Abstract

Metallic nanogap is very important for a verity of applications in plasmonics. Although several fabrication techniques have been proposed in the last decades, it is still a challenge to produce uniform nanogaps with a few nanometers gap distance and high throughput. Here we present a simple, yet robust method based on the atomic layer deposition (ALD) and lift-off technique for patterning ultranarrow nanogaps array. The ability to accurately control the thickness of the ALD spacer layer enables us to precisely define the gap size, down to sub-5 nm scale. Moreover, this new method allows to fabricate uniform nanogaps array along different directions densely arranged on the wafer-scale substrate. It is demonstrated that the fabricated array can be used as an excellent substrate for surface enhanced Raman scatting (SERS) measurements of molecules, even on flexible substrates. This uniform nanogaps array would also find its applications for the trace detection and biosensors.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Extreme ultraviolet proximity lithography for fast, flexible and parallel fabrication of infrared antennas

Georg Kunkemöller, Tobias W. W. Maß, Ann-Katrin U. Michel, Hyun-Su Kim, Sascha Brose, Serhiy Danylyuk, Thomas Taubner, and Larissa Juschkin
Opt. Express 23(20) 25487-25495 (2015)

Large-area plasmonic hot-spot arrays: sub-2 nm interparticle separations with plasma-enhanced atomic layer deposition of Ag on periodic arrays of Si nanopillars

Joshua D. Caldwell, Orest J. Glembocki, Francisco J. Bezares, Maarit I. Kariniemi, Jaakko T. Niinistö, Timo T. Hatanpää, Ronald W. Rendell, Maraizu Ukaegbu, Mikko K. Ritala, Sharka M. Prokes, Charles M. Hosten, Markku A. Leskelä, and Richard Kasica
Opt. Express 19(27) 26056-26064 (2011)

References

  • View by:
  • |
  • |
  • |

  1. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
    [Crossref] [PubMed]
  2. T. Siegfried, Y. Ekinci, O. J. F. Martin, and H. Sigg, “Gap plasmons and near-field enhancement in closely packed sub-10 nm gap resonators,” Nano Lett. 13(11), 5449–5453 (2013).
    [Crossref] [PubMed]
  3. D. R. Ward, F. Hüser, F. Pauly, J. C. Cuevas, and D. Natelson, “Optical rectification and field enhancement in a plasmonic nanogap,” Nat. Nanotechnol. 5(10), 732–736 (2010).
    [Crossref] [PubMed]
  4. Z. Wang, Z. Dong, Y. Gu, Y.-H. Chang, L. Zhang, L.-J. Li, W. Zhao, G. Eda, W. Zhang, G. Grinblat, S. A. Maier, J. K. W. Yang, C.-W. Qiu, and A. T. S. Wee, “Giant photoluminescence enhancement in tungsten-diselenide-gold plasmonic hybrid structures,” Nat. Commun. 7, 11283 (2016).
    [Crossref] [PubMed]
  5. Q. Fu, Z. Zhan, J. Dou, X. Zheng, R. Xu, M. Wu, and Y. Lei, “Highly reproducible and sensitive sers substrates with ag inter-nanoparticle gaps of 5 nm fabricated by ultrathin aluminum mask technique,” ACS Appl. Mater. Interfaces 7(24), 13322–13328 (2015).
    [Crossref] [PubMed]
  6. M. Chirumamilla, A. Toma, A. Gopalakrishnan, G. Das, R. P. Zaccaria, R. Krahne, E. Rondanina, M. Leoncini, C. Liberale, F. De Angelis, and E. Di Fabrizio, “3D nanostar dimers with a sub-10-nm gap for single-/few-molecule surface-enhanced raman scattering,” Adv. Mater. 26(15), 2353–2358 (2014).
    [Crossref] [PubMed]
  7. Z. Liu, Z. Yang, B. Peng, C. Cao, C. Zhang, H. You, Q. Xiong, Z. Li, and J. Fang, “Highly sensitive, uniform, and reproducible surface-enhanced Raman spectroscopy from hollow Au-Ag alloy nanourchins,” Adv. Mater. 26(15), 2431–2439 (2014).
    [Crossref] [PubMed]
  8. D. K. Lim, K. S. Jeon, H. M. Kim, J. M. Nam, and Y. D. Suh, “Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection,” Nat. Mater. 9(1), 60–67 (2010).
    [Crossref] [PubMed]
  9. S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
    [Crossref] [PubMed]
  10. L. Lesser-Rojas, P. Ebbinghaus, G. Vasan, M. L. Chu, A. Erbe, and C. F. Chou, “Low-copy number protein detection by electrode nanogap-enabled dielectrophoretic trapping for surface-enhanced Raman spectroscopy and electronic measurements,” Nano Lett. 14(5), 2242–2250 (2014).
    [Crossref] [PubMed]
  11. X. Liang and S. Y. Chou, “Nanogap detector inside nanofluidic channel for fast real-time label-free DNA analysis,” Nano Lett. 8(5), 1472–1476 (2008).
    [Crossref] [PubMed]
  12. F. Shao, Z. Lu, C. Liu, H. Han, K. Chen, W. Li, Q. He, H. Peng, and J. Chen, “Hierarchical nanogaps within bioscaffold arrays as a high-performance SERS substrate for animal virus biosensing,” ACS Appl. Mater. Interfaces 6(9), 6281–6289 (2014).
    [Crossref] [PubMed]
  13. H. Jung, H. Cha, D. Lee, and S. Yoon, “Bridging the nanogap with light: Continuous tuning of plasmon coupling between gold nanoparticles,” ACS Nano 9(12), 12292–12300 (2015).
    [Crossref] [PubMed]
  14. J. Chen, C.-L. Dong, Y. Du, D. Zhao, and S. Shen, “Nanogap engineered plasmon-enhancement in photocatalytic solar hydrogen conversion,” Adv. Mater. Interfaces 2(14), 1500280 (2015).
    [Crossref]
  15. H. Im, K. C. Bantz, N. C. Lindquist, C. L. Haynes, and S. H. Oh, “Vertically oriented sub-10-nm plasmonic nanogap arrays,” Nano Lett. 10(6), 2231–2236 (2010).
    [Crossref] [PubMed]
  16. H.-J. Jeon, E. H. Lee, H.-W. Yoo, K. H. Kim, and H.-T. Jung, “Fabrication of sub-20 nm nano-gap structures through the elastomeric nano-stamp assisted secondary sputtering phenomenon,” Nanoscale 6(11), 5953–5959 (2014).
    [Crossref] [PubMed]
  17. O. Scholder, K. Jefimovs, I. Shorubalko, C. Hafner, U. Sennhauser, and G.-L. Bona, “Helium focused ion beam fabricated plasmonic antennas with sub-5 nm gaps,” Nanotechnology 24(39), 395301 (2013).
    [Crossref] [PubMed]
  18. X. Chen, H.-R. Park, M. Pelton, X. Piao, N. C. Lindquist, H. Im, Y. J. Kim, J. S. Ahn, K. J. Ahn, N. Park, D.-S. Kim, and S.-H. Oh, “Atomic layer lithography of wafer-scale nanogap arrays for extreme confinement of electromagnetic waves,” Nat. Commun. 4, 2361 (2013).
    [Crossref] [PubMed]
  19. T. Ding, L. O. Herrmann, B. de Nijs, F. Benz, and J. J. Baumberg, “Self-aligned colloidal lithography for controllable and tuneable plasmonic nanogaps,” Small 11(18), 2139–2143 (2015).
    [Crossref] [PubMed]
  20. A. Cui, H. Dong, and W. Hu, “Nanogap electrodes towards solid state single-molecule transistors,” Small 11(46), 6115–6141 (2015).
    [Crossref] [PubMed]
  21. W. Zhu, M. G. Banaee, D. Wang, Y. Chu, and K. B. Crozier, “Lithographically fabricated optical antennas with gaps well below 10 nm,” Small 7(13), 1761–1766 (2011).
    [Crossref] [PubMed]
  22. H. Duan, H. Hu, H. K. Hui, Z. Shen, and J. K. W. Yang, “Free-standing sub-10 nm nanostencils for the definition of gaps in plasmonic antennas,” Nanotechnology 24(18), 185301 (2013).
    [Crossref] [PubMed]
  23. W. Liang, M. P. Shores, M. Bockrath, J. R. Long, and H. Park, “Kondo resonance in a single-molecule transistor,” Nature 417(6890), 725–729 (2002).
    [Crossref] [PubMed]
  24. M. L. Perrin, C. J. O. Verzijl, C. A. Martin, A. J. Shaikh, R. Eelkema, J. H. van Esch, J. M. van Ruitenbeek, J. M. Thijssen, H. S. J. van der Zant, and D. Dulić, “Large tunable image-charge effects in single-molecule junctions,” Nat. Nanotechnol. 8(4), 282–287 (2013).
    [Crossref] [PubMed]
  25. H. Suga, T. Sumiya, S. Furuta, R. Ueki, Y. Miyazawa, T. Nishijima, J. Fujita, K. Tsukagoshi, T. Shimizu, and Y. Naitoh, “Single-crystalline nanogap electrodes: Enhancing the nanowire-breakdown process with a gaseous environment,” ACS Appl. Mater. Interfaces 4(10), 5542–5546 (2012).
    [Crossref] [PubMed]
  26. S. M. Dirk, S. W. Howell, S. Zmuda, K. Childs, M. Blain, R. J. Simonson, and D. R. Wheeler, “Novel one-dimensional nanogap created with standard optical lithography and evaporation procedures,” Nanotechnology 16(10), 1983–1985 (2005).
    [Crossref] [PubMed]
  27. S. Kubatkin, A. Danilov, M. Hjort, J. Cornil, J. L. Brédas, N. Stuhr-Hansen, P. Hedegård, and T. Bjørnholm, “Single-electron transistor of a single organic molecule with access to several redox states,” Nature 425(6959), 698–701 (2003).
    [Crossref] [PubMed]
  28. X. Chen, C. Ciracì, D. R. Smith, and S.-H. Oh, “Nanogap-enhanced infrared spectroscopy with template-stripped wafer-scale arrays of buried plasmonic cavities,” Nano Lett. 15(1), 107–113 (2015).
    [Crossref] [PubMed]
  29. J. S. Ahn, T. Kang, D. K. Singh, Y.-M. Bahk, H. Lee, S. B. Choi, and D.-S. Kim, “Optical field enhancement of nanometer-sized gaps at near-infrared frequencies,” Opt. Express 23(4), 4897–4907 (2015).
    [Crossref] [PubMed]
  30. X. Chen, H. R. Park, N. C. Lindquist, J. Shaver, M. Pelton, and S. H. Oh, “Squeezing millimeter waves through a single, nanometer-wide, centimeter-long slit,” Sci. Rep. 4, 6722 (2014).
    [Crossref] [PubMed]
  31. D. Yoo, N. C. Nguyen, L. Martin-Moreno, D. A. Mohr, S. Carretero-Palacios, J. Shaver, J. Peraire, T. W. Ebbesen, and S.-H. Oh, “High-throughput fabrication of resonant metamaterials with ultrasmall coaxial apertures via atomic layer lithography,” Nano Lett. 16(3), 2040–2046 (2016).
    [Crossref] [PubMed]
  32. J. Dengxin, C. Borui, Z. Xie, T. Moein, S. Haomin, G. Qiaoqiang, and A. Cartwright, 2015 conference on lasers and electro-optics (2015).
  33. J. Ye, J. A. Hutchison, H. Uji-i, J. Hofkens, L. Lagae, G. Maes, G. Borghs, and P. Van Dorpe, “Excitation wavelength dependent surface enhanced Raman scattering of 4-aminothiophenol on gold nanorings,” Nanoscale 4(5), 1606–1611 (2012).
    [Crossref] [PubMed]
  34. C. Hongbing, R. Wenzhen, Z. Kun, T. Yangchao, P. Nan, L. Yi, and W. Xiaoping, “Fabrication of metallic nanopatterns with ultrasmooth surface on various substrates through lift-off and transfer process,” Opt. Express 21(26), 32417–32424 (2013).
    [Crossref] [PubMed]

2016 (2)

Z. Wang, Z. Dong, Y. Gu, Y.-H. Chang, L. Zhang, L.-J. Li, W. Zhao, G. Eda, W. Zhang, G. Grinblat, S. A. Maier, J. K. W. Yang, C.-W. Qiu, and A. T. S. Wee, “Giant photoluminescence enhancement in tungsten-diselenide-gold plasmonic hybrid structures,” Nat. Commun. 7, 11283 (2016).
[Crossref] [PubMed]

D. Yoo, N. C. Nguyen, L. Martin-Moreno, D. A. Mohr, S. Carretero-Palacios, J. Shaver, J. Peraire, T. W. Ebbesen, and S.-H. Oh, “High-throughput fabrication of resonant metamaterials with ultrasmall coaxial apertures via atomic layer lithography,” Nano Lett. 16(3), 2040–2046 (2016).
[Crossref] [PubMed]

2015 (7)

X. Chen, C. Ciracì, D. R. Smith, and S.-H. Oh, “Nanogap-enhanced infrared spectroscopy with template-stripped wafer-scale arrays of buried plasmonic cavities,” Nano Lett. 15(1), 107–113 (2015).
[Crossref] [PubMed]

J. S. Ahn, T. Kang, D. K. Singh, Y.-M. Bahk, H. Lee, S. B. Choi, and D.-S. Kim, “Optical field enhancement of nanometer-sized gaps at near-infrared frequencies,” Opt. Express 23(4), 4897–4907 (2015).
[Crossref] [PubMed]

Q. Fu, Z. Zhan, J. Dou, X. Zheng, R. Xu, M. Wu, and Y. Lei, “Highly reproducible and sensitive sers substrates with ag inter-nanoparticle gaps of 5 nm fabricated by ultrathin aluminum mask technique,” ACS Appl. Mater. Interfaces 7(24), 13322–13328 (2015).
[Crossref] [PubMed]

H. Jung, H. Cha, D. Lee, and S. Yoon, “Bridging the nanogap with light: Continuous tuning of plasmon coupling between gold nanoparticles,” ACS Nano 9(12), 12292–12300 (2015).
[Crossref] [PubMed]

J. Chen, C.-L. Dong, Y. Du, D. Zhao, and S. Shen, “Nanogap engineered plasmon-enhancement in photocatalytic solar hydrogen conversion,” Adv. Mater. Interfaces 2(14), 1500280 (2015).
[Crossref]

T. Ding, L. O. Herrmann, B. de Nijs, F. Benz, and J. J. Baumberg, “Self-aligned colloidal lithography for controllable and tuneable plasmonic nanogaps,” Small 11(18), 2139–2143 (2015).
[Crossref] [PubMed]

A. Cui, H. Dong, and W. Hu, “Nanogap electrodes towards solid state single-molecule transistors,” Small 11(46), 6115–6141 (2015).
[Crossref] [PubMed]

2014 (6)

H.-J. Jeon, E. H. Lee, H.-W. Yoo, K. H. Kim, and H.-T. Jung, “Fabrication of sub-20 nm nano-gap structures through the elastomeric nano-stamp assisted secondary sputtering phenomenon,” Nanoscale 6(11), 5953–5959 (2014).
[Crossref] [PubMed]

F. Shao, Z. Lu, C. Liu, H. Han, K. Chen, W. Li, Q. He, H. Peng, and J. Chen, “Hierarchical nanogaps within bioscaffold arrays as a high-performance SERS substrate for animal virus biosensing,” ACS Appl. Mater. Interfaces 6(9), 6281–6289 (2014).
[Crossref] [PubMed]

M. Chirumamilla, A. Toma, A. Gopalakrishnan, G. Das, R. P. Zaccaria, R. Krahne, E. Rondanina, M. Leoncini, C. Liberale, F. De Angelis, and E. Di Fabrizio, “3D nanostar dimers with a sub-10-nm gap for single-/few-molecule surface-enhanced raman scattering,” Adv. Mater. 26(15), 2353–2358 (2014).
[Crossref] [PubMed]

Z. Liu, Z. Yang, B. Peng, C. Cao, C. Zhang, H. You, Q. Xiong, Z. Li, and J. Fang, “Highly sensitive, uniform, and reproducible surface-enhanced Raman spectroscopy from hollow Au-Ag alloy nanourchins,” Adv. Mater. 26(15), 2431–2439 (2014).
[Crossref] [PubMed]

L. Lesser-Rojas, P. Ebbinghaus, G. Vasan, M. L. Chu, A. Erbe, and C. F. Chou, “Low-copy number protein detection by electrode nanogap-enabled dielectrophoretic trapping for surface-enhanced Raman spectroscopy and electronic measurements,” Nano Lett. 14(5), 2242–2250 (2014).
[Crossref] [PubMed]

X. Chen, H. R. Park, N. C. Lindquist, J. Shaver, M. Pelton, and S. H. Oh, “Squeezing millimeter waves through a single, nanometer-wide, centimeter-long slit,” Sci. Rep. 4, 6722 (2014).
[Crossref] [PubMed]

2013 (6)

H. Duan, H. Hu, H. K. Hui, Z. Shen, and J. K. W. Yang, “Free-standing sub-10 nm nanostencils for the definition of gaps in plasmonic antennas,” Nanotechnology 24(18), 185301 (2013).
[Crossref] [PubMed]

M. L. Perrin, C. J. O. Verzijl, C. A. Martin, A. J. Shaikh, R. Eelkema, J. H. van Esch, J. M. van Ruitenbeek, J. M. Thijssen, H. S. J. van der Zant, and D. Dulić, “Large tunable image-charge effects in single-molecule junctions,” Nat. Nanotechnol. 8(4), 282–287 (2013).
[Crossref] [PubMed]

C. Hongbing, R. Wenzhen, Z. Kun, T. Yangchao, P. Nan, L. Yi, and W. Xiaoping, “Fabrication of metallic nanopatterns with ultrasmooth surface on various substrates through lift-off and transfer process,” Opt. Express 21(26), 32417–32424 (2013).
[Crossref] [PubMed]

T. Siegfried, Y. Ekinci, O. J. F. Martin, and H. Sigg, “Gap plasmons and near-field enhancement in closely packed sub-10 nm gap resonators,” Nano Lett. 13(11), 5449–5453 (2013).
[Crossref] [PubMed]

O. Scholder, K. Jefimovs, I. Shorubalko, C. Hafner, U. Sennhauser, and G.-L. Bona, “Helium focused ion beam fabricated plasmonic antennas with sub-5 nm gaps,” Nanotechnology 24(39), 395301 (2013).
[Crossref] [PubMed]

X. Chen, H.-R. Park, M. Pelton, X. Piao, N. C. Lindquist, H. Im, Y. J. Kim, J. S. Ahn, K. J. Ahn, N. Park, D.-S. Kim, and S.-H. Oh, “Atomic layer lithography of wafer-scale nanogap arrays for extreme confinement of electromagnetic waves,” Nat. Commun. 4, 2361 (2013).
[Crossref] [PubMed]

2012 (2)

J. Ye, J. A. Hutchison, H. Uji-i, J. Hofkens, L. Lagae, G. Maes, G. Borghs, and P. Van Dorpe, “Excitation wavelength dependent surface enhanced Raman scattering of 4-aminothiophenol on gold nanorings,” Nanoscale 4(5), 1606–1611 (2012).
[Crossref] [PubMed]

H. Suga, T. Sumiya, S. Furuta, R. Ueki, Y. Miyazawa, T. Nishijima, J. Fujita, K. Tsukagoshi, T. Shimizu, and Y. Naitoh, “Single-crystalline nanogap electrodes: Enhancing the nanowire-breakdown process with a gaseous environment,” ACS Appl. Mater. Interfaces 4(10), 5542–5546 (2012).
[Crossref] [PubMed]

2011 (1)

W. Zhu, M. G. Banaee, D. Wang, Y. Chu, and K. B. Crozier, “Lithographically fabricated optical antennas with gaps well below 10 nm,” Small 7(13), 1761–1766 (2011).
[Crossref] [PubMed]

2010 (4)

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

H. Im, K. C. Bantz, N. C. Lindquist, C. L. Haynes, and S. H. Oh, “Vertically oriented sub-10-nm plasmonic nanogap arrays,” Nano Lett. 10(6), 2231–2236 (2010).
[Crossref] [PubMed]

D. R. Ward, F. Hüser, F. Pauly, J. C. Cuevas, and D. Natelson, “Optical rectification and field enhancement in a plasmonic nanogap,” Nat. Nanotechnol. 5(10), 732–736 (2010).
[Crossref] [PubMed]

D. K. Lim, K. S. Jeon, H. M. Kim, J. M. Nam, and Y. D. Suh, “Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection,” Nat. Mater. 9(1), 60–67 (2010).
[Crossref] [PubMed]

2008 (2)

S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[Crossref] [PubMed]

X. Liang and S. Y. Chou, “Nanogap detector inside nanofluidic channel for fast real-time label-free DNA analysis,” Nano Lett. 8(5), 1472–1476 (2008).
[Crossref] [PubMed]

2005 (1)

S. M. Dirk, S. W. Howell, S. Zmuda, K. Childs, M. Blain, R. J. Simonson, and D. R. Wheeler, “Novel one-dimensional nanogap created with standard optical lithography and evaporation procedures,” Nanotechnology 16(10), 1983–1985 (2005).
[Crossref] [PubMed]

2003 (1)

S. Kubatkin, A. Danilov, M. Hjort, J. Cornil, J. L. Brédas, N. Stuhr-Hansen, P. Hedegård, and T. Bjørnholm, “Single-electron transistor of a single organic molecule with access to several redox states,” Nature 425(6959), 698–701 (2003).
[Crossref] [PubMed]

2002 (1)

W. Liang, M. P. Shores, M. Bockrath, J. R. Long, and H. Park, “Kondo resonance in a single-molecule transistor,” Nature 417(6890), 725–729 (2002).
[Crossref] [PubMed]

Ahn, J. S.

J. S. Ahn, T. Kang, D. K. Singh, Y.-M. Bahk, H. Lee, S. B. Choi, and D.-S. Kim, “Optical field enhancement of nanometer-sized gaps at near-infrared frequencies,” Opt. Express 23(4), 4897–4907 (2015).
[Crossref] [PubMed]

X. Chen, H.-R. Park, M. Pelton, X. Piao, N. C. Lindquist, H. Im, Y. J. Kim, J. S. Ahn, K. J. Ahn, N. Park, D.-S. Kim, and S.-H. Oh, “Atomic layer lithography of wafer-scale nanogap arrays for extreme confinement of electromagnetic waves,” Nat. Commun. 4, 2361 (2013).
[Crossref] [PubMed]

Ahn, K. J.

X. Chen, H.-R. Park, M. Pelton, X. Piao, N. C. Lindquist, H. Im, Y. J. Kim, J. S. Ahn, K. J. Ahn, N. Park, D.-S. Kim, and S.-H. Oh, “Atomic layer lithography of wafer-scale nanogap arrays for extreme confinement of electromagnetic waves,” Nat. Commun. 4, 2361 (2013).
[Crossref] [PubMed]

Bahk, Y.-M.

Banaee, M. G.

W. Zhu, M. G. Banaee, D. Wang, Y. Chu, and K. B. Crozier, “Lithographically fabricated optical antennas with gaps well below 10 nm,” Small 7(13), 1761–1766 (2011).
[Crossref] [PubMed]

Bantz, K. C.

H. Im, K. C. Bantz, N. C. Lindquist, C. L. Haynes, and S. H. Oh, “Vertically oriented sub-10-nm plasmonic nanogap arrays,” Nano Lett. 10(6), 2231–2236 (2010).
[Crossref] [PubMed]

Barnard, E. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Baumberg, J. J.

T. Ding, L. O. Herrmann, B. de Nijs, F. Benz, and J. J. Baumberg, “Self-aligned colloidal lithography for controllable and tuneable plasmonic nanogaps,” Small 11(18), 2139–2143 (2015).
[Crossref] [PubMed]

Benz, F.

T. Ding, L. O. Herrmann, B. de Nijs, F. Benz, and J. J. Baumberg, “Self-aligned colloidal lithography for controllable and tuneable plasmonic nanogaps,” Small 11(18), 2139–2143 (2015).
[Crossref] [PubMed]

Bjørnholm, T.

S. Kubatkin, A. Danilov, M. Hjort, J. Cornil, J. L. Brédas, N. Stuhr-Hansen, P. Hedegård, and T. Bjørnholm, “Single-electron transistor of a single organic molecule with access to several redox states,” Nature 425(6959), 698–701 (2003).
[Crossref] [PubMed]

Blain, M.

S. M. Dirk, S. W. Howell, S. Zmuda, K. Childs, M. Blain, R. J. Simonson, and D. R. Wheeler, “Novel one-dimensional nanogap created with standard optical lithography and evaporation procedures,” Nanotechnology 16(10), 1983–1985 (2005).
[Crossref] [PubMed]

Bockrath, M.

W. Liang, M. P. Shores, M. Bockrath, J. R. Long, and H. Park, “Kondo resonance in a single-molecule transistor,” Nature 417(6890), 725–729 (2002).
[Crossref] [PubMed]

Bona, G.-L.

O. Scholder, K. Jefimovs, I. Shorubalko, C. Hafner, U. Sennhauser, and G.-L. Bona, “Helium focused ion beam fabricated plasmonic antennas with sub-5 nm gaps,” Nanotechnology 24(39), 395301 (2013).
[Crossref] [PubMed]

Borghs, G.

J. Ye, J. A. Hutchison, H. Uji-i, J. Hofkens, L. Lagae, G. Maes, G. Borghs, and P. Van Dorpe, “Excitation wavelength dependent surface enhanced Raman scattering of 4-aminothiophenol on gold nanorings,” Nanoscale 4(5), 1606–1611 (2012).
[Crossref] [PubMed]

Brédas, J. L.

S. Kubatkin, A. Danilov, M. Hjort, J. Cornil, J. L. Brédas, N. Stuhr-Hansen, P. Hedegård, and T. Bjørnholm, “Single-electron transistor of a single organic molecule with access to several redox states,” Nature 425(6959), 698–701 (2003).
[Crossref] [PubMed]

Brongersma, M. L.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Cai, W.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Cao, C.

Z. Liu, Z. Yang, B. Peng, C. Cao, C. Zhang, H. You, Q. Xiong, Z. Li, and J. Fang, “Highly sensitive, uniform, and reproducible surface-enhanced Raman spectroscopy from hollow Au-Ag alloy nanourchins,” Adv. Mater. 26(15), 2431–2439 (2014).
[Crossref] [PubMed]

Carretero-Palacios, S.

D. Yoo, N. C. Nguyen, L. Martin-Moreno, D. A. Mohr, S. Carretero-Palacios, J. Shaver, J. Peraire, T. W. Ebbesen, and S.-H. Oh, “High-throughput fabrication of resonant metamaterials with ultrasmall coaxial apertures via atomic layer lithography,” Nano Lett. 16(3), 2040–2046 (2016).
[Crossref] [PubMed]

Cha, H.

H. Jung, H. Cha, D. Lee, and S. Yoon, “Bridging the nanogap with light: Continuous tuning of plasmon coupling between gold nanoparticles,” ACS Nano 9(12), 12292–12300 (2015).
[Crossref] [PubMed]

Chang, Y.-H.

Z. Wang, Z. Dong, Y. Gu, Y.-H. Chang, L. Zhang, L.-J. Li, W. Zhao, G. Eda, W. Zhang, G. Grinblat, S. A. Maier, J. K. W. Yang, C.-W. Qiu, and A. T. S. Wee, “Giant photoluminescence enhancement in tungsten-diselenide-gold plasmonic hybrid structures,” Nat. Commun. 7, 11283 (2016).
[Crossref] [PubMed]

Chen, J.

J. Chen, C.-L. Dong, Y. Du, D. Zhao, and S. Shen, “Nanogap engineered plasmon-enhancement in photocatalytic solar hydrogen conversion,” Adv. Mater. Interfaces 2(14), 1500280 (2015).
[Crossref]

F. Shao, Z. Lu, C. Liu, H. Han, K. Chen, W. Li, Q. He, H. Peng, and J. Chen, “Hierarchical nanogaps within bioscaffold arrays as a high-performance SERS substrate for animal virus biosensing,” ACS Appl. Mater. Interfaces 6(9), 6281–6289 (2014).
[Crossref] [PubMed]

Chen, K.

F. Shao, Z. Lu, C. Liu, H. Han, K. Chen, W. Li, Q. He, H. Peng, and J. Chen, “Hierarchical nanogaps within bioscaffold arrays as a high-performance SERS substrate for animal virus biosensing,” ACS Appl. Mater. Interfaces 6(9), 6281–6289 (2014).
[Crossref] [PubMed]

Chen, X.

X. Chen, C. Ciracì, D. R. Smith, and S.-H. Oh, “Nanogap-enhanced infrared spectroscopy with template-stripped wafer-scale arrays of buried plasmonic cavities,” Nano Lett. 15(1), 107–113 (2015).
[Crossref] [PubMed]

X. Chen, H. R. Park, N. C. Lindquist, J. Shaver, M. Pelton, and S. H. Oh, “Squeezing millimeter waves through a single, nanometer-wide, centimeter-long slit,” Sci. Rep. 4, 6722 (2014).
[Crossref] [PubMed]

X. Chen, H.-R. Park, M. Pelton, X. Piao, N. C. Lindquist, H. Im, Y. J. Kim, J. S. Ahn, K. J. Ahn, N. Park, D.-S. Kim, and S.-H. Oh, “Atomic layer lithography of wafer-scale nanogap arrays for extreme confinement of electromagnetic waves,” Nat. Commun. 4, 2361 (2013).
[Crossref] [PubMed]

Childs, K.

S. M. Dirk, S. W. Howell, S. Zmuda, K. Childs, M. Blain, R. J. Simonson, and D. R. Wheeler, “Novel one-dimensional nanogap created with standard optical lithography and evaporation procedures,” Nanotechnology 16(10), 1983–1985 (2005).
[Crossref] [PubMed]

Chirumamilla, M.

M. Chirumamilla, A. Toma, A. Gopalakrishnan, G. Das, R. P. Zaccaria, R. Krahne, E. Rondanina, M. Leoncini, C. Liberale, F. De Angelis, and E. Di Fabrizio, “3D nanostar dimers with a sub-10-nm gap for single-/few-molecule surface-enhanced raman scattering,” Adv. Mater. 26(15), 2353–2358 (2014).
[Crossref] [PubMed]

Choi, S. B.

Chou, C. F.

L. Lesser-Rojas, P. Ebbinghaus, G. Vasan, M. L. Chu, A. Erbe, and C. F. Chou, “Low-copy number protein detection by electrode nanogap-enabled dielectrophoretic trapping for surface-enhanced Raman spectroscopy and electronic measurements,” Nano Lett. 14(5), 2242–2250 (2014).
[Crossref] [PubMed]

Chou, S. Y.

X. Liang and S. Y. Chou, “Nanogap detector inside nanofluidic channel for fast real-time label-free DNA analysis,” Nano Lett. 8(5), 1472–1476 (2008).
[Crossref] [PubMed]

Chu, M. L.

L. Lesser-Rojas, P. Ebbinghaus, G. Vasan, M. L. Chu, A. Erbe, and C. F. Chou, “Low-copy number protein detection by electrode nanogap-enabled dielectrophoretic trapping for surface-enhanced Raman spectroscopy and electronic measurements,” Nano Lett. 14(5), 2242–2250 (2014).
[Crossref] [PubMed]

Chu, Y.

W. Zhu, M. G. Banaee, D. Wang, Y. Chu, and K. B. Crozier, “Lithographically fabricated optical antennas with gaps well below 10 nm,” Small 7(13), 1761–1766 (2011).
[Crossref] [PubMed]

Ciracì, C.

X. Chen, C. Ciracì, D. R. Smith, and S.-H. Oh, “Nanogap-enhanced infrared spectroscopy with template-stripped wafer-scale arrays of buried plasmonic cavities,” Nano Lett. 15(1), 107–113 (2015).
[Crossref] [PubMed]

Cornil, J.

S. Kubatkin, A. Danilov, M. Hjort, J. Cornil, J. L. Brédas, N. Stuhr-Hansen, P. Hedegård, and T. Bjørnholm, “Single-electron transistor of a single organic molecule with access to several redox states,” Nature 425(6959), 698–701 (2003).
[Crossref] [PubMed]

Crozier, K. B.

W. Zhu, M. G. Banaee, D. Wang, Y. Chu, and K. B. Crozier, “Lithographically fabricated optical antennas with gaps well below 10 nm,” Small 7(13), 1761–1766 (2011).
[Crossref] [PubMed]

Cuevas, J. C.

D. R. Ward, F. Hüser, F. Pauly, J. C. Cuevas, and D. Natelson, “Optical rectification and field enhancement in a plasmonic nanogap,” Nat. Nanotechnol. 5(10), 732–736 (2010).
[Crossref] [PubMed]

Cui, A.

A. Cui, H. Dong, and W. Hu, “Nanogap electrodes towards solid state single-molecule transistors,” Small 11(46), 6115–6141 (2015).
[Crossref] [PubMed]

Danilov, A.

S. Kubatkin, A. Danilov, M. Hjort, J. Cornil, J. L. Brédas, N. Stuhr-Hansen, P. Hedegård, and T. Bjørnholm, “Single-electron transistor of a single organic molecule with access to several redox states,” Nature 425(6959), 698–701 (2003).
[Crossref] [PubMed]

Das, G.

M. Chirumamilla, A. Toma, A. Gopalakrishnan, G. Das, R. P. Zaccaria, R. Krahne, E. Rondanina, M. Leoncini, C. Liberale, F. De Angelis, and E. Di Fabrizio, “3D nanostar dimers with a sub-10-nm gap for single-/few-molecule surface-enhanced raman scattering,” Adv. Mater. 26(15), 2353–2358 (2014).
[Crossref] [PubMed]

De Angelis, F.

M. Chirumamilla, A. Toma, A. Gopalakrishnan, G. Das, R. P. Zaccaria, R. Krahne, E. Rondanina, M. Leoncini, C. Liberale, F. De Angelis, and E. Di Fabrizio, “3D nanostar dimers with a sub-10-nm gap for single-/few-molecule surface-enhanced raman scattering,” Adv. Mater. 26(15), 2353–2358 (2014).
[Crossref] [PubMed]

de Nijs, B.

T. Ding, L. O. Herrmann, B. de Nijs, F. Benz, and J. J. Baumberg, “Self-aligned colloidal lithography for controllable and tuneable plasmonic nanogaps,” Small 11(18), 2139–2143 (2015).
[Crossref] [PubMed]

Di Fabrizio, E.

M. Chirumamilla, A. Toma, A. Gopalakrishnan, G. Das, R. P. Zaccaria, R. Krahne, E. Rondanina, M. Leoncini, C. Liberale, F. De Angelis, and E. Di Fabrizio, “3D nanostar dimers with a sub-10-nm gap for single-/few-molecule surface-enhanced raman scattering,” Adv. Mater. 26(15), 2353–2358 (2014).
[Crossref] [PubMed]

Ding, T.

T. Ding, L. O. Herrmann, B. de Nijs, F. Benz, and J. J. Baumberg, “Self-aligned colloidal lithography for controllable and tuneable plasmonic nanogaps,” Small 11(18), 2139–2143 (2015).
[Crossref] [PubMed]

Dirk, S. M.

S. M. Dirk, S. W. Howell, S. Zmuda, K. Childs, M. Blain, R. J. Simonson, and D. R. Wheeler, “Novel one-dimensional nanogap created with standard optical lithography and evaporation procedures,” Nanotechnology 16(10), 1983–1985 (2005).
[Crossref] [PubMed]

Dong, C.-L.

J. Chen, C.-L. Dong, Y. Du, D. Zhao, and S. Shen, “Nanogap engineered plasmon-enhancement in photocatalytic solar hydrogen conversion,” Adv. Mater. Interfaces 2(14), 1500280 (2015).
[Crossref]

Dong, H.

A. Cui, H. Dong, and W. Hu, “Nanogap electrodes towards solid state single-molecule transistors,” Small 11(46), 6115–6141 (2015).
[Crossref] [PubMed]

Dong, Z.

Z. Wang, Z. Dong, Y. Gu, Y.-H. Chang, L. Zhang, L.-J. Li, W. Zhao, G. Eda, W. Zhang, G. Grinblat, S. A. Maier, J. K. W. Yang, C.-W. Qiu, and A. T. S. Wee, “Giant photoluminescence enhancement in tungsten-diselenide-gold plasmonic hybrid structures,” Nat. Commun. 7, 11283 (2016).
[Crossref] [PubMed]

Dou, J.

Q. Fu, Z. Zhan, J. Dou, X. Zheng, R. Xu, M. Wu, and Y. Lei, “Highly reproducible and sensitive sers substrates with ag inter-nanoparticle gaps of 5 nm fabricated by ultrathin aluminum mask technique,” ACS Appl. Mater. Interfaces 7(24), 13322–13328 (2015).
[Crossref] [PubMed]

Du, Y.

J. Chen, C.-L. Dong, Y. Du, D. Zhao, and S. Shen, “Nanogap engineered plasmon-enhancement in photocatalytic solar hydrogen conversion,” Adv. Mater. Interfaces 2(14), 1500280 (2015).
[Crossref]

Duan, H.

H. Duan, H. Hu, H. K. Hui, Z. Shen, and J. K. W. Yang, “Free-standing sub-10 nm nanostencils for the definition of gaps in plasmonic antennas,” Nanotechnology 24(18), 185301 (2013).
[Crossref] [PubMed]

Dulic, D.

M. L. Perrin, C. J. O. Verzijl, C. A. Martin, A. J. Shaikh, R. Eelkema, J. H. van Esch, J. M. van Ruitenbeek, J. M. Thijssen, H. S. J. van der Zant, and D. Dulić, “Large tunable image-charge effects in single-molecule junctions,” Nat. Nanotechnol. 8(4), 282–287 (2013).
[Crossref] [PubMed]

Ebbesen, T. W.

D. Yoo, N. C. Nguyen, L. Martin-Moreno, D. A. Mohr, S. Carretero-Palacios, J. Shaver, J. Peraire, T. W. Ebbesen, and S.-H. Oh, “High-throughput fabrication of resonant metamaterials with ultrasmall coaxial apertures via atomic layer lithography,” Nano Lett. 16(3), 2040–2046 (2016).
[Crossref] [PubMed]

Ebbinghaus, P.

L. Lesser-Rojas, P. Ebbinghaus, G. Vasan, M. L. Chu, A. Erbe, and C. F. Chou, “Low-copy number protein detection by electrode nanogap-enabled dielectrophoretic trapping for surface-enhanced Raman spectroscopy and electronic measurements,” Nano Lett. 14(5), 2242–2250 (2014).
[Crossref] [PubMed]

Eda, G.

Z. Wang, Z. Dong, Y. Gu, Y.-H. Chang, L. Zhang, L.-J. Li, W. Zhao, G. Eda, W. Zhang, G. Grinblat, S. A. Maier, J. K. W. Yang, C.-W. Qiu, and A. T. S. Wee, “Giant photoluminescence enhancement in tungsten-diselenide-gold plasmonic hybrid structures,” Nat. Commun. 7, 11283 (2016).
[Crossref] [PubMed]

Eelkema, R.

M. L. Perrin, C. J. O. Verzijl, C. A. Martin, A. J. Shaikh, R. Eelkema, J. H. van Esch, J. M. van Ruitenbeek, J. M. Thijssen, H. S. J. van der Zant, and D. Dulić, “Large tunable image-charge effects in single-molecule junctions,” Nat. Nanotechnol. 8(4), 282–287 (2013).
[Crossref] [PubMed]

Ekinci, Y.

T. Siegfried, Y. Ekinci, O. J. F. Martin, and H. Sigg, “Gap plasmons and near-field enhancement in closely packed sub-10 nm gap resonators,” Nano Lett. 13(11), 5449–5453 (2013).
[Crossref] [PubMed]

Erbe, A.

L. Lesser-Rojas, P. Ebbinghaus, G. Vasan, M. L. Chu, A. Erbe, and C. F. Chou, “Low-copy number protein detection by electrode nanogap-enabled dielectrophoretic trapping for surface-enhanced Raman spectroscopy and electronic measurements,” Nano Lett. 14(5), 2242–2250 (2014).
[Crossref] [PubMed]

Fang, J.

Z. Liu, Z. Yang, B. Peng, C. Cao, C. Zhang, H. You, Q. Xiong, Z. Li, and J. Fang, “Highly sensitive, uniform, and reproducible surface-enhanced Raman spectroscopy from hollow Au-Ag alloy nanourchins,” Adv. Mater. 26(15), 2431–2439 (2014).
[Crossref] [PubMed]

Fu, Q.

Q. Fu, Z. Zhan, J. Dou, X. Zheng, R. Xu, M. Wu, and Y. Lei, “Highly reproducible and sensitive sers substrates with ag inter-nanoparticle gaps of 5 nm fabricated by ultrathin aluminum mask technique,” ACS Appl. Mater. Interfaces 7(24), 13322–13328 (2015).
[Crossref] [PubMed]

Fujita, J.

H. Suga, T. Sumiya, S. Furuta, R. Ueki, Y. Miyazawa, T. Nishijima, J. Fujita, K. Tsukagoshi, T. Shimizu, and Y. Naitoh, “Single-crystalline nanogap electrodes: Enhancing the nanowire-breakdown process with a gaseous environment,” ACS Appl. Mater. Interfaces 4(10), 5542–5546 (2012).
[Crossref] [PubMed]

Furuta, S.

H. Suga, T. Sumiya, S. Furuta, R. Ueki, Y. Miyazawa, T. Nishijima, J. Fujita, K. Tsukagoshi, T. Shimizu, and Y. Naitoh, “Single-crystalline nanogap electrodes: Enhancing the nanowire-breakdown process with a gaseous environment,” ACS Appl. Mater. Interfaces 4(10), 5542–5546 (2012).
[Crossref] [PubMed]

Gopalakrishnan, A.

M. Chirumamilla, A. Toma, A. Gopalakrishnan, G. Das, R. P. Zaccaria, R. Krahne, E. Rondanina, M. Leoncini, C. Liberale, F. De Angelis, and E. Di Fabrizio, “3D nanostar dimers with a sub-10-nm gap for single-/few-molecule surface-enhanced raman scattering,” Adv. Mater. 26(15), 2353–2358 (2014).
[Crossref] [PubMed]

Grinblat, G.

Z. Wang, Z. Dong, Y. Gu, Y.-H. Chang, L. Zhang, L.-J. Li, W. Zhao, G. Eda, W. Zhang, G. Grinblat, S. A. Maier, J. K. W. Yang, C.-W. Qiu, and A. T. S. Wee, “Giant photoluminescence enhancement in tungsten-diselenide-gold plasmonic hybrid structures,” Nat. Commun. 7, 11283 (2016).
[Crossref] [PubMed]

Gu, Y.

Z. Wang, Z. Dong, Y. Gu, Y.-H. Chang, L. Zhang, L.-J. Li, W. Zhao, G. Eda, W. Zhang, G. Grinblat, S. A. Maier, J. K. W. Yang, C.-W. Qiu, and A. T. S. Wee, “Giant photoluminescence enhancement in tungsten-diselenide-gold plasmonic hybrid structures,” Nat. Commun. 7, 11283 (2016).
[Crossref] [PubMed]

Hafner, C.

O. Scholder, K. Jefimovs, I. Shorubalko, C. Hafner, U. Sennhauser, and G.-L. Bona, “Helium focused ion beam fabricated plasmonic antennas with sub-5 nm gaps,” Nanotechnology 24(39), 395301 (2013).
[Crossref] [PubMed]

Han, H.

F. Shao, Z. Lu, C. Liu, H. Han, K. Chen, W. Li, Q. He, H. Peng, and J. Chen, “Hierarchical nanogaps within bioscaffold arrays as a high-performance SERS substrate for animal virus biosensing,” ACS Appl. Mater. Interfaces 6(9), 6281–6289 (2014).
[Crossref] [PubMed]

Haynes, C. L.

H. Im, K. C. Bantz, N. C. Lindquist, C. L. Haynes, and S. H. Oh, “Vertically oriented sub-10-nm plasmonic nanogap arrays,” Nano Lett. 10(6), 2231–2236 (2010).
[Crossref] [PubMed]

He, Q.

F. Shao, Z. Lu, C. Liu, H. Han, K. Chen, W. Li, Q. He, H. Peng, and J. Chen, “Hierarchical nanogaps within bioscaffold arrays as a high-performance SERS substrate for animal virus biosensing,” ACS Appl. Mater. Interfaces 6(9), 6281–6289 (2014).
[Crossref] [PubMed]

Hedegård, P.

S. Kubatkin, A. Danilov, M. Hjort, J. Cornil, J. L. Brédas, N. Stuhr-Hansen, P. Hedegård, and T. Bjørnholm, “Single-electron transistor of a single organic molecule with access to several redox states,” Nature 425(6959), 698–701 (2003).
[Crossref] [PubMed]

Herrmann, L. O.

T. Ding, L. O. Herrmann, B. de Nijs, F. Benz, and J. J. Baumberg, “Self-aligned colloidal lithography for controllable and tuneable plasmonic nanogaps,” Small 11(18), 2139–2143 (2015).
[Crossref] [PubMed]

Hjort, M.

S. Kubatkin, A. Danilov, M. Hjort, J. Cornil, J. L. Brédas, N. Stuhr-Hansen, P. Hedegård, and T. Bjørnholm, “Single-electron transistor of a single organic molecule with access to several redox states,” Nature 425(6959), 698–701 (2003).
[Crossref] [PubMed]

Hofkens, J.

J. Ye, J. A. Hutchison, H. Uji-i, J. Hofkens, L. Lagae, G. Maes, G. Borghs, and P. Van Dorpe, “Excitation wavelength dependent surface enhanced Raman scattering of 4-aminothiophenol on gold nanorings,” Nanoscale 4(5), 1606–1611 (2012).
[Crossref] [PubMed]

Hongbing, C.

Howell, S. W.

S. M. Dirk, S. W. Howell, S. Zmuda, K. Childs, M. Blain, R. J. Simonson, and D. R. Wheeler, “Novel one-dimensional nanogap created with standard optical lithography and evaporation procedures,” Nanotechnology 16(10), 1983–1985 (2005).
[Crossref] [PubMed]

Hu, H.

H. Duan, H. Hu, H. K. Hui, Z. Shen, and J. K. W. Yang, “Free-standing sub-10 nm nanostencils for the definition of gaps in plasmonic antennas,” Nanotechnology 24(18), 185301 (2013).
[Crossref] [PubMed]

Hu, W.

A. Cui, H. Dong, and W. Hu, “Nanogap electrodes towards solid state single-molecule transistors,” Small 11(46), 6115–6141 (2015).
[Crossref] [PubMed]

Hui, H. K.

H. Duan, H. Hu, H. K. Hui, Z. Shen, and J. K. W. Yang, “Free-standing sub-10 nm nanostencils for the definition of gaps in plasmonic antennas,” Nanotechnology 24(18), 185301 (2013).
[Crossref] [PubMed]

Hüser, F.

D. R. Ward, F. Hüser, F. Pauly, J. C. Cuevas, and D. Natelson, “Optical rectification and field enhancement in a plasmonic nanogap,” Nat. Nanotechnol. 5(10), 732–736 (2010).
[Crossref] [PubMed]

Hutchison, J. A.

J. Ye, J. A. Hutchison, H. Uji-i, J. Hofkens, L. Lagae, G. Maes, G. Borghs, and P. Van Dorpe, “Excitation wavelength dependent surface enhanced Raman scattering of 4-aminothiophenol on gold nanorings,” Nanoscale 4(5), 1606–1611 (2012).
[Crossref] [PubMed]

Im, H.

X. Chen, H.-R. Park, M. Pelton, X. Piao, N. C. Lindquist, H. Im, Y. J. Kim, J. S. Ahn, K. J. Ahn, N. Park, D.-S. Kim, and S.-H. Oh, “Atomic layer lithography of wafer-scale nanogap arrays for extreme confinement of electromagnetic waves,” Nat. Commun. 4, 2361 (2013).
[Crossref] [PubMed]

H. Im, K. C. Bantz, N. C. Lindquist, C. L. Haynes, and S. H. Oh, “Vertically oriented sub-10-nm plasmonic nanogap arrays,” Nano Lett. 10(6), 2231–2236 (2010).
[Crossref] [PubMed]

Jefimovs, K.

O. Scholder, K. Jefimovs, I. Shorubalko, C. Hafner, U. Sennhauser, and G.-L. Bona, “Helium focused ion beam fabricated plasmonic antennas with sub-5 nm gaps,” Nanotechnology 24(39), 395301 (2013).
[Crossref] [PubMed]

Jeon, H.-J.

H.-J. Jeon, E. H. Lee, H.-W. Yoo, K. H. Kim, and H.-T. Jung, “Fabrication of sub-20 nm nano-gap structures through the elastomeric nano-stamp assisted secondary sputtering phenomenon,” Nanoscale 6(11), 5953–5959 (2014).
[Crossref] [PubMed]

Jeon, K. S.

D. K. Lim, K. S. Jeon, H. M. Kim, J. M. Nam, and Y. D. Suh, “Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection,” Nat. Mater. 9(1), 60–67 (2010).
[Crossref] [PubMed]

Jin, J.

S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[Crossref] [PubMed]

Jun, Y. C.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Jung, H.

H. Jung, H. Cha, D. Lee, and S. Yoon, “Bridging the nanogap with light: Continuous tuning of plasmon coupling between gold nanoparticles,” ACS Nano 9(12), 12292–12300 (2015).
[Crossref] [PubMed]

Jung, H.-T.

H.-J. Jeon, E. H. Lee, H.-W. Yoo, K. H. Kim, and H.-T. Jung, “Fabrication of sub-20 nm nano-gap structures through the elastomeric nano-stamp assisted secondary sputtering phenomenon,” Nanoscale 6(11), 5953–5959 (2014).
[Crossref] [PubMed]

Kang, T.

Kim, D.-S.

J. S. Ahn, T. Kang, D. K. Singh, Y.-M. Bahk, H. Lee, S. B. Choi, and D.-S. Kim, “Optical field enhancement of nanometer-sized gaps at near-infrared frequencies,” Opt. Express 23(4), 4897–4907 (2015).
[Crossref] [PubMed]

X. Chen, H.-R. Park, M. Pelton, X. Piao, N. C. Lindquist, H. Im, Y. J. Kim, J. S. Ahn, K. J. Ahn, N. Park, D.-S. Kim, and S.-H. Oh, “Atomic layer lithography of wafer-scale nanogap arrays for extreme confinement of electromagnetic waves,” Nat. Commun. 4, 2361 (2013).
[Crossref] [PubMed]

Kim, H. M.

D. K. Lim, K. S. Jeon, H. M. Kim, J. M. Nam, and Y. D. Suh, “Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection,” Nat. Mater. 9(1), 60–67 (2010).
[Crossref] [PubMed]

Kim, K. H.

H.-J. Jeon, E. H. Lee, H.-W. Yoo, K. H. Kim, and H.-T. Jung, “Fabrication of sub-20 nm nano-gap structures through the elastomeric nano-stamp assisted secondary sputtering phenomenon,” Nanoscale 6(11), 5953–5959 (2014).
[Crossref] [PubMed]

Kim, S.

S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[Crossref] [PubMed]

Kim, S.-W.

S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[Crossref] [PubMed]

Kim, Y.

S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[Crossref] [PubMed]

Kim, Y. J.

X. Chen, H.-R. Park, M. Pelton, X. Piao, N. C. Lindquist, H. Im, Y. J. Kim, J. S. Ahn, K. J. Ahn, N. Park, D.-S. Kim, and S.-H. Oh, “Atomic layer lithography of wafer-scale nanogap arrays for extreme confinement of electromagnetic waves,” Nat. Commun. 4, 2361 (2013).
[Crossref] [PubMed]

Kim, Y.-J.

S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[Crossref] [PubMed]

Krahne, R.

M. Chirumamilla, A. Toma, A. Gopalakrishnan, G. Das, R. P. Zaccaria, R. Krahne, E. Rondanina, M. Leoncini, C. Liberale, F. De Angelis, and E. Di Fabrizio, “3D nanostar dimers with a sub-10-nm gap for single-/few-molecule surface-enhanced raman scattering,” Adv. Mater. 26(15), 2353–2358 (2014).
[Crossref] [PubMed]

Kubatkin, S.

S. Kubatkin, A. Danilov, M. Hjort, J. Cornil, J. L. Brédas, N. Stuhr-Hansen, P. Hedegård, and T. Bjørnholm, “Single-electron transistor of a single organic molecule with access to several redox states,” Nature 425(6959), 698–701 (2003).
[Crossref] [PubMed]

Kun, Z.

Lagae, L.

J. Ye, J. A. Hutchison, H. Uji-i, J. Hofkens, L. Lagae, G. Maes, G. Borghs, and P. Van Dorpe, “Excitation wavelength dependent surface enhanced Raman scattering of 4-aminothiophenol on gold nanorings,” Nanoscale 4(5), 1606–1611 (2012).
[Crossref] [PubMed]

Lee, D.

H. Jung, H. Cha, D. Lee, and S. Yoon, “Bridging the nanogap with light: Continuous tuning of plasmon coupling between gold nanoparticles,” ACS Nano 9(12), 12292–12300 (2015).
[Crossref] [PubMed]

Lee, E. H.

H.-J. Jeon, E. H. Lee, H.-W. Yoo, K. H. Kim, and H.-T. Jung, “Fabrication of sub-20 nm nano-gap structures through the elastomeric nano-stamp assisted secondary sputtering phenomenon,” Nanoscale 6(11), 5953–5959 (2014).
[Crossref] [PubMed]

Lee, H.

Lei, Y.

Q. Fu, Z. Zhan, J. Dou, X. Zheng, R. Xu, M. Wu, and Y. Lei, “Highly reproducible and sensitive sers substrates with ag inter-nanoparticle gaps of 5 nm fabricated by ultrathin aluminum mask technique,” ACS Appl. Mater. Interfaces 7(24), 13322–13328 (2015).
[Crossref] [PubMed]

Leoncini, M.

M. Chirumamilla, A. Toma, A. Gopalakrishnan, G. Das, R. P. Zaccaria, R. Krahne, E. Rondanina, M. Leoncini, C. Liberale, F. De Angelis, and E. Di Fabrizio, “3D nanostar dimers with a sub-10-nm gap for single-/few-molecule surface-enhanced raman scattering,” Adv. Mater. 26(15), 2353–2358 (2014).
[Crossref] [PubMed]

Lesser-Rojas, L.

L. Lesser-Rojas, P. Ebbinghaus, G. Vasan, M. L. Chu, A. Erbe, and C. F. Chou, “Low-copy number protein detection by electrode nanogap-enabled dielectrophoretic trapping for surface-enhanced Raman spectroscopy and electronic measurements,” Nano Lett. 14(5), 2242–2250 (2014).
[Crossref] [PubMed]

Li, L.-J.

Z. Wang, Z. Dong, Y. Gu, Y.-H. Chang, L. Zhang, L.-J. Li, W. Zhao, G. Eda, W. Zhang, G. Grinblat, S. A. Maier, J. K. W. Yang, C.-W. Qiu, and A. T. S. Wee, “Giant photoluminescence enhancement in tungsten-diselenide-gold plasmonic hybrid structures,” Nat. Commun. 7, 11283 (2016).
[Crossref] [PubMed]

Li, W.

F. Shao, Z. Lu, C. Liu, H. Han, K. Chen, W. Li, Q. He, H. Peng, and J. Chen, “Hierarchical nanogaps within bioscaffold arrays as a high-performance SERS substrate for animal virus biosensing,” ACS Appl. Mater. Interfaces 6(9), 6281–6289 (2014).
[Crossref] [PubMed]

Li, Z.

Z. Liu, Z. Yang, B. Peng, C. Cao, C. Zhang, H. You, Q. Xiong, Z. Li, and J. Fang, “Highly sensitive, uniform, and reproducible surface-enhanced Raman spectroscopy from hollow Au-Ag alloy nanourchins,” Adv. Mater. 26(15), 2431–2439 (2014).
[Crossref] [PubMed]

Liang, W.

W. Liang, M. P. Shores, M. Bockrath, J. R. Long, and H. Park, “Kondo resonance in a single-molecule transistor,” Nature 417(6890), 725–729 (2002).
[Crossref] [PubMed]

Liang, X.

X. Liang and S. Y. Chou, “Nanogap detector inside nanofluidic channel for fast real-time label-free DNA analysis,” Nano Lett. 8(5), 1472–1476 (2008).
[Crossref] [PubMed]

Liberale, C.

M. Chirumamilla, A. Toma, A. Gopalakrishnan, G. Das, R. P. Zaccaria, R. Krahne, E. Rondanina, M. Leoncini, C. Liberale, F. De Angelis, and E. Di Fabrizio, “3D nanostar dimers with a sub-10-nm gap for single-/few-molecule surface-enhanced raman scattering,” Adv. Mater. 26(15), 2353–2358 (2014).
[Crossref] [PubMed]

Lim, D. K.

D. K. Lim, K. S. Jeon, H. M. Kim, J. M. Nam, and Y. D. Suh, “Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection,” Nat. Mater. 9(1), 60–67 (2010).
[Crossref] [PubMed]

Lindquist, N. C.

X. Chen, H. R. Park, N. C. Lindquist, J. Shaver, M. Pelton, and S. H. Oh, “Squeezing millimeter waves through a single, nanometer-wide, centimeter-long slit,” Sci. Rep. 4, 6722 (2014).
[Crossref] [PubMed]

X. Chen, H.-R. Park, M. Pelton, X. Piao, N. C. Lindquist, H. Im, Y. J. Kim, J. S. Ahn, K. J. Ahn, N. Park, D.-S. Kim, and S.-H. Oh, “Atomic layer lithography of wafer-scale nanogap arrays for extreme confinement of electromagnetic waves,” Nat. Commun. 4, 2361 (2013).
[Crossref] [PubMed]

H. Im, K. C. Bantz, N. C. Lindquist, C. L. Haynes, and S. H. Oh, “Vertically oriented sub-10-nm plasmonic nanogap arrays,” Nano Lett. 10(6), 2231–2236 (2010).
[Crossref] [PubMed]

Liu, C.

F. Shao, Z. Lu, C. Liu, H. Han, K. Chen, W. Li, Q. He, H. Peng, and J. Chen, “Hierarchical nanogaps within bioscaffold arrays as a high-performance SERS substrate for animal virus biosensing,” ACS Appl. Mater. Interfaces 6(9), 6281–6289 (2014).
[Crossref] [PubMed]

Liu, Z.

Z. Liu, Z. Yang, B. Peng, C. Cao, C. Zhang, H. You, Q. Xiong, Z. Li, and J. Fang, “Highly sensitive, uniform, and reproducible surface-enhanced Raman spectroscopy from hollow Au-Ag alloy nanourchins,” Adv. Mater. 26(15), 2431–2439 (2014).
[Crossref] [PubMed]

Long, J. R.

W. Liang, M. P. Shores, M. Bockrath, J. R. Long, and H. Park, “Kondo resonance in a single-molecule transistor,” Nature 417(6890), 725–729 (2002).
[Crossref] [PubMed]

Lu, Z.

F. Shao, Z. Lu, C. Liu, H. Han, K. Chen, W. Li, Q. He, H. Peng, and J. Chen, “Hierarchical nanogaps within bioscaffold arrays as a high-performance SERS substrate for animal virus biosensing,” ACS Appl. Mater. Interfaces 6(9), 6281–6289 (2014).
[Crossref] [PubMed]

Maes, G.

J. Ye, J. A. Hutchison, H. Uji-i, J. Hofkens, L. Lagae, G. Maes, G. Borghs, and P. Van Dorpe, “Excitation wavelength dependent surface enhanced Raman scattering of 4-aminothiophenol on gold nanorings,” Nanoscale 4(5), 1606–1611 (2012).
[Crossref] [PubMed]

Maier, S. A.

Z. Wang, Z. Dong, Y. Gu, Y.-H. Chang, L. Zhang, L.-J. Li, W. Zhao, G. Eda, W. Zhang, G. Grinblat, S. A. Maier, J. K. W. Yang, C.-W. Qiu, and A. T. S. Wee, “Giant photoluminescence enhancement in tungsten-diselenide-gold plasmonic hybrid structures,” Nat. Commun. 7, 11283 (2016).
[Crossref] [PubMed]

Martin, C. A.

M. L. Perrin, C. J. O. Verzijl, C. A. Martin, A. J. Shaikh, R. Eelkema, J. H. van Esch, J. M. van Ruitenbeek, J. M. Thijssen, H. S. J. van der Zant, and D. Dulić, “Large tunable image-charge effects in single-molecule junctions,” Nat. Nanotechnol. 8(4), 282–287 (2013).
[Crossref] [PubMed]

Martin, O. J. F.

T. Siegfried, Y. Ekinci, O. J. F. Martin, and H. Sigg, “Gap plasmons and near-field enhancement in closely packed sub-10 nm gap resonators,” Nano Lett. 13(11), 5449–5453 (2013).
[Crossref] [PubMed]

Martin-Moreno, L.

D. Yoo, N. C. Nguyen, L. Martin-Moreno, D. A. Mohr, S. Carretero-Palacios, J. Shaver, J. Peraire, T. W. Ebbesen, and S.-H. Oh, “High-throughput fabrication of resonant metamaterials with ultrasmall coaxial apertures via atomic layer lithography,” Nano Lett. 16(3), 2040–2046 (2016).
[Crossref] [PubMed]

Miyazawa, Y.

H. Suga, T. Sumiya, S. Furuta, R. Ueki, Y. Miyazawa, T. Nishijima, J. Fujita, K. Tsukagoshi, T. Shimizu, and Y. Naitoh, “Single-crystalline nanogap electrodes: Enhancing the nanowire-breakdown process with a gaseous environment,” ACS Appl. Mater. Interfaces 4(10), 5542–5546 (2012).
[Crossref] [PubMed]

Mohr, D. A.

D. Yoo, N. C. Nguyen, L. Martin-Moreno, D. A. Mohr, S. Carretero-Palacios, J. Shaver, J. Peraire, T. W. Ebbesen, and S.-H. Oh, “High-throughput fabrication of resonant metamaterials with ultrasmall coaxial apertures via atomic layer lithography,” Nano Lett. 16(3), 2040–2046 (2016).
[Crossref] [PubMed]

Naitoh, Y.

H. Suga, T. Sumiya, S. Furuta, R. Ueki, Y. Miyazawa, T. Nishijima, J. Fujita, K. Tsukagoshi, T. Shimizu, and Y. Naitoh, “Single-crystalline nanogap electrodes: Enhancing the nanowire-breakdown process with a gaseous environment,” ACS Appl. Mater. Interfaces 4(10), 5542–5546 (2012).
[Crossref] [PubMed]

Nam, J. M.

D. K. Lim, K. S. Jeon, H. M. Kim, J. M. Nam, and Y. D. Suh, “Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection,” Nat. Mater. 9(1), 60–67 (2010).
[Crossref] [PubMed]

Nan, P.

Natelson, D.

D. R. Ward, F. Hüser, F. Pauly, J. C. Cuevas, and D. Natelson, “Optical rectification and field enhancement in a plasmonic nanogap,” Nat. Nanotechnol. 5(10), 732–736 (2010).
[Crossref] [PubMed]

Nguyen, N. C.

D. Yoo, N. C. Nguyen, L. Martin-Moreno, D. A. Mohr, S. Carretero-Palacios, J. Shaver, J. Peraire, T. W. Ebbesen, and S.-H. Oh, “High-throughput fabrication of resonant metamaterials with ultrasmall coaxial apertures via atomic layer lithography,” Nano Lett. 16(3), 2040–2046 (2016).
[Crossref] [PubMed]

Nishijima, T.

H. Suga, T. Sumiya, S. Furuta, R. Ueki, Y. Miyazawa, T. Nishijima, J. Fujita, K. Tsukagoshi, T. Shimizu, and Y. Naitoh, “Single-crystalline nanogap electrodes: Enhancing the nanowire-breakdown process with a gaseous environment,” ACS Appl. Mater. Interfaces 4(10), 5542–5546 (2012).
[Crossref] [PubMed]

Oh, S. H.

X. Chen, H. R. Park, N. C. Lindquist, J. Shaver, M. Pelton, and S. H. Oh, “Squeezing millimeter waves through a single, nanometer-wide, centimeter-long slit,” Sci. Rep. 4, 6722 (2014).
[Crossref] [PubMed]

H. Im, K. C. Bantz, N. C. Lindquist, C. L. Haynes, and S. H. Oh, “Vertically oriented sub-10-nm plasmonic nanogap arrays,” Nano Lett. 10(6), 2231–2236 (2010).
[Crossref] [PubMed]

Oh, S.-H.

D. Yoo, N. C. Nguyen, L. Martin-Moreno, D. A. Mohr, S. Carretero-Palacios, J. Shaver, J. Peraire, T. W. Ebbesen, and S.-H. Oh, “High-throughput fabrication of resonant metamaterials with ultrasmall coaxial apertures via atomic layer lithography,” Nano Lett. 16(3), 2040–2046 (2016).
[Crossref] [PubMed]

X. Chen, C. Ciracì, D. R. Smith, and S.-H. Oh, “Nanogap-enhanced infrared spectroscopy with template-stripped wafer-scale arrays of buried plasmonic cavities,” Nano Lett. 15(1), 107–113 (2015).
[Crossref] [PubMed]

X. Chen, H.-R. Park, M. Pelton, X. Piao, N. C. Lindquist, H. Im, Y. J. Kim, J. S. Ahn, K. J. Ahn, N. Park, D.-S. Kim, and S.-H. Oh, “Atomic layer lithography of wafer-scale nanogap arrays for extreme confinement of electromagnetic waves,” Nat. Commun. 4, 2361 (2013).
[Crossref] [PubMed]

Park, H.

W. Liang, M. P. Shores, M. Bockrath, J. R. Long, and H. Park, “Kondo resonance in a single-molecule transistor,” Nature 417(6890), 725–729 (2002).
[Crossref] [PubMed]

Park, H. R.

X. Chen, H. R. Park, N. C. Lindquist, J. Shaver, M. Pelton, and S. H. Oh, “Squeezing millimeter waves through a single, nanometer-wide, centimeter-long slit,” Sci. Rep. 4, 6722 (2014).
[Crossref] [PubMed]

Park, H.-R.

X. Chen, H.-R. Park, M. Pelton, X. Piao, N. C. Lindquist, H. Im, Y. J. Kim, J. S. Ahn, K. J. Ahn, N. Park, D.-S. Kim, and S.-H. Oh, “Atomic layer lithography of wafer-scale nanogap arrays for extreme confinement of electromagnetic waves,” Nat. Commun. 4, 2361 (2013).
[Crossref] [PubMed]

Park, I.-Y.

S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[Crossref] [PubMed]

Park, N.

X. Chen, H.-R. Park, M. Pelton, X. Piao, N. C. Lindquist, H. Im, Y. J. Kim, J. S. Ahn, K. J. Ahn, N. Park, D.-S. Kim, and S.-H. Oh, “Atomic layer lithography of wafer-scale nanogap arrays for extreme confinement of electromagnetic waves,” Nat. Commun. 4, 2361 (2013).
[Crossref] [PubMed]

Pauly, F.

D. R. Ward, F. Hüser, F. Pauly, J. C. Cuevas, and D. Natelson, “Optical rectification and field enhancement in a plasmonic nanogap,” Nat. Nanotechnol. 5(10), 732–736 (2010).
[Crossref] [PubMed]

Pelton, M.

X. Chen, H. R. Park, N. C. Lindquist, J. Shaver, M. Pelton, and S. H. Oh, “Squeezing millimeter waves through a single, nanometer-wide, centimeter-long slit,” Sci. Rep. 4, 6722 (2014).
[Crossref] [PubMed]

X. Chen, H.-R. Park, M. Pelton, X. Piao, N. C. Lindquist, H. Im, Y. J. Kim, J. S. Ahn, K. J. Ahn, N. Park, D.-S. Kim, and S.-H. Oh, “Atomic layer lithography of wafer-scale nanogap arrays for extreme confinement of electromagnetic waves,” Nat. Commun. 4, 2361 (2013).
[Crossref] [PubMed]

Peng, B.

Z. Liu, Z. Yang, B. Peng, C. Cao, C. Zhang, H. You, Q. Xiong, Z. Li, and J. Fang, “Highly sensitive, uniform, and reproducible surface-enhanced Raman spectroscopy from hollow Au-Ag alloy nanourchins,” Adv. Mater. 26(15), 2431–2439 (2014).
[Crossref] [PubMed]

Peng, H.

F. Shao, Z. Lu, C. Liu, H. Han, K. Chen, W. Li, Q. He, H. Peng, and J. Chen, “Hierarchical nanogaps within bioscaffold arrays as a high-performance SERS substrate for animal virus biosensing,” ACS Appl. Mater. Interfaces 6(9), 6281–6289 (2014).
[Crossref] [PubMed]

Peraire, J.

D. Yoo, N. C. Nguyen, L. Martin-Moreno, D. A. Mohr, S. Carretero-Palacios, J. Shaver, J. Peraire, T. W. Ebbesen, and S.-H. Oh, “High-throughput fabrication of resonant metamaterials with ultrasmall coaxial apertures via atomic layer lithography,” Nano Lett. 16(3), 2040–2046 (2016).
[Crossref] [PubMed]

Perrin, M. L.

M. L. Perrin, C. J. O. Verzijl, C. A. Martin, A. J. Shaikh, R. Eelkema, J. H. van Esch, J. M. van Ruitenbeek, J. M. Thijssen, H. S. J. van der Zant, and D. Dulić, “Large tunable image-charge effects in single-molecule junctions,” Nat. Nanotechnol. 8(4), 282–287 (2013).
[Crossref] [PubMed]

Piao, X.

X. Chen, H.-R. Park, M. Pelton, X. Piao, N. C. Lindquist, H. Im, Y. J. Kim, J. S. Ahn, K. J. Ahn, N. Park, D.-S. Kim, and S.-H. Oh, “Atomic layer lithography of wafer-scale nanogap arrays for extreme confinement of electromagnetic waves,” Nat. Commun. 4, 2361 (2013).
[Crossref] [PubMed]

Qiu, C.-W.

Z. Wang, Z. Dong, Y. Gu, Y.-H. Chang, L. Zhang, L.-J. Li, W. Zhao, G. Eda, W. Zhang, G. Grinblat, S. A. Maier, J. K. W. Yang, C.-W. Qiu, and A. T. S. Wee, “Giant photoluminescence enhancement in tungsten-diselenide-gold plasmonic hybrid structures,” Nat. Commun. 7, 11283 (2016).
[Crossref] [PubMed]

Rondanina, E.

M. Chirumamilla, A. Toma, A. Gopalakrishnan, G. Das, R. P. Zaccaria, R. Krahne, E. Rondanina, M. Leoncini, C. Liberale, F. De Angelis, and E. Di Fabrizio, “3D nanostar dimers with a sub-10-nm gap for single-/few-molecule surface-enhanced raman scattering,” Adv. Mater. 26(15), 2353–2358 (2014).
[Crossref] [PubMed]

Scholder, O.

O. Scholder, K. Jefimovs, I. Shorubalko, C. Hafner, U. Sennhauser, and G.-L. Bona, “Helium focused ion beam fabricated plasmonic antennas with sub-5 nm gaps,” Nanotechnology 24(39), 395301 (2013).
[Crossref] [PubMed]

Schuller, J. A.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Sennhauser, U.

O. Scholder, K. Jefimovs, I. Shorubalko, C. Hafner, U. Sennhauser, and G.-L. Bona, “Helium focused ion beam fabricated plasmonic antennas with sub-5 nm gaps,” Nanotechnology 24(39), 395301 (2013).
[Crossref] [PubMed]

Shaikh, A. J.

M. L. Perrin, C. J. O. Verzijl, C. A. Martin, A. J. Shaikh, R. Eelkema, J. H. van Esch, J. M. van Ruitenbeek, J. M. Thijssen, H. S. J. van der Zant, and D. Dulić, “Large tunable image-charge effects in single-molecule junctions,” Nat. Nanotechnol. 8(4), 282–287 (2013).
[Crossref] [PubMed]

Shao, F.

F. Shao, Z. Lu, C. Liu, H. Han, K. Chen, W. Li, Q. He, H. Peng, and J. Chen, “Hierarchical nanogaps within bioscaffold arrays as a high-performance SERS substrate for animal virus biosensing,” ACS Appl. Mater. Interfaces 6(9), 6281–6289 (2014).
[Crossref] [PubMed]

Shaver, J.

D. Yoo, N. C. Nguyen, L. Martin-Moreno, D. A. Mohr, S. Carretero-Palacios, J. Shaver, J. Peraire, T. W. Ebbesen, and S.-H. Oh, “High-throughput fabrication of resonant metamaterials with ultrasmall coaxial apertures via atomic layer lithography,” Nano Lett. 16(3), 2040–2046 (2016).
[Crossref] [PubMed]

X. Chen, H. R. Park, N. C. Lindquist, J. Shaver, M. Pelton, and S. H. Oh, “Squeezing millimeter waves through a single, nanometer-wide, centimeter-long slit,” Sci. Rep. 4, 6722 (2014).
[Crossref] [PubMed]

Shen, S.

J. Chen, C.-L. Dong, Y. Du, D. Zhao, and S. Shen, “Nanogap engineered plasmon-enhancement in photocatalytic solar hydrogen conversion,” Adv. Mater. Interfaces 2(14), 1500280 (2015).
[Crossref]

Shen, Z.

H. Duan, H. Hu, H. K. Hui, Z. Shen, and J. K. W. Yang, “Free-standing sub-10 nm nanostencils for the definition of gaps in plasmonic antennas,” Nanotechnology 24(18), 185301 (2013).
[Crossref] [PubMed]

Shimizu, T.

H. Suga, T. Sumiya, S. Furuta, R. Ueki, Y. Miyazawa, T. Nishijima, J. Fujita, K. Tsukagoshi, T. Shimizu, and Y. Naitoh, “Single-crystalline nanogap electrodes: Enhancing the nanowire-breakdown process with a gaseous environment,” ACS Appl. Mater. Interfaces 4(10), 5542–5546 (2012).
[Crossref] [PubMed]

Shores, M. P.

W. Liang, M. P. Shores, M. Bockrath, J. R. Long, and H. Park, “Kondo resonance in a single-molecule transistor,” Nature 417(6890), 725–729 (2002).
[Crossref] [PubMed]

Shorubalko, I.

O. Scholder, K. Jefimovs, I. Shorubalko, C. Hafner, U. Sennhauser, and G.-L. Bona, “Helium focused ion beam fabricated plasmonic antennas with sub-5 nm gaps,” Nanotechnology 24(39), 395301 (2013).
[Crossref] [PubMed]

Siegfried, T.

T. Siegfried, Y. Ekinci, O. J. F. Martin, and H. Sigg, “Gap plasmons and near-field enhancement in closely packed sub-10 nm gap resonators,” Nano Lett. 13(11), 5449–5453 (2013).
[Crossref] [PubMed]

Sigg, H.

T. Siegfried, Y. Ekinci, O. J. F. Martin, and H. Sigg, “Gap plasmons and near-field enhancement in closely packed sub-10 nm gap resonators,” Nano Lett. 13(11), 5449–5453 (2013).
[Crossref] [PubMed]

Simonson, R. J.

S. M. Dirk, S. W. Howell, S. Zmuda, K. Childs, M. Blain, R. J. Simonson, and D. R. Wheeler, “Novel one-dimensional nanogap created with standard optical lithography and evaporation procedures,” Nanotechnology 16(10), 1983–1985 (2005).
[Crossref] [PubMed]

Singh, D. K.

Smith, D. R.

X. Chen, C. Ciracì, D. R. Smith, and S.-H. Oh, “Nanogap-enhanced infrared spectroscopy with template-stripped wafer-scale arrays of buried plasmonic cavities,” Nano Lett. 15(1), 107–113 (2015).
[Crossref] [PubMed]

Stuhr-Hansen, N.

S. Kubatkin, A. Danilov, M. Hjort, J. Cornil, J. L. Brédas, N. Stuhr-Hansen, P. Hedegård, and T. Bjørnholm, “Single-electron transistor of a single organic molecule with access to several redox states,” Nature 425(6959), 698–701 (2003).
[Crossref] [PubMed]

Suga, H.

H. Suga, T. Sumiya, S. Furuta, R. Ueki, Y. Miyazawa, T. Nishijima, J. Fujita, K. Tsukagoshi, T. Shimizu, and Y. Naitoh, “Single-crystalline nanogap electrodes: Enhancing the nanowire-breakdown process with a gaseous environment,” ACS Appl. Mater. Interfaces 4(10), 5542–5546 (2012).
[Crossref] [PubMed]

Suh, Y. D.

D. K. Lim, K. S. Jeon, H. M. Kim, J. M. Nam, and Y. D. Suh, “Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection,” Nat. Mater. 9(1), 60–67 (2010).
[Crossref] [PubMed]

Sumiya, T.

H. Suga, T. Sumiya, S. Furuta, R. Ueki, Y. Miyazawa, T. Nishijima, J. Fujita, K. Tsukagoshi, T. Shimizu, and Y. Naitoh, “Single-crystalline nanogap electrodes: Enhancing the nanowire-breakdown process with a gaseous environment,” ACS Appl. Mater. Interfaces 4(10), 5542–5546 (2012).
[Crossref] [PubMed]

Thijssen, J. M.

M. L. Perrin, C. J. O. Verzijl, C. A. Martin, A. J. Shaikh, R. Eelkema, J. H. van Esch, J. M. van Ruitenbeek, J. M. Thijssen, H. S. J. van der Zant, and D. Dulić, “Large tunable image-charge effects in single-molecule junctions,” Nat. Nanotechnol. 8(4), 282–287 (2013).
[Crossref] [PubMed]

Toma, A.

M. Chirumamilla, A. Toma, A. Gopalakrishnan, G. Das, R. P. Zaccaria, R. Krahne, E. Rondanina, M. Leoncini, C. Liberale, F. De Angelis, and E. Di Fabrizio, “3D nanostar dimers with a sub-10-nm gap for single-/few-molecule surface-enhanced raman scattering,” Adv. Mater. 26(15), 2353–2358 (2014).
[Crossref] [PubMed]

Tsukagoshi, K.

H. Suga, T. Sumiya, S. Furuta, R. Ueki, Y. Miyazawa, T. Nishijima, J. Fujita, K. Tsukagoshi, T. Shimizu, and Y. Naitoh, “Single-crystalline nanogap electrodes: Enhancing the nanowire-breakdown process with a gaseous environment,” ACS Appl. Mater. Interfaces 4(10), 5542–5546 (2012).
[Crossref] [PubMed]

Ueki, R.

H. Suga, T. Sumiya, S. Furuta, R. Ueki, Y. Miyazawa, T. Nishijima, J. Fujita, K. Tsukagoshi, T. Shimizu, and Y. Naitoh, “Single-crystalline nanogap electrodes: Enhancing the nanowire-breakdown process with a gaseous environment,” ACS Appl. Mater. Interfaces 4(10), 5542–5546 (2012).
[Crossref] [PubMed]

Uji-i, H.

J. Ye, J. A. Hutchison, H. Uji-i, J. Hofkens, L. Lagae, G. Maes, G. Borghs, and P. Van Dorpe, “Excitation wavelength dependent surface enhanced Raman scattering of 4-aminothiophenol on gold nanorings,” Nanoscale 4(5), 1606–1611 (2012).
[Crossref] [PubMed]

van der Zant, H. S. J.

M. L. Perrin, C. J. O. Verzijl, C. A. Martin, A. J. Shaikh, R. Eelkema, J. H. van Esch, J. M. van Ruitenbeek, J. M. Thijssen, H. S. J. van der Zant, and D. Dulić, “Large tunable image-charge effects in single-molecule junctions,” Nat. Nanotechnol. 8(4), 282–287 (2013).
[Crossref] [PubMed]

Van Dorpe, P.

J. Ye, J. A. Hutchison, H. Uji-i, J. Hofkens, L. Lagae, G. Maes, G. Borghs, and P. Van Dorpe, “Excitation wavelength dependent surface enhanced Raman scattering of 4-aminothiophenol on gold nanorings,” Nanoscale 4(5), 1606–1611 (2012).
[Crossref] [PubMed]

van Esch, J. H.

M. L. Perrin, C. J. O. Verzijl, C. A. Martin, A. J. Shaikh, R. Eelkema, J. H. van Esch, J. M. van Ruitenbeek, J. M. Thijssen, H. S. J. van der Zant, and D. Dulić, “Large tunable image-charge effects in single-molecule junctions,” Nat. Nanotechnol. 8(4), 282–287 (2013).
[Crossref] [PubMed]

van Ruitenbeek, J. M.

M. L. Perrin, C. J. O. Verzijl, C. A. Martin, A. J. Shaikh, R. Eelkema, J. H. van Esch, J. M. van Ruitenbeek, J. M. Thijssen, H. S. J. van der Zant, and D. Dulić, “Large tunable image-charge effects in single-molecule junctions,” Nat. Nanotechnol. 8(4), 282–287 (2013).
[Crossref] [PubMed]

Vasan, G.

L. Lesser-Rojas, P. Ebbinghaus, G. Vasan, M. L. Chu, A. Erbe, and C. F. Chou, “Low-copy number protein detection by electrode nanogap-enabled dielectrophoretic trapping for surface-enhanced Raman spectroscopy and electronic measurements,” Nano Lett. 14(5), 2242–2250 (2014).
[Crossref] [PubMed]

Verzijl, C. J. O.

M. L. Perrin, C. J. O. Verzijl, C. A. Martin, A. J. Shaikh, R. Eelkema, J. H. van Esch, J. M. van Ruitenbeek, J. M. Thijssen, H. S. J. van der Zant, and D. Dulić, “Large tunable image-charge effects in single-molecule junctions,” Nat. Nanotechnol. 8(4), 282–287 (2013).
[Crossref] [PubMed]

Wang, D.

W. Zhu, M. G. Banaee, D. Wang, Y. Chu, and K. B. Crozier, “Lithographically fabricated optical antennas with gaps well below 10 nm,” Small 7(13), 1761–1766 (2011).
[Crossref] [PubMed]

Wang, Z.

Z. Wang, Z. Dong, Y. Gu, Y.-H. Chang, L. Zhang, L.-J. Li, W. Zhao, G. Eda, W. Zhang, G. Grinblat, S. A. Maier, J. K. W. Yang, C.-W. Qiu, and A. T. S. Wee, “Giant photoluminescence enhancement in tungsten-diselenide-gold plasmonic hybrid structures,” Nat. Commun. 7, 11283 (2016).
[Crossref] [PubMed]

Ward, D. R.

D. R. Ward, F. Hüser, F. Pauly, J. C. Cuevas, and D. Natelson, “Optical rectification and field enhancement in a plasmonic nanogap,” Nat. Nanotechnol. 5(10), 732–736 (2010).
[Crossref] [PubMed]

Wee, A. T. S.

Z. Wang, Z. Dong, Y. Gu, Y.-H. Chang, L. Zhang, L.-J. Li, W. Zhao, G. Eda, W. Zhang, G. Grinblat, S. A. Maier, J. K. W. Yang, C.-W. Qiu, and A. T. S. Wee, “Giant photoluminescence enhancement in tungsten-diselenide-gold plasmonic hybrid structures,” Nat. Commun. 7, 11283 (2016).
[Crossref] [PubMed]

Wenzhen, R.

Wheeler, D. R.

S. M. Dirk, S. W. Howell, S. Zmuda, K. Childs, M. Blain, R. J. Simonson, and D. R. Wheeler, “Novel one-dimensional nanogap created with standard optical lithography and evaporation procedures,” Nanotechnology 16(10), 1983–1985 (2005).
[Crossref] [PubMed]

White, J. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Wu, M.

Q. Fu, Z. Zhan, J. Dou, X. Zheng, R. Xu, M. Wu, and Y. Lei, “Highly reproducible and sensitive sers substrates with ag inter-nanoparticle gaps of 5 nm fabricated by ultrathin aluminum mask technique,” ACS Appl. Mater. Interfaces 7(24), 13322–13328 (2015).
[Crossref] [PubMed]

Xiaoping, W.

Xiong, Q.

Z. Liu, Z. Yang, B. Peng, C. Cao, C. Zhang, H. You, Q. Xiong, Z. Li, and J. Fang, “Highly sensitive, uniform, and reproducible surface-enhanced Raman spectroscopy from hollow Au-Ag alloy nanourchins,” Adv. Mater. 26(15), 2431–2439 (2014).
[Crossref] [PubMed]

Xu, R.

Q. Fu, Z. Zhan, J. Dou, X. Zheng, R. Xu, M. Wu, and Y. Lei, “Highly reproducible and sensitive sers substrates with ag inter-nanoparticle gaps of 5 nm fabricated by ultrathin aluminum mask technique,” ACS Appl. Mater. Interfaces 7(24), 13322–13328 (2015).
[Crossref] [PubMed]

Yang, J. K. W.

Z. Wang, Z. Dong, Y. Gu, Y.-H. Chang, L. Zhang, L.-J. Li, W. Zhao, G. Eda, W. Zhang, G. Grinblat, S. A. Maier, J. K. W. Yang, C.-W. Qiu, and A. T. S. Wee, “Giant photoluminescence enhancement in tungsten-diselenide-gold plasmonic hybrid structures,” Nat. Commun. 7, 11283 (2016).
[Crossref] [PubMed]

H. Duan, H. Hu, H. K. Hui, Z. Shen, and J. K. W. Yang, “Free-standing sub-10 nm nanostencils for the definition of gaps in plasmonic antennas,” Nanotechnology 24(18), 185301 (2013).
[Crossref] [PubMed]

Yang, Z.

Z. Liu, Z. Yang, B. Peng, C. Cao, C. Zhang, H. You, Q. Xiong, Z. Li, and J. Fang, “Highly sensitive, uniform, and reproducible surface-enhanced Raman spectroscopy from hollow Au-Ag alloy nanourchins,” Adv. Mater. 26(15), 2431–2439 (2014).
[Crossref] [PubMed]

Yangchao, T.

Ye, J.

J. Ye, J. A. Hutchison, H. Uji-i, J. Hofkens, L. Lagae, G. Maes, G. Borghs, and P. Van Dorpe, “Excitation wavelength dependent surface enhanced Raman scattering of 4-aminothiophenol on gold nanorings,” Nanoscale 4(5), 1606–1611 (2012).
[Crossref] [PubMed]

Yi, L.

Yoo, D.

D. Yoo, N. C. Nguyen, L. Martin-Moreno, D. A. Mohr, S. Carretero-Palacios, J. Shaver, J. Peraire, T. W. Ebbesen, and S.-H. Oh, “High-throughput fabrication of resonant metamaterials with ultrasmall coaxial apertures via atomic layer lithography,” Nano Lett. 16(3), 2040–2046 (2016).
[Crossref] [PubMed]

Yoo, H.-W.

H.-J. Jeon, E. H. Lee, H.-W. Yoo, K. H. Kim, and H.-T. Jung, “Fabrication of sub-20 nm nano-gap structures through the elastomeric nano-stamp assisted secondary sputtering phenomenon,” Nanoscale 6(11), 5953–5959 (2014).
[Crossref] [PubMed]

Yoon, S.

H. Jung, H. Cha, D. Lee, and S. Yoon, “Bridging the nanogap with light: Continuous tuning of plasmon coupling between gold nanoparticles,” ACS Nano 9(12), 12292–12300 (2015).
[Crossref] [PubMed]

You, H.

Z. Liu, Z. Yang, B. Peng, C. Cao, C. Zhang, H. You, Q. Xiong, Z. Li, and J. Fang, “Highly sensitive, uniform, and reproducible surface-enhanced Raman spectroscopy from hollow Au-Ag alloy nanourchins,” Adv. Mater. 26(15), 2431–2439 (2014).
[Crossref] [PubMed]

Zaccaria, R. P.

M. Chirumamilla, A. Toma, A. Gopalakrishnan, G. Das, R. P. Zaccaria, R. Krahne, E. Rondanina, M. Leoncini, C. Liberale, F. De Angelis, and E. Di Fabrizio, “3D nanostar dimers with a sub-10-nm gap for single-/few-molecule surface-enhanced raman scattering,” Adv. Mater. 26(15), 2353–2358 (2014).
[Crossref] [PubMed]

Zhan, Z.

Q. Fu, Z. Zhan, J. Dou, X. Zheng, R. Xu, M. Wu, and Y. Lei, “Highly reproducible and sensitive sers substrates with ag inter-nanoparticle gaps of 5 nm fabricated by ultrathin aluminum mask technique,” ACS Appl. Mater. Interfaces 7(24), 13322–13328 (2015).
[Crossref] [PubMed]

Zhang, C.

Z. Liu, Z. Yang, B. Peng, C. Cao, C. Zhang, H. You, Q. Xiong, Z. Li, and J. Fang, “Highly sensitive, uniform, and reproducible surface-enhanced Raman spectroscopy from hollow Au-Ag alloy nanourchins,” Adv. Mater. 26(15), 2431–2439 (2014).
[Crossref] [PubMed]

Zhang, L.

Z. Wang, Z. Dong, Y. Gu, Y.-H. Chang, L. Zhang, L.-J. Li, W. Zhao, G. Eda, W. Zhang, G. Grinblat, S. A. Maier, J. K. W. Yang, C.-W. Qiu, and A. T. S. Wee, “Giant photoluminescence enhancement in tungsten-diselenide-gold plasmonic hybrid structures,” Nat. Commun. 7, 11283 (2016).
[Crossref] [PubMed]

Zhang, W.

Z. Wang, Z. Dong, Y. Gu, Y.-H. Chang, L. Zhang, L.-J. Li, W. Zhao, G. Eda, W. Zhang, G. Grinblat, S. A. Maier, J. K. W. Yang, C.-W. Qiu, and A. T. S. Wee, “Giant photoluminescence enhancement in tungsten-diselenide-gold plasmonic hybrid structures,” Nat. Commun. 7, 11283 (2016).
[Crossref] [PubMed]

Zhao, D.

J. Chen, C.-L. Dong, Y. Du, D. Zhao, and S. Shen, “Nanogap engineered plasmon-enhancement in photocatalytic solar hydrogen conversion,” Adv. Mater. Interfaces 2(14), 1500280 (2015).
[Crossref]

Zhao, W.

Z. Wang, Z. Dong, Y. Gu, Y.-H. Chang, L. Zhang, L.-J. Li, W. Zhao, G. Eda, W. Zhang, G. Grinblat, S. A. Maier, J. K. W. Yang, C.-W. Qiu, and A. T. S. Wee, “Giant photoluminescence enhancement in tungsten-diselenide-gold plasmonic hybrid structures,” Nat. Commun. 7, 11283 (2016).
[Crossref] [PubMed]

Zheng, X.

Q. Fu, Z. Zhan, J. Dou, X. Zheng, R. Xu, M. Wu, and Y. Lei, “Highly reproducible and sensitive sers substrates with ag inter-nanoparticle gaps of 5 nm fabricated by ultrathin aluminum mask technique,” ACS Appl. Mater. Interfaces 7(24), 13322–13328 (2015).
[Crossref] [PubMed]

Zhu, W.

W. Zhu, M. G. Banaee, D. Wang, Y. Chu, and K. B. Crozier, “Lithographically fabricated optical antennas with gaps well below 10 nm,” Small 7(13), 1761–1766 (2011).
[Crossref] [PubMed]

Zmuda, S.

S. M. Dirk, S. W. Howell, S. Zmuda, K. Childs, M. Blain, R. J. Simonson, and D. R. Wheeler, “Novel one-dimensional nanogap created with standard optical lithography and evaporation procedures,” Nanotechnology 16(10), 1983–1985 (2005).
[Crossref] [PubMed]

ACS Appl. Mater. Interfaces (3)

Q. Fu, Z. Zhan, J. Dou, X. Zheng, R. Xu, M. Wu, and Y. Lei, “Highly reproducible and sensitive sers substrates with ag inter-nanoparticle gaps of 5 nm fabricated by ultrathin aluminum mask technique,” ACS Appl. Mater. Interfaces 7(24), 13322–13328 (2015).
[Crossref] [PubMed]

F. Shao, Z. Lu, C. Liu, H. Han, K. Chen, W. Li, Q. He, H. Peng, and J. Chen, “Hierarchical nanogaps within bioscaffold arrays as a high-performance SERS substrate for animal virus biosensing,” ACS Appl. Mater. Interfaces 6(9), 6281–6289 (2014).
[Crossref] [PubMed]

H. Suga, T. Sumiya, S. Furuta, R. Ueki, Y. Miyazawa, T. Nishijima, J. Fujita, K. Tsukagoshi, T. Shimizu, and Y. Naitoh, “Single-crystalline nanogap electrodes: Enhancing the nanowire-breakdown process with a gaseous environment,” ACS Appl. Mater. Interfaces 4(10), 5542–5546 (2012).
[Crossref] [PubMed]

ACS Nano (1)

H. Jung, H. Cha, D. Lee, and S. Yoon, “Bridging the nanogap with light: Continuous tuning of plasmon coupling between gold nanoparticles,” ACS Nano 9(12), 12292–12300 (2015).
[Crossref] [PubMed]

Adv. Mater. (2)

M. Chirumamilla, A. Toma, A. Gopalakrishnan, G. Das, R. P. Zaccaria, R. Krahne, E. Rondanina, M. Leoncini, C. Liberale, F. De Angelis, and E. Di Fabrizio, “3D nanostar dimers with a sub-10-nm gap for single-/few-molecule surface-enhanced raman scattering,” Adv. Mater. 26(15), 2353–2358 (2014).
[Crossref] [PubMed]

Z. Liu, Z. Yang, B. Peng, C. Cao, C. Zhang, H. You, Q. Xiong, Z. Li, and J. Fang, “Highly sensitive, uniform, and reproducible surface-enhanced Raman spectroscopy from hollow Au-Ag alloy nanourchins,” Adv. Mater. 26(15), 2431–2439 (2014).
[Crossref] [PubMed]

Adv. Mater. Interfaces (1)

J. Chen, C.-L. Dong, Y. Du, D. Zhao, and S. Shen, “Nanogap engineered plasmon-enhancement in photocatalytic solar hydrogen conversion,” Adv. Mater. Interfaces 2(14), 1500280 (2015).
[Crossref]

Nano Lett. (6)

H. Im, K. C. Bantz, N. C. Lindquist, C. L. Haynes, and S. H. Oh, “Vertically oriented sub-10-nm plasmonic nanogap arrays,” Nano Lett. 10(6), 2231–2236 (2010).
[Crossref] [PubMed]

T. Siegfried, Y. Ekinci, O. J. F. Martin, and H. Sigg, “Gap plasmons and near-field enhancement in closely packed sub-10 nm gap resonators,” Nano Lett. 13(11), 5449–5453 (2013).
[Crossref] [PubMed]

X. Chen, C. Ciracì, D. R. Smith, and S.-H. Oh, “Nanogap-enhanced infrared spectroscopy with template-stripped wafer-scale arrays of buried plasmonic cavities,” Nano Lett. 15(1), 107–113 (2015).
[Crossref] [PubMed]

L. Lesser-Rojas, P. Ebbinghaus, G. Vasan, M. L. Chu, A. Erbe, and C. F. Chou, “Low-copy number protein detection by electrode nanogap-enabled dielectrophoretic trapping for surface-enhanced Raman spectroscopy and electronic measurements,” Nano Lett. 14(5), 2242–2250 (2014).
[Crossref] [PubMed]

X. Liang and S. Y. Chou, “Nanogap detector inside nanofluidic channel for fast real-time label-free DNA analysis,” Nano Lett. 8(5), 1472–1476 (2008).
[Crossref] [PubMed]

D. Yoo, N. C. Nguyen, L. Martin-Moreno, D. A. Mohr, S. Carretero-Palacios, J. Shaver, J. Peraire, T. W. Ebbesen, and S.-H. Oh, “High-throughput fabrication of resonant metamaterials with ultrasmall coaxial apertures via atomic layer lithography,” Nano Lett. 16(3), 2040–2046 (2016).
[Crossref] [PubMed]

Nanoscale (2)

J. Ye, J. A. Hutchison, H. Uji-i, J. Hofkens, L. Lagae, G. Maes, G. Borghs, and P. Van Dorpe, “Excitation wavelength dependent surface enhanced Raman scattering of 4-aminothiophenol on gold nanorings,” Nanoscale 4(5), 1606–1611 (2012).
[Crossref] [PubMed]

H.-J. Jeon, E. H. Lee, H.-W. Yoo, K. H. Kim, and H.-T. Jung, “Fabrication of sub-20 nm nano-gap structures through the elastomeric nano-stamp assisted secondary sputtering phenomenon,” Nanoscale 6(11), 5953–5959 (2014).
[Crossref] [PubMed]

Nanotechnology (3)

O. Scholder, K. Jefimovs, I. Shorubalko, C. Hafner, U. Sennhauser, and G.-L. Bona, “Helium focused ion beam fabricated plasmonic antennas with sub-5 nm gaps,” Nanotechnology 24(39), 395301 (2013).
[Crossref] [PubMed]

H. Duan, H. Hu, H. K. Hui, Z. Shen, and J. K. W. Yang, “Free-standing sub-10 nm nanostencils for the definition of gaps in plasmonic antennas,” Nanotechnology 24(18), 185301 (2013).
[Crossref] [PubMed]

S. M. Dirk, S. W. Howell, S. Zmuda, K. Childs, M. Blain, R. J. Simonson, and D. R. Wheeler, “Novel one-dimensional nanogap created with standard optical lithography and evaporation procedures,” Nanotechnology 16(10), 1983–1985 (2005).
[Crossref] [PubMed]

Nat. Commun. (2)

X. Chen, H.-R. Park, M. Pelton, X. Piao, N. C. Lindquist, H. Im, Y. J. Kim, J. S. Ahn, K. J. Ahn, N. Park, D.-S. Kim, and S.-H. Oh, “Atomic layer lithography of wafer-scale nanogap arrays for extreme confinement of electromagnetic waves,” Nat. Commun. 4, 2361 (2013).
[Crossref] [PubMed]

Z. Wang, Z. Dong, Y. Gu, Y.-H. Chang, L. Zhang, L.-J. Li, W. Zhao, G. Eda, W. Zhang, G. Grinblat, S. A. Maier, J. K. W. Yang, C.-W. Qiu, and A. T. S. Wee, “Giant photoluminescence enhancement in tungsten-diselenide-gold plasmonic hybrid structures,” Nat. Commun. 7, 11283 (2016).
[Crossref] [PubMed]

Nat. Mater. (2)

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

D. K. Lim, K. S. Jeon, H. M. Kim, J. M. Nam, and Y. D. Suh, “Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection,” Nat. Mater. 9(1), 60–67 (2010).
[Crossref] [PubMed]

Nat. Nanotechnol. (2)

D. R. Ward, F. Hüser, F. Pauly, J. C. Cuevas, and D. Natelson, “Optical rectification and field enhancement in a plasmonic nanogap,” Nat. Nanotechnol. 5(10), 732–736 (2010).
[Crossref] [PubMed]

M. L. Perrin, C. J. O. Verzijl, C. A. Martin, A. J. Shaikh, R. Eelkema, J. H. van Esch, J. M. van Ruitenbeek, J. M. Thijssen, H. S. J. van der Zant, and D. Dulić, “Large tunable image-charge effects in single-molecule junctions,” Nat. Nanotechnol. 8(4), 282–287 (2013).
[Crossref] [PubMed]

Nature (3)

S. Kubatkin, A. Danilov, M. Hjort, J. Cornil, J. L. Brédas, N. Stuhr-Hansen, P. Hedegård, and T. Bjørnholm, “Single-electron transistor of a single organic molecule with access to several redox states,” Nature 425(6959), 698–701 (2003).
[Crossref] [PubMed]

W. Liang, M. P. Shores, M. Bockrath, J. R. Long, and H. Park, “Kondo resonance in a single-molecule transistor,” Nature 417(6890), 725–729 (2002).
[Crossref] [PubMed]

S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[Crossref] [PubMed]

Opt. Express (2)

Sci. Rep. (1)

X. Chen, H. R. Park, N. C. Lindquist, J. Shaver, M. Pelton, and S. H. Oh, “Squeezing millimeter waves through a single, nanometer-wide, centimeter-long slit,” Sci. Rep. 4, 6722 (2014).
[Crossref] [PubMed]

Small (3)

T. Ding, L. O. Herrmann, B. de Nijs, F. Benz, and J. J. Baumberg, “Self-aligned colloidal lithography for controllable and tuneable plasmonic nanogaps,” Small 11(18), 2139–2143 (2015).
[Crossref] [PubMed]

A. Cui, H. Dong, and W. Hu, “Nanogap electrodes towards solid state single-molecule transistors,” Small 11(46), 6115–6141 (2015).
[Crossref] [PubMed]

W. Zhu, M. G. Banaee, D. Wang, Y. Chu, and K. B. Crozier, “Lithographically fabricated optical antennas with gaps well below 10 nm,” Small 7(13), 1761–1766 (2011).
[Crossref] [PubMed]

Other (1)

J. Dengxin, C. Borui, Z. Xie, T. Moein, S. Haomin, G. Qiaoqiang, and A. Cartwright, 2015 conference on lasers and electro-optics (2015).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 The schematics of the fabrication flow of nanogaps. (a) EBL of the nanopatterns on Si/SiO2 substrates covered with Au film. (b) Removal of the Au film without the protecting by PMMA through IBE process. (c) ALD of the ultrathin Al2O3 film. (d) Removal of Al2O3 film by IBE. (e) E-beam deposition of metallic film. (f) Removal of PMMA resist and remained Al2O3 films. (g) The schematics of the metallic nanogaps array. (h) Uniform nanogaps of 5 nm width around the gold patterns of high density.
Fig. 2
Fig. 2 SEM and HRTEM images of the nanogaps array with different shapes. (a) Wafer scale fabrication of 4 nm nanogaps array. (b) and (c) Magnified SEM and HRTEM images of the 4 nm nanogaps on the 4 inch silicon wafer. (d) Nanogaps with the width of 5.2 nm along the gold square, and (e) its HRTEM images with high resolutions of the nanogaps. (f) SEM and (g) HRTEM images of the nanogaps array along the side of the nano-squares. (h) SEM and (i) HRTEM images of the nanogaps array along the nano-triangles.
Fig. 3
Fig. 3 Raman spectra of ATP molecules in the nanogaps. (a) Raman spectra of ATP molecules enhanced by the metallic nanogaps with the width of 3nm, 5nm and 10nm, respectively, in comparison with the Raman spectrum of the ATP molecules on gold film (black line). (b) and (c) Raman mapping of the ATP molecules in the nanogaps under incident lasers of different polarization directions.(d) and (e) Simulated electric field intensity mapping in the nanogap under the perpendicular and parallel polarization with respect to the nanogap.
Fig. 4
Fig. 4 The characteristics of the uniformity of SERS signals on the nanogap array. (a) Enhanced Raman spectra in ten random positions over the whole substrate with dense nanogaps array. (b) The distribution of intensities for the 1080 cm−1 and 1587 cm−1 peaks from different positions.
Fig. 5
Fig. 5 Nanogaps array on flexible substrate. (a) Schematic fabrication process of nanogaps on PDMS/PMMA. (b) Nanogaps with the width of 5 nm on PDMS film, and (c) the corresponding SEM image of high resolutions. (d) The SEM image of the nanogaps array on PMMA film. (e) Raman spectra of 4-ATP molecules obtained from two flexible substrates in comparison with that from the flat gold film.

Metrics