Abstract

A new method of steering THz pulses radiated from a thin emitter excited by tilted optical pulse-fronts has been developed theoretically and validated in a proof-of-concept experiment. This steering technique is potentially efficient and rapid, and it should benefit from a THz-pulse energy that can scale with optical-beam size and magnitude. Conversely, the method employed for measuring the steered THz pulses is also capable of characterizing the pulse-front tilt of an optical beam.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Terahertz beam steering and frequency tuning by using the spatial dispersion of ultrafast laser pulses

Ken-ichiro Maki and Chiko Otani
Opt. Express 16(14) 10158-10169 (2008)

Time-resolved terahertz time-domain near-field microscopy

N. J. J. van Hoof, S. E. T. ter Huurne, J. Gómez Rivas, and A. Halpin
Opt. Express 26(24) 32118-32129 (2018)

Terahertz beam steering using interference of femtosecond optical pulses

Koji Uematsu, Ken-ichiro Maki, and Chiko Otani
Opt. Express 20(20) 22914-22921 (2012)

References

  • View by:
  • |
  • |
  • |

  1. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1, 97–105 (2007).
    [Crossref]
  2. C. Yu, S. Fan, Y. Sun, and E. Pickwell-Macpherson, “The potential of terahertz imaging for cancer diagnosis: A review of investigations to date,” Quant. Imaging Med. Surg. 2, 33–45 (2012).
    [PubMed]
  3. R. Bogue, “Terahertz imaging: a report on progress,” Sens. Rev. 29, 6–12 (2009).
    [Crossref]
  4. E. Pickwell and V. P. Wallace, “Biomedical applications of terahertz technology,” J. Phys. D. Appl. Phys. 39, 301–310 (2006).
    [Crossref]
  5. A. Redo-Sanchez, N. Laman, B. Schulkin, and T. Tongue, “Review of terahertz technology readiness assessment and applications,” J. Infrared, Millimeter, Terahertz Waves 34, 500–518 (2013).
    [Crossref]
  6. B. B. Hu, J. T. Darrow, X.-C. Zhang, D. H. Auston, and P. R. Smith, “Optically steerable photoconducting antennas,” Appl. Phys. Lett. 56, 886–888 (1990).
    [Crossref]
  7. X.-C. Zhang and D. H. Auston, “Optically induced THz electromagnetic radiation from planar photoconducting structures,” J. Electromagn. Waves Appl. 6, 85–106 (1992).
    [Crossref]
  8. K.-i. Maki and C. Otani, “Terahertz beam steering and frequency tuning by using the spatial dispersion of ultrafast laser pulses,” Opt. Express 16, 10158–10169 (2008).
    [Crossref] [PubMed]
  9. S. Busch, B. Scherger, M. Scheller, and M. Koch, “Optically controlled terahertz beam steering and imaging,” Opt. Lett. 37, 1391–1393 (2012).
    [Crossref] [PubMed]
  10. Y. Monnai, K. Altmann, C. Jansen, H. Hillmer, M. Koch, and H. Shinoda, “Terahertz beam steering and variable focusing using programmable diffraction gratings,” Opt. Express 21, 2347–2354 (2013).
    [Crossref] [PubMed]
  11. B. Scherger, M. Reuter, M. Scheller, K. Altmann, N. Vieweg, R. Dabrowski, J. A. Deibel, and M. Koch, “Discrete terahertz beam steering with an electrically controlled liquid crystal device,” J. Infrared, Millimeter, Terahertz Waves 33, 1117–1122 (2012).
    [Crossref]
  12. H. Füser and M. Bieler, “Terahertz beam steering by optical coherent control,” Appl. Phys. Lett. 102, 251109 (2013).
    [Crossref]
  13. D. H. Auston, K. P. Cheung, J. A. Valdmanis, and D. A. Kleinman, “Cherenkov radiation from femtosecond optical pulses in electro-optic media,” Phys. Rev. Lett. 53, 1555–1558 (1984).
    [Crossref]
  14. J. Hebling, G. Almasi, I. Kozma, and J. Kuhl, “Velocity matching by pulse front tilting for large area THz-pulse generation,” Opt. Express 10, 1161–1166 (2002).
    [Crossref] [PubMed]
  15. J. Hebling, K.-L. Yeh, M. C. Hoffmann, B. Bartal, and K. A. Nelson, “Generation of high-power terahertz pulses by tilted-pulse-front excitation and their application possibilities,” J. Opt. Soc. Am. B 25, B6–B19 (2008).
    [Crossref]
  16. J. T. Darrow, B. B. Hu, X.-C. Zhang, and D. H. Auston, “Subpicosecond electromagnetic pulses from large-aperture photoconducting antennas,” Opt. Lett. 15, 323–325 (1990).
    [Crossref] [PubMed]
  17. E. D. Palik, ed., Handbook of Optical Constants of Solids (Academic, 1985).
  18. H. Hirori and K. Tanaka, “Nonlinear optical phenomena induced by intense single-cycle terahertz pulses,” IEEE J. Sel. Top. Quantum Electron. 19, 1–11 (2013).
    [Crossref]
  19. V. Chang, “Infinite phased dipole array,” Proc. IEEE 56, 1892–1900 (1968).
    [Crossref]
  20. B. W. Drinkwater and P. D. Wilcox, “Ultrasonic arrays for non-destructive evaluation: A review,” NDT E Int. 39, 525–541 (2006).
    [Crossref]
  21. S. Akturk, X. Gu, E. Zeek, and R. Trebino, “Pulse-front tilt caused by spatial and temporal chirp,” Opt. Express 12, 4399–4410 (2004).
    [Crossref] [PubMed]
  22. B. B. Hu and M. C. Nuss, “Imaging with terahertz waves,” Opt. Lett. 20, 1716–1718 (1995).
    [Crossref] [PubMed]
  23. W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Reports Prog. Phys. 70, 1325–1379 (2007).
    [Crossref]

2013 (4)

A. Redo-Sanchez, N. Laman, B. Schulkin, and T. Tongue, “Review of terahertz technology readiness assessment and applications,” J. Infrared, Millimeter, Terahertz Waves 34, 500–518 (2013).
[Crossref]

H. Füser and M. Bieler, “Terahertz beam steering by optical coherent control,” Appl. Phys. Lett. 102, 251109 (2013).
[Crossref]

H. Hirori and K. Tanaka, “Nonlinear optical phenomena induced by intense single-cycle terahertz pulses,” IEEE J. Sel. Top. Quantum Electron. 19, 1–11 (2013).
[Crossref]

Y. Monnai, K. Altmann, C. Jansen, H. Hillmer, M. Koch, and H. Shinoda, “Terahertz beam steering and variable focusing using programmable diffraction gratings,” Opt. Express 21, 2347–2354 (2013).
[Crossref] [PubMed]

2012 (3)

S. Busch, B. Scherger, M. Scheller, and M. Koch, “Optically controlled terahertz beam steering and imaging,” Opt. Lett. 37, 1391–1393 (2012).
[Crossref] [PubMed]

B. Scherger, M. Reuter, M. Scheller, K. Altmann, N. Vieweg, R. Dabrowski, J. A. Deibel, and M. Koch, “Discrete terahertz beam steering with an electrically controlled liquid crystal device,” J. Infrared, Millimeter, Terahertz Waves 33, 1117–1122 (2012).
[Crossref]

C. Yu, S. Fan, Y. Sun, and E. Pickwell-Macpherson, “The potential of terahertz imaging for cancer diagnosis: A review of investigations to date,” Quant. Imaging Med. Surg. 2, 33–45 (2012).
[PubMed]

2009 (1)

R. Bogue, “Terahertz imaging: a report on progress,” Sens. Rev. 29, 6–12 (2009).
[Crossref]

2008 (2)

2007 (2)

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1, 97–105 (2007).
[Crossref]

W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Reports Prog. Phys. 70, 1325–1379 (2007).
[Crossref]

2006 (2)

B. W. Drinkwater and P. D. Wilcox, “Ultrasonic arrays for non-destructive evaluation: A review,” NDT E Int. 39, 525–541 (2006).
[Crossref]

E. Pickwell and V. P. Wallace, “Biomedical applications of terahertz technology,” J. Phys. D. Appl. Phys. 39, 301–310 (2006).
[Crossref]

2004 (1)

2002 (1)

1995 (1)

1992 (1)

X.-C. Zhang and D. H. Auston, “Optically induced THz electromagnetic radiation from planar photoconducting structures,” J. Electromagn. Waves Appl. 6, 85–106 (1992).
[Crossref]

1990 (2)

B. B. Hu, J. T. Darrow, X.-C. Zhang, D. H. Auston, and P. R. Smith, “Optically steerable photoconducting antennas,” Appl. Phys. Lett. 56, 886–888 (1990).
[Crossref]

J. T. Darrow, B. B. Hu, X.-C. Zhang, and D. H. Auston, “Subpicosecond electromagnetic pulses from large-aperture photoconducting antennas,” Opt. Lett. 15, 323–325 (1990).
[Crossref] [PubMed]

1984 (1)

D. H. Auston, K. P. Cheung, J. A. Valdmanis, and D. A. Kleinman, “Cherenkov radiation from femtosecond optical pulses in electro-optic media,” Phys. Rev. Lett. 53, 1555–1558 (1984).
[Crossref]

1968 (1)

V. Chang, “Infinite phased dipole array,” Proc. IEEE 56, 1892–1900 (1968).
[Crossref]

Akturk, S.

Almasi, G.

Altmann, K.

Y. Monnai, K. Altmann, C. Jansen, H. Hillmer, M. Koch, and H. Shinoda, “Terahertz beam steering and variable focusing using programmable diffraction gratings,” Opt. Express 21, 2347–2354 (2013).
[Crossref] [PubMed]

B. Scherger, M. Reuter, M. Scheller, K. Altmann, N. Vieweg, R. Dabrowski, J. A. Deibel, and M. Koch, “Discrete terahertz beam steering with an electrically controlled liquid crystal device,” J. Infrared, Millimeter, Terahertz Waves 33, 1117–1122 (2012).
[Crossref]

Auston, D. H.

X.-C. Zhang and D. H. Auston, “Optically induced THz electromagnetic radiation from planar photoconducting structures,” J. Electromagn. Waves Appl. 6, 85–106 (1992).
[Crossref]

B. B. Hu, J. T. Darrow, X.-C. Zhang, D. H. Auston, and P. R. Smith, “Optically steerable photoconducting antennas,” Appl. Phys. Lett. 56, 886–888 (1990).
[Crossref]

J. T. Darrow, B. B. Hu, X.-C. Zhang, and D. H. Auston, “Subpicosecond electromagnetic pulses from large-aperture photoconducting antennas,” Opt. Lett. 15, 323–325 (1990).
[Crossref] [PubMed]

D. H. Auston, K. P. Cheung, J. A. Valdmanis, and D. A. Kleinman, “Cherenkov radiation from femtosecond optical pulses in electro-optic media,” Phys. Rev. Lett. 53, 1555–1558 (1984).
[Crossref]

Bartal, B.

Bieler, M.

H. Füser and M. Bieler, “Terahertz beam steering by optical coherent control,” Appl. Phys. Lett. 102, 251109 (2013).
[Crossref]

Bogue, R.

R. Bogue, “Terahertz imaging: a report on progress,” Sens. Rev. 29, 6–12 (2009).
[Crossref]

Busch, S.

Chan, W. L.

W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Reports Prog. Phys. 70, 1325–1379 (2007).
[Crossref]

Chang, V.

V. Chang, “Infinite phased dipole array,” Proc. IEEE 56, 1892–1900 (1968).
[Crossref]

Cheung, K. P.

D. H. Auston, K. P. Cheung, J. A. Valdmanis, and D. A. Kleinman, “Cherenkov radiation from femtosecond optical pulses in electro-optic media,” Phys. Rev. Lett. 53, 1555–1558 (1984).
[Crossref]

Dabrowski, R.

B. Scherger, M. Reuter, M. Scheller, K. Altmann, N. Vieweg, R. Dabrowski, J. A. Deibel, and M. Koch, “Discrete terahertz beam steering with an electrically controlled liquid crystal device,” J. Infrared, Millimeter, Terahertz Waves 33, 1117–1122 (2012).
[Crossref]

Darrow, J. T.

B. B. Hu, J. T. Darrow, X.-C. Zhang, D. H. Auston, and P. R. Smith, “Optically steerable photoconducting antennas,” Appl. Phys. Lett. 56, 886–888 (1990).
[Crossref]

J. T. Darrow, B. B. Hu, X.-C. Zhang, and D. H. Auston, “Subpicosecond electromagnetic pulses from large-aperture photoconducting antennas,” Opt. Lett. 15, 323–325 (1990).
[Crossref] [PubMed]

Deibel, J.

W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Reports Prog. Phys. 70, 1325–1379 (2007).
[Crossref]

Deibel, J. A.

B. Scherger, M. Reuter, M. Scheller, K. Altmann, N. Vieweg, R. Dabrowski, J. A. Deibel, and M. Koch, “Discrete terahertz beam steering with an electrically controlled liquid crystal device,” J. Infrared, Millimeter, Terahertz Waves 33, 1117–1122 (2012).
[Crossref]

Drinkwater, B. W.

B. W. Drinkwater and P. D. Wilcox, “Ultrasonic arrays for non-destructive evaluation: A review,” NDT E Int. 39, 525–541 (2006).
[Crossref]

Fan, S.

C. Yu, S. Fan, Y. Sun, and E. Pickwell-Macpherson, “The potential of terahertz imaging for cancer diagnosis: A review of investigations to date,” Quant. Imaging Med. Surg. 2, 33–45 (2012).
[PubMed]

Füser, H.

H. Füser and M. Bieler, “Terahertz beam steering by optical coherent control,” Appl. Phys. Lett. 102, 251109 (2013).
[Crossref]

Gu, X.

Hebling, J.

Hillmer, H.

Hirori, H.

H. Hirori and K. Tanaka, “Nonlinear optical phenomena induced by intense single-cycle terahertz pulses,” IEEE J. Sel. Top. Quantum Electron. 19, 1–11 (2013).
[Crossref]

Hoffmann, M. C.

Hu, B. B.

Jansen, C.

Kleinman, D. A.

D. H. Auston, K. P. Cheung, J. A. Valdmanis, and D. A. Kleinman, “Cherenkov radiation from femtosecond optical pulses in electro-optic media,” Phys. Rev. Lett. 53, 1555–1558 (1984).
[Crossref]

Koch, M.

Kozma, I.

Kuhl, J.

Laman, N.

A. Redo-Sanchez, N. Laman, B. Schulkin, and T. Tongue, “Review of terahertz technology readiness assessment and applications,” J. Infrared, Millimeter, Terahertz Waves 34, 500–518 (2013).
[Crossref]

Maki, K.-i.

Mittleman, D. M.

W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Reports Prog. Phys. 70, 1325–1379 (2007).
[Crossref]

Monnai, Y.

Nelson, K. A.

Nuss, M. C.

Otani, C.

Pickwell, E.

E. Pickwell and V. P. Wallace, “Biomedical applications of terahertz technology,” J. Phys. D. Appl. Phys. 39, 301–310 (2006).
[Crossref]

Pickwell-Macpherson, E.

C. Yu, S. Fan, Y. Sun, and E. Pickwell-Macpherson, “The potential of terahertz imaging for cancer diagnosis: A review of investigations to date,” Quant. Imaging Med. Surg. 2, 33–45 (2012).
[PubMed]

Redo-Sanchez, A.

A. Redo-Sanchez, N. Laman, B. Schulkin, and T. Tongue, “Review of terahertz technology readiness assessment and applications,” J. Infrared, Millimeter, Terahertz Waves 34, 500–518 (2013).
[Crossref]

Reuter, M.

B. Scherger, M. Reuter, M. Scheller, K. Altmann, N. Vieweg, R. Dabrowski, J. A. Deibel, and M. Koch, “Discrete terahertz beam steering with an electrically controlled liquid crystal device,” J. Infrared, Millimeter, Terahertz Waves 33, 1117–1122 (2012).
[Crossref]

Scheller, M.

B. Scherger, M. Reuter, M. Scheller, K. Altmann, N. Vieweg, R. Dabrowski, J. A. Deibel, and M. Koch, “Discrete terahertz beam steering with an electrically controlled liquid crystal device,” J. Infrared, Millimeter, Terahertz Waves 33, 1117–1122 (2012).
[Crossref]

S. Busch, B. Scherger, M. Scheller, and M. Koch, “Optically controlled terahertz beam steering and imaging,” Opt. Lett. 37, 1391–1393 (2012).
[Crossref] [PubMed]

Scherger, B.

S. Busch, B. Scherger, M. Scheller, and M. Koch, “Optically controlled terahertz beam steering and imaging,” Opt. Lett. 37, 1391–1393 (2012).
[Crossref] [PubMed]

B. Scherger, M. Reuter, M. Scheller, K. Altmann, N. Vieweg, R. Dabrowski, J. A. Deibel, and M. Koch, “Discrete terahertz beam steering with an electrically controlled liquid crystal device,” J. Infrared, Millimeter, Terahertz Waves 33, 1117–1122 (2012).
[Crossref]

Schulkin, B.

A. Redo-Sanchez, N. Laman, B. Schulkin, and T. Tongue, “Review of terahertz technology readiness assessment and applications,” J. Infrared, Millimeter, Terahertz Waves 34, 500–518 (2013).
[Crossref]

Shinoda, H.

Smith, P. R.

B. B. Hu, J. T. Darrow, X.-C. Zhang, D. H. Auston, and P. R. Smith, “Optically steerable photoconducting antennas,” Appl. Phys. Lett. 56, 886–888 (1990).
[Crossref]

Sun, Y.

C. Yu, S. Fan, Y. Sun, and E. Pickwell-Macpherson, “The potential of terahertz imaging for cancer diagnosis: A review of investigations to date,” Quant. Imaging Med. Surg. 2, 33–45 (2012).
[PubMed]

Tanaka, K.

H. Hirori and K. Tanaka, “Nonlinear optical phenomena induced by intense single-cycle terahertz pulses,” IEEE J. Sel. Top. Quantum Electron. 19, 1–11 (2013).
[Crossref]

Tongue, T.

A. Redo-Sanchez, N. Laman, B. Schulkin, and T. Tongue, “Review of terahertz technology readiness assessment and applications,” J. Infrared, Millimeter, Terahertz Waves 34, 500–518 (2013).
[Crossref]

Tonouchi, M.

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1, 97–105 (2007).
[Crossref]

Trebino, R.

Valdmanis, J. A.

D. H. Auston, K. P. Cheung, J. A. Valdmanis, and D. A. Kleinman, “Cherenkov radiation from femtosecond optical pulses in electro-optic media,” Phys. Rev. Lett. 53, 1555–1558 (1984).
[Crossref]

Vieweg, N.

B. Scherger, M. Reuter, M. Scheller, K. Altmann, N. Vieweg, R. Dabrowski, J. A. Deibel, and M. Koch, “Discrete terahertz beam steering with an electrically controlled liquid crystal device,” J. Infrared, Millimeter, Terahertz Waves 33, 1117–1122 (2012).
[Crossref]

Wallace, V. P.

E. Pickwell and V. P. Wallace, “Biomedical applications of terahertz technology,” J. Phys. D. Appl. Phys. 39, 301–310 (2006).
[Crossref]

Wilcox, P. D.

B. W. Drinkwater and P. D. Wilcox, “Ultrasonic arrays for non-destructive evaluation: A review,” NDT E Int. 39, 525–541 (2006).
[Crossref]

Yeh, K.-L.

Yu, C.

C. Yu, S. Fan, Y. Sun, and E. Pickwell-Macpherson, “The potential of terahertz imaging for cancer diagnosis: A review of investigations to date,” Quant. Imaging Med. Surg. 2, 33–45 (2012).
[PubMed]

Zeek, E.

Zhang, X.-C.

X.-C. Zhang and D. H. Auston, “Optically induced THz electromagnetic radiation from planar photoconducting structures,” J. Electromagn. Waves Appl. 6, 85–106 (1992).
[Crossref]

B. B. Hu, J. T. Darrow, X.-C. Zhang, D. H. Auston, and P. R. Smith, “Optically steerable photoconducting antennas,” Appl. Phys. Lett. 56, 886–888 (1990).
[Crossref]

J. T. Darrow, B. B. Hu, X.-C. Zhang, and D. H. Auston, “Subpicosecond electromagnetic pulses from large-aperture photoconducting antennas,” Opt. Lett. 15, 323–325 (1990).
[Crossref] [PubMed]

Appl. Phys. Lett. (2)

B. B. Hu, J. T. Darrow, X.-C. Zhang, D. H. Auston, and P. R. Smith, “Optically steerable photoconducting antennas,” Appl. Phys. Lett. 56, 886–888 (1990).
[Crossref]

H. Füser and M. Bieler, “Terahertz beam steering by optical coherent control,” Appl. Phys. Lett. 102, 251109 (2013).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

H. Hirori and K. Tanaka, “Nonlinear optical phenomena induced by intense single-cycle terahertz pulses,” IEEE J. Sel. Top. Quantum Electron. 19, 1–11 (2013).
[Crossref]

J. Electromagn. Waves Appl. (1)

X.-C. Zhang and D. H. Auston, “Optically induced THz electromagnetic radiation from planar photoconducting structures,” J. Electromagn. Waves Appl. 6, 85–106 (1992).
[Crossref]

J. Infrared, Millimeter, Terahertz Waves (2)

A. Redo-Sanchez, N. Laman, B. Schulkin, and T. Tongue, “Review of terahertz technology readiness assessment and applications,” J. Infrared, Millimeter, Terahertz Waves 34, 500–518 (2013).
[Crossref]

B. Scherger, M. Reuter, M. Scheller, K. Altmann, N. Vieweg, R. Dabrowski, J. A. Deibel, and M. Koch, “Discrete terahertz beam steering with an electrically controlled liquid crystal device,” J. Infrared, Millimeter, Terahertz Waves 33, 1117–1122 (2012).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. D. Appl. Phys. (1)

E. Pickwell and V. P. Wallace, “Biomedical applications of terahertz technology,” J. Phys. D. Appl. Phys. 39, 301–310 (2006).
[Crossref]

Nat. Photonics (1)

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1, 97–105 (2007).
[Crossref]

NDT E Int. (1)

B. W. Drinkwater and P. D. Wilcox, “Ultrasonic arrays for non-destructive evaluation: A review,” NDT E Int. 39, 525–541 (2006).
[Crossref]

Opt. Express (4)

Opt. Lett. (3)

Phys. Rev. Lett. (1)

D. H. Auston, K. P. Cheung, J. A. Valdmanis, and D. A. Kleinman, “Cherenkov radiation from femtosecond optical pulses in electro-optic media,” Phys. Rev. Lett. 53, 1555–1558 (1984).
[Crossref]

Proc. IEEE (1)

V. Chang, “Infinite phased dipole array,” Proc. IEEE 56, 1892–1900 (1968).
[Crossref]

Quant. Imaging Med. Surg. (1)

C. Yu, S. Fan, Y. Sun, and E. Pickwell-Macpherson, “The potential of terahertz imaging for cancer diagnosis: A review of investigations to date,” Quant. Imaging Med. Surg. 2, 33–45 (2012).
[PubMed]

Reports Prog. Phys. (1)

W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Reports Prog. Phys. 70, 1325–1379 (2007).
[Crossref]

Sens. Rev. (1)

R. Bogue, “Terahertz imaging: a report on progress,” Sens. Rev. 29, 6–12 (2009).
[Crossref]

Other (1)

E. D. Palik, ed., Handbook of Optical Constants of Solids (Academic, 1985).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 The generation of coherent THz radiation by (a) a small-area optical pulse traveling through a bulk, THz-emitting material and (b) a large-area optical pulse impinging upon a thin, THz-emitting material (shown in gray). The gold ellipses are cross-sectional snapshots of the propagating optical pulse, and the dark red lines and arrows define the THz wavefronts and directions of propagation, respectively. The Huygens’ spheres are removed from (b) to avoid clutter.
Fig. 2
Fig. 2 Simplified schematic diagram of the experimental design used to measure the time-domain THz waveforms for a variety of incidence, emission, and pulse-front tilt angles. BS = beam splitter, FC = fiber coupler, SMF = single-mode fiber, GL = GRIN lens, R = PC-receiver, C = chopper, DL = delay line, DG = diffraction grating, L1 = 10 cm cylindrical lens, L2 = 15 cm cylindrical lens, and S = sample (GaAs wafer).
Fig. 3
Fig. 3 Distribution of THz pulse energy versus angle of emission, (a) in the forward direction with γ = 50° and (c) in the backward direction with γ = 18°, for different optical-pulse incidence angles. The circles are calculated THz-pulse energies from measured time-domain waveforms and the lines are Gaussian fits. The peak emission angles obtained from the Gaussian fits are plotted versus optical-pulse incidence angle in (b) and (d). The lines are from the theoretical expression in Eq. (4) evaluated at the corresponding value of γ.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

cos θ c = v p v s ,
t λ thz 1 ( c n v g ) 2 ,
v s = v g cos γ sin ( θ i γ ) .
sin θ f , b = v p sin ( θ i γ ) v g cos γ ,

Metrics