Abstract

A miniature, robust, and highly sensitive optical fiber temperature sensor based on cascaded polymer-microbubble cavities was fabricated by polymer-filling and subsequent heat-curing process. The expansion of polymer cavity results in the compression of microbubble cavity when the sensor is heated. We demodulated the interference spectrum by means of the fast-Fourier transform (FFT) and signal filtering. Since the thermal response of the polymer cavity is positive and that of the microbubble cavity is negative, a high sensitivity of the temperature sensor is achieved by a subtraction between the two reciprocal thermal responses. Experimental results show that the sensitivity of the temperature sensor is as high as 5.013 nm/°C in the measurement range between 20 °C and 55 °C. Meanwhile, such a sensor has potential for mass production, owing to the simple, nontoxic, and cost-effective process of fabrication.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Compact fiber biocompatible temperature sensor based on a hermetically-sealed liquid-filling structure

Kunjian Cao, Yi Liu, and Shiliang Qu
Opt. Express 25(24) 29597-29604 (2017)

Compact optical fiber temperature sensor with high sensitivity based on liquid-filled silica capillary tube

Yu Mao, Yuxi Zhang, Ruikai Xue, Yi Liu, Kunjian Cao, and Shiliang Qu
Appl. Opt. 57(5) 1061-1066 (2018)

Measurement of milli-Newton axial force and temperature using a hybrid microsilica sphere Fabry–Perot sensor

Omid R. Ranjbar-Naeini, Hamid Latifi, Mohammad I. Zibaii, and Ali Mousavian
Opt. Lett. 43(21) 5210-5213 (2018)

References

  • View by:
  • |
  • |
  • |

  1. F. C. Favero, G. Bouwmans, V. Finazzi, J. Villatoro, and V. Pruneri, “Fabry-Perot interferometers built by photonic crystal fiber pressurization during fusion splicing,” Opt. Lett. 36(21), 4191–4193 (2011).
    [Crossref] [PubMed]
  2. S. Liu, Y. Wang, C. Liao, G. Wang, Z. Li, Q. Wang, J. Zhou, K. Yang, X. Zhong, J. Zhao, and J. Tang, “High-sensitivity strain sensor based on in-fiber improved Fabry-Perot interferometer,” Opt. Lett. 39(7), 2121–2124 (2014).
    [Crossref] [PubMed]
  3. E. B. Li, G. D. Peng, and X. Ding, “High spatial resolution fiber-optic Fizeau interferometric strain sensor based on an in-fiber spherical microcavity,” Appl. Phys. Lett. 92(10), 101117 (2008).
    [Crossref]
  4. J. Ma, J. Ju, L. Jin, and W. Jin, “A compact fiber-tip micro-cavity sensor for high-pressure measurement,” IEEE Photonics Technol. Lett. 23(21), 1561–1563 (2011).
    [Crossref]
  5. C. Liao, S. Liu, L. Xu, C. Wang, Y. Wang, Z. Li, Q. Wang, and D. N. Wang, “Sub-micron silica diaphragm-based fiber-tip Fabry-Perot interferometer for pressure measurement,” Opt. Lett. 39(10), 2827–2830 (2014).
    [Crossref] [PubMed]
  6. Y. Zhang, L. Yuan, X. Lan, A. Kaur, J. Huang, and H. Xiao, “High-temperature fiber-optic Fabry-Perot interferometric pressure sensor fabricated by femtosecond laser,” Opt. Lett. 38(22), 4609–4612 (2013).
    [Crossref] [PubMed]
  7. L. Yuan, J. Huang, X. Lan, H. Wang, L. Jiang, and H. Xiao, “All-in-fiber optofluidic sensor fabricated by femtosecond laser assisted chemical etching,” Opt. Lett. 39(8), 2358–2361 (2014).
    [Crossref] [PubMed]
  8. T. Wei, Y. Han, Y. Li, H. L. Tsai, and H. Xiao, “Temperature-insensitive miniaturized fiber inline Fabry-Perot interferometer for highly sensitive refractive index measurement,” Opt. Express 16(8), 5764–5769 (2008).
    [Crossref] [PubMed]
  9. J. Ma, J. Ju, L. Jin, W. Jin, and D. Wang, “Fiber-tip micro-cavity for temperature and transverse load sensing,” Opt. Express 19(13), 12418–12426 (2011).
    [Crossref] [PubMed]
  10. H. Y. Choi, K. S. Park, S. J. Park, U. C. Paek, B. H. Lee, and E. S. Choi, “Miniature fiber-optic high temperature sensor based on a hybrid structured Fabry-Perot interferometer,” Opt. Lett. 33(21), 2455–2457 (2008).
    [Crossref] [PubMed]
  11. Y. Liu, S. Qu, and Y. Li, “Single microchannel high-temperature fiber sensor by femtosecond laser-induced water breakdown,” Opt. Lett. 38(3), 335–337 (2013).
    [Crossref] [PubMed]
  12. A. Zhou, B. Qin, Z. Zhu, Y. Zhang, Z. Liu, J. Yang, and L. Yuan, “Hybrid structured fiber-optic Fabry-Perot interferometer for simultaneous measurement of strain and temperature,” Opt. Lett. 39(18), 5267–5270 (2014).
    [Crossref] [PubMed]
  13. J. L. Kou, J. Feng, L. Ye, F. Xu, and Y. Q. Lu, “Miniaturized fiber taper reflective interferometer for high temperature measurement,” Opt. Express 18(13), 14245–14250 (2010).
    [Crossref] [PubMed]
  14. X. L. Tan, Y. F. Geng, X. J. Li, Y. L. Deng, Z. Yin, and R. Gao, “UV-curable polymer microhemisphere-based fiber-optic Fabry-Perot interferometer for simultaneous measurement of refractive index and temperature,” IEEE Photonics J. 6(4), 7800208 (2014).
    [Crossref]
  15. B. Sun, Y. Wang, J. Qu, C. Liao, G. Yin, J. He, J. Zhou, J. Tang, S. Liu, Z. Li, and Y. Liu, “Simultaneous measurement of pressure and temperature by employing Fabry-Perot interferometer based on pendant polymer droplet,” Opt. Express 23(3), 1906–1911 (2015).
    [Crossref] [PubMed]
  16. C. L. Lee, L. H. Lee, H. E. Hwang, and J. M. Hsu, “Highly sensitive air-gap fiber Fabry-Pérot interferometers based on polymer-filled hollow core fibers,” IEEE Photonics Technol. Lett. 24(2), 149–151 (2012).
    [Crossref]
  17. M. Llera, T. Aellen, J. Hervas, Y. Salvadé, P. Senn, S. Le Floch, and H. Keppner, “Liquid-air based Fabry-Pérot cavity on fiber tip sensor,” Opt. Express 24(8), 8054–8065 (2016).
    [Crossref] [PubMed]
  18. K. M. Yang, J. He, Y. Wang, S. Liu, C. R. Liao, Z. Y. Li, G. L. Yin, B. Sun, and Y. P. Wang, “Ultrasensitive temperature sensor based on a fiber Fabry–Pérot interferometer created in a mercury-filled silica tube,” IEEE Photonics J. 7(6), 6803509 (2015).
    [Crossref]
  19. X. Wen, T. Ning, Y. Bai, C. Li, J. Li, and C. Zhang, “Ultrasensitive temperature fiber sensor based on Fabry-Pérot interferometer assisted with iron V-groove,” Opt. Express 23(9), 11526–11536 (2015).
    [Crossref] [PubMed]
  20. C. L. Lee, Y. C. Zheng, C. L. Ma, H. J. Chang, and C. F. Lee, “Dynamic micro-air-bubble drifted in a liquid core fiber Fabry-Pérot interferometer for directional fiber-optic level meter,” Appl. Phys. Lett. 102(19), 193504 (2013).
    [Crossref]
  21. X. L. Tan, X. J. Li, Y. F. Geng, Z. Yin, L. L. Wang, W. Y. Wang, and Y. L. Deng, “Polymer microbubble-based Fabry-Perot fiber interferometer and sensing applications,” IEEE Photonics Technol. Lett. 27(19), 2035–2038 (2015).
    [Crossref]
  22. H. Y. Choi, G. Mudhana, K. S. Park, U. C. Paek, and B. H. Lee, “Cross-talk free and ultra-compact fiber optic sensor for simultaneous measurement of temperature and refractive index,” Opt. Express 18(1), 141–149 (2010).
    [Crossref] [PubMed]
  23. J. Villatoro, V. P. Minkovich, and J. Zubia, “Photonic crystal fiber interferometric force sensor,” IEEE Photonics Technol. Lett. 27(11), 1181–1184 (2015).
    [Crossref]
  24. M. Tian, P. Lu, L. Chen, D. M. Liu, and M. H. Yang, “Micro multicavity Fabry-Pérot interferometers sensor in SMFs machined by femtosecond laser,” IEEE Photonics Technol. Lett. 25(16), 1609–1612 (2013).
    [Crossref]

2016 (1)

2015 (5)

B. Sun, Y. Wang, J. Qu, C. Liao, G. Yin, J. He, J. Zhou, J. Tang, S. Liu, Z. Li, and Y. Liu, “Simultaneous measurement of pressure and temperature by employing Fabry-Perot interferometer based on pendant polymer droplet,” Opt. Express 23(3), 1906–1911 (2015).
[Crossref] [PubMed]

X. Wen, T. Ning, Y. Bai, C. Li, J. Li, and C. Zhang, “Ultrasensitive temperature fiber sensor based on Fabry-Pérot interferometer assisted with iron V-groove,” Opt. Express 23(9), 11526–11536 (2015).
[Crossref] [PubMed]

X. L. Tan, X. J. Li, Y. F. Geng, Z. Yin, L. L. Wang, W. Y. Wang, and Y. L. Deng, “Polymer microbubble-based Fabry-Perot fiber interferometer and sensing applications,” IEEE Photonics Technol. Lett. 27(19), 2035–2038 (2015).
[Crossref]

J. Villatoro, V. P. Minkovich, and J. Zubia, “Photonic crystal fiber interferometric force sensor,” IEEE Photonics Technol. Lett. 27(11), 1181–1184 (2015).
[Crossref]

K. M. Yang, J. He, Y. Wang, S. Liu, C. R. Liao, Z. Y. Li, G. L. Yin, B. Sun, and Y. P. Wang, “Ultrasensitive temperature sensor based on a fiber Fabry–Pérot interferometer created in a mercury-filled silica tube,” IEEE Photonics J. 7(6), 6803509 (2015).
[Crossref]

2014 (5)

2013 (4)

M. Tian, P. Lu, L. Chen, D. M. Liu, and M. H. Yang, “Micro multicavity Fabry-Pérot interferometers sensor in SMFs machined by femtosecond laser,” IEEE Photonics Technol. Lett. 25(16), 1609–1612 (2013).
[Crossref]

C. L. Lee, Y. C. Zheng, C. L. Ma, H. J. Chang, and C. F. Lee, “Dynamic micro-air-bubble drifted in a liquid core fiber Fabry-Pérot interferometer for directional fiber-optic level meter,” Appl. Phys. Lett. 102(19), 193504 (2013).
[Crossref]

Y. Liu, S. Qu, and Y. Li, “Single microchannel high-temperature fiber sensor by femtosecond laser-induced water breakdown,” Opt. Lett. 38(3), 335–337 (2013).
[Crossref] [PubMed]

Y. Zhang, L. Yuan, X. Lan, A. Kaur, J. Huang, and H. Xiao, “High-temperature fiber-optic Fabry-Perot interferometric pressure sensor fabricated by femtosecond laser,” Opt. Lett. 38(22), 4609–4612 (2013).
[Crossref] [PubMed]

2012 (1)

C. L. Lee, L. H. Lee, H. E. Hwang, and J. M. Hsu, “Highly sensitive air-gap fiber Fabry-Pérot interferometers based on polymer-filled hollow core fibers,” IEEE Photonics Technol. Lett. 24(2), 149–151 (2012).
[Crossref]

2011 (3)

2010 (2)

2008 (3)

Aellen, T.

Bai, Y.

Bouwmans, G.

Chang, H. J.

C. L. Lee, Y. C. Zheng, C. L. Ma, H. J. Chang, and C. F. Lee, “Dynamic micro-air-bubble drifted in a liquid core fiber Fabry-Pérot interferometer for directional fiber-optic level meter,” Appl. Phys. Lett. 102(19), 193504 (2013).
[Crossref]

Chen, L.

M. Tian, P. Lu, L. Chen, D. M. Liu, and M. H. Yang, “Micro multicavity Fabry-Pérot interferometers sensor in SMFs machined by femtosecond laser,” IEEE Photonics Technol. Lett. 25(16), 1609–1612 (2013).
[Crossref]

Choi, E. S.

Choi, H. Y.

Deng, Y. L.

X. L. Tan, X. J. Li, Y. F. Geng, Z. Yin, L. L. Wang, W. Y. Wang, and Y. L. Deng, “Polymer microbubble-based Fabry-Perot fiber interferometer and sensing applications,” IEEE Photonics Technol. Lett. 27(19), 2035–2038 (2015).
[Crossref]

X. L. Tan, Y. F. Geng, X. J. Li, Y. L. Deng, Z. Yin, and R. Gao, “UV-curable polymer microhemisphere-based fiber-optic Fabry-Perot interferometer for simultaneous measurement of refractive index and temperature,” IEEE Photonics J. 6(4), 7800208 (2014).
[Crossref]

Ding, X.

E. B. Li, G. D. Peng, and X. Ding, “High spatial resolution fiber-optic Fizeau interferometric strain sensor based on an in-fiber spherical microcavity,” Appl. Phys. Lett. 92(10), 101117 (2008).
[Crossref]

Favero, F. C.

Feng, J.

Finazzi, V.

Gao, R.

X. L. Tan, Y. F. Geng, X. J. Li, Y. L. Deng, Z. Yin, and R. Gao, “UV-curable polymer microhemisphere-based fiber-optic Fabry-Perot interferometer for simultaneous measurement of refractive index and temperature,” IEEE Photonics J. 6(4), 7800208 (2014).
[Crossref]

Geng, Y. F.

X. L. Tan, X. J. Li, Y. F. Geng, Z. Yin, L. L. Wang, W. Y. Wang, and Y. L. Deng, “Polymer microbubble-based Fabry-Perot fiber interferometer and sensing applications,” IEEE Photonics Technol. Lett. 27(19), 2035–2038 (2015).
[Crossref]

X. L. Tan, Y. F. Geng, X. J. Li, Y. L. Deng, Z. Yin, and R. Gao, “UV-curable polymer microhemisphere-based fiber-optic Fabry-Perot interferometer for simultaneous measurement of refractive index and temperature,” IEEE Photonics J. 6(4), 7800208 (2014).
[Crossref]

Han, Y.

He, J.

K. M. Yang, J. He, Y. Wang, S. Liu, C. R. Liao, Z. Y. Li, G. L. Yin, B. Sun, and Y. P. Wang, “Ultrasensitive temperature sensor based on a fiber Fabry–Pérot interferometer created in a mercury-filled silica tube,” IEEE Photonics J. 7(6), 6803509 (2015).
[Crossref]

B. Sun, Y. Wang, J. Qu, C. Liao, G. Yin, J. He, J. Zhou, J. Tang, S. Liu, Z. Li, and Y. Liu, “Simultaneous measurement of pressure and temperature by employing Fabry-Perot interferometer based on pendant polymer droplet,” Opt. Express 23(3), 1906–1911 (2015).
[Crossref] [PubMed]

Hervas, J.

Hsu, J. M.

C. L. Lee, L. H. Lee, H. E. Hwang, and J. M. Hsu, “Highly sensitive air-gap fiber Fabry-Pérot interferometers based on polymer-filled hollow core fibers,” IEEE Photonics Technol. Lett. 24(2), 149–151 (2012).
[Crossref]

Huang, J.

Hwang, H. E.

C. L. Lee, L. H. Lee, H. E. Hwang, and J. M. Hsu, “Highly sensitive air-gap fiber Fabry-Pérot interferometers based on polymer-filled hollow core fibers,” IEEE Photonics Technol. Lett. 24(2), 149–151 (2012).
[Crossref]

Jiang, L.

Jin, L.

J. Ma, J. Ju, L. Jin, and W. Jin, “A compact fiber-tip micro-cavity sensor for high-pressure measurement,” IEEE Photonics Technol. Lett. 23(21), 1561–1563 (2011).
[Crossref]

J. Ma, J. Ju, L. Jin, W. Jin, and D. Wang, “Fiber-tip micro-cavity for temperature and transverse load sensing,” Opt. Express 19(13), 12418–12426 (2011).
[Crossref] [PubMed]

Jin, W.

J. Ma, J. Ju, L. Jin, W. Jin, and D. Wang, “Fiber-tip micro-cavity for temperature and transverse load sensing,” Opt. Express 19(13), 12418–12426 (2011).
[Crossref] [PubMed]

J. Ma, J. Ju, L. Jin, and W. Jin, “A compact fiber-tip micro-cavity sensor for high-pressure measurement,” IEEE Photonics Technol. Lett. 23(21), 1561–1563 (2011).
[Crossref]

Ju, J.

J. Ma, J. Ju, L. Jin, and W. Jin, “A compact fiber-tip micro-cavity sensor for high-pressure measurement,” IEEE Photonics Technol. Lett. 23(21), 1561–1563 (2011).
[Crossref]

J. Ma, J. Ju, L. Jin, W. Jin, and D. Wang, “Fiber-tip micro-cavity for temperature and transverse load sensing,” Opt. Express 19(13), 12418–12426 (2011).
[Crossref] [PubMed]

Kaur, A.

Keppner, H.

Kou, J. L.

Lan, X.

Le Floch, S.

Lee, B. H.

Lee, C. F.

C. L. Lee, Y. C. Zheng, C. L. Ma, H. J. Chang, and C. F. Lee, “Dynamic micro-air-bubble drifted in a liquid core fiber Fabry-Pérot interferometer for directional fiber-optic level meter,” Appl. Phys. Lett. 102(19), 193504 (2013).
[Crossref]

Lee, C. L.

C. L. Lee, Y. C. Zheng, C. L. Ma, H. J. Chang, and C. F. Lee, “Dynamic micro-air-bubble drifted in a liquid core fiber Fabry-Pérot interferometer for directional fiber-optic level meter,” Appl. Phys. Lett. 102(19), 193504 (2013).
[Crossref]

C. L. Lee, L. H. Lee, H. E. Hwang, and J. M. Hsu, “Highly sensitive air-gap fiber Fabry-Pérot interferometers based on polymer-filled hollow core fibers,” IEEE Photonics Technol. Lett. 24(2), 149–151 (2012).
[Crossref]

Lee, L. H.

C. L. Lee, L. H. Lee, H. E. Hwang, and J. M. Hsu, “Highly sensitive air-gap fiber Fabry-Pérot interferometers based on polymer-filled hollow core fibers,” IEEE Photonics Technol. Lett. 24(2), 149–151 (2012).
[Crossref]

Li, C.

Li, E. B.

E. B. Li, G. D. Peng, and X. Ding, “High spatial resolution fiber-optic Fizeau interferometric strain sensor based on an in-fiber spherical microcavity,” Appl. Phys. Lett. 92(10), 101117 (2008).
[Crossref]

Li, J.

Li, X. J.

X. L. Tan, X. J. Li, Y. F. Geng, Z. Yin, L. L. Wang, W. Y. Wang, and Y. L. Deng, “Polymer microbubble-based Fabry-Perot fiber interferometer and sensing applications,” IEEE Photonics Technol. Lett. 27(19), 2035–2038 (2015).
[Crossref]

X. L. Tan, Y. F. Geng, X. J. Li, Y. L. Deng, Z. Yin, and R. Gao, “UV-curable polymer microhemisphere-based fiber-optic Fabry-Perot interferometer for simultaneous measurement of refractive index and temperature,” IEEE Photonics J. 6(4), 7800208 (2014).
[Crossref]

Li, Y.

Li, Z.

Li, Z. Y.

K. M. Yang, J. He, Y. Wang, S. Liu, C. R. Liao, Z. Y. Li, G. L. Yin, B. Sun, and Y. P. Wang, “Ultrasensitive temperature sensor based on a fiber Fabry–Pérot interferometer created in a mercury-filled silica tube,” IEEE Photonics J. 7(6), 6803509 (2015).
[Crossref]

Liao, C.

Liao, C. R.

K. M. Yang, J. He, Y. Wang, S. Liu, C. R. Liao, Z. Y. Li, G. L. Yin, B. Sun, and Y. P. Wang, “Ultrasensitive temperature sensor based on a fiber Fabry–Pérot interferometer created in a mercury-filled silica tube,” IEEE Photonics J. 7(6), 6803509 (2015).
[Crossref]

Liu, D. M.

M. Tian, P. Lu, L. Chen, D. M. Liu, and M. H. Yang, “Micro multicavity Fabry-Pérot interferometers sensor in SMFs machined by femtosecond laser,” IEEE Photonics Technol. Lett. 25(16), 1609–1612 (2013).
[Crossref]

Liu, S.

Liu, Y.

Liu, Z.

Llera, M.

Lu, P.

M. Tian, P. Lu, L. Chen, D. M. Liu, and M. H. Yang, “Micro multicavity Fabry-Pérot interferometers sensor in SMFs machined by femtosecond laser,” IEEE Photonics Technol. Lett. 25(16), 1609–1612 (2013).
[Crossref]

Lu, Y. Q.

Ma, C. L.

C. L. Lee, Y. C. Zheng, C. L. Ma, H. J. Chang, and C. F. Lee, “Dynamic micro-air-bubble drifted in a liquid core fiber Fabry-Pérot interferometer for directional fiber-optic level meter,” Appl. Phys. Lett. 102(19), 193504 (2013).
[Crossref]

Ma, J.

J. Ma, J. Ju, L. Jin, and W. Jin, “A compact fiber-tip micro-cavity sensor for high-pressure measurement,” IEEE Photonics Technol. Lett. 23(21), 1561–1563 (2011).
[Crossref]

J. Ma, J. Ju, L. Jin, W. Jin, and D. Wang, “Fiber-tip micro-cavity for temperature and transverse load sensing,” Opt. Express 19(13), 12418–12426 (2011).
[Crossref] [PubMed]

Minkovich, V. P.

J. Villatoro, V. P. Minkovich, and J. Zubia, “Photonic crystal fiber interferometric force sensor,” IEEE Photonics Technol. Lett. 27(11), 1181–1184 (2015).
[Crossref]

Mudhana, G.

Ning, T.

Paek, U. C.

Park, K. S.

Park, S. J.

Peng, G. D.

E. B. Li, G. D. Peng, and X. Ding, “High spatial resolution fiber-optic Fizeau interferometric strain sensor based on an in-fiber spherical microcavity,” Appl. Phys. Lett. 92(10), 101117 (2008).
[Crossref]

Pruneri, V.

Qin, B.

Qu, J.

Qu, S.

Salvadé, Y.

Senn, P.

Sun, B.

B. Sun, Y. Wang, J. Qu, C. Liao, G. Yin, J. He, J. Zhou, J. Tang, S. Liu, Z. Li, and Y. Liu, “Simultaneous measurement of pressure and temperature by employing Fabry-Perot interferometer based on pendant polymer droplet,” Opt. Express 23(3), 1906–1911 (2015).
[Crossref] [PubMed]

K. M. Yang, J. He, Y. Wang, S. Liu, C. R. Liao, Z. Y. Li, G. L. Yin, B. Sun, and Y. P. Wang, “Ultrasensitive temperature sensor based on a fiber Fabry–Pérot interferometer created in a mercury-filled silica tube,” IEEE Photonics J. 7(6), 6803509 (2015).
[Crossref]

Tan, X. L.

X. L. Tan, X. J. Li, Y. F. Geng, Z. Yin, L. L. Wang, W. Y. Wang, and Y. L. Deng, “Polymer microbubble-based Fabry-Perot fiber interferometer and sensing applications,” IEEE Photonics Technol. Lett. 27(19), 2035–2038 (2015).
[Crossref]

X. L. Tan, Y. F. Geng, X. J. Li, Y. L. Deng, Z. Yin, and R. Gao, “UV-curable polymer microhemisphere-based fiber-optic Fabry-Perot interferometer for simultaneous measurement of refractive index and temperature,” IEEE Photonics J. 6(4), 7800208 (2014).
[Crossref]

Tang, J.

Tian, M.

M. Tian, P. Lu, L. Chen, D. M. Liu, and M. H. Yang, “Micro multicavity Fabry-Pérot interferometers sensor in SMFs machined by femtosecond laser,” IEEE Photonics Technol. Lett. 25(16), 1609–1612 (2013).
[Crossref]

Tsai, H. L.

Villatoro, J.

J. Villatoro, V. P. Minkovich, and J. Zubia, “Photonic crystal fiber interferometric force sensor,” IEEE Photonics Technol. Lett. 27(11), 1181–1184 (2015).
[Crossref]

F. C. Favero, G. Bouwmans, V. Finazzi, J. Villatoro, and V. Pruneri, “Fabry-Perot interferometers built by photonic crystal fiber pressurization during fusion splicing,” Opt. Lett. 36(21), 4191–4193 (2011).
[Crossref] [PubMed]

Wang, C.

Wang, D.

Wang, D. N.

Wang, G.

Wang, H.

Wang, L. L.

X. L. Tan, X. J. Li, Y. F. Geng, Z. Yin, L. L. Wang, W. Y. Wang, and Y. L. Deng, “Polymer microbubble-based Fabry-Perot fiber interferometer and sensing applications,” IEEE Photonics Technol. Lett. 27(19), 2035–2038 (2015).
[Crossref]

Wang, Q.

Wang, W. Y.

X. L. Tan, X. J. Li, Y. F. Geng, Z. Yin, L. L. Wang, W. Y. Wang, and Y. L. Deng, “Polymer microbubble-based Fabry-Perot fiber interferometer and sensing applications,” IEEE Photonics Technol. Lett. 27(19), 2035–2038 (2015).
[Crossref]

Wang, Y.

Wang, Y. P.

K. M. Yang, J. He, Y. Wang, S. Liu, C. R. Liao, Z. Y. Li, G. L. Yin, B. Sun, and Y. P. Wang, “Ultrasensitive temperature sensor based on a fiber Fabry–Pérot interferometer created in a mercury-filled silica tube,” IEEE Photonics J. 7(6), 6803509 (2015).
[Crossref]

Wei, T.

Wen, X.

Xiao, H.

Xu, F.

Xu, L.

Yang, J.

Yang, K.

Yang, K. M.

K. M. Yang, J. He, Y. Wang, S. Liu, C. R. Liao, Z. Y. Li, G. L. Yin, B. Sun, and Y. P. Wang, “Ultrasensitive temperature sensor based on a fiber Fabry–Pérot interferometer created in a mercury-filled silica tube,” IEEE Photonics J. 7(6), 6803509 (2015).
[Crossref]

Yang, M. H.

M. Tian, P. Lu, L. Chen, D. M. Liu, and M. H. Yang, “Micro multicavity Fabry-Pérot interferometers sensor in SMFs machined by femtosecond laser,” IEEE Photonics Technol. Lett. 25(16), 1609–1612 (2013).
[Crossref]

Ye, L.

Yin, G.

Yin, G. L.

K. M. Yang, J. He, Y. Wang, S. Liu, C. R. Liao, Z. Y. Li, G. L. Yin, B. Sun, and Y. P. Wang, “Ultrasensitive temperature sensor based on a fiber Fabry–Pérot interferometer created in a mercury-filled silica tube,” IEEE Photonics J. 7(6), 6803509 (2015).
[Crossref]

Yin, Z.

X. L. Tan, X. J. Li, Y. F. Geng, Z. Yin, L. L. Wang, W. Y. Wang, and Y. L. Deng, “Polymer microbubble-based Fabry-Perot fiber interferometer and sensing applications,” IEEE Photonics Technol. Lett. 27(19), 2035–2038 (2015).
[Crossref]

X. L. Tan, Y. F. Geng, X. J. Li, Y. L. Deng, Z. Yin, and R. Gao, “UV-curable polymer microhemisphere-based fiber-optic Fabry-Perot interferometer for simultaneous measurement of refractive index and temperature,” IEEE Photonics J. 6(4), 7800208 (2014).
[Crossref]

Yuan, L.

Zhang, C.

Zhang, Y.

Zhao, J.

Zheng, Y. C.

C. L. Lee, Y. C. Zheng, C. L. Ma, H. J. Chang, and C. F. Lee, “Dynamic micro-air-bubble drifted in a liquid core fiber Fabry-Pérot interferometer for directional fiber-optic level meter,” Appl. Phys. Lett. 102(19), 193504 (2013).
[Crossref]

Zhong, X.

Zhou, A.

Zhou, J.

Zhu, Z.

Zubia, J.

J. Villatoro, V. P. Minkovich, and J. Zubia, “Photonic crystal fiber interferometric force sensor,” IEEE Photonics Technol. Lett. 27(11), 1181–1184 (2015).
[Crossref]

Appl. Phys. Lett. (2)

E. B. Li, G. D. Peng, and X. Ding, “High spatial resolution fiber-optic Fizeau interferometric strain sensor based on an in-fiber spherical microcavity,” Appl. Phys. Lett. 92(10), 101117 (2008).
[Crossref]

C. L. Lee, Y. C. Zheng, C. L. Ma, H. J. Chang, and C. F. Lee, “Dynamic micro-air-bubble drifted in a liquid core fiber Fabry-Pérot interferometer for directional fiber-optic level meter,” Appl. Phys. Lett. 102(19), 193504 (2013).
[Crossref]

IEEE Photonics J. (2)

X. L. Tan, Y. F. Geng, X. J. Li, Y. L. Deng, Z. Yin, and R. Gao, “UV-curable polymer microhemisphere-based fiber-optic Fabry-Perot interferometer for simultaneous measurement of refractive index and temperature,” IEEE Photonics J. 6(4), 7800208 (2014).
[Crossref]

K. M. Yang, J. He, Y. Wang, S. Liu, C. R. Liao, Z. Y. Li, G. L. Yin, B. Sun, and Y. P. Wang, “Ultrasensitive temperature sensor based on a fiber Fabry–Pérot interferometer created in a mercury-filled silica tube,” IEEE Photonics J. 7(6), 6803509 (2015).
[Crossref]

IEEE Photonics Technol. Lett. (5)

C. L. Lee, L. H. Lee, H. E. Hwang, and J. M. Hsu, “Highly sensitive air-gap fiber Fabry-Pérot interferometers based on polymer-filled hollow core fibers,” IEEE Photonics Technol. Lett. 24(2), 149–151 (2012).
[Crossref]

J. Ma, J. Ju, L. Jin, and W. Jin, “A compact fiber-tip micro-cavity sensor for high-pressure measurement,” IEEE Photonics Technol. Lett. 23(21), 1561–1563 (2011).
[Crossref]

X. L. Tan, X. J. Li, Y. F. Geng, Z. Yin, L. L. Wang, W. Y. Wang, and Y. L. Deng, “Polymer microbubble-based Fabry-Perot fiber interferometer and sensing applications,” IEEE Photonics Technol. Lett. 27(19), 2035–2038 (2015).
[Crossref]

J. Villatoro, V. P. Minkovich, and J. Zubia, “Photonic crystal fiber interferometric force sensor,” IEEE Photonics Technol. Lett. 27(11), 1181–1184 (2015).
[Crossref]

M. Tian, P. Lu, L. Chen, D. M. Liu, and M. H. Yang, “Micro multicavity Fabry-Pérot interferometers sensor in SMFs machined by femtosecond laser,” IEEE Photonics Technol. Lett. 25(16), 1609–1612 (2013).
[Crossref]

Opt. Express (7)

H. Y. Choi, G. Mudhana, K. S. Park, U. C. Paek, and B. H. Lee, “Cross-talk free and ultra-compact fiber optic sensor for simultaneous measurement of temperature and refractive index,” Opt. Express 18(1), 141–149 (2010).
[Crossref] [PubMed]

J. L. Kou, J. Feng, L. Ye, F. Xu, and Y. Q. Lu, “Miniaturized fiber taper reflective interferometer for high temperature measurement,” Opt. Express 18(13), 14245–14250 (2010).
[Crossref] [PubMed]

T. Wei, Y. Han, Y. Li, H. L. Tsai, and H. Xiao, “Temperature-insensitive miniaturized fiber inline Fabry-Perot interferometer for highly sensitive refractive index measurement,” Opt. Express 16(8), 5764–5769 (2008).
[Crossref] [PubMed]

J. Ma, J. Ju, L. Jin, W. Jin, and D. Wang, “Fiber-tip micro-cavity for temperature and transverse load sensing,” Opt. Express 19(13), 12418–12426 (2011).
[Crossref] [PubMed]

M. Llera, T. Aellen, J. Hervas, Y. Salvadé, P. Senn, S. Le Floch, and H. Keppner, “Liquid-air based Fabry-Pérot cavity on fiber tip sensor,” Opt. Express 24(8), 8054–8065 (2016).
[Crossref] [PubMed]

X. Wen, T. Ning, Y. Bai, C. Li, J. Li, and C. Zhang, “Ultrasensitive temperature fiber sensor based on Fabry-Pérot interferometer assisted with iron V-groove,” Opt. Express 23(9), 11526–11536 (2015).
[Crossref] [PubMed]

B. Sun, Y. Wang, J. Qu, C. Liao, G. Yin, J. He, J. Zhou, J. Tang, S. Liu, Z. Li, and Y. Liu, “Simultaneous measurement of pressure and temperature by employing Fabry-Perot interferometer based on pendant polymer droplet,” Opt. Express 23(3), 1906–1911 (2015).
[Crossref] [PubMed]

Opt. Lett. (8)

F. C. Favero, G. Bouwmans, V. Finazzi, J. Villatoro, and V. Pruneri, “Fabry-Perot interferometers built by photonic crystal fiber pressurization during fusion splicing,” Opt. Lett. 36(21), 4191–4193 (2011).
[Crossref] [PubMed]

S. Liu, Y. Wang, C. Liao, G. Wang, Z. Li, Q. Wang, J. Zhou, K. Yang, X. Zhong, J. Zhao, and J. Tang, “High-sensitivity strain sensor based on in-fiber improved Fabry-Perot interferometer,” Opt. Lett. 39(7), 2121–2124 (2014).
[Crossref] [PubMed]

H. Y. Choi, K. S. Park, S. J. Park, U. C. Paek, B. H. Lee, and E. S. Choi, “Miniature fiber-optic high temperature sensor based on a hybrid structured Fabry-Perot interferometer,” Opt. Lett. 33(21), 2455–2457 (2008).
[Crossref] [PubMed]

Y. Liu, S. Qu, and Y. Li, “Single microchannel high-temperature fiber sensor by femtosecond laser-induced water breakdown,” Opt. Lett. 38(3), 335–337 (2013).
[Crossref] [PubMed]

A. Zhou, B. Qin, Z. Zhu, Y. Zhang, Z. Liu, J. Yang, and L. Yuan, “Hybrid structured fiber-optic Fabry-Perot interferometer for simultaneous measurement of strain and temperature,” Opt. Lett. 39(18), 5267–5270 (2014).
[Crossref] [PubMed]

C. Liao, S. Liu, L. Xu, C. Wang, Y. Wang, Z. Li, Q. Wang, and D. N. Wang, “Sub-micron silica diaphragm-based fiber-tip Fabry-Perot interferometer for pressure measurement,” Opt. Lett. 39(10), 2827–2830 (2014).
[Crossref] [PubMed]

Y. Zhang, L. Yuan, X. Lan, A. Kaur, J. Huang, and H. Xiao, “High-temperature fiber-optic Fabry-Perot interferometric pressure sensor fabricated by femtosecond laser,” Opt. Lett. 38(22), 4609–4612 (2013).
[Crossref] [PubMed]

L. Yuan, J. Huang, X. Lan, H. Wang, L. Jiang, and H. Xiao, “All-in-fiber optofluidic sensor fabricated by femtosecond laser assisted chemical etching,” Opt. Lett. 39(8), 2358–2361 (2014).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic diagram of the fabrication process of the temperature sensor.
Fig. 2
Fig. 2 Temperature sensor based on cascaded polymer-microbubble cavities: (a) Microscope image; (b) Schematic diagram; (c) Interference spectrum.
Fig. 3
Fig. 3 Spatial frequency spectrum obtained by FFT.
Fig. 4
Fig. 4 Demodulation of the interference spectrum by signal filtering. (a) Demodulated interference spectrum of the polymer cavity (cavity I); (b) Demodulated interference spectrum of the microbubble cavity (cavity II).
Fig. 5
Fig. 5 Thermal response of the interference spectrum: (a) cavity I and (b) cavity II. (c) Thermal response of dip wavelength at 1415.9 nm caused by cavity I with the temperature increasing. (d) Thermal response of dip wavelength at 1583.6 nm caused by cavity II with the temperature increasing.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

I= I 1 + I 2 + I 3 2 I 1 I 2 cos( 4π n p L 1 λ + φ 10 ) 2 I 2 I 3 cos( 4π n air L 2 λ + φ 20 ) +2 I 1 I 3 cos( 4π( n p L 1 + n air L 2 ) λ + φ 30 )
4πnL λ m + φ 0 =(2m+1)π,m=0.1.2.3.....
λ m / T = 4 2m+1 (L dn dT +n dL dT ),m=0.1.2.3......

Metrics