Abstract

We demonstrate noncollinear coherent two-dimensional (2D) electronic spectroscopy for which broadband pulses are generated in an argon-filled hollow-core fiber pumped by a 1-kHz Ti:Sapphire laser. Compression is achieved to 7 fs duration (TG-FROG) using dispersive mirrors. The hollow fiber provides a clean spatial profile and smooth spectral shape in the 500–700 nm region. The diffractive-optic-based design of the 2D spectrometer avoids directional filtering distortions and temporal broadening from time smearing. For demonstration we record data of cresyl-violet perchlorate in ethanol and use phasing to obtain broadband absorptive 2D spectra. The resulting quantum beating as a function of population time is consistent with literature data.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Stable and high-power few cycle supercontinuum for 2D ultrabroadband electronic spectroscopy

Boris Spokoyny, Christine J. Koh, and Elad Harel
Opt. Lett. 40(6) 1014-1017 (2015)

Ultrabroadband 2D electronic spectroscopy with high-speed, shot-to-shot detection

Minjung Son, Sandra Mosquera-Vázquez, and Gabriela S. Schlau-Cohen
Opt. Express 25(16) 18950-18962 (2017)

Generation of 3.8-fs pulses from adaptive compression of a cascaded hollow fiber supercontinuum

B. Schenkel, J. Biegert, U. Keller, C. Vozzi, M. Nisoli, G. Sansone, S. Stagira, S. De Silvestri, and O. Svelto
Opt. Lett. 28(20) 1987-1989 (2003)

References

  • View by:
  • |
  • |
  • |

  1. M. Cho, “Coherent Two-Dimensional Optical Spectroscopy,” Chem. Rev. 108(4), 1331–1418 (2008).
    [Crossref] [PubMed]
  2. D. M. Jonas, “Two-Dimensional Femtosecond Spectroscopy,” Annu. Rev. Phys. Chem. 54(1), 425–463 (2003).
    [Crossref] [PubMed]
  3. T. Brixner, J. Stenger, H. M. Vaswani, M. Cho, R. E. Blankenship, and G. R. Fleming, “Two-dimensional spectroscopy of electronic couplings in photosynthesis,” Nature 434(7033), 625–628 (2005).
    [Crossref] [PubMed]
  4. J. Dostál, J. Pšenčík, and D. Zigmantas, “In situ mapping of the energy flow through the entire photosynthetic apparatus,” Nat. Chem. 8(7), 705–710 (2016).
    [Crossref] [PubMed]
  5. N. S. Ginsberg, Y.-C. Cheng, and G. R. Fleming, “Two-Dimensional Electronic Spectroscopy of Molecular aggregates,” Acc. Chem. Res. 42(9), 1352–1363 (2009).
    [Crossref] [PubMed]
  6. J. Lim, D. Paleček, F. Caycedo-Soler, C. N. Lincoln, J. Prior, H. von Berlepsch, S. F. Huelga, M. B. Plenio, D. Zigmantas, and J. Hauer, “Vibronic origin of long-lived coherence in an artificial molecular light harvester,” Nat. Commun. 6, 7755 (2015).
    [Crossref] [PubMed]
  7. Y. Song, S. N. Clafton, R. D. Pensack, T. W. Kee, and G. D. Scholes, “Vibrational coherence probes the mechanism of ultrafast electron transfer in polymer-fullerene blends,” Nat. Commun. 5, 4933 (2014).
    [Crossref] [PubMed]
  8. E. Cassette, R. D. Pensack, B. Mahler, and G. D. Scholes, “Room-temperature exciton coherence and dephasing in two-dimensional nanostructures,” Nat. Commun. 6, 6086 (2015).
    [Crossref] [PubMed]
  9. R. D. Mehlenbacher, T. J. McDonough, M. Grechko, M.-Y. Wu, M. S. Arnold, and M. T. Zanni, “Energy transfer pathways in semiconducting carbon nanotubes revealed using two-dimensional white-light spectroscopy,” Nat. Commun. 6, 6732 (2015).
    [Crossref] [PubMed]
  10. K. W. Stone, K. Gundogdu, D. B. Turner, X. Li, S. T. Cundiff, and K. A. Nelson, “Two-quantum 2D FT electronic spectroscopy of biexcitons in GaAs quantum wells,” Science 324(5931), 1169–1173 (2009).
    [Crossref] [PubMed]
  11. S. Ruetzel, M. Diekmann, P. Nuernberger, C. Walter, B. Engels, and T. Brixner, “Multidimensional spectroscopy of photoreactivity,” Proc. Natl. Acad. Sci. U.S.A. 111(13), 4764–4769 (2014).
    [Crossref] [PubMed]
  12. A. M. Brańczyk, D. B. Turner, and G. D. Scholes, “Crossing disciplines - A view on two-dimensional optical spectroscopy,” Ann. Phys. 526(1-2), 31–49 (2014).
    [Crossref]
  13. Y.-C. Cheng and G. R. Fleming, “Dynamics of Light Harvesting in Photosynthesis,” Annu. Rev. Phys. Chem. 60(1), 241–262 (2009).
    [Crossref] [PubMed]
  14. A. Ishizaki and G. R. Fleming, “Quantum Coherence in Photosynthetic Light Harvesting,” Annu. Rev. Condens. Matter Phys. 3(1), 333–361 (2012).
    [Crossref]
  15. J. Jeon, S. Park, and M. Cho, “Two-dimensional Optical Spectroscopy: Theory and Experiment,” in Encyclopedia of Analytical Chemistry, R. A. Meyers, ed. (John Wiley & Sons, Ltd, 2010).
  16. P. Nuernberger, S. Ruetzel, and T. Brixner, “Multidimensional Electronic Spectroscopy of Photochemical Reactions,” Angew. Chem. Int. Ed. Engl. 54(39), 11368–11386 (2015).
    [Crossref] [PubMed]
  17. P. Hamm and M. T. Zanni, Concepts and Methods of 2D Infrared Spectroscopy (Cambridge University Pres, 2011).
  18. M. K. Yetzbacher, N. Belabas, K. A. Kitney, and D. M. Jonas, “Propagation, beam geometry, and detection distortions of peak shapes in two-dimensional Fourier transform spectra,” J. Chem. Phys. 126(4), 044511 (2007).
    [Crossref] [PubMed]
  19. N. Belabas and D. M. Jonas, “Three-dimensional view of signal propagation in femtosecond four-wave mixing with application to the boxcars geometry,” J. Opt. Soc. Am. B 22(3), 655 (2005).
    [Crossref]
  20. A. P. Spencer, H. Li, S. T. Cundiff, and D. M. Jonas, “Pulse Propagation Effects in Optical 2D Fourier-Transform Spectroscopy: Theory,” J. Phys. Chem. A 119(17), 3936–3960 (2015).
    [Crossref] [PubMed]
  21. F. D. Fuller and J. P. Ogilvie, “Experimental Implementations of Two-Dimensional Fourier Transform Electronic Spectroscopy,” Annu. Rev. Phys. Chem. 66(1), 667–690 (2015).
    [Crossref] [PubMed]
  22. A. Shirakawa, I. Sakane, M. Takasaka, and T. Kobayashi, “Sub-5-fs visible pulse generation by pulse-front-matched noncollinear optical parametric amplification,” Appl. Phys. Lett. 74(16), 2268 (1999).
    [Crossref]
  23. A. Baltuška, T. Fuji, and T. Kobayashi, “Visible pulse compression to 4 fs by optical parametric amplification and programmable dispersion control,” Opt. Lett. 27(5), 306–308 (2002).
    [Crossref] [PubMed]
  24. T. Kobayashi and A. Baltuska, “Sub-5 fs pulse generation from a noncollinear optical parametric amplifier,” Meas. Sci. Technol. 13(11), 1671–1682 (2002).
    [Crossref]
  25. A. Zaukevičius, V. Jukna, R. Antipenkov, V. Martinėnaitė, A. Varanavičius, A. P. Piskarskas, and G. Valiulis, “Manifestation of spatial chirp in femtosecond noncollinear optical parametric chirped-pulse amplifier,” J. Opt. Soc. Am. B 28(12), 2902 (2011).
    [Crossref]
  26. M. Liebel, C. Schnedermann, and P. Kukura, “Sub-10-fs pulses tunable from 480 to 980 nm from a NOPA pumped by an Yb:KGW source,” Opt. Lett. 39(14), 4112–4115 (2014).
    [Crossref] [PubMed]
  27. P. J. M. Johnson, V. I. Prokhorenko, and R. J. D. Miller, “Enhanced bandwidth noncollinear optical parametric amplification with a narrowband anamorphic pump,” Opt. Lett. 36(11), 2170–2172 (2011).
    [Crossref] [PubMed]
  28. G. Cerullo and S. De Silvestri, “Ultrafast optical parametric amplifiers,” Rev. Sci. Instrum. 74(1), 1 (2003).
    [Crossref]
  29. P. F. Tekavec, J. A. Myers, K. L. M. Lewis, and J. P. Ogilvie, “Two-dimensional electronic spectroscopy with a continuum probe,” Opt. Lett. 34(9), 1390–1392 (2009).
    [Crossref] [PubMed]
  30. M. Nisoli, S. De Silvestri, and O. Svelto, “Generation of high energy 10 fs pulses by a new pulse compression technique,” Appl. Phys. Lett. 68(20), 2793 (1996).
    [Crossref]
  31. M. Nisoli, S. De Silvestri, O. Svelto, R. Szipöcs, K. Ferencz, C. Spielmann, S. Sartania, and F. Krausz, “Compression of high-energy laser pulses below 5 fs,” Opt. Lett. 22(8), 522–524 (1997).
    [Crossref] [PubMed]
  32. B. E. Schmidt, W. Unrau, A. Mirabal, S. Li, M. Krenz, L. Wöste, and T. Siebert, “Poor man’s source for sub 7 fs: a simple route to ultrashort laser pulses and their full characterization,” Opt. Express 16(23), 18910–18921 (2008).
    [Crossref] [PubMed]
  33. F. Hagemann, O. Gause, L. Wöste, and T. Siebert, “Supercontinuum pulse shaping in the few-cycle regime,” Opt. Express 21(5), 5536–5549 (2013).
    [Crossref] [PubMed]
  34. L. Gallmann, T. Pfeifer, P. M. Nagel, M. J. Abel, D. M. Neumark, and S. R. Leone, “Comparison of the filamentation and the hollow-core fiber characteristics for pulse compression into the few-cycle regime,” Appl. Phys. B 86(4), 561–566 (2007).
    [Crossref]
  35. M. Nisoli, S. Stagira, S. De Silvestri, O. Svelto, S. Sartania, Z. Cheng, M. Lenzner, C. Spielmann, and F. Krausz, “A novel-high energy pulse compression system: generation of multigigawatt sub-5-fs pulses,” Appl. Phys. B. 65(2), 189–196 (1997).
    [Crossref]
  36. B. Alonso, M. Miranda, F. Silva, V. Pervak, J. Rauschenberger, J. San Román, Í. J. Sola, and H. Crespo, “Characterization of sub-two-cycle pulses from a hollow-core fiber compressor in the spatiotemporal and spatiospectral domains,” Appl. Phys. B 112(1), 105–114 (2013).
    [Crossref]
  37. M. T. Hassan, A. Wirth, I. Grguraš, A. Moulet, T. T. Luu, J. Gagnon, V. Pervak, and E. Goulielmakis, “Invited article: attosecond photonics: synthesis and control of light transients,” Rev. Sci. Instrum. 83(11), 111301 (2012).
    [Crossref] [PubMed]
  38. N. Aközbek, S. A. Trushin, A. Baltuška, W. Fuß, E. Goulielmakis, K. Kosma, F. Krausz, S. Panja, M. Uiberacker, W. E. Schmid, A. Becker, M. Scalora, and M. Bloemer, “Extending the supercontinuum spectrum down to 200 nm with few-cycle pulses,” New J. Phys. 8(9), 177 (2006).
    [Crossref]
  39. A. L. Cavalieri, E. Goulielmakis, B. Horvath, W. Helml, M. Schultze, M. Fieß, V. Pervak, L. Veisz, V. S. Yakovlev, M. Uiberacker, A. Apolonski, F. Krausz, and R. Kienberger, “Intense 1.5-cycle near infrared laser waveforms and their use for the generation of ultra-broadband soft-x-ray harmonic continua,” New J. Phys. 9(7), 242 (2007).
    [Crossref]
  40. H. Zheng, J. R. Caram, P. D. Dahlberg, B. S. Rolczynski, S. Viswanathan, D. S. Dolzhnikov, A. Khadivi, D. V. Talapin, and G. S. Engel, “Dispersion-free continuum two-dimensional electronic spectrometer,” Appl. Opt. 53(9), 1909–1917 (2014).
    [Crossref] [PubMed]
  41. B. Spokoyny, C. J. Koh, and E. Harel, “Stable and high-power few cycle supercontinuum for 2D ultrabroadband electronic spectroscopy,” Opt. Lett. 40(6), 1014–1017 (2015).
    [Crossref] [PubMed]
  42. B. Spokoyny and E. Harel, “Mapping the Vibronic Structure of a Molecule by Few-Cycle Continuum Two-Dimensional Spectroscopy in a Single Pulse,” J. Phys. Chem. Lett. 5(16), 2808–2814 (2014).
    [Crossref] [PubMed]
  43. A. Al Haddad, A. Chauvet, J. Ojeda, C. Arrell, F. van Mourik, G. Auböck, and M. Chergui, “Set-up for broadband Fourier-transform multidimensional electronic spectroscopy,” Opt. Lett. 40(3), 312–315 (2015).
    [Crossref] [PubMed]
  44. L. A. Bizimana, J. Brazard, W. P. Carbery, T. Gellen, and D. B. Turner, “Resolving molecular vibronic structure using high-sensitivity two-dimensional electronic spectroscopy,” J. Chem. Phys. 143(16), 164203 (2015).
    [Crossref] [PubMed]
  45. V. I. Prokhorenko, A. Halpin, and R. J. D. Miller, “Coherently-controlled two-dimensional photon echo electronic spectroscopy,” Opt. Express 17(12), 9764–9779 (2009).
    [Crossref] [PubMed]
  46. A. A. Maznev, K. A. Nelson, and J. A. Rogers, “Optical heterodyne detection of laser-induced gratings,” Opt. Lett. 23(16), 1319–1321 (1998).
    [Crossref] [PubMed]
  47. A. A. Maznev, T. F. Crimmins, and K. A. Nelson, “How to make femtosecond pulses overlap,” Opt. Lett. 23(17), 1378–1380 (1998).
    [Crossref] [PubMed]
  48. G. D. Goodno, G. Dadusc, and R. J. D. Miller, “Ultrafast heterodyne-detected transient-grating spectroscopy using diffractive optics,” J. Opt. Soc. Am. B 15(6), 1791 (1998).
    [Crossref]
  49. G. D. Goodno, V. Astinov, and R. J. D. Miller, “Diffractive Optics-Based Heterodyne-Detected Grating Spectroscopy: Application to Ultrafast Protein Dynamics,” J. Phys. Chem. B 103(4), 603–607 (1999).
    [Crossref]
  50. G. D. Goodno and R. J. D. Miller, “Femtosecond Heterodyne-Detected Four-Wave-Mixing Studies of Deterministic Protein Motions. 1. Theory and Experimental Technique of Diffractive Optics-Based Spectroscopy,” J. Phys. Chem. A 103(49), 10619–10629 (1999).
    [Crossref]
  51. T. Brixner, T. Mančal, I. V. Stiopkin, and G. R. Fleming, “Phase-stabilized two-dimensional electronic spectroscopy,” J. Chem. Phys. 121(9), 4221–4236 (2004).
    [Crossref] [PubMed]
  52. T. Brixner, I. V. Stiopkin, and G. R. Fleming, “Tunable two-dimensional femtosecond spectroscopy,” Opt. Lett. 29(8), 884–886 (2004).
    [Crossref] [PubMed]
  53. M. L. Cowan, J. P. Ogilvie, and R. J. D. Miller, “Two-dimensional spectroscopy using diffractive optics based phased-locked photon echoes,” Chem. Phys. Lett. 386(1-3), 184–189 (2004).
    [Crossref]
  54. B. A. West, P. G. Giokas, B. P. Molesky, A. D. Ross, and A. M. Moran, “Toward two-dimensional photon echo spectroscopy with 200 nm laser pulses,” Opt. Express 21(2), 2118–2125 (2013).
    [Crossref] [PubMed]
  55. B. A. West and A. M. Moran, “Two-Dimensional Electronic Spectroscopy in the Ultraviolet Wavelength Range,” J. Phys. Chem. Lett. 3(18), 2575–2581 (2012).
    [Crossref] [PubMed]
  56. U. Selig, F. Langhojer, F. Dimler, T. Löhrig, C. Schwarz, B. Gieseking, and T. Brixner, “Inherently phase-stable coherent two-dimensional spectroscopy using only conventional optics,” Opt. Lett. 33(23), 2851–2853 (2008).
    [Crossref] [PubMed]
  57. U. Selig, C.-F. Schleussner, M. Foerster, F. Langhojer, P. Nuernberger, and T. Brixner, “Coherent two-dimensional ultraviolet spectroscopy in fully noncollinear geometry,” Opt. Lett. 35(24), 4178–4180 (2010).
    [Crossref] [PubMed]
  58. V. Pervak, I. Ahmad, M. K. Trubetskov, A. V. Tikhonravov, and F. Krausz, “Double-angle multilayer mirrors with smooth dispersion characteristics,” Opt. Express 17(10), 7943–7951 (2009).
    [Crossref] [PubMed]
  59. V. Pervak, “Recent development and new ideas in the field of dispersive multilayer optics,” Appl. Opt. 50(9), C55–C61 (2011).
    [Crossref] [PubMed]
  60. F. Silva, M. Miranda, B. Alonso, J. Rauschenberger, V. Pervak, and H. Crespo, “Simultaneous compression, characterization and phase stabilization of GW-level 1.4 cycle VIS-NIR femtosecond pulses using a single dispersion-scan setup,” Opt. Express 22(9), 10181–10191 (2014).
    [Crossref] [PubMed]
  61. R. Augulis and D. Zigmantas, “Two-dimensional electronic spectroscopy with double modulation lock-in detection: enhancement of sensitivity and noise resistance,” Opt. Express 19(14), 13126–13133 (2011).
    [Crossref] [PubMed]
  62. J. N. Sweetser, D. N. Fittinghoff, and R. Trebino, “Transient-grating frequency-resolved optical gating,” Opt. Lett. 22(8), 519–521 (1997).
    [Crossref] [PubMed]
  63. M. Li, J. P. Nibarger, C. Guo, and G. N. Gibson, “Dispersion-free transient-grating frequency-resolved optical gating,” Appl. Opt. 38(24), 5250–5253 (1999).
    [Crossref] [PubMed]
  64. V. I. Prokhorenko, A. Picchiotti, S. Maneshi, and R. J. Dwayne Miller, “Measurement and Characterization of Sub-5 fs Broadband UV Pulses in the 230–350 nm Range,” in Ultrafast Phenomena XIX, K. Yamanouchi, S. Cundiff, R. de Vivie-Riedle, M. Kuwata-Gonokami, and L. DiMauro, eds. (Springer International Publishing, 2015), Vol. 162, pp. 744–748.
  65. C. Homann and E. Riedle, “Direct measurement of the effective input noise power of an optical parametric amplifier: Input noise power of an optical parametric amplifier,” Laser Photonics Rev. 7(4), 580–588 (2013).
    [Crossref]
  66. J. Brazard, L. A. Bizimana, and D. B. Turner, “Accurate convergence of transient-absorption spectra using pulsed lasers,” Rev. Sci. Instrum. 86(5), 053106 (2015).
    [Crossref] [PubMed]
  67. O. Dühr, E. T. J. Nibbering, G. Korn, G. Tempea, and F. Krausz, “Generation of intense 8-fs pulses at 400 nm,” Opt. Lett. 24(1), 34–36 (1999).
    [Crossref] [PubMed]
  68. E. T. J. Nibbering, O. Dühr, and G. Korn, “Generation of intense tunable 20-fs pulses near 400nm by use of a gas-filled hollow waveguide,” Opt. Lett. 22(17), 1335–1337 (1997).
    [Crossref] [PubMed]
  69. P. Baum, S. Lochbrunner, and E. Riedle, “Tunable sub-10-fs ultraviolet pulses generated by achromatic frequency doubling,” Opt. Lett. 29(14), 1686–1688 (2004).
    [Crossref] [PubMed]
  70. P. Baum, S. Lochbrunner, and E. Riedle, “Generation of tunable 7-fs ultraviolet pulses: achromatic phase matching and chirp management,” Appl. Phys. B 79(8), 1027–1032 (2004).
    [Crossref]
  71. C. Li, K. P. M. Rishad, P. Horak, Y. Matsuura, and D. Faccio, “Spectral broadening and temporal compression of ∼ 100 fs pulses in air-filled hollow core capillary fibers,” Opt. Express 22(1), 1143–1151 (2014).
    [Crossref] [PubMed]

2016 (1)

J. Dostál, J. Pšenčík, and D. Zigmantas, “In situ mapping of the energy flow through the entire photosynthetic apparatus,” Nat. Chem. 8(7), 705–710 (2016).
[Crossref] [PubMed]

2015 (10)

J. Lim, D. Paleček, F. Caycedo-Soler, C. N. Lincoln, J. Prior, H. von Berlepsch, S. F. Huelga, M. B. Plenio, D. Zigmantas, and J. Hauer, “Vibronic origin of long-lived coherence in an artificial molecular light harvester,” Nat. Commun. 6, 7755 (2015).
[Crossref] [PubMed]

E. Cassette, R. D. Pensack, B. Mahler, and G. D. Scholes, “Room-temperature exciton coherence and dephasing in two-dimensional nanostructures,” Nat. Commun. 6, 6086 (2015).
[Crossref] [PubMed]

R. D. Mehlenbacher, T. J. McDonough, M. Grechko, M.-Y. Wu, M. S. Arnold, and M. T. Zanni, “Energy transfer pathways in semiconducting carbon nanotubes revealed using two-dimensional white-light spectroscopy,” Nat. Commun. 6, 6732 (2015).
[Crossref] [PubMed]

P. Nuernberger, S. Ruetzel, and T. Brixner, “Multidimensional Electronic Spectroscopy of Photochemical Reactions,” Angew. Chem. Int. Ed. Engl. 54(39), 11368–11386 (2015).
[Crossref] [PubMed]

A. P. Spencer, H. Li, S. T. Cundiff, and D. M. Jonas, “Pulse Propagation Effects in Optical 2D Fourier-Transform Spectroscopy: Theory,” J. Phys. Chem. A 119(17), 3936–3960 (2015).
[Crossref] [PubMed]

F. D. Fuller and J. P. Ogilvie, “Experimental Implementations of Two-Dimensional Fourier Transform Electronic Spectroscopy,” Annu. Rev. Phys. Chem. 66(1), 667–690 (2015).
[Crossref] [PubMed]

L. A. Bizimana, J. Brazard, W. P. Carbery, T. Gellen, and D. B. Turner, “Resolving molecular vibronic structure using high-sensitivity two-dimensional electronic spectroscopy,” J. Chem. Phys. 143(16), 164203 (2015).
[Crossref] [PubMed]

J. Brazard, L. A. Bizimana, and D. B. Turner, “Accurate convergence of transient-absorption spectra using pulsed lasers,” Rev. Sci. Instrum. 86(5), 053106 (2015).
[Crossref] [PubMed]

A. Al Haddad, A. Chauvet, J. Ojeda, C. Arrell, F. van Mourik, G. Auböck, and M. Chergui, “Set-up for broadband Fourier-transform multidimensional electronic spectroscopy,” Opt. Lett. 40(3), 312–315 (2015).
[Crossref] [PubMed]

B. Spokoyny, C. J. Koh, and E. Harel, “Stable and high-power few cycle supercontinuum for 2D ultrabroadband electronic spectroscopy,” Opt. Lett. 40(6), 1014–1017 (2015).
[Crossref] [PubMed]

2014 (8)

C. Li, K. P. M. Rishad, P. Horak, Y. Matsuura, and D. Faccio, “Spectral broadening and temporal compression of ∼ 100 fs pulses in air-filled hollow core capillary fibers,” Opt. Express 22(1), 1143–1151 (2014).
[Crossref] [PubMed]

H. Zheng, J. R. Caram, P. D. Dahlberg, B. S. Rolczynski, S. Viswanathan, D. S. Dolzhnikov, A. Khadivi, D. V. Talapin, and G. S. Engel, “Dispersion-free continuum two-dimensional electronic spectrometer,” Appl. Opt. 53(9), 1909–1917 (2014).
[Crossref] [PubMed]

F. Silva, M. Miranda, B. Alonso, J. Rauschenberger, V. Pervak, and H. Crespo, “Simultaneous compression, characterization and phase stabilization of GW-level 1.4 cycle VIS-NIR femtosecond pulses using a single dispersion-scan setup,” Opt. Express 22(9), 10181–10191 (2014).
[Crossref] [PubMed]

M. Liebel, C. Schnedermann, and P. Kukura, “Sub-10-fs pulses tunable from 480 to 980 nm from a NOPA pumped by an Yb:KGW source,” Opt. Lett. 39(14), 4112–4115 (2014).
[Crossref] [PubMed]

B. Spokoyny and E. Harel, “Mapping the Vibronic Structure of a Molecule by Few-Cycle Continuum Two-Dimensional Spectroscopy in a Single Pulse,” J. Phys. Chem. Lett. 5(16), 2808–2814 (2014).
[Crossref] [PubMed]

S. Ruetzel, M. Diekmann, P. Nuernberger, C. Walter, B. Engels, and T. Brixner, “Multidimensional spectroscopy of photoreactivity,” Proc. Natl. Acad. Sci. U.S.A. 111(13), 4764–4769 (2014).
[Crossref] [PubMed]

A. M. Brańczyk, D. B. Turner, and G. D. Scholes, “Crossing disciplines - A view on two-dimensional optical spectroscopy,” Ann. Phys. 526(1-2), 31–49 (2014).
[Crossref]

Y. Song, S. N. Clafton, R. D. Pensack, T. W. Kee, and G. D. Scholes, “Vibrational coherence probes the mechanism of ultrafast electron transfer in polymer-fullerene blends,” Nat. Commun. 5, 4933 (2014).
[Crossref] [PubMed]

2013 (4)

B. Alonso, M. Miranda, F. Silva, V. Pervak, J. Rauschenberger, J. San Román, Í. J. Sola, and H. Crespo, “Characterization of sub-two-cycle pulses from a hollow-core fiber compressor in the spatiotemporal and spatiospectral domains,” Appl. Phys. B 112(1), 105–114 (2013).
[Crossref]

C. Homann and E. Riedle, “Direct measurement of the effective input noise power of an optical parametric amplifier: Input noise power of an optical parametric amplifier,” Laser Photonics Rev. 7(4), 580–588 (2013).
[Crossref]

B. A. West, P. G. Giokas, B. P. Molesky, A. D. Ross, and A. M. Moran, “Toward two-dimensional photon echo spectroscopy with 200 nm laser pulses,” Opt. Express 21(2), 2118–2125 (2013).
[Crossref] [PubMed]

F. Hagemann, O. Gause, L. Wöste, and T. Siebert, “Supercontinuum pulse shaping in the few-cycle regime,” Opt. Express 21(5), 5536–5549 (2013).
[Crossref] [PubMed]

2012 (3)

B. A. West and A. M. Moran, “Two-Dimensional Electronic Spectroscopy in the Ultraviolet Wavelength Range,” J. Phys. Chem. Lett. 3(18), 2575–2581 (2012).
[Crossref] [PubMed]

M. T. Hassan, A. Wirth, I. Grguraš, A. Moulet, T. T. Luu, J. Gagnon, V. Pervak, and E. Goulielmakis, “Invited article: attosecond photonics: synthesis and control of light transients,” Rev. Sci. Instrum. 83(11), 111301 (2012).
[Crossref] [PubMed]

A. Ishizaki and G. R. Fleming, “Quantum Coherence in Photosynthetic Light Harvesting,” Annu. Rev. Condens. Matter Phys. 3(1), 333–361 (2012).
[Crossref]

2011 (4)

2010 (1)

2009 (6)

P. F. Tekavec, J. A. Myers, K. L. M. Lewis, and J. P. Ogilvie, “Two-dimensional electronic spectroscopy with a continuum probe,” Opt. Lett. 34(9), 1390–1392 (2009).
[Crossref] [PubMed]

V. Pervak, I. Ahmad, M. K. Trubetskov, A. V. Tikhonravov, and F. Krausz, “Double-angle multilayer mirrors with smooth dispersion characteristics,” Opt. Express 17(10), 7943–7951 (2009).
[Crossref] [PubMed]

V. I. Prokhorenko, A. Halpin, and R. J. D. Miller, “Coherently-controlled two-dimensional photon echo electronic spectroscopy,” Opt. Express 17(12), 9764–9779 (2009).
[Crossref] [PubMed]

Y.-C. Cheng and G. R. Fleming, “Dynamics of Light Harvesting in Photosynthesis,” Annu. Rev. Phys. Chem. 60(1), 241–262 (2009).
[Crossref] [PubMed]

K. W. Stone, K. Gundogdu, D. B. Turner, X. Li, S. T. Cundiff, and K. A. Nelson, “Two-quantum 2D FT electronic spectroscopy of biexcitons in GaAs quantum wells,” Science 324(5931), 1169–1173 (2009).
[Crossref] [PubMed]

N. S. Ginsberg, Y.-C. Cheng, and G. R. Fleming, “Two-Dimensional Electronic Spectroscopy of Molecular aggregates,” Acc. Chem. Res. 42(9), 1352–1363 (2009).
[Crossref] [PubMed]

2008 (3)

2007 (3)

M. K. Yetzbacher, N. Belabas, K. A. Kitney, and D. M. Jonas, “Propagation, beam geometry, and detection distortions of peak shapes in two-dimensional Fourier transform spectra,” J. Chem. Phys. 126(4), 044511 (2007).
[Crossref] [PubMed]

A. L. Cavalieri, E. Goulielmakis, B. Horvath, W. Helml, M. Schultze, M. Fieß, V. Pervak, L. Veisz, V. S. Yakovlev, M. Uiberacker, A. Apolonski, F. Krausz, and R. Kienberger, “Intense 1.5-cycle near infrared laser waveforms and their use for the generation of ultra-broadband soft-x-ray harmonic continua,” New J. Phys. 9(7), 242 (2007).
[Crossref]

L. Gallmann, T. Pfeifer, P. M. Nagel, M. J. Abel, D. M. Neumark, and S. R. Leone, “Comparison of the filamentation and the hollow-core fiber characteristics for pulse compression into the few-cycle regime,” Appl. Phys. B 86(4), 561–566 (2007).
[Crossref]

2006 (1)

N. Aközbek, S. A. Trushin, A. Baltuška, W. Fuß, E. Goulielmakis, K. Kosma, F. Krausz, S. Panja, M. Uiberacker, W. E. Schmid, A. Becker, M. Scalora, and M. Bloemer, “Extending the supercontinuum spectrum down to 200 nm with few-cycle pulses,” New J. Phys. 8(9), 177 (2006).
[Crossref]

2005 (2)

T. Brixner, J. Stenger, H. M. Vaswani, M. Cho, R. E. Blankenship, and G. R. Fleming, “Two-dimensional spectroscopy of electronic couplings in photosynthesis,” Nature 434(7033), 625–628 (2005).
[Crossref] [PubMed]

N. Belabas and D. M. Jonas, “Three-dimensional view of signal propagation in femtosecond four-wave mixing with application to the boxcars geometry,” J. Opt. Soc. Am. B 22(3), 655 (2005).
[Crossref]

2004 (5)

T. Brixner, I. V. Stiopkin, and G. R. Fleming, “Tunable two-dimensional femtosecond spectroscopy,” Opt. Lett. 29(8), 884–886 (2004).
[Crossref] [PubMed]

P. Baum, S. Lochbrunner, and E. Riedle, “Tunable sub-10-fs ultraviolet pulses generated by achromatic frequency doubling,” Opt. Lett. 29(14), 1686–1688 (2004).
[Crossref] [PubMed]

P. Baum, S. Lochbrunner, and E. Riedle, “Generation of tunable 7-fs ultraviolet pulses: achromatic phase matching and chirp management,” Appl. Phys. B 79(8), 1027–1032 (2004).
[Crossref]

T. Brixner, T. Mančal, I. V. Stiopkin, and G. R. Fleming, “Phase-stabilized two-dimensional electronic spectroscopy,” J. Chem. Phys. 121(9), 4221–4236 (2004).
[Crossref] [PubMed]

M. L. Cowan, J. P. Ogilvie, and R. J. D. Miller, “Two-dimensional spectroscopy using diffractive optics based phased-locked photon echoes,” Chem. Phys. Lett. 386(1-3), 184–189 (2004).
[Crossref]

2003 (2)

G. Cerullo and S. De Silvestri, “Ultrafast optical parametric amplifiers,” Rev. Sci. Instrum. 74(1), 1 (2003).
[Crossref]

D. M. Jonas, “Two-Dimensional Femtosecond Spectroscopy,” Annu. Rev. Phys. Chem. 54(1), 425–463 (2003).
[Crossref] [PubMed]

2002 (2)

T. Kobayashi and A. Baltuska, “Sub-5 fs pulse generation from a noncollinear optical parametric amplifier,” Meas. Sci. Technol. 13(11), 1671–1682 (2002).
[Crossref]

A. Baltuška, T. Fuji, and T. Kobayashi, “Visible pulse compression to 4 fs by optical parametric amplification and programmable dispersion control,” Opt. Lett. 27(5), 306–308 (2002).
[Crossref] [PubMed]

1999 (5)

O. Dühr, E. T. J. Nibbering, G. Korn, G. Tempea, and F. Krausz, “Generation of intense 8-fs pulses at 400 nm,” Opt. Lett. 24(1), 34–36 (1999).
[Crossref] [PubMed]

M. Li, J. P. Nibarger, C. Guo, and G. N. Gibson, “Dispersion-free transient-grating frequency-resolved optical gating,” Appl. Opt. 38(24), 5250–5253 (1999).
[Crossref] [PubMed]

G. D. Goodno, V. Astinov, and R. J. D. Miller, “Diffractive Optics-Based Heterodyne-Detected Grating Spectroscopy: Application to Ultrafast Protein Dynamics,” J. Phys. Chem. B 103(4), 603–607 (1999).
[Crossref]

G. D. Goodno and R. J. D. Miller, “Femtosecond Heterodyne-Detected Four-Wave-Mixing Studies of Deterministic Protein Motions. 1. Theory and Experimental Technique of Diffractive Optics-Based Spectroscopy,” J. Phys. Chem. A 103(49), 10619–10629 (1999).
[Crossref]

A. Shirakawa, I. Sakane, M. Takasaka, and T. Kobayashi, “Sub-5-fs visible pulse generation by pulse-front-matched noncollinear optical parametric amplification,” Appl. Phys. Lett. 74(16), 2268 (1999).
[Crossref]

1998 (3)

1997 (4)

1996 (1)

M. Nisoli, S. De Silvestri, and O. Svelto, “Generation of high energy 10 fs pulses by a new pulse compression technique,” Appl. Phys. Lett. 68(20), 2793 (1996).
[Crossref]

Abel, M. J.

L. Gallmann, T. Pfeifer, P. M. Nagel, M. J. Abel, D. M. Neumark, and S. R. Leone, “Comparison of the filamentation and the hollow-core fiber characteristics for pulse compression into the few-cycle regime,” Appl. Phys. B 86(4), 561–566 (2007).
[Crossref]

Ahmad, I.

Aközbek, N.

N. Aközbek, S. A. Trushin, A. Baltuška, W. Fuß, E. Goulielmakis, K. Kosma, F. Krausz, S. Panja, M. Uiberacker, W. E. Schmid, A. Becker, M. Scalora, and M. Bloemer, “Extending the supercontinuum spectrum down to 200 nm with few-cycle pulses,” New J. Phys. 8(9), 177 (2006).
[Crossref]

Al Haddad, A.

Alonso, B.

F. Silva, M. Miranda, B. Alonso, J. Rauschenberger, V. Pervak, and H. Crespo, “Simultaneous compression, characterization and phase stabilization of GW-level 1.4 cycle VIS-NIR femtosecond pulses using a single dispersion-scan setup,” Opt. Express 22(9), 10181–10191 (2014).
[Crossref] [PubMed]

B. Alonso, M. Miranda, F. Silva, V. Pervak, J. Rauschenberger, J. San Román, Í. J. Sola, and H. Crespo, “Characterization of sub-two-cycle pulses from a hollow-core fiber compressor in the spatiotemporal and spatiospectral domains,” Appl. Phys. B 112(1), 105–114 (2013).
[Crossref]

Antipenkov, R.

Apolonski, A.

A. L. Cavalieri, E. Goulielmakis, B. Horvath, W. Helml, M. Schultze, M. Fieß, V. Pervak, L. Veisz, V. S. Yakovlev, M. Uiberacker, A. Apolonski, F. Krausz, and R. Kienberger, “Intense 1.5-cycle near infrared laser waveforms and their use for the generation of ultra-broadband soft-x-ray harmonic continua,” New J. Phys. 9(7), 242 (2007).
[Crossref]

Arnold, M. S.

R. D. Mehlenbacher, T. J. McDonough, M. Grechko, M.-Y. Wu, M. S. Arnold, and M. T. Zanni, “Energy transfer pathways in semiconducting carbon nanotubes revealed using two-dimensional white-light spectroscopy,” Nat. Commun. 6, 6732 (2015).
[Crossref] [PubMed]

Arrell, C.

Astinov, V.

G. D. Goodno, V. Astinov, and R. J. D. Miller, “Diffractive Optics-Based Heterodyne-Detected Grating Spectroscopy: Application to Ultrafast Protein Dynamics,” J. Phys. Chem. B 103(4), 603–607 (1999).
[Crossref]

Auböck, G.

Augulis, R.

Baltuska, A.

T. Kobayashi and A. Baltuska, “Sub-5 fs pulse generation from a noncollinear optical parametric amplifier,” Meas. Sci. Technol. 13(11), 1671–1682 (2002).
[Crossref]

Baltuška, A.

N. Aközbek, S. A. Trushin, A. Baltuška, W. Fuß, E. Goulielmakis, K. Kosma, F. Krausz, S. Panja, M. Uiberacker, W. E. Schmid, A. Becker, M. Scalora, and M. Bloemer, “Extending the supercontinuum spectrum down to 200 nm with few-cycle pulses,” New J. Phys. 8(9), 177 (2006).
[Crossref]

A. Baltuška, T. Fuji, and T. Kobayashi, “Visible pulse compression to 4 fs by optical parametric amplification and programmable dispersion control,” Opt. Lett. 27(5), 306–308 (2002).
[Crossref] [PubMed]

Baum, P.

P. Baum, S. Lochbrunner, and E. Riedle, “Tunable sub-10-fs ultraviolet pulses generated by achromatic frequency doubling,” Opt. Lett. 29(14), 1686–1688 (2004).
[Crossref] [PubMed]

P. Baum, S. Lochbrunner, and E. Riedle, “Generation of tunable 7-fs ultraviolet pulses: achromatic phase matching and chirp management,” Appl. Phys. B 79(8), 1027–1032 (2004).
[Crossref]

Becker, A.

N. Aközbek, S. A. Trushin, A. Baltuška, W. Fuß, E. Goulielmakis, K. Kosma, F. Krausz, S. Panja, M. Uiberacker, W. E. Schmid, A. Becker, M. Scalora, and M. Bloemer, “Extending the supercontinuum spectrum down to 200 nm with few-cycle pulses,” New J. Phys. 8(9), 177 (2006).
[Crossref]

Belabas, N.

M. K. Yetzbacher, N. Belabas, K. A. Kitney, and D. M. Jonas, “Propagation, beam geometry, and detection distortions of peak shapes in two-dimensional Fourier transform spectra,” J. Chem. Phys. 126(4), 044511 (2007).
[Crossref] [PubMed]

N. Belabas and D. M. Jonas, “Three-dimensional view of signal propagation in femtosecond four-wave mixing with application to the boxcars geometry,” J. Opt. Soc. Am. B 22(3), 655 (2005).
[Crossref]

Bizimana, L. A.

J. Brazard, L. A. Bizimana, and D. B. Turner, “Accurate convergence of transient-absorption spectra using pulsed lasers,” Rev. Sci. Instrum. 86(5), 053106 (2015).
[Crossref] [PubMed]

L. A. Bizimana, J. Brazard, W. P. Carbery, T. Gellen, and D. B. Turner, “Resolving molecular vibronic structure using high-sensitivity two-dimensional electronic spectroscopy,” J. Chem. Phys. 143(16), 164203 (2015).
[Crossref] [PubMed]

Blankenship, R. E.

T. Brixner, J. Stenger, H. M. Vaswani, M. Cho, R. E. Blankenship, and G. R. Fleming, “Two-dimensional spectroscopy of electronic couplings in photosynthesis,” Nature 434(7033), 625–628 (2005).
[Crossref] [PubMed]

Bloemer, M.

N. Aközbek, S. A. Trushin, A. Baltuška, W. Fuß, E. Goulielmakis, K. Kosma, F. Krausz, S. Panja, M. Uiberacker, W. E. Schmid, A. Becker, M. Scalora, and M. Bloemer, “Extending the supercontinuum spectrum down to 200 nm with few-cycle pulses,” New J. Phys. 8(9), 177 (2006).
[Crossref]

Branczyk, A. M.

A. M. Brańczyk, D. B. Turner, and G. D. Scholes, “Crossing disciplines - A view on two-dimensional optical spectroscopy,” Ann. Phys. 526(1-2), 31–49 (2014).
[Crossref]

Brazard, J.

L. A. Bizimana, J. Brazard, W. P. Carbery, T. Gellen, and D. B. Turner, “Resolving molecular vibronic structure using high-sensitivity two-dimensional electronic spectroscopy,” J. Chem. Phys. 143(16), 164203 (2015).
[Crossref] [PubMed]

J. Brazard, L. A. Bizimana, and D. B. Turner, “Accurate convergence of transient-absorption spectra using pulsed lasers,” Rev. Sci. Instrum. 86(5), 053106 (2015).
[Crossref] [PubMed]

Brixner, T.

P. Nuernberger, S. Ruetzel, and T. Brixner, “Multidimensional Electronic Spectroscopy of Photochemical Reactions,” Angew. Chem. Int. Ed. Engl. 54(39), 11368–11386 (2015).
[Crossref] [PubMed]

S. Ruetzel, M. Diekmann, P. Nuernberger, C. Walter, B. Engels, and T. Brixner, “Multidimensional spectroscopy of photoreactivity,” Proc. Natl. Acad. Sci. U.S.A. 111(13), 4764–4769 (2014).
[Crossref] [PubMed]

U. Selig, C.-F. Schleussner, M. Foerster, F. Langhojer, P. Nuernberger, and T. Brixner, “Coherent two-dimensional ultraviolet spectroscopy in fully noncollinear geometry,” Opt. Lett. 35(24), 4178–4180 (2010).
[Crossref] [PubMed]

U. Selig, F. Langhojer, F. Dimler, T. Löhrig, C. Schwarz, B. Gieseking, and T. Brixner, “Inherently phase-stable coherent two-dimensional spectroscopy using only conventional optics,” Opt. Lett. 33(23), 2851–2853 (2008).
[Crossref] [PubMed]

T. Brixner, J. Stenger, H. M. Vaswani, M. Cho, R. E. Blankenship, and G. R. Fleming, “Two-dimensional spectroscopy of electronic couplings in photosynthesis,” Nature 434(7033), 625–628 (2005).
[Crossref] [PubMed]

T. Brixner, T. Mančal, I. V. Stiopkin, and G. R. Fleming, “Phase-stabilized two-dimensional electronic spectroscopy,” J. Chem. Phys. 121(9), 4221–4236 (2004).
[Crossref] [PubMed]

T. Brixner, I. V. Stiopkin, and G. R. Fleming, “Tunable two-dimensional femtosecond spectroscopy,” Opt. Lett. 29(8), 884–886 (2004).
[Crossref] [PubMed]

Caram, J. R.

Carbery, W. P.

L. A. Bizimana, J. Brazard, W. P. Carbery, T. Gellen, and D. B. Turner, “Resolving molecular vibronic structure using high-sensitivity two-dimensional electronic spectroscopy,” J. Chem. Phys. 143(16), 164203 (2015).
[Crossref] [PubMed]

Cassette, E.

E. Cassette, R. D. Pensack, B. Mahler, and G. D. Scholes, “Room-temperature exciton coherence and dephasing in two-dimensional nanostructures,” Nat. Commun. 6, 6086 (2015).
[Crossref] [PubMed]

Cavalieri, A. L.

A. L. Cavalieri, E. Goulielmakis, B. Horvath, W. Helml, M. Schultze, M. Fieß, V. Pervak, L. Veisz, V. S. Yakovlev, M. Uiberacker, A. Apolonski, F. Krausz, and R. Kienberger, “Intense 1.5-cycle near infrared laser waveforms and their use for the generation of ultra-broadband soft-x-ray harmonic continua,” New J. Phys. 9(7), 242 (2007).
[Crossref]

Caycedo-Soler, F.

J. Lim, D. Paleček, F. Caycedo-Soler, C. N. Lincoln, J. Prior, H. von Berlepsch, S. F. Huelga, M. B. Plenio, D. Zigmantas, and J. Hauer, “Vibronic origin of long-lived coherence in an artificial molecular light harvester,” Nat. Commun. 6, 7755 (2015).
[Crossref] [PubMed]

Cerullo, G.

G. Cerullo and S. De Silvestri, “Ultrafast optical parametric amplifiers,” Rev. Sci. Instrum. 74(1), 1 (2003).
[Crossref]

Chauvet, A.

Cheng, Y.-C.

N. S. Ginsberg, Y.-C. Cheng, and G. R. Fleming, “Two-Dimensional Electronic Spectroscopy of Molecular aggregates,” Acc. Chem. Res. 42(9), 1352–1363 (2009).
[Crossref] [PubMed]

Y.-C. Cheng and G. R. Fleming, “Dynamics of Light Harvesting in Photosynthesis,” Annu. Rev. Phys. Chem. 60(1), 241–262 (2009).
[Crossref] [PubMed]

Cheng, Z.

M. Nisoli, S. Stagira, S. De Silvestri, O. Svelto, S. Sartania, Z. Cheng, M. Lenzner, C. Spielmann, and F. Krausz, “A novel-high energy pulse compression system: generation of multigigawatt sub-5-fs pulses,” Appl. Phys. B. 65(2), 189–196 (1997).
[Crossref]

Chergui, M.

Cho, M.

M. Cho, “Coherent Two-Dimensional Optical Spectroscopy,” Chem. Rev. 108(4), 1331–1418 (2008).
[Crossref] [PubMed]

T. Brixner, J. Stenger, H. M. Vaswani, M. Cho, R. E. Blankenship, and G. R. Fleming, “Two-dimensional spectroscopy of electronic couplings in photosynthesis,” Nature 434(7033), 625–628 (2005).
[Crossref] [PubMed]

Clafton, S. N.

Y. Song, S. N. Clafton, R. D. Pensack, T. W. Kee, and G. D. Scholes, “Vibrational coherence probes the mechanism of ultrafast electron transfer in polymer-fullerene blends,” Nat. Commun. 5, 4933 (2014).
[Crossref] [PubMed]

Cowan, M. L.

M. L. Cowan, J. P. Ogilvie, and R. J. D. Miller, “Two-dimensional spectroscopy using diffractive optics based phased-locked photon echoes,” Chem. Phys. Lett. 386(1-3), 184–189 (2004).
[Crossref]

Crespo, H.

F. Silva, M. Miranda, B. Alonso, J. Rauschenberger, V. Pervak, and H. Crespo, “Simultaneous compression, characterization and phase stabilization of GW-level 1.4 cycle VIS-NIR femtosecond pulses using a single dispersion-scan setup,” Opt. Express 22(9), 10181–10191 (2014).
[Crossref] [PubMed]

B. Alonso, M. Miranda, F. Silva, V. Pervak, J. Rauschenberger, J. San Román, Í. J. Sola, and H. Crespo, “Characterization of sub-two-cycle pulses from a hollow-core fiber compressor in the spatiotemporal and spatiospectral domains,” Appl. Phys. B 112(1), 105–114 (2013).
[Crossref]

Crimmins, T. F.

Cundiff, S. T.

A. P. Spencer, H. Li, S. T. Cundiff, and D. M. Jonas, “Pulse Propagation Effects in Optical 2D Fourier-Transform Spectroscopy: Theory,” J. Phys. Chem. A 119(17), 3936–3960 (2015).
[Crossref] [PubMed]

K. W. Stone, K. Gundogdu, D. B. Turner, X. Li, S. T. Cundiff, and K. A. Nelson, “Two-quantum 2D FT electronic spectroscopy of biexcitons in GaAs quantum wells,” Science 324(5931), 1169–1173 (2009).
[Crossref] [PubMed]

Dadusc, G.

Dahlberg, P. D.

De Silvestri, S.

G. Cerullo and S. De Silvestri, “Ultrafast optical parametric amplifiers,” Rev. Sci. Instrum. 74(1), 1 (2003).
[Crossref]

M. Nisoli, S. De Silvestri, O. Svelto, R. Szipöcs, K. Ferencz, C. Spielmann, S. Sartania, and F. Krausz, “Compression of high-energy laser pulses below 5 fs,” Opt. Lett. 22(8), 522–524 (1997).
[Crossref] [PubMed]

M. Nisoli, S. Stagira, S. De Silvestri, O. Svelto, S. Sartania, Z. Cheng, M. Lenzner, C. Spielmann, and F. Krausz, “A novel-high energy pulse compression system: generation of multigigawatt sub-5-fs pulses,” Appl. Phys. B. 65(2), 189–196 (1997).
[Crossref]

M. Nisoli, S. De Silvestri, and O. Svelto, “Generation of high energy 10 fs pulses by a new pulse compression technique,” Appl. Phys. Lett. 68(20), 2793 (1996).
[Crossref]

Diekmann, M.

S. Ruetzel, M. Diekmann, P. Nuernberger, C. Walter, B. Engels, and T. Brixner, “Multidimensional spectroscopy of photoreactivity,” Proc. Natl. Acad. Sci. U.S.A. 111(13), 4764–4769 (2014).
[Crossref] [PubMed]

Dimler, F.

Dolzhnikov, D. S.

Dostál, J.

J. Dostál, J. Pšenčík, and D. Zigmantas, “In situ mapping of the energy flow through the entire photosynthetic apparatus,” Nat. Chem. 8(7), 705–710 (2016).
[Crossref] [PubMed]

Dühr, O.

Engel, G. S.

Engels, B.

S. Ruetzel, M. Diekmann, P. Nuernberger, C. Walter, B. Engels, and T. Brixner, “Multidimensional spectroscopy of photoreactivity,” Proc. Natl. Acad. Sci. U.S.A. 111(13), 4764–4769 (2014).
[Crossref] [PubMed]

Faccio, D.

Ferencz, K.

Fieß, M.

A. L. Cavalieri, E. Goulielmakis, B. Horvath, W. Helml, M. Schultze, M. Fieß, V. Pervak, L. Veisz, V. S. Yakovlev, M. Uiberacker, A. Apolonski, F. Krausz, and R. Kienberger, “Intense 1.5-cycle near infrared laser waveforms and their use for the generation of ultra-broadband soft-x-ray harmonic continua,” New J. Phys. 9(7), 242 (2007).
[Crossref]

Fittinghoff, D. N.

Fleming, G. R.

A. Ishizaki and G. R. Fleming, “Quantum Coherence in Photosynthetic Light Harvesting,” Annu. Rev. Condens. Matter Phys. 3(1), 333–361 (2012).
[Crossref]

Y.-C. Cheng and G. R. Fleming, “Dynamics of Light Harvesting in Photosynthesis,” Annu. Rev. Phys. Chem. 60(1), 241–262 (2009).
[Crossref] [PubMed]

N. S. Ginsberg, Y.-C. Cheng, and G. R. Fleming, “Two-Dimensional Electronic Spectroscopy of Molecular aggregates,” Acc. Chem. Res. 42(9), 1352–1363 (2009).
[Crossref] [PubMed]

T. Brixner, J. Stenger, H. M. Vaswani, M. Cho, R. E. Blankenship, and G. R. Fleming, “Two-dimensional spectroscopy of electronic couplings in photosynthesis,” Nature 434(7033), 625–628 (2005).
[Crossref] [PubMed]

T. Brixner, T. Mančal, I. V. Stiopkin, and G. R. Fleming, “Phase-stabilized two-dimensional electronic spectroscopy,” J. Chem. Phys. 121(9), 4221–4236 (2004).
[Crossref] [PubMed]

T. Brixner, I. V. Stiopkin, and G. R. Fleming, “Tunable two-dimensional femtosecond spectroscopy,” Opt. Lett. 29(8), 884–886 (2004).
[Crossref] [PubMed]

Foerster, M.

Fuji, T.

Fuller, F. D.

F. D. Fuller and J. P. Ogilvie, “Experimental Implementations of Two-Dimensional Fourier Transform Electronic Spectroscopy,” Annu. Rev. Phys. Chem. 66(1), 667–690 (2015).
[Crossref] [PubMed]

Fuß, W.

N. Aközbek, S. A. Trushin, A. Baltuška, W. Fuß, E. Goulielmakis, K. Kosma, F. Krausz, S. Panja, M. Uiberacker, W. E. Schmid, A. Becker, M. Scalora, and M. Bloemer, “Extending the supercontinuum spectrum down to 200 nm with few-cycle pulses,” New J. Phys. 8(9), 177 (2006).
[Crossref]

Gagnon, J.

M. T. Hassan, A. Wirth, I. Grguraš, A. Moulet, T. T. Luu, J. Gagnon, V. Pervak, and E. Goulielmakis, “Invited article: attosecond photonics: synthesis and control of light transients,” Rev. Sci. Instrum. 83(11), 111301 (2012).
[Crossref] [PubMed]

Gallmann, L.

L. Gallmann, T. Pfeifer, P. M. Nagel, M. J. Abel, D. M. Neumark, and S. R. Leone, “Comparison of the filamentation and the hollow-core fiber characteristics for pulse compression into the few-cycle regime,” Appl. Phys. B 86(4), 561–566 (2007).
[Crossref]

Gause, O.

Gellen, T.

L. A. Bizimana, J. Brazard, W. P. Carbery, T. Gellen, and D. B. Turner, “Resolving molecular vibronic structure using high-sensitivity two-dimensional electronic spectroscopy,” J. Chem. Phys. 143(16), 164203 (2015).
[Crossref] [PubMed]

Gibson, G. N.

Gieseking, B.

Ginsberg, N. S.

N. S. Ginsberg, Y.-C. Cheng, and G. R. Fleming, “Two-Dimensional Electronic Spectroscopy of Molecular aggregates,” Acc. Chem. Res. 42(9), 1352–1363 (2009).
[Crossref] [PubMed]

Giokas, P. G.

Goodno, G. D.

G. D. Goodno, V. Astinov, and R. J. D. Miller, “Diffractive Optics-Based Heterodyne-Detected Grating Spectroscopy: Application to Ultrafast Protein Dynamics,” J. Phys. Chem. B 103(4), 603–607 (1999).
[Crossref]

G. D. Goodno and R. J. D. Miller, “Femtosecond Heterodyne-Detected Four-Wave-Mixing Studies of Deterministic Protein Motions. 1. Theory and Experimental Technique of Diffractive Optics-Based Spectroscopy,” J. Phys. Chem. A 103(49), 10619–10629 (1999).
[Crossref]

G. D. Goodno, G. Dadusc, and R. J. D. Miller, “Ultrafast heterodyne-detected transient-grating spectroscopy using diffractive optics,” J. Opt. Soc. Am. B 15(6), 1791 (1998).
[Crossref]

Goulielmakis, E.

M. T. Hassan, A. Wirth, I. Grguraš, A. Moulet, T. T. Luu, J. Gagnon, V. Pervak, and E. Goulielmakis, “Invited article: attosecond photonics: synthesis and control of light transients,” Rev. Sci. Instrum. 83(11), 111301 (2012).
[Crossref] [PubMed]

A. L. Cavalieri, E. Goulielmakis, B. Horvath, W. Helml, M. Schultze, M. Fieß, V. Pervak, L. Veisz, V. S. Yakovlev, M. Uiberacker, A. Apolonski, F. Krausz, and R. Kienberger, “Intense 1.5-cycle near infrared laser waveforms and their use for the generation of ultra-broadband soft-x-ray harmonic continua,” New J. Phys. 9(7), 242 (2007).
[Crossref]

N. Aközbek, S. A. Trushin, A. Baltuška, W. Fuß, E. Goulielmakis, K. Kosma, F. Krausz, S. Panja, M. Uiberacker, W. E. Schmid, A. Becker, M. Scalora, and M. Bloemer, “Extending the supercontinuum spectrum down to 200 nm with few-cycle pulses,” New J. Phys. 8(9), 177 (2006).
[Crossref]

Grechko, M.

R. D. Mehlenbacher, T. J. McDonough, M. Grechko, M.-Y. Wu, M. S. Arnold, and M. T. Zanni, “Energy transfer pathways in semiconducting carbon nanotubes revealed using two-dimensional white-light spectroscopy,” Nat. Commun. 6, 6732 (2015).
[Crossref] [PubMed]

Grguraš, I.

M. T. Hassan, A. Wirth, I. Grguraš, A. Moulet, T. T. Luu, J. Gagnon, V. Pervak, and E. Goulielmakis, “Invited article: attosecond photonics: synthesis and control of light transients,” Rev. Sci. Instrum. 83(11), 111301 (2012).
[Crossref] [PubMed]

Gundogdu, K.

K. W. Stone, K. Gundogdu, D. B. Turner, X. Li, S. T. Cundiff, and K. A. Nelson, “Two-quantum 2D FT electronic spectroscopy of biexcitons in GaAs quantum wells,” Science 324(5931), 1169–1173 (2009).
[Crossref] [PubMed]

Guo, C.

Hagemann, F.

Halpin, A.

Harel, E.

B. Spokoyny, C. J. Koh, and E. Harel, “Stable and high-power few cycle supercontinuum for 2D ultrabroadband electronic spectroscopy,” Opt. Lett. 40(6), 1014–1017 (2015).
[Crossref] [PubMed]

B. Spokoyny and E. Harel, “Mapping the Vibronic Structure of a Molecule by Few-Cycle Continuum Two-Dimensional Spectroscopy in a Single Pulse,” J. Phys. Chem. Lett. 5(16), 2808–2814 (2014).
[Crossref] [PubMed]

Hassan, M. T.

M. T. Hassan, A. Wirth, I. Grguraš, A. Moulet, T. T. Luu, J. Gagnon, V. Pervak, and E. Goulielmakis, “Invited article: attosecond photonics: synthesis and control of light transients,” Rev. Sci. Instrum. 83(11), 111301 (2012).
[Crossref] [PubMed]

Hauer, J.

J. Lim, D. Paleček, F. Caycedo-Soler, C. N. Lincoln, J. Prior, H. von Berlepsch, S. F. Huelga, M. B. Plenio, D. Zigmantas, and J. Hauer, “Vibronic origin of long-lived coherence in an artificial molecular light harvester,” Nat. Commun. 6, 7755 (2015).
[Crossref] [PubMed]

Helml, W.

A. L. Cavalieri, E. Goulielmakis, B. Horvath, W. Helml, M. Schultze, M. Fieß, V. Pervak, L. Veisz, V. S. Yakovlev, M. Uiberacker, A. Apolonski, F. Krausz, and R. Kienberger, “Intense 1.5-cycle near infrared laser waveforms and their use for the generation of ultra-broadband soft-x-ray harmonic continua,” New J. Phys. 9(7), 242 (2007).
[Crossref]

Homann, C.

C. Homann and E. Riedle, “Direct measurement of the effective input noise power of an optical parametric amplifier: Input noise power of an optical parametric amplifier,” Laser Photonics Rev. 7(4), 580–588 (2013).
[Crossref]

Horak, P.

Horvath, B.

A. L. Cavalieri, E. Goulielmakis, B. Horvath, W. Helml, M. Schultze, M. Fieß, V. Pervak, L. Veisz, V. S. Yakovlev, M. Uiberacker, A. Apolonski, F. Krausz, and R. Kienberger, “Intense 1.5-cycle near infrared laser waveforms and their use for the generation of ultra-broadband soft-x-ray harmonic continua,” New J. Phys. 9(7), 242 (2007).
[Crossref]

Huelga, S. F.

J. Lim, D. Paleček, F. Caycedo-Soler, C. N. Lincoln, J. Prior, H. von Berlepsch, S. F. Huelga, M. B. Plenio, D. Zigmantas, and J. Hauer, “Vibronic origin of long-lived coherence in an artificial molecular light harvester,” Nat. Commun. 6, 7755 (2015).
[Crossref] [PubMed]

Ishizaki, A.

A. Ishizaki and G. R. Fleming, “Quantum Coherence in Photosynthetic Light Harvesting,” Annu. Rev. Condens. Matter Phys. 3(1), 333–361 (2012).
[Crossref]

Johnson, P. J. M.

Jonas, D. M.

A. P. Spencer, H. Li, S. T. Cundiff, and D. M. Jonas, “Pulse Propagation Effects in Optical 2D Fourier-Transform Spectroscopy: Theory,” J. Phys. Chem. A 119(17), 3936–3960 (2015).
[Crossref] [PubMed]

M. K. Yetzbacher, N. Belabas, K. A. Kitney, and D. M. Jonas, “Propagation, beam geometry, and detection distortions of peak shapes in two-dimensional Fourier transform spectra,” J. Chem. Phys. 126(4), 044511 (2007).
[Crossref] [PubMed]

N. Belabas and D. M. Jonas, “Three-dimensional view of signal propagation in femtosecond four-wave mixing with application to the boxcars geometry,” J. Opt. Soc. Am. B 22(3), 655 (2005).
[Crossref]

D. M. Jonas, “Two-Dimensional Femtosecond Spectroscopy,” Annu. Rev. Phys. Chem. 54(1), 425–463 (2003).
[Crossref] [PubMed]

Jukna, V.

Kee, T. W.

Y. Song, S. N. Clafton, R. D. Pensack, T. W. Kee, and G. D. Scholes, “Vibrational coherence probes the mechanism of ultrafast electron transfer in polymer-fullerene blends,” Nat. Commun. 5, 4933 (2014).
[Crossref] [PubMed]

Khadivi, A.

Kienberger, R.

A. L. Cavalieri, E. Goulielmakis, B. Horvath, W. Helml, M. Schultze, M. Fieß, V. Pervak, L. Veisz, V. S. Yakovlev, M. Uiberacker, A. Apolonski, F. Krausz, and R. Kienberger, “Intense 1.5-cycle near infrared laser waveforms and their use for the generation of ultra-broadband soft-x-ray harmonic continua,” New J. Phys. 9(7), 242 (2007).
[Crossref]

Kitney, K. A.

M. K. Yetzbacher, N. Belabas, K. A. Kitney, and D. M. Jonas, “Propagation, beam geometry, and detection distortions of peak shapes in two-dimensional Fourier transform spectra,” J. Chem. Phys. 126(4), 044511 (2007).
[Crossref] [PubMed]

Kobayashi, T.

T. Kobayashi and A. Baltuska, “Sub-5 fs pulse generation from a noncollinear optical parametric amplifier,” Meas. Sci. Technol. 13(11), 1671–1682 (2002).
[Crossref]

A. Baltuška, T. Fuji, and T. Kobayashi, “Visible pulse compression to 4 fs by optical parametric amplification and programmable dispersion control,” Opt. Lett. 27(5), 306–308 (2002).
[Crossref] [PubMed]

A. Shirakawa, I. Sakane, M. Takasaka, and T. Kobayashi, “Sub-5-fs visible pulse generation by pulse-front-matched noncollinear optical parametric amplification,” Appl. Phys. Lett. 74(16), 2268 (1999).
[Crossref]

Koh, C. J.

Korn, G.

Kosma, K.

N. Aközbek, S. A. Trushin, A. Baltuška, W. Fuß, E. Goulielmakis, K. Kosma, F. Krausz, S. Panja, M. Uiberacker, W. E. Schmid, A. Becker, M. Scalora, and M. Bloemer, “Extending the supercontinuum spectrum down to 200 nm with few-cycle pulses,” New J. Phys. 8(9), 177 (2006).
[Crossref]

Krausz, F.

V. Pervak, I. Ahmad, M. K. Trubetskov, A. V. Tikhonravov, and F. Krausz, “Double-angle multilayer mirrors with smooth dispersion characteristics,” Opt. Express 17(10), 7943–7951 (2009).
[Crossref] [PubMed]

A. L. Cavalieri, E. Goulielmakis, B. Horvath, W. Helml, M. Schultze, M. Fieß, V. Pervak, L. Veisz, V. S. Yakovlev, M. Uiberacker, A. Apolonski, F. Krausz, and R. Kienberger, “Intense 1.5-cycle near infrared laser waveforms and their use for the generation of ultra-broadband soft-x-ray harmonic continua,” New J. Phys. 9(7), 242 (2007).
[Crossref]

N. Aközbek, S. A. Trushin, A. Baltuška, W. Fuß, E. Goulielmakis, K. Kosma, F. Krausz, S. Panja, M. Uiberacker, W. E. Schmid, A. Becker, M. Scalora, and M. Bloemer, “Extending the supercontinuum spectrum down to 200 nm with few-cycle pulses,” New J. Phys. 8(9), 177 (2006).
[Crossref]

O. Dühr, E. T. J. Nibbering, G. Korn, G. Tempea, and F. Krausz, “Generation of intense 8-fs pulses at 400 nm,” Opt. Lett. 24(1), 34–36 (1999).
[Crossref] [PubMed]

M. Nisoli, S. De Silvestri, O. Svelto, R. Szipöcs, K. Ferencz, C. Spielmann, S. Sartania, and F. Krausz, “Compression of high-energy laser pulses below 5 fs,” Opt. Lett. 22(8), 522–524 (1997).
[Crossref] [PubMed]

M. Nisoli, S. Stagira, S. De Silvestri, O. Svelto, S. Sartania, Z. Cheng, M. Lenzner, C. Spielmann, and F. Krausz, “A novel-high energy pulse compression system: generation of multigigawatt sub-5-fs pulses,” Appl. Phys. B. 65(2), 189–196 (1997).
[Crossref]

Krenz, M.

Kukura, P.

Langhojer, F.

Lenzner, M.

M. Nisoli, S. Stagira, S. De Silvestri, O. Svelto, S. Sartania, Z. Cheng, M. Lenzner, C. Spielmann, and F. Krausz, “A novel-high energy pulse compression system: generation of multigigawatt sub-5-fs pulses,” Appl. Phys. B. 65(2), 189–196 (1997).
[Crossref]

Leone, S. R.

L. Gallmann, T. Pfeifer, P. M. Nagel, M. J. Abel, D. M. Neumark, and S. R. Leone, “Comparison of the filamentation and the hollow-core fiber characteristics for pulse compression into the few-cycle regime,” Appl. Phys. B 86(4), 561–566 (2007).
[Crossref]

Lewis, K. L. M.

Li, C.

Li, H.

A. P. Spencer, H. Li, S. T. Cundiff, and D. M. Jonas, “Pulse Propagation Effects in Optical 2D Fourier-Transform Spectroscopy: Theory,” J. Phys. Chem. A 119(17), 3936–3960 (2015).
[Crossref] [PubMed]

Li, M.

Li, S.

Li, X.

K. W. Stone, K. Gundogdu, D. B. Turner, X. Li, S. T. Cundiff, and K. A. Nelson, “Two-quantum 2D FT electronic spectroscopy of biexcitons in GaAs quantum wells,” Science 324(5931), 1169–1173 (2009).
[Crossref] [PubMed]

Liebel, M.

Lim, J.

J. Lim, D. Paleček, F. Caycedo-Soler, C. N. Lincoln, J. Prior, H. von Berlepsch, S. F. Huelga, M. B. Plenio, D. Zigmantas, and J. Hauer, “Vibronic origin of long-lived coherence in an artificial molecular light harvester,” Nat. Commun. 6, 7755 (2015).
[Crossref] [PubMed]

Lincoln, C. N.

J. Lim, D. Paleček, F. Caycedo-Soler, C. N. Lincoln, J. Prior, H. von Berlepsch, S. F. Huelga, M. B. Plenio, D. Zigmantas, and J. Hauer, “Vibronic origin of long-lived coherence in an artificial molecular light harvester,” Nat. Commun. 6, 7755 (2015).
[Crossref] [PubMed]

Lochbrunner, S.

P. Baum, S. Lochbrunner, and E. Riedle, “Tunable sub-10-fs ultraviolet pulses generated by achromatic frequency doubling,” Opt. Lett. 29(14), 1686–1688 (2004).
[Crossref] [PubMed]

P. Baum, S. Lochbrunner, and E. Riedle, “Generation of tunable 7-fs ultraviolet pulses: achromatic phase matching and chirp management,” Appl. Phys. B 79(8), 1027–1032 (2004).
[Crossref]

Löhrig, T.

Luu, T. T.

M. T. Hassan, A. Wirth, I. Grguraš, A. Moulet, T. T. Luu, J. Gagnon, V. Pervak, and E. Goulielmakis, “Invited article: attosecond photonics: synthesis and control of light transients,” Rev. Sci. Instrum. 83(11), 111301 (2012).
[Crossref] [PubMed]

Mahler, B.

E. Cassette, R. D. Pensack, B. Mahler, and G. D. Scholes, “Room-temperature exciton coherence and dephasing in two-dimensional nanostructures,” Nat. Commun. 6, 6086 (2015).
[Crossref] [PubMed]

Mancal, T.

T. Brixner, T. Mančal, I. V. Stiopkin, and G. R. Fleming, “Phase-stabilized two-dimensional electronic spectroscopy,” J. Chem. Phys. 121(9), 4221–4236 (2004).
[Crossref] [PubMed]

Martinenaite, V.

Matsuura, Y.

Maznev, A. A.

McDonough, T. J.

R. D. Mehlenbacher, T. J. McDonough, M. Grechko, M.-Y. Wu, M. S. Arnold, and M. T. Zanni, “Energy transfer pathways in semiconducting carbon nanotubes revealed using two-dimensional white-light spectroscopy,” Nat. Commun. 6, 6732 (2015).
[Crossref] [PubMed]

Mehlenbacher, R. D.

R. D. Mehlenbacher, T. J. McDonough, M. Grechko, M.-Y. Wu, M. S. Arnold, and M. T. Zanni, “Energy transfer pathways in semiconducting carbon nanotubes revealed using two-dimensional white-light spectroscopy,” Nat. Commun. 6, 6732 (2015).
[Crossref] [PubMed]

Miller, R. J. D.

P. J. M. Johnson, V. I. Prokhorenko, and R. J. D. Miller, “Enhanced bandwidth noncollinear optical parametric amplification with a narrowband anamorphic pump,” Opt. Lett. 36(11), 2170–2172 (2011).
[Crossref] [PubMed]

V. I. Prokhorenko, A. Halpin, and R. J. D. Miller, “Coherently-controlled two-dimensional photon echo electronic spectroscopy,” Opt. Express 17(12), 9764–9779 (2009).
[Crossref] [PubMed]

M. L. Cowan, J. P. Ogilvie, and R. J. D. Miller, “Two-dimensional spectroscopy using diffractive optics based phased-locked photon echoes,” Chem. Phys. Lett. 386(1-3), 184–189 (2004).
[Crossref]

G. D. Goodno and R. J. D. Miller, “Femtosecond Heterodyne-Detected Four-Wave-Mixing Studies of Deterministic Protein Motions. 1. Theory and Experimental Technique of Diffractive Optics-Based Spectroscopy,” J. Phys. Chem. A 103(49), 10619–10629 (1999).
[Crossref]

G. D. Goodno, V. Astinov, and R. J. D. Miller, “Diffractive Optics-Based Heterodyne-Detected Grating Spectroscopy: Application to Ultrafast Protein Dynamics,” J. Phys. Chem. B 103(4), 603–607 (1999).
[Crossref]

G. D. Goodno, G. Dadusc, and R. J. D. Miller, “Ultrafast heterodyne-detected transient-grating spectroscopy using diffractive optics,” J. Opt. Soc. Am. B 15(6), 1791 (1998).
[Crossref]

Mirabal, A.

Miranda, M.

F. Silva, M. Miranda, B. Alonso, J. Rauschenberger, V. Pervak, and H. Crespo, “Simultaneous compression, characterization and phase stabilization of GW-level 1.4 cycle VIS-NIR femtosecond pulses using a single dispersion-scan setup,” Opt. Express 22(9), 10181–10191 (2014).
[Crossref] [PubMed]

B. Alonso, M. Miranda, F. Silva, V. Pervak, J. Rauschenberger, J. San Román, Í. J. Sola, and H. Crespo, “Characterization of sub-two-cycle pulses from a hollow-core fiber compressor in the spatiotemporal and spatiospectral domains,” Appl. Phys. B 112(1), 105–114 (2013).
[Crossref]

Molesky, B. P.

Moran, A. M.

B. A. West, P. G. Giokas, B. P. Molesky, A. D. Ross, and A. M. Moran, “Toward two-dimensional photon echo spectroscopy with 200 nm laser pulses,” Opt. Express 21(2), 2118–2125 (2013).
[Crossref] [PubMed]

B. A. West and A. M. Moran, “Two-Dimensional Electronic Spectroscopy in the Ultraviolet Wavelength Range,” J. Phys. Chem. Lett. 3(18), 2575–2581 (2012).
[Crossref] [PubMed]

Moulet, A.

M. T. Hassan, A. Wirth, I. Grguraš, A. Moulet, T. T. Luu, J. Gagnon, V. Pervak, and E. Goulielmakis, “Invited article: attosecond photonics: synthesis and control of light transients,” Rev. Sci. Instrum. 83(11), 111301 (2012).
[Crossref] [PubMed]

Myers, J. A.

Nagel, P. M.

L. Gallmann, T. Pfeifer, P. M. Nagel, M. J. Abel, D. M. Neumark, and S. R. Leone, “Comparison of the filamentation and the hollow-core fiber characteristics for pulse compression into the few-cycle regime,” Appl. Phys. B 86(4), 561–566 (2007).
[Crossref]

Nelson, K. A.

Neumark, D. M.

L. Gallmann, T. Pfeifer, P. M. Nagel, M. J. Abel, D. M. Neumark, and S. R. Leone, “Comparison of the filamentation and the hollow-core fiber characteristics for pulse compression into the few-cycle regime,” Appl. Phys. B 86(4), 561–566 (2007).
[Crossref]

Nibarger, J. P.

Nibbering, E. T. J.

Nisoli, M.

M. Nisoli, S. De Silvestri, O. Svelto, R. Szipöcs, K. Ferencz, C. Spielmann, S. Sartania, and F. Krausz, “Compression of high-energy laser pulses below 5 fs,” Opt. Lett. 22(8), 522–524 (1997).
[Crossref] [PubMed]

M. Nisoli, S. Stagira, S. De Silvestri, O. Svelto, S. Sartania, Z. Cheng, M. Lenzner, C. Spielmann, and F. Krausz, “A novel-high energy pulse compression system: generation of multigigawatt sub-5-fs pulses,” Appl. Phys. B. 65(2), 189–196 (1997).
[Crossref]

M. Nisoli, S. De Silvestri, and O. Svelto, “Generation of high energy 10 fs pulses by a new pulse compression technique,” Appl. Phys. Lett. 68(20), 2793 (1996).
[Crossref]

Nuernberger, P.

P. Nuernberger, S. Ruetzel, and T. Brixner, “Multidimensional Electronic Spectroscopy of Photochemical Reactions,” Angew. Chem. Int. Ed. Engl. 54(39), 11368–11386 (2015).
[Crossref] [PubMed]

S. Ruetzel, M. Diekmann, P. Nuernberger, C. Walter, B. Engels, and T. Brixner, “Multidimensional spectroscopy of photoreactivity,” Proc. Natl. Acad. Sci. U.S.A. 111(13), 4764–4769 (2014).
[Crossref] [PubMed]

U. Selig, C.-F. Schleussner, M. Foerster, F. Langhojer, P. Nuernberger, and T. Brixner, “Coherent two-dimensional ultraviolet spectroscopy in fully noncollinear geometry,” Opt. Lett. 35(24), 4178–4180 (2010).
[Crossref] [PubMed]

Ogilvie, J. P.

F. D. Fuller and J. P. Ogilvie, “Experimental Implementations of Two-Dimensional Fourier Transform Electronic Spectroscopy,” Annu. Rev. Phys. Chem. 66(1), 667–690 (2015).
[Crossref] [PubMed]

P. F. Tekavec, J. A. Myers, K. L. M. Lewis, and J. P. Ogilvie, “Two-dimensional electronic spectroscopy with a continuum probe,” Opt. Lett. 34(9), 1390–1392 (2009).
[Crossref] [PubMed]

M. L. Cowan, J. P. Ogilvie, and R. J. D. Miller, “Two-dimensional spectroscopy using diffractive optics based phased-locked photon echoes,” Chem. Phys. Lett. 386(1-3), 184–189 (2004).
[Crossref]

Ojeda, J.

Palecek, D.

J. Lim, D. Paleček, F. Caycedo-Soler, C. N. Lincoln, J. Prior, H. von Berlepsch, S. F. Huelga, M. B. Plenio, D. Zigmantas, and J. Hauer, “Vibronic origin of long-lived coherence in an artificial molecular light harvester,” Nat. Commun. 6, 7755 (2015).
[Crossref] [PubMed]

Panja, S.

N. Aközbek, S. A. Trushin, A. Baltuška, W. Fuß, E. Goulielmakis, K. Kosma, F. Krausz, S. Panja, M. Uiberacker, W. E. Schmid, A. Becker, M. Scalora, and M. Bloemer, “Extending the supercontinuum spectrum down to 200 nm with few-cycle pulses,” New J. Phys. 8(9), 177 (2006).
[Crossref]

Pensack, R. D.

E. Cassette, R. D. Pensack, B. Mahler, and G. D. Scholes, “Room-temperature exciton coherence and dephasing in two-dimensional nanostructures,” Nat. Commun. 6, 6086 (2015).
[Crossref] [PubMed]

Y. Song, S. N. Clafton, R. D. Pensack, T. W. Kee, and G. D. Scholes, “Vibrational coherence probes the mechanism of ultrafast electron transfer in polymer-fullerene blends,” Nat. Commun. 5, 4933 (2014).
[Crossref] [PubMed]

Pervak, V.

F. Silva, M. Miranda, B. Alonso, J. Rauschenberger, V. Pervak, and H. Crespo, “Simultaneous compression, characterization and phase stabilization of GW-level 1.4 cycle VIS-NIR femtosecond pulses using a single dispersion-scan setup,” Opt. Express 22(9), 10181–10191 (2014).
[Crossref] [PubMed]

B. Alonso, M. Miranda, F. Silva, V. Pervak, J. Rauschenberger, J. San Román, Í. J. Sola, and H. Crespo, “Characterization of sub-two-cycle pulses from a hollow-core fiber compressor in the spatiotemporal and spatiospectral domains,” Appl. Phys. B 112(1), 105–114 (2013).
[Crossref]

M. T. Hassan, A. Wirth, I. Grguraš, A. Moulet, T. T. Luu, J. Gagnon, V. Pervak, and E. Goulielmakis, “Invited article: attosecond photonics: synthesis and control of light transients,” Rev. Sci. Instrum. 83(11), 111301 (2012).
[Crossref] [PubMed]

V. Pervak, “Recent development and new ideas in the field of dispersive multilayer optics,” Appl. Opt. 50(9), C55–C61 (2011).
[Crossref] [PubMed]

V. Pervak, I. Ahmad, M. K. Trubetskov, A. V. Tikhonravov, and F. Krausz, “Double-angle multilayer mirrors with smooth dispersion characteristics,” Opt. Express 17(10), 7943–7951 (2009).
[Crossref] [PubMed]

A. L. Cavalieri, E. Goulielmakis, B. Horvath, W. Helml, M. Schultze, M. Fieß, V. Pervak, L. Veisz, V. S. Yakovlev, M. Uiberacker, A. Apolonski, F. Krausz, and R. Kienberger, “Intense 1.5-cycle near infrared laser waveforms and their use for the generation of ultra-broadband soft-x-ray harmonic continua,” New J. Phys. 9(7), 242 (2007).
[Crossref]

Pfeifer, T.

L. Gallmann, T. Pfeifer, P. M. Nagel, M. J. Abel, D. M. Neumark, and S. R. Leone, “Comparison of the filamentation and the hollow-core fiber characteristics for pulse compression into the few-cycle regime,” Appl. Phys. B 86(4), 561–566 (2007).
[Crossref]

Piskarskas, A. P.

Plenio, M. B.

J. Lim, D. Paleček, F. Caycedo-Soler, C. N. Lincoln, J. Prior, H. von Berlepsch, S. F. Huelga, M. B. Plenio, D. Zigmantas, and J. Hauer, “Vibronic origin of long-lived coherence in an artificial molecular light harvester,” Nat. Commun. 6, 7755 (2015).
[Crossref] [PubMed]

Prior, J.

J. Lim, D. Paleček, F. Caycedo-Soler, C. N. Lincoln, J. Prior, H. von Berlepsch, S. F. Huelga, M. B. Plenio, D. Zigmantas, and J. Hauer, “Vibronic origin of long-lived coherence in an artificial molecular light harvester,” Nat. Commun. 6, 7755 (2015).
[Crossref] [PubMed]

Prokhorenko, V. I.

Pšencík, J.

J. Dostál, J. Pšenčík, and D. Zigmantas, “In situ mapping of the energy flow through the entire photosynthetic apparatus,” Nat. Chem. 8(7), 705–710 (2016).
[Crossref] [PubMed]

Rauschenberger, J.

F. Silva, M. Miranda, B. Alonso, J. Rauschenberger, V. Pervak, and H. Crespo, “Simultaneous compression, characterization and phase stabilization of GW-level 1.4 cycle VIS-NIR femtosecond pulses using a single dispersion-scan setup,” Opt. Express 22(9), 10181–10191 (2014).
[Crossref] [PubMed]

B. Alonso, M. Miranda, F. Silva, V. Pervak, J. Rauschenberger, J. San Román, Í. J. Sola, and H. Crespo, “Characterization of sub-two-cycle pulses from a hollow-core fiber compressor in the spatiotemporal and spatiospectral domains,” Appl. Phys. B 112(1), 105–114 (2013).
[Crossref]

Riedle, E.

C. Homann and E. Riedle, “Direct measurement of the effective input noise power of an optical parametric amplifier: Input noise power of an optical parametric amplifier,” Laser Photonics Rev. 7(4), 580–588 (2013).
[Crossref]

P. Baum, S. Lochbrunner, and E. Riedle, “Generation of tunable 7-fs ultraviolet pulses: achromatic phase matching and chirp management,” Appl. Phys. B 79(8), 1027–1032 (2004).
[Crossref]

P. Baum, S. Lochbrunner, and E. Riedle, “Tunable sub-10-fs ultraviolet pulses generated by achromatic frequency doubling,” Opt. Lett. 29(14), 1686–1688 (2004).
[Crossref] [PubMed]

Rishad, K. P. M.

Rogers, J. A.

Rolczynski, B. S.

Ross, A. D.

Ruetzel, S.

P. Nuernberger, S. Ruetzel, and T. Brixner, “Multidimensional Electronic Spectroscopy of Photochemical Reactions,” Angew. Chem. Int. Ed. Engl. 54(39), 11368–11386 (2015).
[Crossref] [PubMed]

S. Ruetzel, M. Diekmann, P. Nuernberger, C. Walter, B. Engels, and T. Brixner, “Multidimensional spectroscopy of photoreactivity,” Proc. Natl. Acad. Sci. U.S.A. 111(13), 4764–4769 (2014).
[Crossref] [PubMed]

Sakane, I.

A. Shirakawa, I. Sakane, M. Takasaka, and T. Kobayashi, “Sub-5-fs visible pulse generation by pulse-front-matched noncollinear optical parametric amplification,” Appl. Phys. Lett. 74(16), 2268 (1999).
[Crossref]

San Román, J.

B. Alonso, M. Miranda, F. Silva, V. Pervak, J. Rauschenberger, J. San Román, Í. J. Sola, and H. Crespo, “Characterization of sub-two-cycle pulses from a hollow-core fiber compressor in the spatiotemporal and spatiospectral domains,” Appl. Phys. B 112(1), 105–114 (2013).
[Crossref]

Sartania, S.

M. Nisoli, S. Stagira, S. De Silvestri, O. Svelto, S. Sartania, Z. Cheng, M. Lenzner, C. Spielmann, and F. Krausz, “A novel-high energy pulse compression system: generation of multigigawatt sub-5-fs pulses,” Appl. Phys. B. 65(2), 189–196 (1997).
[Crossref]

M. Nisoli, S. De Silvestri, O. Svelto, R. Szipöcs, K. Ferencz, C. Spielmann, S. Sartania, and F. Krausz, “Compression of high-energy laser pulses below 5 fs,” Opt. Lett. 22(8), 522–524 (1997).
[Crossref] [PubMed]

Scalora, M.

N. Aközbek, S. A. Trushin, A. Baltuška, W. Fuß, E. Goulielmakis, K. Kosma, F. Krausz, S. Panja, M. Uiberacker, W. E. Schmid, A. Becker, M. Scalora, and M. Bloemer, “Extending the supercontinuum spectrum down to 200 nm with few-cycle pulses,” New J. Phys. 8(9), 177 (2006).
[Crossref]

Schleussner, C.-F.

Schmid, W. E.

N. Aközbek, S. A. Trushin, A. Baltuška, W. Fuß, E. Goulielmakis, K. Kosma, F. Krausz, S. Panja, M. Uiberacker, W. E. Schmid, A. Becker, M. Scalora, and M. Bloemer, “Extending the supercontinuum spectrum down to 200 nm with few-cycle pulses,” New J. Phys. 8(9), 177 (2006).
[Crossref]

Schmidt, B. E.

Schnedermann, C.

Scholes, G. D.

E. Cassette, R. D. Pensack, B. Mahler, and G. D. Scholes, “Room-temperature exciton coherence and dephasing in two-dimensional nanostructures,” Nat. Commun. 6, 6086 (2015).
[Crossref] [PubMed]

Y. Song, S. N. Clafton, R. D. Pensack, T. W. Kee, and G. D. Scholes, “Vibrational coherence probes the mechanism of ultrafast electron transfer in polymer-fullerene blends,” Nat. Commun. 5, 4933 (2014).
[Crossref] [PubMed]

A. M. Brańczyk, D. B. Turner, and G. D. Scholes, “Crossing disciplines - A view on two-dimensional optical spectroscopy,” Ann. Phys. 526(1-2), 31–49 (2014).
[Crossref]

Schultze, M.

A. L. Cavalieri, E. Goulielmakis, B. Horvath, W. Helml, M. Schultze, M. Fieß, V. Pervak, L. Veisz, V. S. Yakovlev, M. Uiberacker, A. Apolonski, F. Krausz, and R. Kienberger, “Intense 1.5-cycle near infrared laser waveforms and their use for the generation of ultra-broadband soft-x-ray harmonic continua,” New J. Phys. 9(7), 242 (2007).
[Crossref]

Schwarz, C.

Selig, U.

Shirakawa, A.

A. Shirakawa, I. Sakane, M. Takasaka, and T. Kobayashi, “Sub-5-fs visible pulse generation by pulse-front-matched noncollinear optical parametric amplification,” Appl. Phys. Lett. 74(16), 2268 (1999).
[Crossref]

Siebert, T.

Silva, F.

F. Silva, M. Miranda, B. Alonso, J. Rauschenberger, V. Pervak, and H. Crespo, “Simultaneous compression, characterization and phase stabilization of GW-level 1.4 cycle VIS-NIR femtosecond pulses using a single dispersion-scan setup,” Opt. Express 22(9), 10181–10191 (2014).
[Crossref] [PubMed]

B. Alonso, M. Miranda, F. Silva, V. Pervak, J. Rauschenberger, J. San Román, Í. J. Sola, and H. Crespo, “Characterization of sub-two-cycle pulses from a hollow-core fiber compressor in the spatiotemporal and spatiospectral domains,” Appl. Phys. B 112(1), 105–114 (2013).
[Crossref]

Sola, Í. J.

B. Alonso, M. Miranda, F. Silva, V. Pervak, J. Rauschenberger, J. San Román, Í. J. Sola, and H. Crespo, “Characterization of sub-two-cycle pulses from a hollow-core fiber compressor in the spatiotemporal and spatiospectral domains,” Appl. Phys. B 112(1), 105–114 (2013).
[Crossref]

Song, Y.

Y. Song, S. N. Clafton, R. D. Pensack, T. W. Kee, and G. D. Scholes, “Vibrational coherence probes the mechanism of ultrafast electron transfer in polymer-fullerene blends,” Nat. Commun. 5, 4933 (2014).
[Crossref] [PubMed]

Spencer, A. P.

A. P. Spencer, H. Li, S. T. Cundiff, and D. M. Jonas, “Pulse Propagation Effects in Optical 2D Fourier-Transform Spectroscopy: Theory,” J. Phys. Chem. A 119(17), 3936–3960 (2015).
[Crossref] [PubMed]

Spielmann, C.

M. Nisoli, S. Stagira, S. De Silvestri, O. Svelto, S. Sartania, Z. Cheng, M. Lenzner, C. Spielmann, and F. Krausz, “A novel-high energy pulse compression system: generation of multigigawatt sub-5-fs pulses,” Appl. Phys. B. 65(2), 189–196 (1997).
[Crossref]

M. Nisoli, S. De Silvestri, O. Svelto, R. Szipöcs, K. Ferencz, C. Spielmann, S. Sartania, and F. Krausz, “Compression of high-energy laser pulses below 5 fs,” Opt. Lett. 22(8), 522–524 (1997).
[Crossref] [PubMed]

Spokoyny, B.

B. Spokoyny, C. J. Koh, and E. Harel, “Stable and high-power few cycle supercontinuum for 2D ultrabroadband electronic spectroscopy,” Opt. Lett. 40(6), 1014–1017 (2015).
[Crossref] [PubMed]

B. Spokoyny and E. Harel, “Mapping the Vibronic Structure of a Molecule by Few-Cycle Continuum Two-Dimensional Spectroscopy in a Single Pulse,” J. Phys. Chem. Lett. 5(16), 2808–2814 (2014).
[Crossref] [PubMed]

Stagira, S.

M. Nisoli, S. Stagira, S. De Silvestri, O. Svelto, S. Sartania, Z. Cheng, M. Lenzner, C. Spielmann, and F. Krausz, “A novel-high energy pulse compression system: generation of multigigawatt sub-5-fs pulses,” Appl. Phys. B. 65(2), 189–196 (1997).
[Crossref]

Stenger, J.

T. Brixner, J. Stenger, H. M. Vaswani, M. Cho, R. E. Blankenship, and G. R. Fleming, “Two-dimensional spectroscopy of electronic couplings in photosynthesis,” Nature 434(7033), 625–628 (2005).
[Crossref] [PubMed]

Stiopkin, I. V.

T. Brixner, T. Mančal, I. V. Stiopkin, and G. R. Fleming, “Phase-stabilized two-dimensional electronic spectroscopy,” J. Chem. Phys. 121(9), 4221–4236 (2004).
[Crossref] [PubMed]

T. Brixner, I. V. Stiopkin, and G. R. Fleming, “Tunable two-dimensional femtosecond spectroscopy,” Opt. Lett. 29(8), 884–886 (2004).
[Crossref] [PubMed]

Stone, K. W.

K. W. Stone, K. Gundogdu, D. B. Turner, X. Li, S. T. Cundiff, and K. A. Nelson, “Two-quantum 2D FT electronic spectroscopy of biexcitons in GaAs quantum wells,” Science 324(5931), 1169–1173 (2009).
[Crossref] [PubMed]

Svelto, O.

M. Nisoli, S. Stagira, S. De Silvestri, O. Svelto, S. Sartania, Z. Cheng, M. Lenzner, C. Spielmann, and F. Krausz, “A novel-high energy pulse compression system: generation of multigigawatt sub-5-fs pulses,” Appl. Phys. B. 65(2), 189–196 (1997).
[Crossref]

M. Nisoli, S. De Silvestri, O. Svelto, R. Szipöcs, K. Ferencz, C. Spielmann, S. Sartania, and F. Krausz, “Compression of high-energy laser pulses below 5 fs,” Opt. Lett. 22(8), 522–524 (1997).
[Crossref] [PubMed]

M. Nisoli, S. De Silvestri, and O. Svelto, “Generation of high energy 10 fs pulses by a new pulse compression technique,” Appl. Phys. Lett. 68(20), 2793 (1996).
[Crossref]

Sweetser, J. N.

Szipöcs, R.

Takasaka, M.

A. Shirakawa, I. Sakane, M. Takasaka, and T. Kobayashi, “Sub-5-fs visible pulse generation by pulse-front-matched noncollinear optical parametric amplification,” Appl. Phys. Lett. 74(16), 2268 (1999).
[Crossref]

Talapin, D. V.

Tekavec, P. F.

Tempea, G.

Tikhonravov, A. V.

Trebino, R.

Trubetskov, M. K.

Trushin, S. A.

N. Aközbek, S. A. Trushin, A. Baltuška, W. Fuß, E. Goulielmakis, K. Kosma, F. Krausz, S. Panja, M. Uiberacker, W. E. Schmid, A. Becker, M. Scalora, and M. Bloemer, “Extending the supercontinuum spectrum down to 200 nm with few-cycle pulses,” New J. Phys. 8(9), 177 (2006).
[Crossref]

Turner, D. B.

L. A. Bizimana, J. Brazard, W. P. Carbery, T. Gellen, and D. B. Turner, “Resolving molecular vibronic structure using high-sensitivity two-dimensional electronic spectroscopy,” J. Chem. Phys. 143(16), 164203 (2015).
[Crossref] [PubMed]

J. Brazard, L. A. Bizimana, and D. B. Turner, “Accurate convergence of transient-absorption spectra using pulsed lasers,” Rev. Sci. Instrum. 86(5), 053106 (2015).
[Crossref] [PubMed]

A. M. Brańczyk, D. B. Turner, and G. D. Scholes, “Crossing disciplines - A view on two-dimensional optical spectroscopy,” Ann. Phys. 526(1-2), 31–49 (2014).
[Crossref]

K. W. Stone, K. Gundogdu, D. B. Turner, X. Li, S. T. Cundiff, and K. A. Nelson, “Two-quantum 2D FT electronic spectroscopy of biexcitons in GaAs quantum wells,” Science 324(5931), 1169–1173 (2009).
[Crossref] [PubMed]

Uiberacker, M.

A. L. Cavalieri, E. Goulielmakis, B. Horvath, W. Helml, M. Schultze, M. Fieß, V. Pervak, L. Veisz, V. S. Yakovlev, M. Uiberacker, A. Apolonski, F. Krausz, and R. Kienberger, “Intense 1.5-cycle near infrared laser waveforms and their use for the generation of ultra-broadband soft-x-ray harmonic continua,” New J. Phys. 9(7), 242 (2007).
[Crossref]

N. Aközbek, S. A. Trushin, A. Baltuška, W. Fuß, E. Goulielmakis, K. Kosma, F. Krausz, S. Panja, M. Uiberacker, W. E. Schmid, A. Becker, M. Scalora, and M. Bloemer, “Extending the supercontinuum spectrum down to 200 nm with few-cycle pulses,” New J. Phys. 8(9), 177 (2006).
[Crossref]

Unrau, W.

Valiulis, G.

van Mourik, F.

Varanavicius, A.

Vaswani, H. M.

T. Brixner, J. Stenger, H. M. Vaswani, M. Cho, R. E. Blankenship, and G. R. Fleming, “Two-dimensional spectroscopy of electronic couplings in photosynthesis,” Nature 434(7033), 625–628 (2005).
[Crossref] [PubMed]

Veisz, L.

A. L. Cavalieri, E. Goulielmakis, B. Horvath, W. Helml, M. Schultze, M. Fieß, V. Pervak, L. Veisz, V. S. Yakovlev, M. Uiberacker, A. Apolonski, F. Krausz, and R. Kienberger, “Intense 1.5-cycle near infrared laser waveforms and their use for the generation of ultra-broadband soft-x-ray harmonic continua,” New J. Phys. 9(7), 242 (2007).
[Crossref]

Viswanathan, S.

von Berlepsch, H.

J. Lim, D. Paleček, F. Caycedo-Soler, C. N. Lincoln, J. Prior, H. von Berlepsch, S. F. Huelga, M. B. Plenio, D. Zigmantas, and J. Hauer, “Vibronic origin of long-lived coherence in an artificial molecular light harvester,” Nat. Commun. 6, 7755 (2015).
[Crossref] [PubMed]

Walter, C.

S. Ruetzel, M. Diekmann, P. Nuernberger, C. Walter, B. Engels, and T. Brixner, “Multidimensional spectroscopy of photoreactivity,” Proc. Natl. Acad. Sci. U.S.A. 111(13), 4764–4769 (2014).
[Crossref] [PubMed]

West, B. A.

B. A. West, P. G. Giokas, B. P. Molesky, A. D. Ross, and A. M. Moran, “Toward two-dimensional photon echo spectroscopy with 200 nm laser pulses,” Opt. Express 21(2), 2118–2125 (2013).
[Crossref] [PubMed]

B. A. West and A. M. Moran, “Two-Dimensional Electronic Spectroscopy in the Ultraviolet Wavelength Range,” J. Phys. Chem. Lett. 3(18), 2575–2581 (2012).
[Crossref] [PubMed]

Wirth, A.

M. T. Hassan, A. Wirth, I. Grguraš, A. Moulet, T. T. Luu, J. Gagnon, V. Pervak, and E. Goulielmakis, “Invited article: attosecond photonics: synthesis and control of light transients,” Rev. Sci. Instrum. 83(11), 111301 (2012).
[Crossref] [PubMed]

Wöste, L.

Wu, M.-Y.

R. D. Mehlenbacher, T. J. McDonough, M. Grechko, M.-Y. Wu, M. S. Arnold, and M. T. Zanni, “Energy transfer pathways in semiconducting carbon nanotubes revealed using two-dimensional white-light spectroscopy,” Nat. Commun. 6, 6732 (2015).
[Crossref] [PubMed]

Yakovlev, V. S.

A. L. Cavalieri, E. Goulielmakis, B. Horvath, W. Helml, M. Schultze, M. Fieß, V. Pervak, L. Veisz, V. S. Yakovlev, M. Uiberacker, A. Apolonski, F. Krausz, and R. Kienberger, “Intense 1.5-cycle near infrared laser waveforms and their use for the generation of ultra-broadband soft-x-ray harmonic continua,” New J. Phys. 9(7), 242 (2007).
[Crossref]

Yetzbacher, M. K.

M. K. Yetzbacher, N. Belabas, K. A. Kitney, and D. M. Jonas, “Propagation, beam geometry, and detection distortions of peak shapes in two-dimensional Fourier transform spectra,” J. Chem. Phys. 126(4), 044511 (2007).
[Crossref] [PubMed]

Zanni, M. T.

R. D. Mehlenbacher, T. J. McDonough, M. Grechko, M.-Y. Wu, M. S. Arnold, and M. T. Zanni, “Energy transfer pathways in semiconducting carbon nanotubes revealed using two-dimensional white-light spectroscopy,” Nat. Commun. 6, 6732 (2015).
[Crossref] [PubMed]

Zaukevicius, A.

Zheng, H.

Zigmantas, D.

J. Dostál, J. Pšenčík, and D. Zigmantas, “In situ mapping of the energy flow through the entire photosynthetic apparatus,” Nat. Chem. 8(7), 705–710 (2016).
[Crossref] [PubMed]

J. Lim, D. Paleček, F. Caycedo-Soler, C. N. Lincoln, J. Prior, H. von Berlepsch, S. F. Huelga, M. B. Plenio, D. Zigmantas, and J. Hauer, “Vibronic origin of long-lived coherence in an artificial molecular light harvester,” Nat. Commun. 6, 7755 (2015).
[Crossref] [PubMed]

R. Augulis and D. Zigmantas, “Two-dimensional electronic spectroscopy with double modulation lock-in detection: enhancement of sensitivity and noise resistance,” Opt. Express 19(14), 13126–13133 (2011).
[Crossref] [PubMed]

Acc. Chem. Res. (1)

N. S. Ginsberg, Y.-C. Cheng, and G. R. Fleming, “Two-Dimensional Electronic Spectroscopy of Molecular aggregates,” Acc. Chem. Res. 42(9), 1352–1363 (2009).
[Crossref] [PubMed]

Angew. Chem. Int. Ed. Engl. (1)

P. Nuernberger, S. Ruetzel, and T. Brixner, “Multidimensional Electronic Spectroscopy of Photochemical Reactions,” Angew. Chem. Int. Ed. Engl. 54(39), 11368–11386 (2015).
[Crossref] [PubMed]

Ann. Phys. (1)

A. M. Brańczyk, D. B. Turner, and G. D. Scholes, “Crossing disciplines - A view on two-dimensional optical spectroscopy,” Ann. Phys. 526(1-2), 31–49 (2014).
[Crossref]

Annu. Rev. Condens. Matter Phys. (1)

A. Ishizaki and G. R. Fleming, “Quantum Coherence in Photosynthetic Light Harvesting,” Annu. Rev. Condens. Matter Phys. 3(1), 333–361 (2012).
[Crossref]

Annu. Rev. Phys. Chem. (3)

Y.-C. Cheng and G. R. Fleming, “Dynamics of Light Harvesting in Photosynthesis,” Annu. Rev. Phys. Chem. 60(1), 241–262 (2009).
[Crossref] [PubMed]

D. M. Jonas, “Two-Dimensional Femtosecond Spectroscopy,” Annu. Rev. Phys. Chem. 54(1), 425–463 (2003).
[Crossref] [PubMed]

F. D. Fuller and J. P. Ogilvie, “Experimental Implementations of Two-Dimensional Fourier Transform Electronic Spectroscopy,” Annu. Rev. Phys. Chem. 66(1), 667–690 (2015).
[Crossref] [PubMed]

Appl. Opt. (3)

Appl. Phys. B (3)

P. Baum, S. Lochbrunner, and E. Riedle, “Generation of tunable 7-fs ultraviolet pulses: achromatic phase matching and chirp management,” Appl. Phys. B 79(8), 1027–1032 (2004).
[Crossref]

L. Gallmann, T. Pfeifer, P. M. Nagel, M. J. Abel, D. M. Neumark, and S. R. Leone, “Comparison of the filamentation and the hollow-core fiber characteristics for pulse compression into the few-cycle regime,” Appl. Phys. B 86(4), 561–566 (2007).
[Crossref]

B. Alonso, M. Miranda, F. Silva, V. Pervak, J. Rauschenberger, J. San Román, Í. J. Sola, and H. Crespo, “Characterization of sub-two-cycle pulses from a hollow-core fiber compressor in the spatiotemporal and spatiospectral domains,” Appl. Phys. B 112(1), 105–114 (2013).
[Crossref]

Appl. Phys. B. (1)

M. Nisoli, S. Stagira, S. De Silvestri, O. Svelto, S. Sartania, Z. Cheng, M. Lenzner, C. Spielmann, and F. Krausz, “A novel-high energy pulse compression system: generation of multigigawatt sub-5-fs pulses,” Appl. Phys. B. 65(2), 189–196 (1997).
[Crossref]

Appl. Phys. Lett. (2)

A. Shirakawa, I. Sakane, M. Takasaka, and T. Kobayashi, “Sub-5-fs visible pulse generation by pulse-front-matched noncollinear optical parametric amplification,” Appl. Phys. Lett. 74(16), 2268 (1999).
[Crossref]

M. Nisoli, S. De Silvestri, and O. Svelto, “Generation of high energy 10 fs pulses by a new pulse compression technique,” Appl. Phys. Lett. 68(20), 2793 (1996).
[Crossref]

Chem. Phys. Lett. (1)

M. L. Cowan, J. P. Ogilvie, and R. J. D. Miller, “Two-dimensional spectroscopy using diffractive optics based phased-locked photon echoes,” Chem. Phys. Lett. 386(1-3), 184–189 (2004).
[Crossref]

Chem. Rev. (1)

M. Cho, “Coherent Two-Dimensional Optical Spectroscopy,” Chem. Rev. 108(4), 1331–1418 (2008).
[Crossref] [PubMed]

J. Chem. Phys. (3)

M. K. Yetzbacher, N. Belabas, K. A. Kitney, and D. M. Jonas, “Propagation, beam geometry, and detection distortions of peak shapes in two-dimensional Fourier transform spectra,” J. Chem. Phys. 126(4), 044511 (2007).
[Crossref] [PubMed]

L. A. Bizimana, J. Brazard, W. P. Carbery, T. Gellen, and D. B. Turner, “Resolving molecular vibronic structure using high-sensitivity two-dimensional electronic spectroscopy,” J. Chem. Phys. 143(16), 164203 (2015).
[Crossref] [PubMed]

T. Brixner, T. Mančal, I. V. Stiopkin, and G. R. Fleming, “Phase-stabilized two-dimensional electronic spectroscopy,” J. Chem. Phys. 121(9), 4221–4236 (2004).
[Crossref] [PubMed]

J. Opt. Soc. Am. B (3)

J. Phys. Chem. A (2)

G. D. Goodno and R. J. D. Miller, “Femtosecond Heterodyne-Detected Four-Wave-Mixing Studies of Deterministic Protein Motions. 1. Theory and Experimental Technique of Diffractive Optics-Based Spectroscopy,” J. Phys. Chem. A 103(49), 10619–10629 (1999).
[Crossref]

A. P. Spencer, H. Li, S. T. Cundiff, and D. M. Jonas, “Pulse Propagation Effects in Optical 2D Fourier-Transform Spectroscopy: Theory,” J. Phys. Chem. A 119(17), 3936–3960 (2015).
[Crossref] [PubMed]

J. Phys. Chem. B (1)

G. D. Goodno, V. Astinov, and R. J. D. Miller, “Diffractive Optics-Based Heterodyne-Detected Grating Spectroscopy: Application to Ultrafast Protein Dynamics,” J. Phys. Chem. B 103(4), 603–607 (1999).
[Crossref]

J. Phys. Chem. Lett. (2)

B. Spokoyny and E. Harel, “Mapping the Vibronic Structure of a Molecule by Few-Cycle Continuum Two-Dimensional Spectroscopy in a Single Pulse,” J. Phys. Chem. Lett. 5(16), 2808–2814 (2014).
[Crossref] [PubMed]

B. A. West and A. M. Moran, “Two-Dimensional Electronic Spectroscopy in the Ultraviolet Wavelength Range,” J. Phys. Chem. Lett. 3(18), 2575–2581 (2012).
[Crossref] [PubMed]

Laser Photonics Rev. (1)

C. Homann and E. Riedle, “Direct measurement of the effective input noise power of an optical parametric amplifier: Input noise power of an optical parametric amplifier,” Laser Photonics Rev. 7(4), 580–588 (2013).
[Crossref]

Meas. Sci. Technol. (1)

T. Kobayashi and A. Baltuska, “Sub-5 fs pulse generation from a noncollinear optical parametric amplifier,” Meas. Sci. Technol. 13(11), 1671–1682 (2002).
[Crossref]

Nat. Chem. (1)

J. Dostál, J. Pšenčík, and D. Zigmantas, “In situ mapping of the energy flow through the entire photosynthetic apparatus,” Nat. Chem. 8(7), 705–710 (2016).
[Crossref] [PubMed]

Nat. Commun. (4)

J. Lim, D. Paleček, F. Caycedo-Soler, C. N. Lincoln, J. Prior, H. von Berlepsch, S. F. Huelga, M. B. Plenio, D. Zigmantas, and J. Hauer, “Vibronic origin of long-lived coherence in an artificial molecular light harvester,” Nat. Commun. 6, 7755 (2015).
[Crossref] [PubMed]

Y. Song, S. N. Clafton, R. D. Pensack, T. W. Kee, and G. D. Scholes, “Vibrational coherence probes the mechanism of ultrafast electron transfer in polymer-fullerene blends,” Nat. Commun. 5, 4933 (2014).
[Crossref] [PubMed]

E. Cassette, R. D. Pensack, B. Mahler, and G. D. Scholes, “Room-temperature exciton coherence and dephasing in two-dimensional nanostructures,” Nat. Commun. 6, 6086 (2015).
[Crossref] [PubMed]

R. D. Mehlenbacher, T. J. McDonough, M. Grechko, M.-Y. Wu, M. S. Arnold, and M. T. Zanni, “Energy transfer pathways in semiconducting carbon nanotubes revealed using two-dimensional white-light spectroscopy,” Nat. Commun. 6, 6732 (2015).
[Crossref] [PubMed]

Nature (1)

T. Brixner, J. Stenger, H. M. Vaswani, M. Cho, R. E. Blankenship, and G. R. Fleming, “Two-dimensional spectroscopy of electronic couplings in photosynthesis,” Nature 434(7033), 625–628 (2005).
[Crossref] [PubMed]

New J. Phys. (2)

N. Aközbek, S. A. Trushin, A. Baltuška, W. Fuß, E. Goulielmakis, K. Kosma, F. Krausz, S. Panja, M. Uiberacker, W. E. Schmid, A. Becker, M. Scalora, and M. Bloemer, “Extending the supercontinuum spectrum down to 200 nm with few-cycle pulses,” New J. Phys. 8(9), 177 (2006).
[Crossref]

A. L. Cavalieri, E. Goulielmakis, B. Horvath, W. Helml, M. Schultze, M. Fieß, V. Pervak, L. Veisz, V. S. Yakovlev, M. Uiberacker, A. Apolonski, F. Krausz, and R. Kienberger, “Intense 1.5-cycle near infrared laser waveforms and their use for the generation of ultra-broadband soft-x-ray harmonic continua,” New J. Phys. 9(7), 242 (2007).
[Crossref]

Opt. Express (8)

B. E. Schmidt, W. Unrau, A. Mirabal, S. Li, M. Krenz, L. Wöste, and T. Siebert, “Poor man’s source for sub 7 fs: a simple route to ultrashort laser pulses and their full characterization,” Opt. Express 16(23), 18910–18921 (2008).
[Crossref] [PubMed]

V. Pervak, I. Ahmad, M. K. Trubetskov, A. V. Tikhonravov, and F. Krausz, “Double-angle multilayer mirrors with smooth dispersion characteristics,” Opt. Express 17(10), 7943–7951 (2009).
[Crossref] [PubMed]

V. I. Prokhorenko, A. Halpin, and R. J. D. Miller, “Coherently-controlled two-dimensional photon echo electronic spectroscopy,” Opt. Express 17(12), 9764–9779 (2009).
[Crossref] [PubMed]

B. A. West, P. G. Giokas, B. P. Molesky, A. D. Ross, and A. M. Moran, “Toward two-dimensional photon echo spectroscopy with 200 nm laser pulses,” Opt. Express 21(2), 2118–2125 (2013).
[Crossref] [PubMed]

F. Hagemann, O. Gause, L. Wöste, and T. Siebert, “Supercontinuum pulse shaping in the few-cycle regime,” Opt. Express 21(5), 5536–5549 (2013).
[Crossref] [PubMed]

C. Li, K. P. M. Rishad, P. Horak, Y. Matsuura, and D. Faccio, “Spectral broadening and temporal compression of ∼ 100 fs pulses in air-filled hollow core capillary fibers,” Opt. Express 22(1), 1143–1151 (2014).
[Crossref] [PubMed]

F. Silva, M. Miranda, B. Alonso, J. Rauschenberger, V. Pervak, and H. Crespo, “Simultaneous compression, characterization and phase stabilization of GW-level 1.4 cycle VIS-NIR femtosecond pulses using a single dispersion-scan setup,” Opt. Express 22(9), 10181–10191 (2014).
[Crossref] [PubMed]

R. Augulis and D. Zigmantas, “Two-dimensional electronic spectroscopy with double modulation lock-in detection: enhancement of sensitivity and noise resistance,” Opt. Express 19(14), 13126–13133 (2011).
[Crossref] [PubMed]

Opt. Lett. (16)

M. Liebel, C. Schnedermann, and P. Kukura, “Sub-10-fs pulses tunable from 480 to 980 nm from a NOPA pumped by an Yb:KGW source,” Opt. Lett. 39(14), 4112–4115 (2014).
[Crossref] [PubMed]

A. Al Haddad, A. Chauvet, J. Ojeda, C. Arrell, F. van Mourik, G. Auböck, and M. Chergui, “Set-up for broadband Fourier-transform multidimensional electronic spectroscopy,” Opt. Lett. 40(3), 312–315 (2015).
[Crossref] [PubMed]

B. Spokoyny, C. J. Koh, and E. Harel, “Stable and high-power few cycle supercontinuum for 2D ultrabroadband electronic spectroscopy,” Opt. Lett. 40(6), 1014–1017 (2015).
[Crossref] [PubMed]

U. Selig, C.-F. Schleussner, M. Foerster, F. Langhojer, P. Nuernberger, and T. Brixner, “Coherent two-dimensional ultraviolet spectroscopy in fully noncollinear geometry,” Opt. Lett. 35(24), 4178–4180 (2010).
[Crossref] [PubMed]

P. J. M. Johnson, V. I. Prokhorenko, and R. J. D. Miller, “Enhanced bandwidth noncollinear optical parametric amplification with a narrowband anamorphic pump,” Opt. Lett. 36(11), 2170–2172 (2011).
[Crossref] [PubMed]

U. Selig, F. Langhojer, F. Dimler, T. Löhrig, C. Schwarz, B. Gieseking, and T. Brixner, “Inherently phase-stable coherent two-dimensional spectroscopy using only conventional optics,” Opt. Lett. 33(23), 2851–2853 (2008).
[Crossref] [PubMed]

P. F. Tekavec, J. A. Myers, K. L. M. Lewis, and J. P. Ogilvie, “Two-dimensional electronic spectroscopy with a continuum probe,” Opt. Lett. 34(9), 1390–1392 (2009).
[Crossref] [PubMed]

A. Baltuška, T. Fuji, and T. Kobayashi, “Visible pulse compression to 4 fs by optical parametric amplification and programmable dispersion control,” Opt. Lett. 27(5), 306–308 (2002).
[Crossref] [PubMed]

T. Brixner, I. V. Stiopkin, and G. R. Fleming, “Tunable two-dimensional femtosecond spectroscopy,” Opt. Lett. 29(8), 884–886 (2004).
[Crossref] [PubMed]

P. Baum, S. Lochbrunner, and E. Riedle, “Tunable sub-10-fs ultraviolet pulses generated by achromatic frequency doubling,” Opt. Lett. 29(14), 1686–1688 (2004).
[Crossref] [PubMed]

J. N. Sweetser, D. N. Fittinghoff, and R. Trebino, “Transient-grating frequency-resolved optical gating,” Opt. Lett. 22(8), 519–521 (1997).
[Crossref] [PubMed]

M. Nisoli, S. De Silvestri, O. Svelto, R. Szipöcs, K. Ferencz, C. Spielmann, S. Sartania, and F. Krausz, “Compression of high-energy laser pulses below 5 fs,” Opt. Lett. 22(8), 522–524 (1997).
[Crossref] [PubMed]

E. T. J. Nibbering, O. Dühr, and G. Korn, “Generation of intense tunable 20-fs pulses near 400nm by use of a gas-filled hollow waveguide,” Opt. Lett. 22(17), 1335–1337 (1997).
[Crossref] [PubMed]

A. A. Maznev, K. A. Nelson, and J. A. Rogers, “Optical heterodyne detection of laser-induced gratings,” Opt. Lett. 23(16), 1319–1321 (1998).
[Crossref] [PubMed]

A. A. Maznev, T. F. Crimmins, and K. A. Nelson, “How to make femtosecond pulses overlap,” Opt. Lett. 23(17), 1378–1380 (1998).
[Crossref] [PubMed]

O. Dühr, E. T. J. Nibbering, G. Korn, G. Tempea, and F. Krausz, “Generation of intense 8-fs pulses at 400 nm,” Opt. Lett. 24(1), 34–36 (1999).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

S. Ruetzel, M. Diekmann, P. Nuernberger, C. Walter, B. Engels, and T. Brixner, “Multidimensional spectroscopy of photoreactivity,” Proc. Natl. Acad. Sci. U.S.A. 111(13), 4764–4769 (2014).
[Crossref] [PubMed]

Rev. Sci. Instrum. (3)

G. Cerullo and S. De Silvestri, “Ultrafast optical parametric amplifiers,” Rev. Sci. Instrum. 74(1), 1 (2003).
[Crossref]

M. T. Hassan, A. Wirth, I. Grguraš, A. Moulet, T. T. Luu, J. Gagnon, V. Pervak, and E. Goulielmakis, “Invited article: attosecond photonics: synthesis and control of light transients,” Rev. Sci. Instrum. 83(11), 111301 (2012).
[Crossref] [PubMed]

J. Brazard, L. A. Bizimana, and D. B. Turner, “Accurate convergence of transient-absorption spectra using pulsed lasers,” Rev. Sci. Instrum. 86(5), 053106 (2015).
[Crossref] [PubMed]

Science (1)

K. W. Stone, K. Gundogdu, D. B. Turner, X. Li, S. T. Cundiff, and K. A. Nelson, “Two-quantum 2D FT electronic spectroscopy of biexcitons in GaAs quantum wells,” Science 324(5931), 1169–1173 (2009).
[Crossref] [PubMed]

Other (3)

P. Hamm and M. T. Zanni, Concepts and Methods of 2D Infrared Spectroscopy (Cambridge University Pres, 2011).

J. Jeon, S. Park, and M. Cho, “Two-dimensional Optical Spectroscopy: Theory and Experiment,” in Encyclopedia of Analytical Chemistry, R. A. Meyers, ed. (John Wiley & Sons, Ltd, 2010).

V. I. Prokhorenko, A. Picchiotti, S. Maneshi, and R. J. Dwayne Miller, “Measurement and Characterization of Sub-5 fs Broadband UV Pulses in the 230–350 nm Range,” in Ultrafast Phenomena XIX, K. Yamanouchi, S. Cundiff, R. de Vivie-Riedle, M. Kuwata-Gonokami, and L. DiMauro, eds. (Springer International Publishing, 2015), Vol. 162, pp. 744–748.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Experimental scheme: CPA – chirped-pulse amplifier; FL – fused silica focus lens (f = 1 m) with anti-reflective coating; GV – connection to gas supply and vacuum pump; DM – dispersive mirrors; WP – fused silica wedge pair for compensation fine tuning; NDF – neutral density filter; DO – diffractive-optic cross grating; C1 and C2 – double choppers for fast data acquisition and scattering removal; DL1 – delay 1 for coherence time with piezo actuator; DL2 – delay 2 for population time with combination of piezo actuator and motorized translation stage; LO – local oscillator for heterodyne detection; SC – flow-cell sample cuvette (for 2D measurement) or 0.5 mm BK-7 window (for TG-FROG characterization); P – 45° periscope to orient the signal beam profile parallel with plane of the optical table.
Fig. 2
Fig. 2 (a) Supercontinuum spectrum generated in an Ar-filled HCF. (b) Supercontinuum spectrum at sample position after compression and spectral selection (blue line) and linear absorption of CV in ethanol (orange shaded).
Fig. 3
Fig. 3 Spatially resolved supercontinuum spectra at the sample position measured through a laterally translated 50-µm pinhole. The focus center is indicated by coordinates (x0, y0), while translations in horizontal (x) and vertical (y) directions are marked with “+” and “–”. The diameter of the focus spot is approximately 150 µm of 1/e2 intensity.
Fig. 4
Fig. 4 TG-FROG measurement in a 0.5-mm BK-7 glass at the sample position. (a) Measured and (b) retrieved FROG trace. (c) The retrieved temporal profile reveals a pulse duration of approximately 7 fs with a FROG error of 0.0082. (d) The corresponding spectral profile shows only small remaining dispersion, i.e., an almost flat phase. The phase is blanked for intensity values below 1% of the maximum.
Fig. 5
Fig. 5 2DES of CV in ethanol for population times of T = 250 fs (left column), 750 fs (middle column) and 1300 fs (right column): (a)–(c) 2D amplitude spectra, (d)–(f) 2D absorptive spectra, and (g)–(i) 2D absorptive spectra projected onto ω3/2πc (red) in comparison with transient absorption results (blue). Contour lines in 2D spectra are provided in 5% intervals of peak values at −10%, 5%, 0, 5%, 10%, …, 100% for the amplitude (upper row) and absorptive part (middle row).
Fig. 6
Fig. 6 Analysis of oscillations. (a) Measured absorptive 2D spectrum of CV in ethanol at T = 1 ps. (b) Oscillation of the 2D signal along population time T for three exemplary points marked black, green, and blue in (a). (c) Fourier-transformed power spectrum of the oscillating dynamics from (b).

Metrics