Abstract

We report on the first experimental demonstration of the suppression of spontaneous Raman scattering via ground state depletion. The concept of Raman suppression can be used to achieve sub-diffraction-limited resolution in label-free microscopy by exploiting spatially selective signal suppression when imaging a sample with a combination of Gaussian- and donut-shaped beams and reconstructing a resolution-enhanced image from this data. Using a nanosecond pulsed laser source with an emission wavelength of 355 nm, the ground state of tris(bipyridine)ruthenium(II) molecules solved in acetonitrile was depleted and the spontaneous Raman scattering at 355 nm suppressed by nearly 50 %. Based on spectroscopic data retrieved from our experiment, we modeled the Raman image of a scattering center in order to demonstrate the applicability of this effect for superresolution Raman microscopy.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
A route to sub-diffraction-limited CARS Microscopy

Willem P. Beeker, Petra Groß, Chris J. Lee, Carsten Cleff, Herman L. Offerhaus, Carsten Fallnich, Jennifer L. Herek, and Klaus-Jochen Boller
Opt. Express 17(25) 22632-22638 (2009)

Super resolution methodology based on temperature dependent Raman scattering

Omer Tzang, Doron Azoury, and Ori Cheshnovsky
Opt. Express 23(14) 17929-17940 (2015)

Broadband Fourier-transform coherent Raman spectroscopy with an ytterbium fiber laser

Nicola Coluccelli, Edoardo Vicentini, Alessio Gambetta, Christopher R Howle, Kenneth Mcewan, Paolo Laporta, and Gianluca Galzerano
Opt. Express 26(15) 18855-18862 (2018)

References

  • View by:
  • |
  • |
  • |

  1. S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence Microscopy,” Opt. Lett. 19, 780–782 (1994).
    [Crossref] [PubMed]
  2. M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Meth. 3, 793–796 (2006).
    [Crossref]
  3. E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
    [Crossref] [PubMed]
  4. D. Wildanger, B. R. Patton, H. Schill, L. Marseglia, J. P. Hadden, S. Knauer, A. Schönle, J. G. Rarity, J. L. O’Brien, S. W. Hell, and J. M. Smith, “Solid immersion facilitates fluorescence microscopy with nanometer resolution and sub-angström emitter localization,” Adv. Mat. 24, 309–313 (2012).
    [Crossref]
  5. E. V. Efremov, F. Ariese, and C. Gooijer, “Achievements in resonance Raman spectroscopy review of a technique with a distinct analytical chemistry potential,” Anal. Chim. Acta 606, 119–134 (2008).
    [Crossref]
  6. C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322, 1857–1861 (2008).
    [Crossref] [PubMed]
  7. A. Zumbusch, G. Holtom, and X. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82, 4142–4145 (1999).
    [Crossref]
  8. K.-J. Boller, W. Beeker, C. Cleff, K. Kruse, C. Lee, P. Groß, H. Offerhaus, C. Fallnich, and J. Herek, “Nonlinear optics approaches towards subdiffraction resolution in CARS imaging,” in “Super-resolution microscopy techniques in the neurosciences,” Vol. 86 of Neuromethods, E. F. Fornasiero and S. O. Rizzoli, eds. (Humana Press, 2014), pp. 291–324.
    [Crossref]
  9. W. P. Beeker, C. J. Lee, K.-J. Boller, P. Groß, C. Cleff, C. Fallnich, H. Offerhaus, and J. Herek, “Spatially dependent Rabi sscillations: an approach to sub-diffraction-limited coherent anti-Stokes Raman-scattering microscopy,” Phys. Rev. A 81, 012507 (2010).
    [Crossref]
  10. W. P. Beeker, P. Groß, C. J. Lee, C. Cleff, H. Offerhaus, C. Fallnich, J. Herek, and K.-J. Boller, “A route to sub-diffraction-limited CARS microscopy,” Opt. Express 17, 22632–22638 (2009).
    [Crossref]
  11. C. Cleff, P. Groß, C. Fallnich, H. L. Offerhaus, J. Herek, K. Kruse, W. P. Beeker, C. J. Lee, and K.-J. Boller, “Stimulated-emission pumping enabling sub-diffraction-limited spatial resolution in coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. A 87, 033830 (2013).
    [Crossref]
  12. C. Cleff, P. Groß, C. Fallnich, H. L. Offerhaus, J. Herek, K. Kruse, W. P. Beeker, C. J. Lee, and K.-J. Boller, “Ground-state depletion for subdiffraction-limited spatial resolution in coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. A 86, 023825 (2012).
    [Crossref]
  13. A. Gasecka, A. Daradich, H. Dehez, M. Piché, and D. Côté, “Resolution and contrast enhancement in coherent anti-Stokes Raman-scattering microscopy,” Opt. Lett. 38, 4510–4513 (2013).
    [Crossref] [PubMed]
  14. H. Kim, G. W. Bryant, and S. J. Stranick, “Superresolution four-wave mixing microscopy,” Opt. Express 20, 6042–6051 (2012).
    [Crossref] [PubMed]
  15. W. R. Silva, C. T. Graefe, and R. R. Frontiera, “Toward label-free super-resolution microscopy,” ACS Photonics 3, 79–86 (2016).
    [Crossref]
  16. K. Y. Han, S. K. Kim, C. Eggeling, and S. W. Hell, “Metastable dark states enable ground state depletion microscopy of nitrogen vacancy centers in diamond with diffraction-unlimited resolution,” Nano Lett. 10, 3199–3203 (2010).
    [Crossref] [PubMed]
  17. P. Wang, M. N. Slipchenko, J. Mitchell, C. Yang, E. O. Potma, X. Xu, and J.-X. Cheng, “Far-field imaging of non-fluorescent species with subdiffraction resolution,” Nat. Photonics 7, 449–453 (2013).
    [Crossref]
  18. U. Lachisch, P. P. Infelta, and M. Grätzel, “Optical absorption specrum of excited ruthenium tris-bipyridyl (Ru(bpy)32+),” Chem. Phys. Lett. 62, 317–319 (1979).
    [Crossref]
  19. R. F. Dallinger and W. H. Woodruff, “Time-resolved resonance Raman study of the lowest (dπ*, 3ct) excited state of tris(2,2′-bipyridine)ruthenium(II),” J. Am. Chem. Soc. 101, 4391–4393 (1979).
    [Crossref]
  20. K. Nakamaru, “Solvent effect on the nonradiative deactivation of the excited state of tris(2,2′-bipyridyl)ruthenium(II) ion,” B. Chem. Soc. Jpn. 55, 1639–1640 (1982).
    [Crossref]
  21. K. Kalyanasundaram, “Photophysics, photochemistry and solar energy conversion with tris(bipyridyl)ruthenium(II) and its analogues,” Coord. Chem. Rev. 46, 159–244 (1982).
    [Crossref]
  22. T. J. Meyer, “Chemical approaches to artificial photosynthesis,” Acc. Chem. Res. 22, 163–170 (1989).
    [Crossref]
  23. P. A. Mabrouk and M. S. Wrighton, “Resonance Raman spectroscopy of the lowest excited state of derivatives of tris(2,2′-bipyridine)ruthenium(II): substituent effects on electron localization in mixed-ligand complexes,” Inorg. Chem. 25, 526–531 (1986).
    [Crossref]
  24. O. Quinet, B. Champagne, and V. Rodriguez, “Experimental and theoretical investigation of the Raman and hyper-Raman spectra of acetonitrile and its derivatives,” Chem. Phys. Lett. 124, 244312 (2006).

2016 (1)

W. R. Silva, C. T. Graefe, and R. R. Frontiera, “Toward label-free super-resolution microscopy,” ACS Photonics 3, 79–86 (2016).
[Crossref]

2013 (3)

P. Wang, M. N. Slipchenko, J. Mitchell, C. Yang, E. O. Potma, X. Xu, and J.-X. Cheng, “Far-field imaging of non-fluorescent species with subdiffraction resolution,” Nat. Photonics 7, 449–453 (2013).
[Crossref]

C. Cleff, P. Groß, C. Fallnich, H. L. Offerhaus, J. Herek, K. Kruse, W. P. Beeker, C. J. Lee, and K.-J. Boller, “Stimulated-emission pumping enabling sub-diffraction-limited spatial resolution in coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. A 87, 033830 (2013).
[Crossref]

A. Gasecka, A. Daradich, H. Dehez, M. Piché, and D. Côté, “Resolution and contrast enhancement in coherent anti-Stokes Raman-scattering microscopy,” Opt. Lett. 38, 4510–4513 (2013).
[Crossref] [PubMed]

2012 (3)

H. Kim, G. W. Bryant, and S. J. Stranick, “Superresolution four-wave mixing microscopy,” Opt. Express 20, 6042–6051 (2012).
[Crossref] [PubMed]

C. Cleff, P. Groß, C. Fallnich, H. L. Offerhaus, J. Herek, K. Kruse, W. P. Beeker, C. J. Lee, and K.-J. Boller, “Ground-state depletion for subdiffraction-limited spatial resolution in coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. A 86, 023825 (2012).
[Crossref]

D. Wildanger, B. R. Patton, H. Schill, L. Marseglia, J. P. Hadden, S. Knauer, A. Schönle, J. G. Rarity, J. L. O’Brien, S. W. Hell, and J. M. Smith, “Solid immersion facilitates fluorescence microscopy with nanometer resolution and sub-angström emitter localization,” Adv. Mat. 24, 309–313 (2012).
[Crossref]

2010 (2)

W. P. Beeker, C. J. Lee, K.-J. Boller, P. Groß, C. Cleff, C. Fallnich, H. Offerhaus, and J. Herek, “Spatially dependent Rabi sscillations: an approach to sub-diffraction-limited coherent anti-Stokes Raman-scattering microscopy,” Phys. Rev. A 81, 012507 (2010).
[Crossref]

K. Y. Han, S. K. Kim, C. Eggeling, and S. W. Hell, “Metastable dark states enable ground state depletion microscopy of nitrogen vacancy centers in diamond with diffraction-unlimited resolution,” Nano Lett. 10, 3199–3203 (2010).
[Crossref] [PubMed]

2009 (1)

2008 (2)

E. V. Efremov, F. Ariese, and C. Gooijer, “Achievements in resonance Raman spectroscopy review of a technique with a distinct analytical chemistry potential,” Anal. Chim. Acta 606, 119–134 (2008).
[Crossref]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322, 1857–1861 (2008).
[Crossref] [PubMed]

2006 (3)

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Meth. 3, 793–796 (2006).
[Crossref]

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref] [PubMed]

O. Quinet, B. Champagne, and V. Rodriguez, “Experimental and theoretical investigation of the Raman and hyper-Raman spectra of acetonitrile and its derivatives,” Chem. Phys. Lett. 124, 244312 (2006).

1999 (1)

A. Zumbusch, G. Holtom, and X. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82, 4142–4145 (1999).
[Crossref]

1994 (1)

1989 (1)

T. J. Meyer, “Chemical approaches to artificial photosynthesis,” Acc. Chem. Res. 22, 163–170 (1989).
[Crossref]

1986 (1)

P. A. Mabrouk and M. S. Wrighton, “Resonance Raman spectroscopy of the lowest excited state of derivatives of tris(2,2′-bipyridine)ruthenium(II): substituent effects on electron localization in mixed-ligand complexes,” Inorg. Chem. 25, 526–531 (1986).
[Crossref]

1982 (2)

K. Nakamaru, “Solvent effect on the nonradiative deactivation of the excited state of tris(2,2′-bipyridyl)ruthenium(II) ion,” B. Chem. Soc. Jpn. 55, 1639–1640 (1982).
[Crossref]

K. Kalyanasundaram, “Photophysics, photochemistry and solar energy conversion with tris(bipyridyl)ruthenium(II) and its analogues,” Coord. Chem. Rev. 46, 159–244 (1982).
[Crossref]

1979 (2)

U. Lachisch, P. P. Infelta, and M. Grätzel, “Optical absorption specrum of excited ruthenium tris-bipyridyl (Ru(bpy)32+),” Chem. Phys. Lett. 62, 317–319 (1979).
[Crossref]

R. F. Dallinger and W. H. Woodruff, “Time-resolved resonance Raman study of the lowest (dπ*, 3ct) excited state of tris(2,2′-bipyridine)ruthenium(II),” J. Am. Chem. Soc. 101, 4391–4393 (1979).
[Crossref]

Ariese, F.

E. V. Efremov, F. Ariese, and C. Gooijer, “Achievements in resonance Raman spectroscopy review of a technique with a distinct analytical chemistry potential,” Anal. Chim. Acta 606, 119–134 (2008).
[Crossref]

Bates, M.

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Meth. 3, 793–796 (2006).
[Crossref]

Beeker, W.

K.-J. Boller, W. Beeker, C. Cleff, K. Kruse, C. Lee, P. Groß, H. Offerhaus, C. Fallnich, and J. Herek, “Nonlinear optics approaches towards subdiffraction resolution in CARS imaging,” in “Super-resolution microscopy techniques in the neurosciences,” Vol. 86 of Neuromethods, E. F. Fornasiero and S. O. Rizzoli, eds. (Humana Press, 2014), pp. 291–324.
[Crossref]

Beeker, W. P.

C. Cleff, P. Groß, C. Fallnich, H. L. Offerhaus, J. Herek, K. Kruse, W. P. Beeker, C. J. Lee, and K.-J. Boller, “Stimulated-emission pumping enabling sub-diffraction-limited spatial resolution in coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. A 87, 033830 (2013).
[Crossref]

C. Cleff, P. Groß, C. Fallnich, H. L. Offerhaus, J. Herek, K. Kruse, W. P. Beeker, C. J. Lee, and K.-J. Boller, “Ground-state depletion for subdiffraction-limited spatial resolution in coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. A 86, 023825 (2012).
[Crossref]

W. P. Beeker, C. J. Lee, K.-J. Boller, P. Groß, C. Cleff, C. Fallnich, H. Offerhaus, and J. Herek, “Spatially dependent Rabi sscillations: an approach to sub-diffraction-limited coherent anti-Stokes Raman-scattering microscopy,” Phys. Rev. A 81, 012507 (2010).
[Crossref]

W. P. Beeker, P. Groß, C. J. Lee, C. Cleff, H. Offerhaus, C. Fallnich, J. Herek, and K.-J. Boller, “A route to sub-diffraction-limited CARS microscopy,” Opt. Express 17, 22632–22638 (2009).
[Crossref]

Betzig, E.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref] [PubMed]

Boller, K.-J.

C. Cleff, P. Groß, C. Fallnich, H. L. Offerhaus, J. Herek, K. Kruse, W. P. Beeker, C. J. Lee, and K.-J. Boller, “Stimulated-emission pumping enabling sub-diffraction-limited spatial resolution in coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. A 87, 033830 (2013).
[Crossref]

C. Cleff, P. Groß, C. Fallnich, H. L. Offerhaus, J. Herek, K. Kruse, W. P. Beeker, C. J. Lee, and K.-J. Boller, “Ground-state depletion for subdiffraction-limited spatial resolution in coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. A 86, 023825 (2012).
[Crossref]

W. P. Beeker, C. J. Lee, K.-J. Boller, P. Groß, C. Cleff, C. Fallnich, H. Offerhaus, and J. Herek, “Spatially dependent Rabi sscillations: an approach to sub-diffraction-limited coherent anti-Stokes Raman-scattering microscopy,” Phys. Rev. A 81, 012507 (2010).
[Crossref]

W. P. Beeker, P. Groß, C. J. Lee, C. Cleff, H. Offerhaus, C. Fallnich, J. Herek, and K.-J. Boller, “A route to sub-diffraction-limited CARS microscopy,” Opt. Express 17, 22632–22638 (2009).
[Crossref]

K.-J. Boller, W. Beeker, C. Cleff, K. Kruse, C. Lee, P. Groß, H. Offerhaus, C. Fallnich, and J. Herek, “Nonlinear optics approaches towards subdiffraction resolution in CARS imaging,” in “Super-resolution microscopy techniques in the neurosciences,” Vol. 86 of Neuromethods, E. F. Fornasiero and S. O. Rizzoli, eds. (Humana Press, 2014), pp. 291–324.
[Crossref]

Bonifacino, J. S.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref] [PubMed]

Bryant, G. W.

Champagne, B.

O. Quinet, B. Champagne, and V. Rodriguez, “Experimental and theoretical investigation of the Raman and hyper-Raman spectra of acetonitrile and its derivatives,” Chem. Phys. Lett. 124, 244312 (2006).

Cheng, J.-X.

P. Wang, M. N. Slipchenko, J. Mitchell, C. Yang, E. O. Potma, X. Xu, and J.-X. Cheng, “Far-field imaging of non-fluorescent species with subdiffraction resolution,” Nat. Photonics 7, 449–453 (2013).
[Crossref]

Cleff, C.

C. Cleff, P. Groß, C. Fallnich, H. L. Offerhaus, J. Herek, K. Kruse, W. P. Beeker, C. J. Lee, and K.-J. Boller, “Stimulated-emission pumping enabling sub-diffraction-limited spatial resolution in coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. A 87, 033830 (2013).
[Crossref]

C. Cleff, P. Groß, C. Fallnich, H. L. Offerhaus, J. Herek, K. Kruse, W. P. Beeker, C. J. Lee, and K.-J. Boller, “Ground-state depletion for subdiffraction-limited spatial resolution in coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. A 86, 023825 (2012).
[Crossref]

W. P. Beeker, C. J. Lee, K.-J. Boller, P. Groß, C. Cleff, C. Fallnich, H. Offerhaus, and J. Herek, “Spatially dependent Rabi sscillations: an approach to sub-diffraction-limited coherent anti-Stokes Raman-scattering microscopy,” Phys. Rev. A 81, 012507 (2010).
[Crossref]

W. P. Beeker, P. Groß, C. J. Lee, C. Cleff, H. Offerhaus, C. Fallnich, J. Herek, and K.-J. Boller, “A route to sub-diffraction-limited CARS microscopy,” Opt. Express 17, 22632–22638 (2009).
[Crossref]

K.-J. Boller, W. Beeker, C. Cleff, K. Kruse, C. Lee, P. Groß, H. Offerhaus, C. Fallnich, and J. Herek, “Nonlinear optics approaches towards subdiffraction resolution in CARS imaging,” in “Super-resolution microscopy techniques in the neurosciences,” Vol. 86 of Neuromethods, E. F. Fornasiero and S. O. Rizzoli, eds. (Humana Press, 2014), pp. 291–324.
[Crossref]

Côté, D.

Dallinger, R. F.

R. F. Dallinger and W. H. Woodruff, “Time-resolved resonance Raman study of the lowest (dπ*, 3ct) excited state of tris(2,2′-bipyridine)ruthenium(II),” J. Am. Chem. Soc. 101, 4391–4393 (1979).
[Crossref]

Daradich, A.

Davidson, M. W.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref] [PubMed]

Dehez, H.

Efremov, E. V.

E. V. Efremov, F. Ariese, and C. Gooijer, “Achievements in resonance Raman spectroscopy review of a technique with a distinct analytical chemistry potential,” Anal. Chim. Acta 606, 119–134 (2008).
[Crossref]

Eggeling, C.

K. Y. Han, S. K. Kim, C. Eggeling, and S. W. Hell, “Metastable dark states enable ground state depletion microscopy of nitrogen vacancy centers in diamond with diffraction-unlimited resolution,” Nano Lett. 10, 3199–3203 (2010).
[Crossref] [PubMed]

Fallnich, C.

C. Cleff, P. Groß, C. Fallnich, H. L. Offerhaus, J. Herek, K. Kruse, W. P. Beeker, C. J. Lee, and K.-J. Boller, “Stimulated-emission pumping enabling sub-diffraction-limited spatial resolution in coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. A 87, 033830 (2013).
[Crossref]

C. Cleff, P. Groß, C. Fallnich, H. L. Offerhaus, J. Herek, K. Kruse, W. P. Beeker, C. J. Lee, and K.-J. Boller, “Ground-state depletion for subdiffraction-limited spatial resolution in coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. A 86, 023825 (2012).
[Crossref]

W. P. Beeker, C. J. Lee, K.-J. Boller, P. Groß, C. Cleff, C. Fallnich, H. Offerhaus, and J. Herek, “Spatially dependent Rabi sscillations: an approach to sub-diffraction-limited coherent anti-Stokes Raman-scattering microscopy,” Phys. Rev. A 81, 012507 (2010).
[Crossref]

W. P. Beeker, P. Groß, C. J. Lee, C. Cleff, H. Offerhaus, C. Fallnich, J. Herek, and K.-J. Boller, “A route to sub-diffraction-limited CARS microscopy,” Opt. Express 17, 22632–22638 (2009).
[Crossref]

K.-J. Boller, W. Beeker, C. Cleff, K. Kruse, C. Lee, P. Groß, H. Offerhaus, C. Fallnich, and J. Herek, “Nonlinear optics approaches towards subdiffraction resolution in CARS imaging,” in “Super-resolution microscopy techniques in the neurosciences,” Vol. 86 of Neuromethods, E. F. Fornasiero and S. O. Rizzoli, eds. (Humana Press, 2014), pp. 291–324.
[Crossref]

Freudiger, C. W.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322, 1857–1861 (2008).
[Crossref] [PubMed]

Frontiera, R. R.

W. R. Silva, C. T. Graefe, and R. R. Frontiera, “Toward label-free super-resolution microscopy,” ACS Photonics 3, 79–86 (2016).
[Crossref]

Gasecka, A.

Gooijer, C.

E. V. Efremov, F. Ariese, and C. Gooijer, “Achievements in resonance Raman spectroscopy review of a technique with a distinct analytical chemistry potential,” Anal. Chim. Acta 606, 119–134 (2008).
[Crossref]

Graefe, C. T.

W. R. Silva, C. T. Graefe, and R. R. Frontiera, “Toward label-free super-resolution microscopy,” ACS Photonics 3, 79–86 (2016).
[Crossref]

Grätzel, M.

U. Lachisch, P. P. Infelta, and M. Grätzel, “Optical absorption specrum of excited ruthenium tris-bipyridyl (Ru(bpy)32+),” Chem. Phys. Lett. 62, 317–319 (1979).
[Crossref]

Groß, P.

C. Cleff, P. Groß, C. Fallnich, H. L. Offerhaus, J. Herek, K. Kruse, W. P. Beeker, C. J. Lee, and K.-J. Boller, “Stimulated-emission pumping enabling sub-diffraction-limited spatial resolution in coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. A 87, 033830 (2013).
[Crossref]

C. Cleff, P. Groß, C. Fallnich, H. L. Offerhaus, J. Herek, K. Kruse, W. P. Beeker, C. J. Lee, and K.-J. Boller, “Ground-state depletion for subdiffraction-limited spatial resolution in coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. A 86, 023825 (2012).
[Crossref]

W. P. Beeker, C. J. Lee, K.-J. Boller, P. Groß, C. Cleff, C. Fallnich, H. Offerhaus, and J. Herek, “Spatially dependent Rabi sscillations: an approach to sub-diffraction-limited coherent anti-Stokes Raman-scattering microscopy,” Phys. Rev. A 81, 012507 (2010).
[Crossref]

W. P. Beeker, P. Groß, C. J. Lee, C. Cleff, H. Offerhaus, C. Fallnich, J. Herek, and K.-J. Boller, “A route to sub-diffraction-limited CARS microscopy,” Opt. Express 17, 22632–22638 (2009).
[Crossref]

K.-J. Boller, W. Beeker, C. Cleff, K. Kruse, C. Lee, P. Groß, H. Offerhaus, C. Fallnich, and J. Herek, “Nonlinear optics approaches towards subdiffraction resolution in CARS imaging,” in “Super-resolution microscopy techniques in the neurosciences,” Vol. 86 of Neuromethods, E. F. Fornasiero and S. O. Rizzoli, eds. (Humana Press, 2014), pp. 291–324.
[Crossref]

Hadden, J. P.

D. Wildanger, B. R. Patton, H. Schill, L. Marseglia, J. P. Hadden, S. Knauer, A. Schönle, J. G. Rarity, J. L. O’Brien, S. W. Hell, and J. M. Smith, “Solid immersion facilitates fluorescence microscopy with nanometer resolution and sub-angström emitter localization,” Adv. Mat. 24, 309–313 (2012).
[Crossref]

Han, K. Y.

K. Y. Han, S. K. Kim, C. Eggeling, and S. W. Hell, “Metastable dark states enable ground state depletion microscopy of nitrogen vacancy centers in diamond with diffraction-unlimited resolution,” Nano Lett. 10, 3199–3203 (2010).
[Crossref] [PubMed]

He, C.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322, 1857–1861 (2008).
[Crossref] [PubMed]

Hell, S. W.

D. Wildanger, B. R. Patton, H. Schill, L. Marseglia, J. P. Hadden, S. Knauer, A. Schönle, J. G. Rarity, J. L. O’Brien, S. W. Hell, and J. M. Smith, “Solid immersion facilitates fluorescence microscopy with nanometer resolution and sub-angström emitter localization,” Adv. Mat. 24, 309–313 (2012).
[Crossref]

K. Y. Han, S. K. Kim, C. Eggeling, and S. W. Hell, “Metastable dark states enable ground state depletion microscopy of nitrogen vacancy centers in diamond with diffraction-unlimited resolution,” Nano Lett. 10, 3199–3203 (2010).
[Crossref] [PubMed]

S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence Microscopy,” Opt. Lett. 19, 780–782 (1994).
[Crossref] [PubMed]

Herek, J.

C. Cleff, P. Groß, C. Fallnich, H. L. Offerhaus, J. Herek, K. Kruse, W. P. Beeker, C. J. Lee, and K.-J. Boller, “Stimulated-emission pumping enabling sub-diffraction-limited spatial resolution in coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. A 87, 033830 (2013).
[Crossref]

C. Cleff, P. Groß, C. Fallnich, H. L. Offerhaus, J. Herek, K. Kruse, W. P. Beeker, C. J. Lee, and K.-J. Boller, “Ground-state depletion for subdiffraction-limited spatial resolution in coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. A 86, 023825 (2012).
[Crossref]

W. P. Beeker, C. J. Lee, K.-J. Boller, P. Groß, C. Cleff, C. Fallnich, H. Offerhaus, and J. Herek, “Spatially dependent Rabi sscillations: an approach to sub-diffraction-limited coherent anti-Stokes Raman-scattering microscopy,” Phys. Rev. A 81, 012507 (2010).
[Crossref]

W. P. Beeker, P. Groß, C. J. Lee, C. Cleff, H. Offerhaus, C. Fallnich, J. Herek, and K.-J. Boller, “A route to sub-diffraction-limited CARS microscopy,” Opt. Express 17, 22632–22638 (2009).
[Crossref]

K.-J. Boller, W. Beeker, C. Cleff, K. Kruse, C. Lee, P. Groß, H. Offerhaus, C. Fallnich, and J. Herek, “Nonlinear optics approaches towards subdiffraction resolution in CARS imaging,” in “Super-resolution microscopy techniques in the neurosciences,” Vol. 86 of Neuromethods, E. F. Fornasiero and S. O. Rizzoli, eds. (Humana Press, 2014), pp. 291–324.
[Crossref]

Hess, H. F.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref] [PubMed]

Holtom, G.

A. Zumbusch, G. Holtom, and X. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82, 4142–4145 (1999).
[Crossref]

Holtom, G. R.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322, 1857–1861 (2008).
[Crossref] [PubMed]

Infelta, P. P.

U. Lachisch, P. P. Infelta, and M. Grätzel, “Optical absorption specrum of excited ruthenium tris-bipyridyl (Ru(bpy)32+),” Chem. Phys. Lett. 62, 317–319 (1979).
[Crossref]

Kalyanasundaram, K.

K. Kalyanasundaram, “Photophysics, photochemistry and solar energy conversion with tris(bipyridyl)ruthenium(II) and its analogues,” Coord. Chem. Rev. 46, 159–244 (1982).
[Crossref]

Kang, J. X.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322, 1857–1861 (2008).
[Crossref] [PubMed]

Kim, H.

Kim, S. K.

K. Y. Han, S. K. Kim, C. Eggeling, and S. W. Hell, “Metastable dark states enable ground state depletion microscopy of nitrogen vacancy centers in diamond with diffraction-unlimited resolution,” Nano Lett. 10, 3199–3203 (2010).
[Crossref] [PubMed]

Knauer, S.

D. Wildanger, B. R. Patton, H. Schill, L. Marseglia, J. P. Hadden, S. Knauer, A. Schönle, J. G. Rarity, J. L. O’Brien, S. W. Hell, and J. M. Smith, “Solid immersion facilitates fluorescence microscopy with nanometer resolution and sub-angström emitter localization,” Adv. Mat. 24, 309–313 (2012).
[Crossref]

Kruse, K.

C. Cleff, P. Groß, C. Fallnich, H. L. Offerhaus, J. Herek, K. Kruse, W. P. Beeker, C. J. Lee, and K.-J. Boller, “Stimulated-emission pumping enabling sub-diffraction-limited spatial resolution in coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. A 87, 033830 (2013).
[Crossref]

C. Cleff, P. Groß, C. Fallnich, H. L. Offerhaus, J. Herek, K. Kruse, W. P. Beeker, C. J. Lee, and K.-J. Boller, “Ground-state depletion for subdiffraction-limited spatial resolution in coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. A 86, 023825 (2012).
[Crossref]

K.-J. Boller, W. Beeker, C. Cleff, K. Kruse, C. Lee, P. Groß, H. Offerhaus, C. Fallnich, and J. Herek, “Nonlinear optics approaches towards subdiffraction resolution in CARS imaging,” in “Super-resolution microscopy techniques in the neurosciences,” Vol. 86 of Neuromethods, E. F. Fornasiero and S. O. Rizzoli, eds. (Humana Press, 2014), pp. 291–324.
[Crossref]

Lachisch, U.

U. Lachisch, P. P. Infelta, and M. Grätzel, “Optical absorption specrum of excited ruthenium tris-bipyridyl (Ru(bpy)32+),” Chem. Phys. Lett. 62, 317–319 (1979).
[Crossref]

Lee, C.

K.-J. Boller, W. Beeker, C. Cleff, K. Kruse, C. Lee, P. Groß, H. Offerhaus, C. Fallnich, and J. Herek, “Nonlinear optics approaches towards subdiffraction resolution in CARS imaging,” in “Super-resolution microscopy techniques in the neurosciences,” Vol. 86 of Neuromethods, E. F. Fornasiero and S. O. Rizzoli, eds. (Humana Press, 2014), pp. 291–324.
[Crossref]

Lee, C. J.

C. Cleff, P. Groß, C. Fallnich, H. L. Offerhaus, J. Herek, K. Kruse, W. P. Beeker, C. J. Lee, and K.-J. Boller, “Stimulated-emission pumping enabling sub-diffraction-limited spatial resolution in coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. A 87, 033830 (2013).
[Crossref]

C. Cleff, P. Groß, C. Fallnich, H. L. Offerhaus, J. Herek, K. Kruse, W. P. Beeker, C. J. Lee, and K.-J. Boller, “Ground-state depletion for subdiffraction-limited spatial resolution in coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. A 86, 023825 (2012).
[Crossref]

W. P. Beeker, C. J. Lee, K.-J. Boller, P. Groß, C. Cleff, C. Fallnich, H. Offerhaus, and J. Herek, “Spatially dependent Rabi sscillations: an approach to sub-diffraction-limited coherent anti-Stokes Raman-scattering microscopy,” Phys. Rev. A 81, 012507 (2010).
[Crossref]

W. P. Beeker, P. Groß, C. J. Lee, C. Cleff, H. Offerhaus, C. Fallnich, J. Herek, and K.-J. Boller, “A route to sub-diffraction-limited CARS microscopy,” Opt. Express 17, 22632–22638 (2009).
[Crossref]

Lindwasser, O. W.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref] [PubMed]

Lippincott-Schwartz, J.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref] [PubMed]

Lu, S.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322, 1857–1861 (2008).
[Crossref] [PubMed]

Mabrouk, P. A.

P. A. Mabrouk and M. S. Wrighton, “Resonance Raman spectroscopy of the lowest excited state of derivatives of tris(2,2′-bipyridine)ruthenium(II): substituent effects on electron localization in mixed-ligand complexes,” Inorg. Chem. 25, 526–531 (1986).
[Crossref]

Marseglia, L.

D. Wildanger, B. R. Patton, H. Schill, L. Marseglia, J. P. Hadden, S. Knauer, A. Schönle, J. G. Rarity, J. L. O’Brien, S. W. Hell, and J. M. Smith, “Solid immersion facilitates fluorescence microscopy with nanometer resolution and sub-angström emitter localization,” Adv. Mat. 24, 309–313 (2012).
[Crossref]

Meyer, T. J.

T. J. Meyer, “Chemical approaches to artificial photosynthesis,” Acc. Chem. Res. 22, 163–170 (1989).
[Crossref]

Min, W.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322, 1857–1861 (2008).
[Crossref] [PubMed]

Mitchell, J.

P. Wang, M. N. Slipchenko, J. Mitchell, C. Yang, E. O. Potma, X. Xu, and J.-X. Cheng, “Far-field imaging of non-fluorescent species with subdiffraction resolution,” Nat. Photonics 7, 449–453 (2013).
[Crossref]

Nakamaru, K.

K. Nakamaru, “Solvent effect on the nonradiative deactivation of the excited state of tris(2,2′-bipyridyl)ruthenium(II) ion,” B. Chem. Soc. Jpn. 55, 1639–1640 (1982).
[Crossref]

O’Brien, J. L.

D. Wildanger, B. R. Patton, H. Schill, L. Marseglia, J. P. Hadden, S. Knauer, A. Schönle, J. G. Rarity, J. L. O’Brien, S. W. Hell, and J. M. Smith, “Solid immersion facilitates fluorescence microscopy with nanometer resolution and sub-angström emitter localization,” Adv. Mat. 24, 309–313 (2012).
[Crossref]

Offerhaus, H.

W. P. Beeker, C. J. Lee, K.-J. Boller, P. Groß, C. Cleff, C. Fallnich, H. Offerhaus, and J. Herek, “Spatially dependent Rabi sscillations: an approach to sub-diffraction-limited coherent anti-Stokes Raman-scattering microscopy,” Phys. Rev. A 81, 012507 (2010).
[Crossref]

W. P. Beeker, P. Groß, C. J. Lee, C. Cleff, H. Offerhaus, C. Fallnich, J. Herek, and K.-J. Boller, “A route to sub-diffraction-limited CARS microscopy,” Opt. Express 17, 22632–22638 (2009).
[Crossref]

K.-J. Boller, W. Beeker, C. Cleff, K. Kruse, C. Lee, P. Groß, H. Offerhaus, C. Fallnich, and J. Herek, “Nonlinear optics approaches towards subdiffraction resolution in CARS imaging,” in “Super-resolution microscopy techniques in the neurosciences,” Vol. 86 of Neuromethods, E. F. Fornasiero and S. O. Rizzoli, eds. (Humana Press, 2014), pp. 291–324.
[Crossref]

Offerhaus, H. L.

C. Cleff, P. Groß, C. Fallnich, H. L. Offerhaus, J. Herek, K. Kruse, W. P. Beeker, C. J. Lee, and K.-J. Boller, “Stimulated-emission pumping enabling sub-diffraction-limited spatial resolution in coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. A 87, 033830 (2013).
[Crossref]

C. Cleff, P. Groß, C. Fallnich, H. L. Offerhaus, J. Herek, K. Kruse, W. P. Beeker, C. J. Lee, and K.-J. Boller, “Ground-state depletion for subdiffraction-limited spatial resolution in coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. A 86, 023825 (2012).
[Crossref]

Olenych, S.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref] [PubMed]

Patterson, G. H.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref] [PubMed]

Patton, B. R.

D. Wildanger, B. R. Patton, H. Schill, L. Marseglia, J. P. Hadden, S. Knauer, A. Schönle, J. G. Rarity, J. L. O’Brien, S. W. Hell, and J. M. Smith, “Solid immersion facilitates fluorescence microscopy with nanometer resolution and sub-angström emitter localization,” Adv. Mat. 24, 309–313 (2012).
[Crossref]

Piché, M.

Potma, E. O.

P. Wang, M. N. Slipchenko, J. Mitchell, C. Yang, E. O. Potma, X. Xu, and J.-X. Cheng, “Far-field imaging of non-fluorescent species with subdiffraction resolution,” Nat. Photonics 7, 449–453 (2013).
[Crossref]

Quinet, O.

O. Quinet, B. Champagne, and V. Rodriguez, “Experimental and theoretical investigation of the Raman and hyper-Raman spectra of acetonitrile and its derivatives,” Chem. Phys. Lett. 124, 244312 (2006).

Rarity, J. G.

D. Wildanger, B. R. Patton, H. Schill, L. Marseglia, J. P. Hadden, S. Knauer, A. Schönle, J. G. Rarity, J. L. O’Brien, S. W. Hell, and J. M. Smith, “Solid immersion facilitates fluorescence microscopy with nanometer resolution and sub-angström emitter localization,” Adv. Mat. 24, 309–313 (2012).
[Crossref]

Rodriguez, V.

O. Quinet, B. Champagne, and V. Rodriguez, “Experimental and theoretical investigation of the Raman and hyper-Raman spectra of acetonitrile and its derivatives,” Chem. Phys. Lett. 124, 244312 (2006).

Rust, M. J.

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Meth. 3, 793–796 (2006).
[Crossref]

Saar, B. G.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322, 1857–1861 (2008).
[Crossref] [PubMed]

Schill, H.

D. Wildanger, B. R. Patton, H. Schill, L. Marseglia, J. P. Hadden, S. Knauer, A. Schönle, J. G. Rarity, J. L. O’Brien, S. W. Hell, and J. M. Smith, “Solid immersion facilitates fluorescence microscopy with nanometer resolution and sub-angström emitter localization,” Adv. Mat. 24, 309–313 (2012).
[Crossref]

Schönle, A.

D. Wildanger, B. R. Patton, H. Schill, L. Marseglia, J. P. Hadden, S. Knauer, A. Schönle, J. G. Rarity, J. L. O’Brien, S. W. Hell, and J. M. Smith, “Solid immersion facilitates fluorescence microscopy with nanometer resolution and sub-angström emitter localization,” Adv. Mat. 24, 309–313 (2012).
[Crossref]

Silva, W. R.

W. R. Silva, C. T. Graefe, and R. R. Frontiera, “Toward label-free super-resolution microscopy,” ACS Photonics 3, 79–86 (2016).
[Crossref]

Slipchenko, M. N.

P. Wang, M. N. Slipchenko, J. Mitchell, C. Yang, E. O. Potma, X. Xu, and J.-X. Cheng, “Far-field imaging of non-fluorescent species with subdiffraction resolution,” Nat. Photonics 7, 449–453 (2013).
[Crossref]

Smith, J. M.

D. Wildanger, B. R. Patton, H. Schill, L. Marseglia, J. P. Hadden, S. Knauer, A. Schönle, J. G. Rarity, J. L. O’Brien, S. W. Hell, and J. M. Smith, “Solid immersion facilitates fluorescence microscopy with nanometer resolution and sub-angström emitter localization,” Adv. Mat. 24, 309–313 (2012).
[Crossref]

Sougrat, R.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref] [PubMed]

Stranick, S. J.

Tsai, J. C.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322, 1857–1861 (2008).
[Crossref] [PubMed]

Wang, P.

P. Wang, M. N. Slipchenko, J. Mitchell, C. Yang, E. O. Potma, X. Xu, and J.-X. Cheng, “Far-field imaging of non-fluorescent species with subdiffraction resolution,” Nat. Photonics 7, 449–453 (2013).
[Crossref]

Wichmann, J.

Wildanger, D.

D. Wildanger, B. R. Patton, H. Schill, L. Marseglia, J. P. Hadden, S. Knauer, A. Schönle, J. G. Rarity, J. L. O’Brien, S. W. Hell, and J. M. Smith, “Solid immersion facilitates fluorescence microscopy with nanometer resolution and sub-angström emitter localization,” Adv. Mat. 24, 309–313 (2012).
[Crossref]

Woodruff, W. H.

R. F. Dallinger and W. H. Woodruff, “Time-resolved resonance Raman study of the lowest (dπ*, 3ct) excited state of tris(2,2′-bipyridine)ruthenium(II),” J. Am. Chem. Soc. 101, 4391–4393 (1979).
[Crossref]

Wrighton, M. S.

P. A. Mabrouk and M. S. Wrighton, “Resonance Raman spectroscopy of the lowest excited state of derivatives of tris(2,2′-bipyridine)ruthenium(II): substituent effects on electron localization in mixed-ligand complexes,” Inorg. Chem. 25, 526–531 (1986).
[Crossref]

Xie, X.

A. Zumbusch, G. Holtom, and X. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82, 4142–4145 (1999).
[Crossref]

Xie, X. S.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322, 1857–1861 (2008).
[Crossref] [PubMed]

Xu, X.

P. Wang, M. N. Slipchenko, J. Mitchell, C. Yang, E. O. Potma, X. Xu, and J.-X. Cheng, “Far-field imaging of non-fluorescent species with subdiffraction resolution,” Nat. Photonics 7, 449–453 (2013).
[Crossref]

Yang, C.

P. Wang, M. N. Slipchenko, J. Mitchell, C. Yang, E. O. Potma, X. Xu, and J.-X. Cheng, “Far-field imaging of non-fluorescent species with subdiffraction resolution,” Nat. Photonics 7, 449–453 (2013).
[Crossref]

Zhuang, X.

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Meth. 3, 793–796 (2006).
[Crossref]

Zumbusch, A.

A. Zumbusch, G. Holtom, and X. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82, 4142–4145 (1999).
[Crossref]

Acc. Chem. Res. (1)

T. J. Meyer, “Chemical approaches to artificial photosynthesis,” Acc. Chem. Res. 22, 163–170 (1989).
[Crossref]

ACS Photonics (1)

W. R. Silva, C. T. Graefe, and R. R. Frontiera, “Toward label-free super-resolution microscopy,” ACS Photonics 3, 79–86 (2016).
[Crossref]

Adv. Mat. (1)

D. Wildanger, B. R. Patton, H. Schill, L. Marseglia, J. P. Hadden, S. Knauer, A. Schönle, J. G. Rarity, J. L. O’Brien, S. W. Hell, and J. M. Smith, “Solid immersion facilitates fluorescence microscopy with nanometer resolution and sub-angström emitter localization,” Adv. Mat. 24, 309–313 (2012).
[Crossref]

Anal. Chim. Acta (1)

E. V. Efremov, F. Ariese, and C. Gooijer, “Achievements in resonance Raman spectroscopy review of a technique with a distinct analytical chemistry potential,” Anal. Chim. Acta 606, 119–134 (2008).
[Crossref]

B. Chem. Soc. Jpn. (1)

K. Nakamaru, “Solvent effect on the nonradiative deactivation of the excited state of tris(2,2′-bipyridyl)ruthenium(II) ion,” B. Chem. Soc. Jpn. 55, 1639–1640 (1982).
[Crossref]

Chem. Phys. Lett. (2)

O. Quinet, B. Champagne, and V. Rodriguez, “Experimental and theoretical investigation of the Raman and hyper-Raman spectra of acetonitrile and its derivatives,” Chem. Phys. Lett. 124, 244312 (2006).

U. Lachisch, P. P. Infelta, and M. Grätzel, “Optical absorption specrum of excited ruthenium tris-bipyridyl (Ru(bpy)32+),” Chem. Phys. Lett. 62, 317–319 (1979).
[Crossref]

Coord. Chem. Rev. (1)

K. Kalyanasundaram, “Photophysics, photochemistry and solar energy conversion with tris(bipyridyl)ruthenium(II) and its analogues,” Coord. Chem. Rev. 46, 159–244 (1982).
[Crossref]

Inorg. Chem. (1)

P. A. Mabrouk and M. S. Wrighton, “Resonance Raman spectroscopy of the lowest excited state of derivatives of tris(2,2′-bipyridine)ruthenium(II): substituent effects on electron localization in mixed-ligand complexes,” Inorg. Chem. 25, 526–531 (1986).
[Crossref]

J. Am. Chem. Soc. (1)

R. F. Dallinger and W. H. Woodruff, “Time-resolved resonance Raman study of the lowest (dπ*, 3ct) excited state of tris(2,2′-bipyridine)ruthenium(II),” J. Am. Chem. Soc. 101, 4391–4393 (1979).
[Crossref]

Nano Lett. (1)

K. Y. Han, S. K. Kim, C. Eggeling, and S. W. Hell, “Metastable dark states enable ground state depletion microscopy of nitrogen vacancy centers in diamond with diffraction-unlimited resolution,” Nano Lett. 10, 3199–3203 (2010).
[Crossref] [PubMed]

Nat. Meth. (1)

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Meth. 3, 793–796 (2006).
[Crossref]

Nat. Photonics (1)

P. Wang, M. N. Slipchenko, J. Mitchell, C. Yang, E. O. Potma, X. Xu, and J.-X. Cheng, “Far-field imaging of non-fluorescent species with subdiffraction resolution,” Nat. Photonics 7, 449–453 (2013).
[Crossref]

Opt. Express (2)

Opt. Lett. (2)

Phys. Rev. A (3)

W. P. Beeker, C. J. Lee, K.-J. Boller, P. Groß, C. Cleff, C. Fallnich, H. Offerhaus, and J. Herek, “Spatially dependent Rabi sscillations: an approach to sub-diffraction-limited coherent anti-Stokes Raman-scattering microscopy,” Phys. Rev. A 81, 012507 (2010).
[Crossref]

C. Cleff, P. Groß, C. Fallnich, H. L. Offerhaus, J. Herek, K. Kruse, W. P. Beeker, C. J. Lee, and K.-J. Boller, “Stimulated-emission pumping enabling sub-diffraction-limited spatial resolution in coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. A 87, 033830 (2013).
[Crossref]

C. Cleff, P. Groß, C. Fallnich, H. L. Offerhaus, J. Herek, K. Kruse, W. P. Beeker, C. J. Lee, and K.-J. Boller, “Ground-state depletion for subdiffraction-limited spatial resolution in coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. A 86, 023825 (2012).
[Crossref]

Phys. Rev. Lett. (1)

A. Zumbusch, G. Holtom, and X. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82, 4142–4145 (1999).
[Crossref]

Science (2)

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[Crossref] [PubMed]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322, 1857–1861 (2008).
[Crossref] [PubMed]

Other (1)

K.-J. Boller, W. Beeker, C. Cleff, K. Kruse, C. Lee, P. Groß, H. Offerhaus, C. Fallnich, and J. Herek, “Nonlinear optics approaches towards subdiffraction resolution in CARS imaging,” in “Super-resolution microscopy techniques in the neurosciences,” Vol. 86 of Neuromethods, E. F. Fornasiero and S. O. Rizzoli, eds. (Humana Press, 2014), pp. 291–324.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 Experimental setup for the Raman scattering signal suppression via ground state depletion. HWP: half-wave plate; PBS: polarizing beam splitter; BD: beam dump; DM: dichroic mirror; AL: aspherical lens; S: sample (in half-filled cuvette); M: mirror; LP: long-pass filter; L: lens; CCD: charge-coupled device.
Fig. 2
Fig. 2 (a) Two examples of spontaneous Raman spectra of Ru ( bpy ) 3 2 + in acetonitrile acquired with two different pulse energies (0.06 µJ, straight blue line; and 1.48 µJ, dash-dotted red line), individually normalized to their fluorescence background. Raman peaks of the ground and excited state are marked Gi and Ei, respectively. (b) Suppression of the spontaneous Raman scattering of the ground state peak G5 with increasing pulse energy (blue dots, scale on left vertical axis). Simultaneously, occurrence of excited state Raman scattering of excited state peak E3 (red diamonds, scale on right vertical axis). See also Visualization 1.
Fig. 3
Fig. 3 Simulation of resolution enhancement via GSD assuming a scattering center that responds to irradiation with Raman scattering as it was measured for Ru ( bpy ) 3 2 + molecules. All images as false-color 2D-representation (bottom) and an additional 1D-cut through their center (top). (a) Sample consisting of a single scattering center of 50 nm diameter. (b) point spread function obtained by scanning the sample with a diffraction-limited Gaussian beam. (c) Same for a donut-shaped beam. (d) Same for a combination of donut-shaped and tenfold lower amplitude Gaussian beam. (e) Resolution enhanced image, reconstructed by subtracting (c) from (d).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

S R S bg = ( S tot S bg ) S bg ,
d n 2 d t = B 13 n 1 p A 12 n 2 ,
S gs S bg = α 1 1 + δ E p and S es S bg = α 2 δ E p 1 + δ E p ,

Metrics