption coefficient of congruent and stoichiometric lithium niobate in the terahertz range,” J. Infrared Mili Terahz Waves 36(12), 1203–1209 (2015).
[Crossref]

Taday, P. F.

Y.-C. Shen and P. F. Taday, “Development and application of terahertz pulsed imaging for nondestructive inspection of pharmaceutical tablet,” IEEE J. Sel. Top. Quantum Electron. 14(2), 407–415 (2008).
[Crossref]

Tanaka, K.

T. Kampfrath, K. Tanaka, and K. A. Nelson, “Resonant and nonresonant control over matter and light by intense terahertz transients,” Nat. Photonics 7(9), 680–690 (2013).
[Crossref]

Tanuichi, T.

K. Kawase, M. Sato, T. Tanuichi, and H. Ito, “Coherent tunable THz-wave generation from LiNbO3 with monolithic grating coupler,” Appl. Phys. Lett. 68(18), 2483 (1996).
[Crossref]

Terai, H.

R. Matsunaga, N. Tsuji, H. Fujita, A. Sugioka, K. Makise, Y. Uzawa, H. Terai, Z. Wang, H. Aoki, and R. Shimano, “Light-induced collective pseudospin precession resonating with Higgs mode in a superconductor,” Science 345(6201), 1145–1149 (2014).
[Crossref] [PubMed]

Tonouchi, M.

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

Tsuji, N.

R. Matsunaga, N. Tsuji, H. Fujita, A. Sugioka, K. Makise, Y. Uzawa, H. Terai, Z. Wang, H. Aoki, and R. Shimano, “Light-induced collective pseudospin precession resonating with Higgs mode in a superconductor,” Science 345(6201), 1145–1149 (2014).
[Crossref] [PubMed]

Unferdorben, M.

M. Unferdorben, Z. Szaller, I. Hajdara, J. Hebling, and L. Pálfalvi, “Measurement of refractive index and absorption coefficient of congruent and stoichiometric lithium niobate in the terahertz range,” J. Infrared Mili Terahz Waves 36(12), 1203–1209 (2015).
[Crossref]

Urbanek, B.

O. Schubert, M. Hohenleutner, F. Langer, B. Urbanek, C. Lange, U. Huttner, D. Golde, T. Meier, M. Kira, S. W. Koch, and R. Huber, “Sub-cycle control of terahertz high-harmonic generation by dynamical Bloch oscillations,” Nat. Photonics 8(2), 119–123 (2014).
[Crossref]

Uzawa, Y.

R. Matsunaga, N. Tsuji, H. Fujita, A. Sugioka, K. Makise, Y. Uzawa, H. Terai, Z. Wang, H. Aoki, and R. Shimano, “Light-induced collective pseudospin precession resonating with Higgs mode in a superconductor,” Science 345(6201), 1145–1149 (2014).
[Crossref] [PubMed]

Vicario, C.

Wang, Z.

R. Matsunaga, N. Tsuji, H. Fujita, A. Sugioka, K. Makise, Y. Uzawa, H. Terai, Z. Wang, H. Aoki, and R. Shimano, “Light-induced collective pseudospin precession resonating with Higgs mode in a superconductor,” Science 345(6201), 1145–1149 (2014).
[Crossref] [PubMed]

Weis, R. S.

R. S. Weis and T. K. Gaylord, “Lithium niobate: summary of physical properties and crystal structure,” Appl. Phys., A Mater. Sci. Process. 37(4), 191–203 (1985).
[Crossref]

Wong, L. J.

W. R. Huang, E. A. Nanni, K. Ravi, K.-H. Hong, A. Fallahi, L. J. Wong, P. D. Keathley, L. E. Zapata, and F. X. Kärtner, “Toward a terahertz-driven electron gun,” Sci. Rep. 5, 14899 (2015).
[Crossref] [PubMed]

Wu, X.

Yang, K. H.

K. H. Yang, P. L. Richards, and Y. R. Shen, “Generation of far-infrared radiation by picosecond light pulses in LiNbO3,” Appl. Phys. Lett. 19(9), 320–323 (1971).
[Crossref]

Yang, S.-H.

N. Yardimici, S.-H. Yang, C. W. Berr, and M. Jarrahi, “High-power terahertz generation using large-area plasmonic photoconductive emitters,” IEEE Trans. THz Sci. and Tech. 5(2), 223–229 (2015).
[Crossref]

Yardimici, N.

N. Yardimici, S.-H. Yang, C. W. Berr, and M. Jarrahi, “High-power terahertz generation using large-area plasmonic photoconductive emitters,” IEEE Trans. THz Sci. and Tech. 5(2), 223–229 (2015).
[Crossref]

Yeh, K.-L.

Zalkovskij, M.

Zapata, L. E.

L. E. Zapata, F. Reichert, M. Hemmer, and F. X. Kärtner, “250 W average power, 100 kHz repetition rate cryogenic Yb:YAG amplifier for OPCPA pumping,” Opt. Lett. 41(3), 492–495 (2016).
[Crossref] [PubMed]

W. R. Huang, S. W. Huang, E. Granados, K. Ravi, K. H. Hong, L. E. Zapata, and F. X. Kärtner, “Highly efficient terahertz pulse generation by optical rectification in stoichiometric and cryo-cooled congruent lithium niobate,” J. Mod. Opt. 62(18), 1486–1493 (2015).
[Crossref]

W. R. Huang, E. A. Nanni, K. Ravi, K.-H. Hong, A. Fallahi, L. J. Wong, P. D. Keathley, L. E. Zapata, and F. X. Kärtner, “Toward a terahertz-driven electron gun,” Sci. Rep. 5, 14899 (2015).
[Crossref] [PubMed]

S.-W. Huang, E. Granados, W. R. Huang, K.-H. Hong, L. E. Zapata, and F. X. Kärtner, “High conversion efficiency, high energy terahertz pulses by optical rectification in cryogenically cooled lithium niobate,” Opt. Lett. 38(5), 796–798 (2013).
[Crossref] [PubMed]

Zholents, A.

A. Zholents, “A new possibility for production of sub-picosecond X-ray pulses using a time dependent radio frequency orbit deflection,” Nucl. Instr. Meth. Phys. Res. 798, 111–116 (2015).

Zhou, C.

Appl. Phys. Lett. (4)

B. Lax, R. L. Aggarwal, and G. Favrot, “Far-infrared step-tunable coherent radiation source: 70µm to 2mm,” Appl. Phys. Lett. 23(12), 679 (1973).
[Crossref]

M. A. Piestrup, R. N. Fleming, and R. H. Pantell, “Continuously tunable submillimeter wave source,” Appl. Phys. Lett. 26(8), 418 (1975).
[Crossref]

K. Kawase, M. Sato, T. Tanuichi, and H. Ito, “Coherent tunable THz-wave generation from LiNbO3 with monolithic grating coupler,” Appl. Phys. Lett. 68(18), 2483 (1996).
[Crossref]

K. H. Yang, P. L. Richards, and Y. R. Shen, “Generation of far-infrared radiation by picosecond light pulses in LiNbO3,” Appl. Phys. Lett. 19(9), 320–323 (1971).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

R. S. Weis and T. K. Gaylord, “Lithium niobate: summary of physical properties and crystal structure,” Appl. Phys., A Mater. Sci. Process. 37(4), 191–203 (1985).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

Y.-C. Shen and P. F. Taday, “Development and application of terahertz pulsed imaging for nondestructive inspection of pharmaceutical tablet,” IEEE J. Sel. Top. Quantum Electron. 14(2), 407–415 (2008).
[Crossref]

IEEE Trans. THz Sci. and Tech. (1)

N. Yardimici, S.-H. Yang, C. W. Berr, and M. Jarrahi, “High-power terahertz generation using large-area plasmonic photoconductive emitters,” IEEE Trans. THz Sci. and Tech. 5(2), 223–229 (2015).
[Crossref]

Infrared Phys. Technol. (1)

M. R. Siegrist, H. Bindslev, R. Brazis, D. Guyomarc’h, J. P. Hogge, Ph. Moreau, and R. Raguotis, “Development of a high-power THz radiation source for plasma diagnostics,” Infrared Phys. Technol. 40(3), 247–259 (1999).
[Crossref]

J. Infrared Mili Terahz Waves (1)

M. Unferdorben, Z. Szaller, I. Hajdara, J. Hebling, and L. Pálfalvi, “Measurement of refractive index and absorption coefficient of congruent and stoichiometric lithium niobate in the terahertz range,” J. Infrared Mili Terahz Waves 36(12), 1203–1209 (2015).
[Crossref]

J. Mod. Opt. (1)

W. R. Huang, S. W. Huang, E. Granados, K. Ravi, K. H. Hong, L. E. Zapata, and F. X. Kärtner, “Highly efficient terahertz pulse generation by optical rectification in stoichiometric and cryo-cooled congruent lithium niobate,” J. Mod. Opt. 62(18), 1486–1493 (2015).
[Crossref]

J. Opt. Soc. Am. B (1)

Nat. Commun. (1)

E. A. Nanni, W. R. Huang, K.-H. Hong, K. Ravi, A. Fallahi, G. Moriena, R. J. D. Miller, and F. X. Kärtner, “Terahertz-driven linear electron acceleration,” Nat. Commun. 6, 8486 (2015).
[Crossref] [PubMed]

Nat. Photonics (3)

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

O. Schubert, M. Hohenleutner, F. Langer, B. Urbanek, C. Lange, U. Huttner, D. Golde, T. Meier, M. Kira, S. W. Koch, and R. Huber, “Sub-cycle control of terahertz high-harmonic generation by dynamical Bloch oscillations,” Nat. Photonics 8(2), 119–123 (2014).
[Crossref]

T. Kampfrath, K. Tanaka, and K. A. Nelson, “Resonant and nonresonant control over matter and light by intense terahertz transients,” Nat. Photonics 7(9), 680–690 (2013).
[Crossref]

Nat. Phys. (1)

T. Maag, A. Bayer, S. Baierl, M. Hohenleutner, T. Korn, C. Schüller, D. Schuh, D. Bougeard, C. Lange, R. Huber, M. Mootz, J. E. Sipe, S. W. Koch, and M. Kira, “Coherent cyclotron motion beyond Kohn’s theorem,” Nat. Phys. 12(2), 119–123 (2015).
[Crossref]

Nature (1)

M. Sherwin, “Terahertz power,” Nature 420(6912), 131–133 (2002).
[Crossref] [PubMed]

New J. Phys. (1)

C. Lombosi, G. Polónyi, M. Mechler, Z. Ollmann, J. Hebling, and J. A. Fülöp, “Nonlinear distortion of intense THz beams,” New J. Phys. 17(8), 083041 (2015).
[Crossref]

Nucl. Instr. Meth. Phys. Res. (1)

A. Zholents, “A new possibility for production of sub-picosecond X-ray pulses using a time dependent radio frequency orbit deflection,” Nucl. Instr. Meth. Phys. Res. 798, 111–116 (2015).

Opt. Express (6)

Opt. Lett. (4)

Optica (1)

Phys. Rev. Lett. (1)

K. N. Egodapitiya, S. Li, and R. R. Jones, “Terahertz-induced field-free orientation of rotationally excited molecules,” Phys. Rev. Lett. 112(10), 103002 (2014).
[Crossref] [PubMed]

Rev. Sci. Instrum. (1)

S. H. Gold and G. S. Nusinovich, “Review of high-power microwave source research,” Rev. Sci. Instrum. 68(11), 3945 (1997).
[Crossref]

Sci. Rep. (1)

W. R. Huang, E. A. Nanni, K. Ravi, K.-H. Hong, A. Fallahi, L. J. Wong, P. D. Keathley, L. E. Zapata, and F. X. Kärtner, “Toward a terahertz-driven electron gun,” Sci. Rep. 5, 14899 (2015).
[Crossref] [PubMed]

Science (2)

C. Kealhofer, W. Schneider, D. Ehberger, A. Ryabov, F. Krausz, and P. Baum, “All-optical control and metrology of electron pulses,” Science 352(6284), 429–433 (2016).
[Crossref] [PubMed]

R. Matsunaga, N. Tsuji, H. Fujita, A. Sugioka, K. Makise, Y. Uzawa, H. Terai, Z. Wang, H. Aoki, and R. Shimano, “Light-induced collective pseudospin precession resonating with Higgs mode in a superconductor,” Science 345(6201), 1145–1149 (2014).
[Crossref] [PubMed]

Other (4)

F. X. Kärtner, F. Ahr, A.-L. Calendron, H. Cankaya, S. Carbajo, G. Chang, G. Cirmi, K. Dörner, U. Dorda, A. Fallahi, T. Hartin, M. Hemmer, R. Hobbs, Y. Hua, R. Huang, R. Letrun, N. Matlis, V. Mazalova, O. Mücke, E. Nanni, W. Putnam, K. Ravi, F. Reichert, I. Sarrou, X. Wu, H. Ye, L. Zapata, D. Zhang, C. Zhou, R. J. D. Miller, K. Berggren, H. Graafsma, A. Meents, R. W. Assmann, H. N. Chapman, and P. M.-L. Fromme, “AXSIS: Exploring the Frontiers in Attosecond X-ray Science, Imaging and Spectroscopy,” NIMA Proceedings (2016).
[Crossref]

A. Fallahi, M. Fakhari, A. Yahaghi, M. Arrieta, and F. X. Kӓrtner, “Short Electron Bunch Generation Using Single-cycle Ultrafast Electron Guns,” arXiv:1606.02153 (2016).

C. M. Baumgarten, B. A. Reagan, M. A. Pedicone, H. Bravo, L. Yin, H. Wang, M. Woolston, B. Carr, C. S. Menoni, and J. J. Rocca, “Demonstration of a Compact 500 Hz Repetition Rate Joule-Level Chirped Pulse Amplification Laser,” CLEO Digest, paper STu3M.3 (2016).

G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Crystals (Berlin Spring Verlag, (1999).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Absorption coefficient of 6% MgO doped lithium niobate at room temperature [20,21] and cryogenic temperature [21] along the crystallographic z-axis. The data from [20,21] has been extrapolated from 250 GHz and 400 GHz, respectively, below 100 GHz. (b) Figure of merit taking into account the THz frequency Ω2 and the absorption coefficient α. Previous works are indicated.
Fig. 2
Fig. 2 Schematic of the experimental THz-TPF setup in (a) with the characteristics of the IR laser source: (b) shows the measured autocorrelation of the 1030nm IR input beam, fitted with a Gaussian function, and (c) its spectrum with the beam profile measured with a CCD in inset. LN stands for lithium niobate prism.
Fig. 3
Fig. 3 Extracted and simulated output THz energy and efficiency at room temperature (300 K) (a) and cryogenic temperature (85 K) (c) versus IR pump energy and corresponding pump fluence calculated for a Gaussian beam. (b) Normalized measured IR-input and output spectra obtained at room temperature. The broadening towards longer wavelengths due to the cascading effect during THz generation is visible. The predicted IR-spectrum is also indicated. (d) Conversion efficiency versus temperature when the setup was optimized at 85 K.
Fig. 4
Fig. 4 Characteristics of the THz output for the highest energy achieved. (a) THz beam visualized on a liquid crystal sensor. (b) Electro-optic sampling of the THz pulse measured in the time-domain and calculated back in the frequency domain. The dot line shows the THz output spectrum obtained from numerical simulations.
Fig. 5
Fig. 5 Spatial characterization of the THz beam. (a)-(c) are measurements of the focused THz beam: (a) shows the beam profile acquired with a THz camera after collection and focusing with two OAP for different IR input energies. The location of the centroid of the beam is represented versus IR input pump energy and fluence in (b) and the evolution of the beam diameter in (c). The knife-edge measurement of the beam diameter in the far-field is shown in (d) and the measured THz beam divergence in the horizontal plane is shown in (e).

Tables (1)

Tables Icon

Table 1 Simulation Parameters: Material and Numerical Parameters

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

η T H z = 2 d e f f 2 ε 0 n o p t 2 n T H z c 3 Ω 2 I L 2 e α L / 2 sin h 2 ( α L / 4 ) ( α L / 4 ) 2

Metrics