Abstract

An integrated optic polarization splitter with large fabrication tolerance and high reliability is required for optical signal processing in quantum-encrypted communication systems. A polarization splitter based on total internal reflection from a highly birefringent polymer—reactive mesogen—is proposed and demonstrated in this work. The device consists of a mode expander for reducing the wave vector distribution of the guided mode, and an interface with a large birefringence. Several polymers with suitable refractive indexes were used for fabricating the device. We obtained a polarization splitter with a low crosstalk (less than −30 dB), and a large fabrication tolerance.

© 2016 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. H. Bennett and D. P. DiVincenzo, “Quantum information and computation,” Nature 404(6775), 247–255 (2000).
    [Crossref] [PubMed]
  2. J. C. F. Matthews, A. Politi, A. Stefanov, and J. L. O’Brien, “Manipulation of multiphoton entanglement in waveguide quantum circuits,” Nat. Photonics 3(6), 346–350 (2009).
    [Crossref]
  3. A. Martin, A. Issautier, H. Herrmann, W. Sohler, D. B. Ostrowsky, O. Alibart, and S. Tanzilli, “A polarization entangled photon-pair source based on a type-II PPLN waveguide emitting at a telecom wavelength,” New J. Phys. 12(10), 103005 (2010).
    [Crossref]
  4. Y.-H. Kim, S. P. Kulik, and Y. Shih, “Quantum teleportation of a polarization state with a complete bell state measurement,” Phys. Rev. Lett. 86(7), 1370–1373 (2001).
    [Crossref] [PubMed]
  5. I. Kiyat, A. Aydinli, and N. Dagli, “A compact silicon-on-insulator polarization splitter,” IEEE Photonics Technol. Lett. 17(1), 100–102 (2005).
    [Crossref]
  6. H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, and S. Itabashi, “Ultrasmall polarization splitter based on silicon wire waveguides,” Opt. Express 14(25), 12401–12408 (2006).
    [Crossref] [PubMed]
  7. M. Okuno, A. Sugita, K. Jinguji, and M. Kawachi, “Birefringence control of silica waveguides on Si and its application to a polarization-beam splitted/switch,” J. Lightwave Technol. 12(4), 625–633 (1994).
    [Crossref]
  8. L. M. Augustin, R. Hanfoug, J. J. G. M. van der Tol, W. J. M. de Laat, and M. K. Smit, “A compact integrated polarization splitter/converter in InGaAsP-InP,” IEEE Photonics Technol. Lett. 19(17), 1286–1288 (2007).
    [Crossref]
  9. L. M. Augustin, J. J. G. M. van der Tol, R. Hanfoug, W. J. M. de Laat, M. J. E. van de Moosdijk, P. W. L. van Dijk, Y. S. Oei, and M. K. Smit, “A single etch-step fabrication-tolerant polarization splitter,” J. Lightwave Technol. 25(3), 740–746 (2007).
    [Crossref]
  10. M.-C. Oh, W.-S. Chu, J.-S. Shin, J.-W. Kim, K.-J. Kim, J.-K. Seo, H.-K. Lee, Y.-O. Noh, and H.-J. Lee, “Polymeric optical waveguide devices exploiting special properties of polymer materials,” Opt. Commun. 362, 3–12 (2016).
    [Crossref]
  11. Z. Zhang and N. Keil, “Thermo-optic devices on polymer platform,” Opt. Commun. 362, 101–114 (2016).
    [Crossref]
  12. M.-C. Oh, S.-S. Lee, S.-Y. Shin, W.-Y. Hwang, and J.-J. Kim, “Polymeric waveguide polarization splitter based on poling-induced birefringence,” Electron. Lett. 32(4), 324–326 (1996).
    [Crossref]
  13. M.-C. Oh, M.-H. Lee, and H.-J. Lee, “Polymeric waveguide polarization splitter with a buried birefringent polymer,” IEEE Photonics Technol. Lett. 11(9), 1144–1146 (1999).
    [Crossref]
  14. J.-W. Kim, K.-J. Kim, M.-C. Oh, J.-K. Seo, Y.-O. Noh, and H.-J. Lee, “Polarization-splitting waveguide devices incorporating perfluorinated birefringent polymers,” J. Lightwave Technol. 29(12), 1842–1846 (2011).
    [Crossref]
  15. H. Thiem, P. Strohriegl, M. Shkunov, and I. McCulloch, “Photopolymerization of reactive mesogens,” Macromol. Chem. Phys. 206(21), 2153–2159 (2005).
    [Crossref]
  16. W.-S. Chu, S.-M. Kim, J.-W. Kim, K.-J. Kim, and M.-C. Oh, “Polarization converting waveguide devices incorporating UV-curable reactive mesogen,” J. Opt. Soc. Korea 15(3), 289–292 (2011).
    [Crossref]
  17. J. Hoogboom, J. A. A. W. Elemans, A. E. Rowan, T. H. M. Rasing, and R. J. M. Nolte, “The development of self-assembled liquid crystal display alignment layers,” Philos. Trans. Royal Soc. A 365(1855), 1553–1576 (2007).
    [Crossref] [PubMed]

2016 (2)

M.-C. Oh, W.-S. Chu, J.-S. Shin, J.-W. Kim, K.-J. Kim, J.-K. Seo, H.-K. Lee, Y.-O. Noh, and H.-J. Lee, “Polymeric optical waveguide devices exploiting special properties of polymer materials,” Opt. Commun. 362, 3–12 (2016).
[Crossref]

Z. Zhang and N. Keil, “Thermo-optic devices on polymer platform,” Opt. Commun. 362, 101–114 (2016).
[Crossref]

2011 (2)

2010 (1)

A. Martin, A. Issautier, H. Herrmann, W. Sohler, D. B. Ostrowsky, O. Alibart, and S. Tanzilli, “A polarization entangled photon-pair source based on a type-II PPLN waveguide emitting at a telecom wavelength,” New J. Phys. 12(10), 103005 (2010).
[Crossref]

2009 (1)

J. C. F. Matthews, A. Politi, A. Stefanov, and J. L. O’Brien, “Manipulation of multiphoton entanglement in waveguide quantum circuits,” Nat. Photonics 3(6), 346–350 (2009).
[Crossref]

2007 (3)

L. M. Augustin, R. Hanfoug, J. J. G. M. van der Tol, W. J. M. de Laat, and M. K. Smit, “A compact integrated polarization splitter/converter in InGaAsP-InP,” IEEE Photonics Technol. Lett. 19(17), 1286–1288 (2007).
[Crossref]

L. M. Augustin, J. J. G. M. van der Tol, R. Hanfoug, W. J. M. de Laat, M. J. E. van de Moosdijk, P. W. L. van Dijk, Y. S. Oei, and M. K. Smit, “A single etch-step fabrication-tolerant polarization splitter,” J. Lightwave Technol. 25(3), 740–746 (2007).
[Crossref]

J. Hoogboom, J. A. A. W. Elemans, A. E. Rowan, T. H. M. Rasing, and R. J. M. Nolte, “The development of self-assembled liquid crystal display alignment layers,” Philos. Trans. Royal Soc. A 365(1855), 1553–1576 (2007).
[Crossref] [PubMed]

2006 (1)

2005 (2)

H. Thiem, P. Strohriegl, M. Shkunov, and I. McCulloch, “Photopolymerization of reactive mesogens,” Macromol. Chem. Phys. 206(21), 2153–2159 (2005).
[Crossref]

I. Kiyat, A. Aydinli, and N. Dagli, “A compact silicon-on-insulator polarization splitter,” IEEE Photonics Technol. Lett. 17(1), 100–102 (2005).
[Crossref]

2001 (1)

Y.-H. Kim, S. P. Kulik, and Y. Shih, “Quantum teleportation of a polarization state with a complete bell state measurement,” Phys. Rev. Lett. 86(7), 1370–1373 (2001).
[Crossref] [PubMed]

2000 (1)

C. H. Bennett and D. P. DiVincenzo, “Quantum information and computation,” Nature 404(6775), 247–255 (2000).
[Crossref] [PubMed]

1999 (1)

M.-C. Oh, M.-H. Lee, and H.-J. Lee, “Polymeric waveguide polarization splitter with a buried birefringent polymer,” IEEE Photonics Technol. Lett. 11(9), 1144–1146 (1999).
[Crossref]

1996 (1)

M.-C. Oh, S.-S. Lee, S.-Y. Shin, W.-Y. Hwang, and J.-J. Kim, “Polymeric waveguide polarization splitter based on poling-induced birefringence,” Electron. Lett. 32(4), 324–326 (1996).
[Crossref]

1994 (1)

M. Okuno, A. Sugita, K. Jinguji, and M. Kawachi, “Birefringence control of silica waveguides on Si and its application to a polarization-beam splitted/switch,” J. Lightwave Technol. 12(4), 625–633 (1994).
[Crossref]

Alibart, O.

A. Martin, A. Issautier, H. Herrmann, W. Sohler, D. B. Ostrowsky, O. Alibart, and S. Tanzilli, “A polarization entangled photon-pair source based on a type-II PPLN waveguide emitting at a telecom wavelength,” New J. Phys. 12(10), 103005 (2010).
[Crossref]

Augustin, L. M.

L. M. Augustin, R. Hanfoug, J. J. G. M. van der Tol, W. J. M. de Laat, and M. K. Smit, “A compact integrated polarization splitter/converter in InGaAsP-InP,” IEEE Photonics Technol. Lett. 19(17), 1286–1288 (2007).
[Crossref]

L. M. Augustin, J. J. G. M. van der Tol, R. Hanfoug, W. J. M. de Laat, M. J. E. van de Moosdijk, P. W. L. van Dijk, Y. S. Oei, and M. K. Smit, “A single etch-step fabrication-tolerant polarization splitter,” J. Lightwave Technol. 25(3), 740–746 (2007).
[Crossref]

Aydinli, A.

I. Kiyat, A. Aydinli, and N. Dagli, “A compact silicon-on-insulator polarization splitter,” IEEE Photonics Technol. Lett. 17(1), 100–102 (2005).
[Crossref]

Bennett, C. H.

C. H. Bennett and D. P. DiVincenzo, “Quantum information and computation,” Nature 404(6775), 247–255 (2000).
[Crossref] [PubMed]

Chu, W.-S.

M.-C. Oh, W.-S. Chu, J.-S. Shin, J.-W. Kim, K.-J. Kim, J.-K. Seo, H.-K. Lee, Y.-O. Noh, and H.-J. Lee, “Polymeric optical waveguide devices exploiting special properties of polymer materials,” Opt. Commun. 362, 3–12 (2016).
[Crossref]

W.-S. Chu, S.-M. Kim, J.-W. Kim, K.-J. Kim, and M.-C. Oh, “Polarization converting waveguide devices incorporating UV-curable reactive mesogen,” J. Opt. Soc. Korea 15(3), 289–292 (2011).
[Crossref]

Dagli, N.

I. Kiyat, A. Aydinli, and N. Dagli, “A compact silicon-on-insulator polarization splitter,” IEEE Photonics Technol. Lett. 17(1), 100–102 (2005).
[Crossref]

de Laat, W. J. M.

L. M. Augustin, R. Hanfoug, J. J. G. M. van der Tol, W. J. M. de Laat, and M. K. Smit, “A compact integrated polarization splitter/converter in InGaAsP-InP,” IEEE Photonics Technol. Lett. 19(17), 1286–1288 (2007).
[Crossref]

L. M. Augustin, J. J. G. M. van der Tol, R. Hanfoug, W. J. M. de Laat, M. J. E. van de Moosdijk, P. W. L. van Dijk, Y. S. Oei, and M. K. Smit, “A single etch-step fabrication-tolerant polarization splitter,” J. Lightwave Technol. 25(3), 740–746 (2007).
[Crossref]

DiVincenzo, D. P.

C. H. Bennett and D. P. DiVincenzo, “Quantum information and computation,” Nature 404(6775), 247–255 (2000).
[Crossref] [PubMed]

Elemans, J. A. A. W.

J. Hoogboom, J. A. A. W. Elemans, A. E. Rowan, T. H. M. Rasing, and R. J. M. Nolte, “The development of self-assembled liquid crystal display alignment layers,” Philos. Trans. Royal Soc. A 365(1855), 1553–1576 (2007).
[Crossref] [PubMed]

Fukuda, H.

Hanfoug, R.

L. M. Augustin, J. J. G. M. van der Tol, R. Hanfoug, W. J. M. de Laat, M. J. E. van de Moosdijk, P. W. L. van Dijk, Y. S. Oei, and M. K. Smit, “A single etch-step fabrication-tolerant polarization splitter,” J. Lightwave Technol. 25(3), 740–746 (2007).
[Crossref]

L. M. Augustin, R. Hanfoug, J. J. G. M. van der Tol, W. J. M. de Laat, and M. K. Smit, “A compact integrated polarization splitter/converter in InGaAsP-InP,” IEEE Photonics Technol. Lett. 19(17), 1286–1288 (2007).
[Crossref]

Herrmann, H.

A. Martin, A. Issautier, H. Herrmann, W. Sohler, D. B. Ostrowsky, O. Alibart, and S. Tanzilli, “A polarization entangled photon-pair source based on a type-II PPLN waveguide emitting at a telecom wavelength,” New J. Phys. 12(10), 103005 (2010).
[Crossref]

Hoogboom, J.

J. Hoogboom, J. A. A. W. Elemans, A. E. Rowan, T. H. M. Rasing, and R. J. M. Nolte, “The development of self-assembled liquid crystal display alignment layers,” Philos. Trans. Royal Soc. A 365(1855), 1553–1576 (2007).
[Crossref] [PubMed]

Hwang, W.-Y.

M.-C. Oh, S.-S. Lee, S.-Y. Shin, W.-Y. Hwang, and J.-J. Kim, “Polymeric waveguide polarization splitter based on poling-induced birefringence,” Electron. Lett. 32(4), 324–326 (1996).
[Crossref]

Issautier, A.

A. Martin, A. Issautier, H. Herrmann, W. Sohler, D. B. Ostrowsky, O. Alibart, and S. Tanzilli, “A polarization entangled photon-pair source based on a type-II PPLN waveguide emitting at a telecom wavelength,” New J. Phys. 12(10), 103005 (2010).
[Crossref]

Itabashi, S.

Jinguji, K.

M. Okuno, A. Sugita, K. Jinguji, and M. Kawachi, “Birefringence control of silica waveguides on Si and its application to a polarization-beam splitted/switch,” J. Lightwave Technol. 12(4), 625–633 (1994).
[Crossref]

Kawachi, M.

M. Okuno, A. Sugita, K. Jinguji, and M. Kawachi, “Birefringence control of silica waveguides on Si and its application to a polarization-beam splitted/switch,” J. Lightwave Technol. 12(4), 625–633 (1994).
[Crossref]

Keil, N.

Z. Zhang and N. Keil, “Thermo-optic devices on polymer platform,” Opt. Commun. 362, 101–114 (2016).
[Crossref]

Kim, J.-J.

M.-C. Oh, S.-S. Lee, S.-Y. Shin, W.-Y. Hwang, and J.-J. Kim, “Polymeric waveguide polarization splitter based on poling-induced birefringence,” Electron. Lett. 32(4), 324–326 (1996).
[Crossref]

Kim, J.-W.

Kim, K.-J.

Kim, S.-M.

Kim, Y.-H.

Y.-H. Kim, S. P. Kulik, and Y. Shih, “Quantum teleportation of a polarization state with a complete bell state measurement,” Phys. Rev. Lett. 86(7), 1370–1373 (2001).
[Crossref] [PubMed]

Kiyat, I.

I. Kiyat, A. Aydinli, and N. Dagli, “A compact silicon-on-insulator polarization splitter,” IEEE Photonics Technol. Lett. 17(1), 100–102 (2005).
[Crossref]

Kulik, S. P.

Y.-H. Kim, S. P. Kulik, and Y. Shih, “Quantum teleportation of a polarization state with a complete bell state measurement,” Phys. Rev. Lett. 86(7), 1370–1373 (2001).
[Crossref] [PubMed]

Lee, H.-J.

M.-C. Oh, W.-S. Chu, J.-S. Shin, J.-W. Kim, K.-J. Kim, J.-K. Seo, H.-K. Lee, Y.-O. Noh, and H.-J. Lee, “Polymeric optical waveguide devices exploiting special properties of polymer materials,” Opt. Commun. 362, 3–12 (2016).
[Crossref]

J.-W. Kim, K.-J. Kim, M.-C. Oh, J.-K. Seo, Y.-O. Noh, and H.-J. Lee, “Polarization-splitting waveguide devices incorporating perfluorinated birefringent polymers,” J. Lightwave Technol. 29(12), 1842–1846 (2011).
[Crossref]

M.-C. Oh, M.-H. Lee, and H.-J. Lee, “Polymeric waveguide polarization splitter with a buried birefringent polymer,” IEEE Photonics Technol. Lett. 11(9), 1144–1146 (1999).
[Crossref]

Lee, H.-K.

M.-C. Oh, W.-S. Chu, J.-S. Shin, J.-W. Kim, K.-J. Kim, J.-K. Seo, H.-K. Lee, Y.-O. Noh, and H.-J. Lee, “Polymeric optical waveguide devices exploiting special properties of polymer materials,” Opt. Commun. 362, 3–12 (2016).
[Crossref]

Lee, M.-H.

M.-C. Oh, M.-H. Lee, and H.-J. Lee, “Polymeric waveguide polarization splitter with a buried birefringent polymer,” IEEE Photonics Technol. Lett. 11(9), 1144–1146 (1999).
[Crossref]

Lee, S.-S.

M.-C. Oh, S.-S. Lee, S.-Y. Shin, W.-Y. Hwang, and J.-J. Kim, “Polymeric waveguide polarization splitter based on poling-induced birefringence,” Electron. Lett. 32(4), 324–326 (1996).
[Crossref]

Martin, A.

A. Martin, A. Issautier, H. Herrmann, W. Sohler, D. B. Ostrowsky, O. Alibart, and S. Tanzilli, “A polarization entangled photon-pair source based on a type-II PPLN waveguide emitting at a telecom wavelength,” New J. Phys. 12(10), 103005 (2010).
[Crossref]

Matthews, J. C. F.

J. C. F. Matthews, A. Politi, A. Stefanov, and J. L. O’Brien, “Manipulation of multiphoton entanglement in waveguide quantum circuits,” Nat. Photonics 3(6), 346–350 (2009).
[Crossref]

McCulloch, I.

H. Thiem, P. Strohriegl, M. Shkunov, and I. McCulloch, “Photopolymerization of reactive mesogens,” Macromol. Chem. Phys. 206(21), 2153–2159 (2005).
[Crossref]

Noh, Y.-O.

M.-C. Oh, W.-S. Chu, J.-S. Shin, J.-W. Kim, K.-J. Kim, J.-K. Seo, H.-K. Lee, Y.-O. Noh, and H.-J. Lee, “Polymeric optical waveguide devices exploiting special properties of polymer materials,” Opt. Commun. 362, 3–12 (2016).
[Crossref]

J.-W. Kim, K.-J. Kim, M.-C. Oh, J.-K. Seo, Y.-O. Noh, and H.-J. Lee, “Polarization-splitting waveguide devices incorporating perfluorinated birefringent polymers,” J. Lightwave Technol. 29(12), 1842–1846 (2011).
[Crossref]

Nolte, R. J. M.

J. Hoogboom, J. A. A. W. Elemans, A. E. Rowan, T. H. M. Rasing, and R. J. M. Nolte, “The development of self-assembled liquid crystal display alignment layers,” Philos. Trans. Royal Soc. A 365(1855), 1553–1576 (2007).
[Crossref] [PubMed]

O’Brien, J. L.

J. C. F. Matthews, A. Politi, A. Stefanov, and J. L. O’Brien, “Manipulation of multiphoton entanglement in waveguide quantum circuits,” Nat. Photonics 3(6), 346–350 (2009).
[Crossref]

Oei, Y. S.

Oh, M.-C.

M.-C. Oh, W.-S. Chu, J.-S. Shin, J.-W. Kim, K.-J. Kim, J.-K. Seo, H.-K. Lee, Y.-O. Noh, and H.-J. Lee, “Polymeric optical waveguide devices exploiting special properties of polymer materials,” Opt. Commun. 362, 3–12 (2016).
[Crossref]

J.-W. Kim, K.-J. Kim, M.-C. Oh, J.-K. Seo, Y.-O. Noh, and H.-J. Lee, “Polarization-splitting waveguide devices incorporating perfluorinated birefringent polymers,” J. Lightwave Technol. 29(12), 1842–1846 (2011).
[Crossref]

W.-S. Chu, S.-M. Kim, J.-W. Kim, K.-J. Kim, and M.-C. Oh, “Polarization converting waveguide devices incorporating UV-curable reactive mesogen,” J. Opt. Soc. Korea 15(3), 289–292 (2011).
[Crossref]

M.-C. Oh, M.-H. Lee, and H.-J. Lee, “Polymeric waveguide polarization splitter with a buried birefringent polymer,” IEEE Photonics Technol. Lett. 11(9), 1144–1146 (1999).
[Crossref]

M.-C. Oh, S.-S. Lee, S.-Y. Shin, W.-Y. Hwang, and J.-J. Kim, “Polymeric waveguide polarization splitter based on poling-induced birefringence,” Electron. Lett. 32(4), 324–326 (1996).
[Crossref]

Okuno, M.

M. Okuno, A. Sugita, K. Jinguji, and M. Kawachi, “Birefringence control of silica waveguides on Si and its application to a polarization-beam splitted/switch,” J. Lightwave Technol. 12(4), 625–633 (1994).
[Crossref]

Ostrowsky, D. B.

A. Martin, A. Issautier, H. Herrmann, W. Sohler, D. B. Ostrowsky, O. Alibart, and S. Tanzilli, “A polarization entangled photon-pair source based on a type-II PPLN waveguide emitting at a telecom wavelength,” New J. Phys. 12(10), 103005 (2010).
[Crossref]

Politi, A.

J. C. F. Matthews, A. Politi, A. Stefanov, and J. L. O’Brien, “Manipulation of multiphoton entanglement in waveguide quantum circuits,” Nat. Photonics 3(6), 346–350 (2009).
[Crossref]

Rasing, T. H. M.

J. Hoogboom, J. A. A. W. Elemans, A. E. Rowan, T. H. M. Rasing, and R. J. M. Nolte, “The development of self-assembled liquid crystal display alignment layers,” Philos. Trans. Royal Soc. A 365(1855), 1553–1576 (2007).
[Crossref] [PubMed]

Rowan, A. E.

J. Hoogboom, J. A. A. W. Elemans, A. E. Rowan, T. H. M. Rasing, and R. J. M. Nolte, “The development of self-assembled liquid crystal display alignment layers,” Philos. Trans. Royal Soc. A 365(1855), 1553–1576 (2007).
[Crossref] [PubMed]

Seo, J.-K.

M.-C. Oh, W.-S. Chu, J.-S. Shin, J.-W. Kim, K.-J. Kim, J.-K. Seo, H.-K. Lee, Y.-O. Noh, and H.-J. Lee, “Polymeric optical waveguide devices exploiting special properties of polymer materials,” Opt. Commun. 362, 3–12 (2016).
[Crossref]

J.-W. Kim, K.-J. Kim, M.-C. Oh, J.-K. Seo, Y.-O. Noh, and H.-J. Lee, “Polarization-splitting waveguide devices incorporating perfluorinated birefringent polymers,” J. Lightwave Technol. 29(12), 1842–1846 (2011).
[Crossref]

Shih, Y.

Y.-H. Kim, S. P. Kulik, and Y. Shih, “Quantum teleportation of a polarization state with a complete bell state measurement,” Phys. Rev. Lett. 86(7), 1370–1373 (2001).
[Crossref] [PubMed]

Shin, J.-S.

M.-C. Oh, W.-S. Chu, J.-S. Shin, J.-W. Kim, K.-J. Kim, J.-K. Seo, H.-K. Lee, Y.-O. Noh, and H.-J. Lee, “Polymeric optical waveguide devices exploiting special properties of polymer materials,” Opt. Commun. 362, 3–12 (2016).
[Crossref]

Shin, S.-Y.

M.-C. Oh, S.-S. Lee, S.-Y. Shin, W.-Y. Hwang, and J.-J. Kim, “Polymeric waveguide polarization splitter based on poling-induced birefringence,” Electron. Lett. 32(4), 324–326 (1996).
[Crossref]

Shinojima, H.

Shkunov, M.

H. Thiem, P. Strohriegl, M. Shkunov, and I. McCulloch, “Photopolymerization of reactive mesogens,” Macromol. Chem. Phys. 206(21), 2153–2159 (2005).
[Crossref]

Smit, M. K.

L. M. Augustin, J. J. G. M. van der Tol, R. Hanfoug, W. J. M. de Laat, M. J. E. van de Moosdijk, P. W. L. van Dijk, Y. S. Oei, and M. K. Smit, “A single etch-step fabrication-tolerant polarization splitter,” J. Lightwave Technol. 25(3), 740–746 (2007).
[Crossref]

L. M. Augustin, R. Hanfoug, J. J. G. M. van der Tol, W. J. M. de Laat, and M. K. Smit, “A compact integrated polarization splitter/converter in InGaAsP-InP,” IEEE Photonics Technol. Lett. 19(17), 1286–1288 (2007).
[Crossref]

Sohler, W.

A. Martin, A. Issautier, H. Herrmann, W. Sohler, D. B. Ostrowsky, O. Alibart, and S. Tanzilli, “A polarization entangled photon-pair source based on a type-II PPLN waveguide emitting at a telecom wavelength,” New J. Phys. 12(10), 103005 (2010).
[Crossref]

Stefanov, A.

J. C. F. Matthews, A. Politi, A. Stefanov, and J. L. O’Brien, “Manipulation of multiphoton entanglement in waveguide quantum circuits,” Nat. Photonics 3(6), 346–350 (2009).
[Crossref]

Strohriegl, P.

H. Thiem, P. Strohriegl, M. Shkunov, and I. McCulloch, “Photopolymerization of reactive mesogens,” Macromol. Chem. Phys. 206(21), 2153–2159 (2005).
[Crossref]

Sugita, A.

M. Okuno, A. Sugita, K. Jinguji, and M. Kawachi, “Birefringence control of silica waveguides on Si and its application to a polarization-beam splitted/switch,” J. Lightwave Technol. 12(4), 625–633 (1994).
[Crossref]

Tanzilli, S.

A. Martin, A. Issautier, H. Herrmann, W. Sohler, D. B. Ostrowsky, O. Alibart, and S. Tanzilli, “A polarization entangled photon-pair source based on a type-II PPLN waveguide emitting at a telecom wavelength,” New J. Phys. 12(10), 103005 (2010).
[Crossref]

Thiem, H.

H. Thiem, P. Strohriegl, M. Shkunov, and I. McCulloch, “Photopolymerization of reactive mesogens,” Macromol. Chem. Phys. 206(21), 2153–2159 (2005).
[Crossref]

Tsuchizawa, T.

van de Moosdijk, M. J. E.

van der Tol, J. J. G. M.

L. M. Augustin, J. J. G. M. van der Tol, R. Hanfoug, W. J. M. de Laat, M. J. E. van de Moosdijk, P. W. L. van Dijk, Y. S. Oei, and M. K. Smit, “A single etch-step fabrication-tolerant polarization splitter,” J. Lightwave Technol. 25(3), 740–746 (2007).
[Crossref]

L. M. Augustin, R. Hanfoug, J. J. G. M. van der Tol, W. J. M. de Laat, and M. K. Smit, “A compact integrated polarization splitter/converter in InGaAsP-InP,” IEEE Photonics Technol. Lett. 19(17), 1286–1288 (2007).
[Crossref]

van Dijk, P. W. L.

Watanabe, T.

Yamada, K.

Zhang, Z.

Z. Zhang and N. Keil, “Thermo-optic devices on polymer platform,” Opt. Commun. 362, 101–114 (2016).
[Crossref]

Electron. Lett. (1)

M.-C. Oh, S.-S. Lee, S.-Y. Shin, W.-Y. Hwang, and J.-J. Kim, “Polymeric waveguide polarization splitter based on poling-induced birefringence,” Electron. Lett. 32(4), 324–326 (1996).
[Crossref]

IEEE Photonics Technol. Lett. (3)

M.-C. Oh, M.-H. Lee, and H.-J. Lee, “Polymeric waveguide polarization splitter with a buried birefringent polymer,” IEEE Photonics Technol. Lett. 11(9), 1144–1146 (1999).
[Crossref]

I. Kiyat, A. Aydinli, and N. Dagli, “A compact silicon-on-insulator polarization splitter,” IEEE Photonics Technol. Lett. 17(1), 100–102 (2005).
[Crossref]

L. M. Augustin, R. Hanfoug, J. J. G. M. van der Tol, W. J. M. de Laat, and M. K. Smit, “A compact integrated polarization splitter/converter in InGaAsP-InP,” IEEE Photonics Technol. Lett. 19(17), 1286–1288 (2007).
[Crossref]

J. Lightwave Technol. (3)

J. Opt. Soc. Korea (1)

Macromol. Chem. Phys. (1)

H. Thiem, P. Strohriegl, M. Shkunov, and I. McCulloch, “Photopolymerization of reactive mesogens,” Macromol. Chem. Phys. 206(21), 2153–2159 (2005).
[Crossref]

Nat. Photonics (1)

J. C. F. Matthews, A. Politi, A. Stefanov, and J. L. O’Brien, “Manipulation of multiphoton entanglement in waveguide quantum circuits,” Nat. Photonics 3(6), 346–350 (2009).
[Crossref]

Nature (1)

C. H. Bennett and D. P. DiVincenzo, “Quantum information and computation,” Nature 404(6775), 247–255 (2000).
[Crossref] [PubMed]

New J. Phys. (1)

A. Martin, A. Issautier, H. Herrmann, W. Sohler, D. B. Ostrowsky, O. Alibart, and S. Tanzilli, “A polarization entangled photon-pair source based on a type-II PPLN waveguide emitting at a telecom wavelength,” New J. Phys. 12(10), 103005 (2010).
[Crossref]

Opt. Commun. (2)

M.-C. Oh, W.-S. Chu, J.-S. Shin, J.-W. Kim, K.-J. Kim, J.-K. Seo, H.-K. Lee, Y.-O. Noh, and H.-J. Lee, “Polymeric optical waveguide devices exploiting special properties of polymer materials,” Opt. Commun. 362, 3–12 (2016).
[Crossref]

Z. Zhang and N. Keil, “Thermo-optic devices on polymer platform,” Opt. Commun. 362, 101–114 (2016).
[Crossref]

Opt. Express (1)

Philos. Trans. Royal Soc. A (1)

J. Hoogboom, J. A. A. W. Elemans, A. E. Rowan, T. H. M. Rasing, and R. J. M. Nolte, “The development of self-assembled liquid crystal display alignment layers,” Philos. Trans. Royal Soc. A 365(1855), 1553–1576 (2007).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

Y.-H. Kim, S. P. Kulik, and Y. Shih, “Quantum teleportation of a polarization state with a complete bell state measurement,” Phys. Rev. Lett. 86(7), 1370–1373 (2001).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic diagram of the reflection- type polarization splitter consisting of a taper for reducing the coupling loss, a mode expander for increasing the fundamental mode size, and a TIR interface between the RM and CO-polymer materials.

Fig. 2
Fig. 2

BPM simulation results for the mode expander in which a small waveguide-width of 6 μm is expanded to a width of 30 μm for a length of Le. The second-higher–order mode power was measured as an indication of adiabatic transition.

Fig. 3
Fig. 3

BPM simulation results for the reflectivity at the TIR interface. A larger angle of incidence results in a higher reflectivity.

Fig. 4
Fig. 4

BPM simulation results for the TE mode conversion efficiency of the taper. A longer taper gives a lower coupling loss, and the saturated loss is smaller for a thinner RM.

Fig. 5
Fig. 5

Fabrication procedure for reflection-type polarization splitter.

Fig. 6
Fig. 6

(a) SEM image of the tapered RM waveguide, and (b) Microscopic image of the TIR interface exhibiting the regions with/without RM under the CO-polymer core layer.

Fig. 7
Fig. 7

CCD images of the output modes for the inputs with (a) TE polarization, and (b) TM polarization.

Fig. 8
Fig. 8

(a) Polarization-dependent output power of the fabricated devices with various angles of incidence, in which two batches of experiments are distinguished by the line colors, and (b) BPM simulation of the polarization splitter for various TM refractive indexes of the RM. The result for an RM index of 1.536 is the closest to the experiment result.

Metrics