Abstract

We present phase sensitive cavity field measurements on photonic crystal microcavities. The experiments have been performed as autocorrelation measurements with ps double pulse laser excitation for resonant and detuned conditions. Measured E-field autocorrelation functions reveal a very strong detuning dependence of the phase shift between laser and cavity field and of the autocorrelation amplitude of the cavity field. The fully resolved phase information allows for a precise frequency discrimination and hence for a precise measurement of the detuning between laser and cavity. The behavior of the autocorrelation amplitude and phase and their detuning dependence can be fully described by an analytic model. Furthermore, coherent control of the cavity field is demonstrated by tailored laser excitation with phase and amplitude controlled pulses. The experimental proof and verification of the above described phenomena became possible by an electric detection scheme, which employs planar photonic crystal microcavity photo diodes with metallic Schottky contacts in the defect region of the resonator. The applied photo current detection was shown to work also efficiently at room temperature, which make electrically contacted microcavities attractive for real world applications.

© 2016 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Sekoguchi, Y. Takahashi, T. Asano, and S. Noda, “Photonic crystal nanocavity with a Q-factor of ~9 million,” Opt. Express 22(1), 916–924 (2014).
    [Crossref] [PubMed]
  2. D. Wang, Z. Yu, Y. Liu, X. Guo, C. Shu, S. Zhou, and J. Zhang, “Ultrasmall modal volume and high Q factor optimization of a photonic crystal slab cavity,” J. Opt. 15(12), 125102 (2013).
    [Crossref]
  3. M. Boroditsky, R. Coccioli, E. Yablonovitch, Y. Rahmat-Samii, and K. W. Kim, “Smallest possible electromagnetic mode volume in a dielectric cavity,” IEE Proc., Optoelectron. 145(6), 391–397 (1998).
    [Crossref]
  4. E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).
  5. K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
    [Crossref] [PubMed]
  6. Y. Zhang, Y. Zhao, and R. Lv, “A review for optical sensors based on photonic crystal cavities,” Sens. Actuators A Phys. 233, 374–389 (2015).
    [Crossref]
  7. B. Wild, R. Ferrini, R. Houdré, M. Mulot, S. Anand, and C. J. M. Smith, “Temperature tuning of the optical properties of planar photonic crystal microcavities,” Appl. Phys. Lett. 84(6), 846 (2004).
    [Crossref]
  8. D. Sridharan, E. Waks, G. Solomon, and J. T. Fourkas, “Reversible tuning of photonic crystal cavities using photochromic thin films,” Appl. Phys. Lett. 96(15), 153303 (2010).
    [Crossref]
  9. T.-W. Lu and P.-T. Lee, “Ultra-high sensitivity optical stress sensor based on double-layered photonic crystal microcavity,” Opt. Express 17(3), 1518–1526 (2009).
    [Crossref] [PubMed]
  10. R. Perahia, J. D. Choen, S. Meenehan, T. P. Mayer Alegre, and O. Painter, “Electrostatically tunable optomechanical “zipper” cavity laser,” Appl. Phys. Lett. 97(19), 191112 (2010).
    [Crossref]
  11. L. Midolo, S. N. Yoon, F. Pagliano, T. Xia, F. W. M. van Otten, M. Lermer, S. Höfling, and A. Fiore, “Electromechanical tuning of vertically-coupled photonic crystal nanobeams,” Opt. Express 20(17), 19255–19263 (2012).
    [Crossref] [PubMed]
  12. M. W. McCutcheon, A. G. Pattantyus-Abraham, G. W. Rieger, and J. F. Young, “Emission spectrum of electromagnetic energy stored in a dynamically perturbed optical microcavity,” Opt. Express 15(18), 11472–11480 (2007).
    [Crossref] [PubMed]
  13. J. Upham, H. Inoue, Y. Tanaka, W. Stumpf, K. Kojima, T. Asano, and S. Noda, “Pulse capture without carrier absorption in dynamic Q photonic crystal nanocavities,” Opt. Express 22(13), 15459–15466 (2014).
    [Crossref] [PubMed]
  14. T. J. Karle, F. Raineri, V. Roppo, F. Bordas, P. Monnier, S. Ali, I. Sivan, and R. Raj, “Temporal ringdown of silicon-on-insulator racetrack resonators,” Opt. Lett. 38(13), 2304–2306 (2013).
    [Crossref] [PubMed]
  15. T. Asano, B.-S. Song, Y. Akahane, and S. Noda, “Ultrahigh-Q nanocavities in two-dimensional photonic crystal slabs,” IEEE J. Sel. Top. Quantum Electron. 12, 1123–1134 (2006).
    [Crossref]
  16. W. Quiring, M. Al-Hmoud, A. Rai, D. Reuter, A. D. Wieck, and A. Zrenner, “Photonic crystal cavities with metallic Schottky contacts,” Appl. Phys. Lett. 107(4), 41113 (2015).
    [Crossref]
  17. D. Marcuse, “Coupled mode theory of optical resonant cavities,” IEEE J. Quantum Electron. 21(11), 1819–1826 (1985).
    [Crossref]
  18. H. A. Haus and W. Huang, “Coupled-mode theory,” Proc. IEEE 79(10), 1505–1518 (1991).
    [Crossref]
  19. J. D. Gaskill, Linear Systems, Fourier Transforms and Optics (Wiley, 1978).
  20. G. Vincent, A. Chantre, and D. Bois, “Electric field effect on the thermal emission of traps in semiconductor junctions,” J. Appl. Phys. 50(8), 5484 (1979).
    [Crossref]
  21. P. W. Fry, I. E. Itskevich, S. R. Parnell, J. J. Finley, L. R. Wilson, K. L. Schumacher, D. J. Mowbray, M. S. Skolnick, M. Al-Khafaji, A. G. Cullis, M. Hopkinson, J. C. Clark, and G. Hill, “Photocurrent spectroscopy of InAs/GaAs self-assembled quantum dots,” Phys. Rev. B 62(24), 16784–16791 (2000).
    [Crossref]
  22. M. Ohmori, P. Vitushinskiy, and H. Sakaki, “Diffusion process of excitons in the wetting layer and their trapping by quantum dots in sparsely spaced InAs quantum dot systems,” Appl. Phys. Lett. 98(13), 133109 (2011).
    [Crossref]
  23. H. Hillmer, A. Forchel, S. Hansmann, M. Morohashi, E. Lopez, H. P. Meier, and K. Ploog, “Optical investigations on the mobility of two-dimensional excitons in GaAs/Ga1-xAlxAs quantum wells,” Phys. Rev. B Condens. Matter 39(15), 10901–10912 (1989).
    [Crossref] [PubMed]
  24. J. Baum, R. Tycko, and A. Pines, “Broadband and adiabatic inversion of a two-level system by phase-modulated pulses,” Phys. Rev. A Gen. Phys. 32(6), 3435–3447 (1985).
    [Crossref] [PubMed]
  25. E. R. Schmidgall, P. R. Eastham, and R. T. Phillips, “Population inversion in quantum dot ensembles via adiabatic rapid passage,” Phys. Rev. B 81(19), 195306 (2010).
    [Crossref]
  26. C.-M. Simon, T. Belhadj, B. Chatel, T. Amand, P. Renucci, A. Lemaitre, O. Krebs, P. A. Dalgarno, R. J. Warburton, X. Marie, and B. Urbaszek, “Robust quantum dot exciton generation via adiabatic passage with frequency-swept optical pulses,” Phys. Rev. Lett. 106(16), 166801 (2011).
    [Crossref] [PubMed]

2015 (2)

Y. Zhang, Y. Zhao, and R. Lv, “A review for optical sensors based on photonic crystal cavities,” Sens. Actuators A Phys. 233, 374–389 (2015).
[Crossref]

W. Quiring, M. Al-Hmoud, A. Rai, D. Reuter, A. D. Wieck, and A. Zrenner, “Photonic crystal cavities with metallic Schottky contacts,” Appl. Phys. Lett. 107(4), 41113 (2015).
[Crossref]

2014 (2)

2013 (2)

D. Wang, Z. Yu, Y. Liu, X. Guo, C. Shu, S. Zhou, and J. Zhang, “Ultrasmall modal volume and high Q factor optimization of a photonic crystal slab cavity,” J. Opt. 15(12), 125102 (2013).
[Crossref]

T. J. Karle, F. Raineri, V. Roppo, F. Bordas, P. Monnier, S. Ali, I. Sivan, and R. Raj, “Temporal ringdown of silicon-on-insulator racetrack resonators,” Opt. Lett. 38(13), 2304–2306 (2013).
[Crossref] [PubMed]

2012 (1)

2011 (2)

M. Ohmori, P. Vitushinskiy, and H. Sakaki, “Diffusion process of excitons in the wetting layer and their trapping by quantum dots in sparsely spaced InAs quantum dot systems,” Appl. Phys. Lett. 98(13), 133109 (2011).
[Crossref]

C.-M. Simon, T. Belhadj, B. Chatel, T. Amand, P. Renucci, A. Lemaitre, O. Krebs, P. A. Dalgarno, R. J. Warburton, X. Marie, and B. Urbaszek, “Robust quantum dot exciton generation via adiabatic passage with frequency-swept optical pulses,” Phys. Rev. Lett. 106(16), 166801 (2011).
[Crossref] [PubMed]

2010 (3)

E. R. Schmidgall, P. R. Eastham, and R. T. Phillips, “Population inversion in quantum dot ensembles via adiabatic rapid passage,” Phys. Rev. B 81(19), 195306 (2010).
[Crossref]

R. Perahia, J. D. Choen, S. Meenehan, T. P. Mayer Alegre, and O. Painter, “Electrostatically tunable optomechanical “zipper” cavity laser,” Appl. Phys. Lett. 97(19), 191112 (2010).
[Crossref]

D. Sridharan, E. Waks, G. Solomon, and J. T. Fourkas, “Reversible tuning of photonic crystal cavities using photochromic thin films,” Appl. Phys. Lett. 96(15), 153303 (2010).
[Crossref]

2009 (1)

2007 (1)

2006 (1)

T. Asano, B.-S. Song, Y. Akahane, and S. Noda, “Ultrahigh-Q nanocavities in two-dimensional photonic crystal slabs,” IEEE J. Sel. Top. Quantum Electron. 12, 1123–1134 (2006).
[Crossref]

2004 (1)

B. Wild, R. Ferrini, R. Houdré, M. Mulot, S. Anand, and C. J. M. Smith, “Temperature tuning of the optical properties of planar photonic crystal microcavities,” Appl. Phys. Lett. 84(6), 846 (2004).
[Crossref]

2003 (1)

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[Crossref] [PubMed]

2000 (1)

P. W. Fry, I. E. Itskevich, S. R. Parnell, J. J. Finley, L. R. Wilson, K. L. Schumacher, D. J. Mowbray, M. S. Skolnick, M. Al-Khafaji, A. G. Cullis, M. Hopkinson, J. C. Clark, and G. Hill, “Photocurrent spectroscopy of InAs/GaAs self-assembled quantum dots,” Phys. Rev. B 62(24), 16784–16791 (2000).
[Crossref]

1998 (1)

M. Boroditsky, R. Coccioli, E. Yablonovitch, Y. Rahmat-Samii, and K. W. Kim, “Smallest possible electromagnetic mode volume in a dielectric cavity,” IEE Proc., Optoelectron. 145(6), 391–397 (1998).
[Crossref]

1991 (1)

H. A. Haus and W. Huang, “Coupled-mode theory,” Proc. IEEE 79(10), 1505–1518 (1991).
[Crossref]

1989 (1)

H. Hillmer, A. Forchel, S. Hansmann, M. Morohashi, E. Lopez, H. P. Meier, and K. Ploog, “Optical investigations on the mobility of two-dimensional excitons in GaAs/Ga1-xAlxAs quantum wells,” Phys. Rev. B Condens. Matter 39(15), 10901–10912 (1989).
[Crossref] [PubMed]

1985 (2)

J. Baum, R. Tycko, and A. Pines, “Broadband and adiabatic inversion of a two-level system by phase-modulated pulses,” Phys. Rev. A Gen. Phys. 32(6), 3435–3447 (1985).
[Crossref] [PubMed]

D. Marcuse, “Coupled mode theory of optical resonant cavities,” IEEE J. Quantum Electron. 21(11), 1819–1826 (1985).
[Crossref]

1979 (1)

G. Vincent, A. Chantre, and D. Bois, “Electric field effect on the thermal emission of traps in semiconductor junctions,” J. Appl. Phys. 50(8), 5484 (1979).
[Crossref]

1946 (1)

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

Akahane, Y.

T. Asano, B.-S. Song, Y. Akahane, and S. Noda, “Ultrahigh-Q nanocavities in two-dimensional photonic crystal slabs,” IEEE J. Sel. Top. Quantum Electron. 12, 1123–1134 (2006).
[Crossref]

Al-Hmoud, M.

W. Quiring, M. Al-Hmoud, A. Rai, D. Reuter, A. D. Wieck, and A. Zrenner, “Photonic crystal cavities with metallic Schottky contacts,” Appl. Phys. Lett. 107(4), 41113 (2015).
[Crossref]

Ali, S.

Al-Khafaji, M.

P. W. Fry, I. E. Itskevich, S. R. Parnell, J. J. Finley, L. R. Wilson, K. L. Schumacher, D. J. Mowbray, M. S. Skolnick, M. Al-Khafaji, A. G. Cullis, M. Hopkinson, J. C. Clark, and G. Hill, “Photocurrent spectroscopy of InAs/GaAs self-assembled quantum dots,” Phys. Rev. B 62(24), 16784–16791 (2000).
[Crossref]

Amand, T.

C.-M. Simon, T. Belhadj, B. Chatel, T. Amand, P. Renucci, A. Lemaitre, O. Krebs, P. A. Dalgarno, R. J. Warburton, X. Marie, and B. Urbaszek, “Robust quantum dot exciton generation via adiabatic passage with frequency-swept optical pulses,” Phys. Rev. Lett. 106(16), 166801 (2011).
[Crossref] [PubMed]

Anand, S.

B. Wild, R. Ferrini, R. Houdré, M. Mulot, S. Anand, and C. J. M. Smith, “Temperature tuning of the optical properties of planar photonic crystal microcavities,” Appl. Phys. Lett. 84(6), 846 (2004).
[Crossref]

Asano, T.

Baum, J.

J. Baum, R. Tycko, and A. Pines, “Broadband and adiabatic inversion of a two-level system by phase-modulated pulses,” Phys. Rev. A Gen. Phys. 32(6), 3435–3447 (1985).
[Crossref] [PubMed]

Belhadj, T.

C.-M. Simon, T. Belhadj, B. Chatel, T. Amand, P. Renucci, A. Lemaitre, O. Krebs, P. A. Dalgarno, R. J. Warburton, X. Marie, and B. Urbaszek, “Robust quantum dot exciton generation via adiabatic passage with frequency-swept optical pulses,” Phys. Rev. Lett. 106(16), 166801 (2011).
[Crossref] [PubMed]

Bois, D.

G. Vincent, A. Chantre, and D. Bois, “Electric field effect on the thermal emission of traps in semiconductor junctions,” J. Appl. Phys. 50(8), 5484 (1979).
[Crossref]

Bordas, F.

Boroditsky, M.

M. Boroditsky, R. Coccioli, E. Yablonovitch, Y. Rahmat-Samii, and K. W. Kim, “Smallest possible electromagnetic mode volume in a dielectric cavity,” IEE Proc., Optoelectron. 145(6), 391–397 (1998).
[Crossref]

Chantre, A.

G. Vincent, A. Chantre, and D. Bois, “Electric field effect on the thermal emission of traps in semiconductor junctions,” J. Appl. Phys. 50(8), 5484 (1979).
[Crossref]

Chatel, B.

C.-M. Simon, T. Belhadj, B. Chatel, T. Amand, P. Renucci, A. Lemaitre, O. Krebs, P. A. Dalgarno, R. J. Warburton, X. Marie, and B. Urbaszek, “Robust quantum dot exciton generation via adiabatic passage with frequency-swept optical pulses,” Phys. Rev. Lett. 106(16), 166801 (2011).
[Crossref] [PubMed]

Choen, J. D.

R. Perahia, J. D. Choen, S. Meenehan, T. P. Mayer Alegre, and O. Painter, “Electrostatically tunable optomechanical “zipper” cavity laser,” Appl. Phys. Lett. 97(19), 191112 (2010).
[Crossref]

Clark, J. C.

P. W. Fry, I. E. Itskevich, S. R. Parnell, J. J. Finley, L. R. Wilson, K. L. Schumacher, D. J. Mowbray, M. S. Skolnick, M. Al-Khafaji, A. G. Cullis, M. Hopkinson, J. C. Clark, and G. Hill, “Photocurrent spectroscopy of InAs/GaAs self-assembled quantum dots,” Phys. Rev. B 62(24), 16784–16791 (2000).
[Crossref]

Coccioli, R.

M. Boroditsky, R. Coccioli, E. Yablonovitch, Y. Rahmat-Samii, and K. W. Kim, “Smallest possible electromagnetic mode volume in a dielectric cavity,” IEE Proc., Optoelectron. 145(6), 391–397 (1998).
[Crossref]

Cullis, A. G.

P. W. Fry, I. E. Itskevich, S. R. Parnell, J. J. Finley, L. R. Wilson, K. L. Schumacher, D. J. Mowbray, M. S. Skolnick, M. Al-Khafaji, A. G. Cullis, M. Hopkinson, J. C. Clark, and G. Hill, “Photocurrent spectroscopy of InAs/GaAs self-assembled quantum dots,” Phys. Rev. B 62(24), 16784–16791 (2000).
[Crossref]

Dalgarno, P. A.

C.-M. Simon, T. Belhadj, B. Chatel, T. Amand, P. Renucci, A. Lemaitre, O. Krebs, P. A. Dalgarno, R. J. Warburton, X. Marie, and B. Urbaszek, “Robust quantum dot exciton generation via adiabatic passage with frequency-swept optical pulses,” Phys. Rev. Lett. 106(16), 166801 (2011).
[Crossref] [PubMed]

Eastham, P. R.

E. R. Schmidgall, P. R. Eastham, and R. T. Phillips, “Population inversion in quantum dot ensembles via adiabatic rapid passage,” Phys. Rev. B 81(19), 195306 (2010).
[Crossref]

Ferrini, R.

B. Wild, R. Ferrini, R. Houdré, M. Mulot, S. Anand, and C. J. M. Smith, “Temperature tuning of the optical properties of planar photonic crystal microcavities,” Appl. Phys. Lett. 84(6), 846 (2004).
[Crossref]

Finley, J. J.

P. W. Fry, I. E. Itskevich, S. R. Parnell, J. J. Finley, L. R. Wilson, K. L. Schumacher, D. J. Mowbray, M. S. Skolnick, M. Al-Khafaji, A. G. Cullis, M. Hopkinson, J. C. Clark, and G. Hill, “Photocurrent spectroscopy of InAs/GaAs self-assembled quantum dots,” Phys. Rev. B 62(24), 16784–16791 (2000).
[Crossref]

Fiore, A.

Forchel, A.

H. Hillmer, A. Forchel, S. Hansmann, M. Morohashi, E. Lopez, H. P. Meier, and K. Ploog, “Optical investigations on the mobility of two-dimensional excitons in GaAs/Ga1-xAlxAs quantum wells,” Phys. Rev. B Condens. Matter 39(15), 10901–10912 (1989).
[Crossref] [PubMed]

Fourkas, J. T.

D. Sridharan, E. Waks, G. Solomon, and J. T. Fourkas, “Reversible tuning of photonic crystal cavities using photochromic thin films,” Appl. Phys. Lett. 96(15), 153303 (2010).
[Crossref]

Fry, P. W.

P. W. Fry, I. E. Itskevich, S. R. Parnell, J. J. Finley, L. R. Wilson, K. L. Schumacher, D. J. Mowbray, M. S. Skolnick, M. Al-Khafaji, A. G. Cullis, M. Hopkinson, J. C. Clark, and G. Hill, “Photocurrent spectroscopy of InAs/GaAs self-assembled quantum dots,” Phys. Rev. B 62(24), 16784–16791 (2000).
[Crossref]

Guo, X.

D. Wang, Z. Yu, Y. Liu, X. Guo, C. Shu, S. Zhou, and J. Zhang, “Ultrasmall modal volume and high Q factor optimization of a photonic crystal slab cavity,” J. Opt. 15(12), 125102 (2013).
[Crossref]

Hansmann, S.

H. Hillmer, A. Forchel, S. Hansmann, M. Morohashi, E. Lopez, H. P. Meier, and K. Ploog, “Optical investigations on the mobility of two-dimensional excitons in GaAs/Ga1-xAlxAs quantum wells,” Phys. Rev. B Condens. Matter 39(15), 10901–10912 (1989).
[Crossref] [PubMed]

Haus, H. A.

H. A. Haus and W. Huang, “Coupled-mode theory,” Proc. IEEE 79(10), 1505–1518 (1991).
[Crossref]

Hill, G.

P. W. Fry, I. E. Itskevich, S. R. Parnell, J. J. Finley, L. R. Wilson, K. L. Schumacher, D. J. Mowbray, M. S. Skolnick, M. Al-Khafaji, A. G. Cullis, M. Hopkinson, J. C. Clark, and G. Hill, “Photocurrent spectroscopy of InAs/GaAs self-assembled quantum dots,” Phys. Rev. B 62(24), 16784–16791 (2000).
[Crossref]

Hillmer, H.

H. Hillmer, A. Forchel, S. Hansmann, M. Morohashi, E. Lopez, H. P. Meier, and K. Ploog, “Optical investigations on the mobility of two-dimensional excitons in GaAs/Ga1-xAlxAs quantum wells,” Phys. Rev. B Condens. Matter 39(15), 10901–10912 (1989).
[Crossref] [PubMed]

Höfling, S.

Hopkinson, M.

P. W. Fry, I. E. Itskevich, S. R. Parnell, J. J. Finley, L. R. Wilson, K. L. Schumacher, D. J. Mowbray, M. S. Skolnick, M. Al-Khafaji, A. G. Cullis, M. Hopkinson, J. C. Clark, and G. Hill, “Photocurrent spectroscopy of InAs/GaAs self-assembled quantum dots,” Phys. Rev. B 62(24), 16784–16791 (2000).
[Crossref]

Houdré, R.

B. Wild, R. Ferrini, R. Houdré, M. Mulot, S. Anand, and C. J. M. Smith, “Temperature tuning of the optical properties of planar photonic crystal microcavities,” Appl. Phys. Lett. 84(6), 846 (2004).
[Crossref]

Huang, W.

H. A. Haus and W. Huang, “Coupled-mode theory,” Proc. IEEE 79(10), 1505–1518 (1991).
[Crossref]

Inoue, H.

Itskevich, I. E.

P. W. Fry, I. E. Itskevich, S. R. Parnell, J. J. Finley, L. R. Wilson, K. L. Schumacher, D. J. Mowbray, M. S. Skolnick, M. Al-Khafaji, A. G. Cullis, M. Hopkinson, J. C. Clark, and G. Hill, “Photocurrent spectroscopy of InAs/GaAs self-assembled quantum dots,” Phys. Rev. B 62(24), 16784–16791 (2000).
[Crossref]

Karle, T. J.

Kim, K. W.

M. Boroditsky, R. Coccioli, E. Yablonovitch, Y. Rahmat-Samii, and K. W. Kim, “Smallest possible electromagnetic mode volume in a dielectric cavity,” IEE Proc., Optoelectron. 145(6), 391–397 (1998).
[Crossref]

Kojima, K.

Krebs, O.

C.-M. Simon, T. Belhadj, B. Chatel, T. Amand, P. Renucci, A. Lemaitre, O. Krebs, P. A. Dalgarno, R. J. Warburton, X. Marie, and B. Urbaszek, “Robust quantum dot exciton generation via adiabatic passage with frequency-swept optical pulses,” Phys. Rev. Lett. 106(16), 166801 (2011).
[Crossref] [PubMed]

Lee, P.-T.

Lemaitre, A.

C.-M. Simon, T. Belhadj, B. Chatel, T. Amand, P. Renucci, A. Lemaitre, O. Krebs, P. A. Dalgarno, R. J. Warburton, X. Marie, and B. Urbaszek, “Robust quantum dot exciton generation via adiabatic passage with frequency-swept optical pulses,” Phys. Rev. Lett. 106(16), 166801 (2011).
[Crossref] [PubMed]

Lermer, M.

Liu, Y.

D. Wang, Z. Yu, Y. Liu, X. Guo, C. Shu, S. Zhou, and J. Zhang, “Ultrasmall modal volume and high Q factor optimization of a photonic crystal slab cavity,” J. Opt. 15(12), 125102 (2013).
[Crossref]

Lopez, E.

H. Hillmer, A. Forchel, S. Hansmann, M. Morohashi, E. Lopez, H. P. Meier, and K. Ploog, “Optical investigations on the mobility of two-dimensional excitons in GaAs/Ga1-xAlxAs quantum wells,” Phys. Rev. B Condens. Matter 39(15), 10901–10912 (1989).
[Crossref] [PubMed]

Lu, T.-W.

Lv, R.

Y. Zhang, Y. Zhao, and R. Lv, “A review for optical sensors based on photonic crystal cavities,” Sens. Actuators A Phys. 233, 374–389 (2015).
[Crossref]

Marcuse, D.

D. Marcuse, “Coupled mode theory of optical resonant cavities,” IEEE J. Quantum Electron. 21(11), 1819–1826 (1985).
[Crossref]

Marie, X.

C.-M. Simon, T. Belhadj, B. Chatel, T. Amand, P. Renucci, A. Lemaitre, O. Krebs, P. A. Dalgarno, R. J. Warburton, X. Marie, and B. Urbaszek, “Robust quantum dot exciton generation via adiabatic passage with frequency-swept optical pulses,” Phys. Rev. Lett. 106(16), 166801 (2011).
[Crossref] [PubMed]

Mayer Alegre, T. P.

R. Perahia, J. D. Choen, S. Meenehan, T. P. Mayer Alegre, and O. Painter, “Electrostatically tunable optomechanical “zipper” cavity laser,” Appl. Phys. Lett. 97(19), 191112 (2010).
[Crossref]

McCutcheon, M. W.

Meenehan, S.

R. Perahia, J. D. Choen, S. Meenehan, T. P. Mayer Alegre, and O. Painter, “Electrostatically tunable optomechanical “zipper” cavity laser,” Appl. Phys. Lett. 97(19), 191112 (2010).
[Crossref]

Meier, H. P.

H. Hillmer, A. Forchel, S. Hansmann, M. Morohashi, E. Lopez, H. P. Meier, and K. Ploog, “Optical investigations on the mobility of two-dimensional excitons in GaAs/Ga1-xAlxAs quantum wells,” Phys. Rev. B Condens. Matter 39(15), 10901–10912 (1989).
[Crossref] [PubMed]

Midolo, L.

Monnier, P.

Morohashi, M.

H. Hillmer, A. Forchel, S. Hansmann, M. Morohashi, E. Lopez, H. P. Meier, and K. Ploog, “Optical investigations on the mobility of two-dimensional excitons in GaAs/Ga1-xAlxAs quantum wells,” Phys. Rev. B Condens. Matter 39(15), 10901–10912 (1989).
[Crossref] [PubMed]

Mowbray, D. J.

P. W. Fry, I. E. Itskevich, S. R. Parnell, J. J. Finley, L. R. Wilson, K. L. Schumacher, D. J. Mowbray, M. S. Skolnick, M. Al-Khafaji, A. G. Cullis, M. Hopkinson, J. C. Clark, and G. Hill, “Photocurrent spectroscopy of InAs/GaAs self-assembled quantum dots,” Phys. Rev. B 62(24), 16784–16791 (2000).
[Crossref]

Mulot, M.

B. Wild, R. Ferrini, R. Houdré, M. Mulot, S. Anand, and C. J. M. Smith, “Temperature tuning of the optical properties of planar photonic crystal microcavities,” Appl. Phys. Lett. 84(6), 846 (2004).
[Crossref]

Noda, S.

Ohmori, M.

M. Ohmori, P. Vitushinskiy, and H. Sakaki, “Diffusion process of excitons in the wetting layer and their trapping by quantum dots in sparsely spaced InAs quantum dot systems,” Appl. Phys. Lett. 98(13), 133109 (2011).
[Crossref]

Pagliano, F.

Painter, O.

R. Perahia, J. D. Choen, S. Meenehan, T. P. Mayer Alegre, and O. Painter, “Electrostatically tunable optomechanical “zipper” cavity laser,” Appl. Phys. Lett. 97(19), 191112 (2010).
[Crossref]

Parnell, S. R.

P. W. Fry, I. E. Itskevich, S. R. Parnell, J. J. Finley, L. R. Wilson, K. L. Schumacher, D. J. Mowbray, M. S. Skolnick, M. Al-Khafaji, A. G. Cullis, M. Hopkinson, J. C. Clark, and G. Hill, “Photocurrent spectroscopy of InAs/GaAs self-assembled quantum dots,” Phys. Rev. B 62(24), 16784–16791 (2000).
[Crossref]

Pattantyus-Abraham, A. G.

Perahia, R.

R. Perahia, J. D. Choen, S. Meenehan, T. P. Mayer Alegre, and O. Painter, “Electrostatically tunable optomechanical “zipper” cavity laser,” Appl. Phys. Lett. 97(19), 191112 (2010).
[Crossref]

Phillips, R. T.

E. R. Schmidgall, P. R. Eastham, and R. T. Phillips, “Population inversion in quantum dot ensembles via adiabatic rapid passage,” Phys. Rev. B 81(19), 195306 (2010).
[Crossref]

Pines, A.

J. Baum, R. Tycko, and A. Pines, “Broadband and adiabatic inversion of a two-level system by phase-modulated pulses,” Phys. Rev. A Gen. Phys. 32(6), 3435–3447 (1985).
[Crossref] [PubMed]

Ploog, K.

H. Hillmer, A. Forchel, S. Hansmann, M. Morohashi, E. Lopez, H. P. Meier, and K. Ploog, “Optical investigations on the mobility of two-dimensional excitons in GaAs/Ga1-xAlxAs quantum wells,” Phys. Rev. B Condens. Matter 39(15), 10901–10912 (1989).
[Crossref] [PubMed]

Purcell, E. M.

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

Quiring, W.

W. Quiring, M. Al-Hmoud, A. Rai, D. Reuter, A. D. Wieck, and A. Zrenner, “Photonic crystal cavities with metallic Schottky contacts,” Appl. Phys. Lett. 107(4), 41113 (2015).
[Crossref]

Rahmat-Samii, Y.

M. Boroditsky, R. Coccioli, E. Yablonovitch, Y. Rahmat-Samii, and K. W. Kim, “Smallest possible electromagnetic mode volume in a dielectric cavity,” IEE Proc., Optoelectron. 145(6), 391–397 (1998).
[Crossref]

Rai, A.

W. Quiring, M. Al-Hmoud, A. Rai, D. Reuter, A. D. Wieck, and A. Zrenner, “Photonic crystal cavities with metallic Schottky contacts,” Appl. Phys. Lett. 107(4), 41113 (2015).
[Crossref]

Raineri, F.

Raj, R.

Renucci, P.

C.-M. Simon, T. Belhadj, B. Chatel, T. Amand, P. Renucci, A. Lemaitre, O. Krebs, P. A. Dalgarno, R. J. Warburton, X. Marie, and B. Urbaszek, “Robust quantum dot exciton generation via adiabatic passage with frequency-swept optical pulses,” Phys. Rev. Lett. 106(16), 166801 (2011).
[Crossref] [PubMed]

Reuter, D.

W. Quiring, M. Al-Hmoud, A. Rai, D. Reuter, A. D. Wieck, and A. Zrenner, “Photonic crystal cavities with metallic Schottky contacts,” Appl. Phys. Lett. 107(4), 41113 (2015).
[Crossref]

Rieger, G. W.

Roppo, V.

Sakaki, H.

M. Ohmori, P. Vitushinskiy, and H. Sakaki, “Diffusion process of excitons in the wetting layer and their trapping by quantum dots in sparsely spaced InAs quantum dot systems,” Appl. Phys. Lett. 98(13), 133109 (2011).
[Crossref]

Schmidgall, E. R.

E. R. Schmidgall, P. R. Eastham, and R. T. Phillips, “Population inversion in quantum dot ensembles via adiabatic rapid passage,” Phys. Rev. B 81(19), 195306 (2010).
[Crossref]

Schumacher, K. L.

P. W. Fry, I. E. Itskevich, S. R. Parnell, J. J. Finley, L. R. Wilson, K. L. Schumacher, D. J. Mowbray, M. S. Skolnick, M. Al-Khafaji, A. G. Cullis, M. Hopkinson, J. C. Clark, and G. Hill, “Photocurrent spectroscopy of InAs/GaAs self-assembled quantum dots,” Phys. Rev. B 62(24), 16784–16791 (2000).
[Crossref]

Sekoguchi, H.

Shu, C.

D. Wang, Z. Yu, Y. Liu, X. Guo, C. Shu, S. Zhou, and J. Zhang, “Ultrasmall modal volume and high Q factor optimization of a photonic crystal slab cavity,” J. Opt. 15(12), 125102 (2013).
[Crossref]

Simon, C.-M.

C.-M. Simon, T. Belhadj, B. Chatel, T. Amand, P. Renucci, A. Lemaitre, O. Krebs, P. A. Dalgarno, R. J. Warburton, X. Marie, and B. Urbaszek, “Robust quantum dot exciton generation via adiabatic passage with frequency-swept optical pulses,” Phys. Rev. Lett. 106(16), 166801 (2011).
[Crossref] [PubMed]

Sivan, I.

Skolnick, M. S.

P. W. Fry, I. E. Itskevich, S. R. Parnell, J. J. Finley, L. R. Wilson, K. L. Schumacher, D. J. Mowbray, M. S. Skolnick, M. Al-Khafaji, A. G. Cullis, M. Hopkinson, J. C. Clark, and G. Hill, “Photocurrent spectroscopy of InAs/GaAs self-assembled quantum dots,” Phys. Rev. B 62(24), 16784–16791 (2000).
[Crossref]

Smith, C. J. M.

B. Wild, R. Ferrini, R. Houdré, M. Mulot, S. Anand, and C. J. M. Smith, “Temperature tuning of the optical properties of planar photonic crystal microcavities,” Appl. Phys. Lett. 84(6), 846 (2004).
[Crossref]

Solomon, G.

D. Sridharan, E. Waks, G. Solomon, and J. T. Fourkas, “Reversible tuning of photonic crystal cavities using photochromic thin films,” Appl. Phys. Lett. 96(15), 153303 (2010).
[Crossref]

Song, B.-S.

T. Asano, B.-S. Song, Y. Akahane, and S. Noda, “Ultrahigh-Q nanocavities in two-dimensional photonic crystal slabs,” IEEE J. Sel. Top. Quantum Electron. 12, 1123–1134 (2006).
[Crossref]

Sridharan, D.

D. Sridharan, E. Waks, G. Solomon, and J. T. Fourkas, “Reversible tuning of photonic crystal cavities using photochromic thin films,” Appl. Phys. Lett. 96(15), 153303 (2010).
[Crossref]

Stumpf, W.

Takahashi, Y.

Tanaka, Y.

Tycko, R.

J. Baum, R. Tycko, and A. Pines, “Broadband and adiabatic inversion of a two-level system by phase-modulated pulses,” Phys. Rev. A Gen. Phys. 32(6), 3435–3447 (1985).
[Crossref] [PubMed]

Upham, J.

Urbaszek, B.

C.-M. Simon, T. Belhadj, B. Chatel, T. Amand, P. Renucci, A. Lemaitre, O. Krebs, P. A. Dalgarno, R. J. Warburton, X. Marie, and B. Urbaszek, “Robust quantum dot exciton generation via adiabatic passage with frequency-swept optical pulses,” Phys. Rev. Lett. 106(16), 166801 (2011).
[Crossref] [PubMed]

Vahala, K. J.

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[Crossref] [PubMed]

van Otten, F. W. M.

Vincent, G.

G. Vincent, A. Chantre, and D. Bois, “Electric field effect on the thermal emission of traps in semiconductor junctions,” J. Appl. Phys. 50(8), 5484 (1979).
[Crossref]

Vitushinskiy, P.

M. Ohmori, P. Vitushinskiy, and H. Sakaki, “Diffusion process of excitons in the wetting layer and their trapping by quantum dots in sparsely spaced InAs quantum dot systems,” Appl. Phys. Lett. 98(13), 133109 (2011).
[Crossref]

Waks, E.

D. Sridharan, E. Waks, G. Solomon, and J. T. Fourkas, “Reversible tuning of photonic crystal cavities using photochromic thin films,” Appl. Phys. Lett. 96(15), 153303 (2010).
[Crossref]

Wang, D.

D. Wang, Z. Yu, Y. Liu, X. Guo, C. Shu, S. Zhou, and J. Zhang, “Ultrasmall modal volume and high Q factor optimization of a photonic crystal slab cavity,” J. Opt. 15(12), 125102 (2013).
[Crossref]

Warburton, R. J.

C.-M. Simon, T. Belhadj, B. Chatel, T. Amand, P. Renucci, A. Lemaitre, O. Krebs, P. A. Dalgarno, R. J. Warburton, X. Marie, and B. Urbaszek, “Robust quantum dot exciton generation via adiabatic passage with frequency-swept optical pulses,” Phys. Rev. Lett. 106(16), 166801 (2011).
[Crossref] [PubMed]

Wieck, A. D.

W. Quiring, M. Al-Hmoud, A. Rai, D. Reuter, A. D. Wieck, and A. Zrenner, “Photonic crystal cavities with metallic Schottky contacts,” Appl. Phys. Lett. 107(4), 41113 (2015).
[Crossref]

Wild, B.

B. Wild, R. Ferrini, R. Houdré, M. Mulot, S. Anand, and C. J. M. Smith, “Temperature tuning of the optical properties of planar photonic crystal microcavities,” Appl. Phys. Lett. 84(6), 846 (2004).
[Crossref]

Wilson, L. R.

P. W. Fry, I. E. Itskevich, S. R. Parnell, J. J. Finley, L. R. Wilson, K. L. Schumacher, D. J. Mowbray, M. S. Skolnick, M. Al-Khafaji, A. G. Cullis, M. Hopkinson, J. C. Clark, and G. Hill, “Photocurrent spectroscopy of InAs/GaAs self-assembled quantum dots,” Phys. Rev. B 62(24), 16784–16791 (2000).
[Crossref]

Xia, T.

Yablonovitch, E.

M. Boroditsky, R. Coccioli, E. Yablonovitch, Y. Rahmat-Samii, and K. W. Kim, “Smallest possible electromagnetic mode volume in a dielectric cavity,” IEE Proc., Optoelectron. 145(6), 391–397 (1998).
[Crossref]

Yoon, S. N.

Young, J. F.

Yu, Z.

D. Wang, Z. Yu, Y. Liu, X. Guo, C. Shu, S. Zhou, and J. Zhang, “Ultrasmall modal volume and high Q factor optimization of a photonic crystal slab cavity,” J. Opt. 15(12), 125102 (2013).
[Crossref]

Zhang, J.

D. Wang, Z. Yu, Y. Liu, X. Guo, C. Shu, S. Zhou, and J. Zhang, “Ultrasmall modal volume and high Q factor optimization of a photonic crystal slab cavity,” J. Opt. 15(12), 125102 (2013).
[Crossref]

Zhang, Y.

Y. Zhang, Y. Zhao, and R. Lv, “A review for optical sensors based on photonic crystal cavities,” Sens. Actuators A Phys. 233, 374–389 (2015).
[Crossref]

Zhao, Y.

Y. Zhang, Y. Zhao, and R. Lv, “A review for optical sensors based on photonic crystal cavities,” Sens. Actuators A Phys. 233, 374–389 (2015).
[Crossref]

Zhou, S.

D. Wang, Z. Yu, Y. Liu, X. Guo, C. Shu, S. Zhou, and J. Zhang, “Ultrasmall modal volume and high Q factor optimization of a photonic crystal slab cavity,” J. Opt. 15(12), 125102 (2013).
[Crossref]

Zrenner, A.

W. Quiring, M. Al-Hmoud, A. Rai, D. Reuter, A. D. Wieck, and A. Zrenner, “Photonic crystal cavities with metallic Schottky contacts,” Appl. Phys. Lett. 107(4), 41113 (2015).
[Crossref]

Appl. Phys. Lett. (5)

B. Wild, R. Ferrini, R. Houdré, M. Mulot, S. Anand, and C. J. M. Smith, “Temperature tuning of the optical properties of planar photonic crystal microcavities,” Appl. Phys. Lett. 84(6), 846 (2004).
[Crossref]

D. Sridharan, E. Waks, G. Solomon, and J. T. Fourkas, “Reversible tuning of photonic crystal cavities using photochromic thin films,” Appl. Phys. Lett. 96(15), 153303 (2010).
[Crossref]

R. Perahia, J. D. Choen, S. Meenehan, T. P. Mayer Alegre, and O. Painter, “Electrostatically tunable optomechanical “zipper” cavity laser,” Appl. Phys. Lett. 97(19), 191112 (2010).
[Crossref]

W. Quiring, M. Al-Hmoud, A. Rai, D. Reuter, A. D. Wieck, and A. Zrenner, “Photonic crystal cavities with metallic Schottky contacts,” Appl. Phys. Lett. 107(4), 41113 (2015).
[Crossref]

M. Ohmori, P. Vitushinskiy, and H. Sakaki, “Diffusion process of excitons in the wetting layer and their trapping by quantum dots in sparsely spaced InAs quantum dot systems,” Appl. Phys. Lett. 98(13), 133109 (2011).
[Crossref]

IEE Proc., Optoelectron. (1)

M. Boroditsky, R. Coccioli, E. Yablonovitch, Y. Rahmat-Samii, and K. W. Kim, “Smallest possible electromagnetic mode volume in a dielectric cavity,” IEE Proc., Optoelectron. 145(6), 391–397 (1998).
[Crossref]

IEEE J. Quantum Electron. (1)

D. Marcuse, “Coupled mode theory of optical resonant cavities,” IEEE J. Quantum Electron. 21(11), 1819–1826 (1985).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

T. Asano, B.-S. Song, Y. Akahane, and S. Noda, “Ultrahigh-Q nanocavities in two-dimensional photonic crystal slabs,” IEEE J. Sel. Top. Quantum Electron. 12, 1123–1134 (2006).
[Crossref]

J. Appl. Phys. (1)

G. Vincent, A. Chantre, and D. Bois, “Electric field effect on the thermal emission of traps in semiconductor junctions,” J. Appl. Phys. 50(8), 5484 (1979).
[Crossref]

J. Opt. (1)

D. Wang, Z. Yu, Y. Liu, X. Guo, C. Shu, S. Zhou, and J. Zhang, “Ultrasmall modal volume and high Q factor optimization of a photonic crystal slab cavity,” J. Opt. 15(12), 125102 (2013).
[Crossref]

Nature (1)

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[Crossref] [PubMed]

Opt. Express (5)

Opt. Lett. (1)

Phys. Rev. (1)

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

Phys. Rev. A Gen. Phys. (1)

J. Baum, R. Tycko, and A. Pines, “Broadband and adiabatic inversion of a two-level system by phase-modulated pulses,” Phys. Rev. A Gen. Phys. 32(6), 3435–3447 (1985).
[Crossref] [PubMed]

Phys. Rev. B (2)

E. R. Schmidgall, P. R. Eastham, and R. T. Phillips, “Population inversion in quantum dot ensembles via adiabatic rapid passage,” Phys. Rev. B 81(19), 195306 (2010).
[Crossref]

P. W. Fry, I. E. Itskevich, S. R. Parnell, J. J. Finley, L. R. Wilson, K. L. Schumacher, D. J. Mowbray, M. S. Skolnick, M. Al-Khafaji, A. G. Cullis, M. Hopkinson, J. C. Clark, and G. Hill, “Photocurrent spectroscopy of InAs/GaAs self-assembled quantum dots,” Phys. Rev. B 62(24), 16784–16791 (2000).
[Crossref]

Phys. Rev. B Condens. Matter (1)

H. Hillmer, A. Forchel, S. Hansmann, M. Morohashi, E. Lopez, H. P. Meier, and K. Ploog, “Optical investigations on the mobility of two-dimensional excitons in GaAs/Ga1-xAlxAs quantum wells,” Phys. Rev. B Condens. Matter 39(15), 10901–10912 (1989).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

C.-M. Simon, T. Belhadj, B. Chatel, T. Amand, P. Renucci, A. Lemaitre, O. Krebs, P. A. Dalgarno, R. J. Warburton, X. Marie, and B. Urbaszek, “Robust quantum dot exciton generation via adiabatic passage with frequency-swept optical pulses,” Phys. Rev. Lett. 106(16), 166801 (2011).
[Crossref] [PubMed]

Proc. IEEE (1)

H. A. Haus and W. Huang, “Coupled-mode theory,” Proc. IEEE 79(10), 1505–1518 (1991).
[Crossref]

Sens. Actuators A Phys. (1)

Y. Zhang, Y. Zhao, and R. Lv, “A review for optical sensors based on photonic crystal cavities,” Sens. Actuators A Phys. 233, 374–389 (2015).
[Crossref]

Other (1)

J. D. Gaskill, Linear Systems, Fourier Transforms and Optics (Wiley, 1978).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) SEM image and schematic view of the investigated GaAs PhCC free standing membrane with metallic Schottky contact (highlighted for better contrast), (b) which is excited by a near-resonant (or resonant) ps-laser pulse. The n-i-Schottky photo diode is used for PC detection via WL band tail absorption. (c) E-field and corresponding envelope of the laser excitation pulse and (d) the resulting cavity response. The change of the carrier frequency versus time is a result of the detuning between cavity and laser. (e) Numeric results for the cavity response in the rotating reference frame of the laser field and (f) for the phase evolution of the cavity field in the rotation frame of the laser field.

Fig. 2
Fig. 2

(a) PhCC excited by two equal pulses with phase control by variable time delay t delay yielding destructive (top) and constructive (bottom) interference. (b) Extracted envelope functions corresponding to constructive and destructive case for laser (red, the arrows from (a) indicate the link between E-field and envelope) and cavity response (black). (c) Experimentally obtained interference patterns for laser and cavity signal. (d) Detailed view of the measured time averaged signal for laser and cavity. The signals exhibit a phase shift ϕ.

Fig. 3
Fig. 3

(a) Experimentally measured interference amplitude and phase for different detunings at T=4.2 K and an excitation power of 430 nW . (b) Room temperature data for weak detuning at an excitation power of 9.5 nW .

Fig. 4
Fig. 4

(a) Cavity response approximated by a complex field amplitude function E C (t) showing real part Re{ E C (t)} and envelope g L (t)=| E C (t)| of the cavity field. (b) Analytic solution for the autocorrelation amplitude and phase using the input parameters shown in Fig. 4(a).

Fig. 5
Fig. 5

(a) PhCC excited by two destructively interfering delayed pulses. The second pulse is attenuated with respect to the first pulse. (b) Time dependent cavity field envelopes for constructive and destructive interference. The second pulse cancels the cavity ring down. (c) Experimental observation of coherent control of the cavity field for pulses delayed by 9.2 ps (left) and 7.3 ps (right). The PC minima correspond to the conditions of cavity ring-down cancellation.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

E ˙ C (t)=i ω detuning E C (t)γ E C (t)+ μ in E L (t)
Χ( t delay )=C+Re{exp(i ω L t delay ) E C (t) E C (t t delay )dt }
E C (t){ e + γ 1 t ,t0 e γ 2 t e i ω detuning t ,t0
Χ( t delay )= c 1 e γ 1 t delay + c 2 e γ 2 t delay e i ω detuning t delay
c 1,2 = (2 γ 1,2 ) 1 ± (i ω detuning γ 2 + γ 1 ) 1

Metrics