Abstract

The ultraviolet (UV) range presents new challenges for plasmonics, with interesting applications ranging from engineering to biology. In previous research, gallium, aluminum, and magnesium were found to be very promising UV plasmonic metals. However, a native oxide shell surrounds nanostructures of these metals that affects their plasmonic response. Here, through a nanoparticle-oxide core-shell model, we present a detailed electromagnetic analysis of how oxidation alters the UV-plasmonic response of spherical or hemisphere-on-substrate nanostructures made of those metals by analyzing the spectral evolution of two parameters: the absorption efficiency (far-field analysis) and the enhancement of the local intensity averaged over the nanoparticle surface (near-field analysis).

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Device performance of inverted polymer solar cells with AgSiO2 nanoparticles in active layer

Lee-Woon Jang, Hanok Park, Soo-Hyoung Lee, Alexander Y. Polyakov, Rizwan Khan, Jin-Kyu Yang, and In-Hwan Lee
Opt. Express 23(7) A211-A218 (2015)

Oxide mediated spectral shifting in aluminum resonant optical antennas

Patrick M. Schwab, Carola Moosmann, Katja Dopf, and Hans-Jürgen Eisler
Opt. Express 23(20) 26533-26543 (2015)

Layer-by-layer self-assembly of plexcitonic nanoparticles

Brendan G. DeLacy, Wenjun Qiu, Marin Soljačić, Chia Wei Hsu, Owen D. Miller, Steven G. Johnson, and John D. Joannopoulos
Opt. Express 21(16) 19103-19112 (2013)

References

  • View by:
  • |
  • |
  • |

  1. S. A. Maier, Plasmonics: Fundamentals and Applications (SpringerUS, 2007).
  2. K. Aslan, J. R. Lakowicz, and C. D. Geddes, “Plasmon light scattering in biology and medicine: new sensing approaches, visions and perspectives,” Curr. Opin. Chem. Biol. 9(5), 538–544 (2005).
    [Crossref] [PubMed]
  3. I. Lieberman, G. Shemer, T. Fried, E. M. Kosower, and G. Markovich, “Plasmon-resonance-enhanced absorption and circular dichroism,” Angew. Chem. Int. Ed. 47(26), 4855–4857 (2008).
    [Crossref]
  4. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
    [Crossref] [PubMed]
  5. A. Taguchi, N. Hayazawa, K. Furusawa, H. Ishitobi, and S. Kawata, “Deep-UV tip-enhanced Raman scattering,” J. Raman Spectrosc. 40(9), 1324–1330 (2009).
    [Crossref]
  6. M. H. Chowdhury, K. Ray, S. K. Gray, J. Pond, and J. R. Lakowicz, “Aluminum nanoparticles as substrates for metal-enhanced fluorescence in the ultraviolet for the label-free detection of biomolecules,” Anal. Chem. 81(4), 1397–1403 (2009).
    [Crossref] [PubMed]
  7. J. M. Sanz, D. Ortiz, R. Alcaraz de la Osa, J. M. Saiz, F. González, a. S. Brown, M. Losurdo, H. O. Everitt, and F. Moreno, “UV plasmonic behavior of various metal nanoparticles in the near- and far-field regimes: geometry and substrate effects,” J. Phys. Chem. C 117(38), 19606–19615 (2013).
    [Crossref]
  8. M. W. Knight, L. Liu, Y. Wang, L. Brown, S. Mukherjee, N. S. King, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum plasmonic nanoantennas,” Nano Lett. 12(11), 6000–6004 (2012).
    [Crossref] [PubMed]
  9. M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano 8(1), 834–840 (2014).
    [Crossref]
  10. E. J. Zeman and G. C. Schatz, “An accurate electromagnetic theory study of surface enhancement factors for Ag, Au, Cu, Li, Na, AI, Ga, In, Zn, and Cd,” J. Phys. Chem. 91(14), 634–643 (1987).
    [Crossref]
  11. P. Albella, B. Garcia-Cueto, F. González, F. Moreno, P. C. Wu, T. H. Kim, A. Brown, Y. Yang, H. O. Everitt, and G. Videen, “Shape matters: plasmonic nanoparticle shape enhances interaction with dielectric substrate,” Nano Lett. 11(9), 3531–3537 (2011).
    [Crossref] [PubMed]
  12. Y. Yang, N. Akozbek, T.-h. Kim, J. M. Sanz, F. Moreno, M. Losurdo, A. S. Brown, and H. O. Everitt, “Ultraviolet–visible plasmonic properties of gallium nanoparticles investigated by variable-angle spectroscopic and Mueller matrix ellipsometry,” ACS Photonics 1(7), 582–589 (2014).
    [Crossref]
  13. P. C. Wu, M. Losurdo, T. H. Kim, B. Garcia-Cueto, F. Moreno, G. Bruno, and A. S. Brown, “Ga-Mg core-shell nanosystem for a novel full color plasmonics,” J. Phys. Chem. C 115(28), 13571–13576 (2011).
    [Crossref]
  14. F. Sterl, N. Strohfeldt, R. Walter, R. Griessen, A. Tittl, and H. Giessen, “Magnesium as novel material for active plasmonics in the visible wavelength range,” Nano Lett. 15(12), 7949–7955 (2015).
    [Crossref] [PubMed]
  15. A. M. Watson, X. Zhang, R. Alcaraz de la Osa, J. Marcos Sanz, F. González, F. Moreno, G. Finkelstein, J. Liu, and H. O. Everitt, “Rhodium nanoparticles for ultraviolet plasmonics,” Nano Lett. 15(2), 1095–1100 (2015).
    [Crossref] [PubMed]
  16. R. Alcaraz de la Osa, J. M. Sanz, A. I. Barreda, J. M. Saiz, F. González, H. O. Everitt, and F. Moreno, “Rhodium tripod stars for UV plasmonics,” J. Phys. Chem. C 119(22), 12572–12580 (2015).
    [Crossref]
  17. X. Zhang, P. Li, Á. Barreda, Y. Gutiérrez, F. González, F. Moreno, H. O. Everitt, and J. Liu, “Size-tunable rhodium nanostructures for wavelength-tunable ultraviolet plasmonics,” Nanoscale Horiz. 1(1), 75–80 (2016).
    [Crossref]
  18. M. Pelton, J. Aizpurua, and G. Bryant, “Metal-nanoparticle plasmonics,” Laser Photon. Rev 2(3), 136–159 (2008).
    [Crossref]
  19. A. Kuzma, M. Weis, S. Flickyngerova, J. Jakabovic, A. Satka, E. Dobrocka, J. Chlpik, J. Cirak, M. Donoval, P. Telek, F. Uherek, and D. Donoval, “Influence of surface oxidation on plasmon resonance in monolayer of gold and silver nanoparticles,” J. Appl. Phys 112(10), 103531 (2012).
    [Crossref]
  20. B. T. Draine and P. J. Flatau, “Discrete-dipole approximation for scattering calculations,” J. Opt. Soc. Am. A 11(4), 1491–1499 (1994).
    [Crossref]
  21. G. H. Chan, J. Zhao, G. C. Schatz, and R. P. V. Duyne, “Localized surface plasmon resonance spectroscopy of triangular aluminum nanoparticles,” J. Phys. Chem. C 112(36), 13958–13963 (2008).
    [Crossref]
  22. W. M. Haynes, CRC Handbook of Chemistry and Physics (Taylor and Francis Group, 2014).
  23. P. C. Wu, M. Losurdo, T.-H. Kim, S. Choi, G. Bruno, and A. S. Brown, “In situ spectroscopic ellipsometry to monitor surface plasmon resonant group-III metals deposited by molecular beam epitaxy,” J. Vac. Sci. Technol. B 25(3), 1019 (2007).
    [Crossref]
  24. P. Alonso-González, P. Albella, F. Neubrech, C. Huck, J. Chen, F. Golmar, F. Casanova, L. E. Hueso, A. Pucci, J. Aizpurua, and R. Hillenbrand, “Experimental verification of the spectral shift between near- and far-field peak intensities of plasmonic infrared nanoantennas,” Phys. Rev. Lett. 110(20), 1–6 (2013).
    [Crossref]
  25. F. Moreno, P. Albella, and M. Nieto-Vesperinas, “Analysis of the spectral behavior of localized plasmon resonances in the near- and far-field regimes,” Langmuir 29(22), 6715–6721 (2013).
    [Crossref] [PubMed]
  26. B. Sharma, R. R. Frontiera, A.I. Henry, E. Ringe, and R. P. Van Duyne, “SERS: materials, applications, and the future,” Mater. Today 15(1), 16–25 (2012).
    [Crossref]
  27. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-VCH, 1998).
    [Crossref]
  28. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998).
  29. M. F. Al-Kuhaili, S. M. A. Durrani, and E. E. Khawaja, “Optical properties of gallium oxide films deposited by electron-beam evaporation,” Appl. Phys. Lett. 83(22), 4533 (2003).
    [Crossref]
  30. G. Jezequel, J. C. Lemonnier, and J. Thomas, “Optical properties of gallium films between 2 and 15 eV,” J. Phys. F 7(8), 1613–1622 (1977).
    [Crossref]
  31. A. Lalisse, G. Tessier, J. Plain, and G. Baffou, “Quantifying the efficiency of plasmonic materials for near-field enhancement and photothermal conversion,” J. Phys. Chem. C 119(45), 25518–25528 (2015).
    [Crossref]
  32. P. F. Liao, “Lightning rod effect in surface enhanced Raman scattering,” J. Chem. Phys 76(1), 751 (1982).
    [Crossref]
  33. S. A. Scherbak, O. V. Shustova, V. V. Zhurikhina, and A. A. Lipovskii, “Electric properties of hemispherical metal nanoparticles: influence of the dielectric cover and substrate,” Plasmonics 10(3), 519–527 (2014).
    [Crossref]
  34. R. F. Aroca, G. Y. Teo, H. Mohan, A. R. Guerrero, P. Albella, and F. Moreno, “Plasmon-enhanced fluorescence and spectral modification in SHINEF,” J. Phys. Chem. C 115(42), 20419–20424 (2011).
    [Crossref]
  35. A. Rai, K. Park, L. Zhou, and M. R. Zachariah, “Understanding the mechanism of aluminium nanoparticle oxidation,” Combust. Theor. Model. 10(5), 843–859 (2006).
    [Crossref]
  36. V. Fournier, P. Marcus, and I. Olefjord, “Oxidation of Magnesium,” Surf. Interface Anal. 34(1), 494–497 (2002).
    [Crossref]
  37. M. G. Blaber, C. J. Engel, S. R. C. Vivekchand, S. M. Lubin, T. W. Odom, and G. C. Schatz, “Eutectic liquid alloys for plasmonics: theory and experiment,” Nano Lett. 12(10), 5275–5280 (2012).
    [Crossref] [PubMed]

2016 (1)

X. Zhang, P. Li, Á. Barreda, Y. Gutiérrez, F. González, F. Moreno, H. O. Everitt, and J. Liu, “Size-tunable rhodium nanostructures for wavelength-tunable ultraviolet plasmonics,” Nanoscale Horiz. 1(1), 75–80 (2016).
[Crossref]

2015 (4)

F. Sterl, N. Strohfeldt, R. Walter, R. Griessen, A. Tittl, and H. Giessen, “Magnesium as novel material for active plasmonics in the visible wavelength range,” Nano Lett. 15(12), 7949–7955 (2015).
[Crossref] [PubMed]

A. M. Watson, X. Zhang, R. Alcaraz de la Osa, J. Marcos Sanz, F. González, F. Moreno, G. Finkelstein, J. Liu, and H. O. Everitt, “Rhodium nanoparticles for ultraviolet plasmonics,” Nano Lett. 15(2), 1095–1100 (2015).
[Crossref] [PubMed]

R. Alcaraz de la Osa, J. M. Sanz, A. I. Barreda, J. M. Saiz, F. González, H. O. Everitt, and F. Moreno, “Rhodium tripod stars for UV plasmonics,” J. Phys. Chem. C 119(22), 12572–12580 (2015).
[Crossref]

A. Lalisse, G. Tessier, J. Plain, and G. Baffou, “Quantifying the efficiency of plasmonic materials for near-field enhancement and photothermal conversion,” J. Phys. Chem. C 119(45), 25518–25528 (2015).
[Crossref]

2014 (3)

S. A. Scherbak, O. V. Shustova, V. V. Zhurikhina, and A. A. Lipovskii, “Electric properties of hemispherical metal nanoparticles: influence of the dielectric cover and substrate,” Plasmonics 10(3), 519–527 (2014).
[Crossref]

Y. Yang, N. Akozbek, T.-h. Kim, J. M. Sanz, F. Moreno, M. Losurdo, A. S. Brown, and H. O. Everitt, “Ultraviolet–visible plasmonic properties of gallium nanoparticles investigated by variable-angle spectroscopic and Mueller matrix ellipsometry,” ACS Photonics 1(7), 582–589 (2014).
[Crossref]

M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano 8(1), 834–840 (2014).
[Crossref]

2013 (3)

J. M. Sanz, D. Ortiz, R. Alcaraz de la Osa, J. M. Saiz, F. González, a. S. Brown, M. Losurdo, H. O. Everitt, and F. Moreno, “UV plasmonic behavior of various metal nanoparticles in the near- and far-field regimes: geometry and substrate effects,” J. Phys. Chem. C 117(38), 19606–19615 (2013).
[Crossref]

P. Alonso-González, P. Albella, F. Neubrech, C. Huck, J. Chen, F. Golmar, F. Casanova, L. E. Hueso, A. Pucci, J. Aizpurua, and R. Hillenbrand, “Experimental verification of the spectral shift between near- and far-field peak intensities of plasmonic infrared nanoantennas,” Phys. Rev. Lett. 110(20), 1–6 (2013).
[Crossref]

F. Moreno, P. Albella, and M. Nieto-Vesperinas, “Analysis of the spectral behavior of localized plasmon resonances in the near- and far-field regimes,” Langmuir 29(22), 6715–6721 (2013).
[Crossref] [PubMed]

2012 (4)

B. Sharma, R. R. Frontiera, A.I. Henry, E. Ringe, and R. P. Van Duyne, “SERS: materials, applications, and the future,” Mater. Today 15(1), 16–25 (2012).
[Crossref]

A. Kuzma, M. Weis, S. Flickyngerova, J. Jakabovic, A. Satka, E. Dobrocka, J. Chlpik, J. Cirak, M. Donoval, P. Telek, F. Uherek, and D. Donoval, “Influence of surface oxidation on plasmon resonance in monolayer of gold and silver nanoparticles,” J. Appl. Phys 112(10), 103531 (2012).
[Crossref]

M. G. Blaber, C. J. Engel, S. R. C. Vivekchand, S. M. Lubin, T. W. Odom, and G. C. Schatz, “Eutectic liquid alloys for plasmonics: theory and experiment,” Nano Lett. 12(10), 5275–5280 (2012).
[Crossref] [PubMed]

M. W. Knight, L. Liu, Y. Wang, L. Brown, S. Mukherjee, N. S. King, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum plasmonic nanoantennas,” Nano Lett. 12(11), 6000–6004 (2012).
[Crossref] [PubMed]

2011 (3)

P. C. Wu, M. Losurdo, T. H. Kim, B. Garcia-Cueto, F. Moreno, G. Bruno, and A. S. Brown, “Ga-Mg core-shell nanosystem for a novel full color plasmonics,” J. Phys. Chem. C 115(28), 13571–13576 (2011).
[Crossref]

P. Albella, B. Garcia-Cueto, F. González, F. Moreno, P. C. Wu, T. H. Kim, A. Brown, Y. Yang, H. O. Everitt, and G. Videen, “Shape matters: plasmonic nanoparticle shape enhances interaction with dielectric substrate,” Nano Lett. 11(9), 3531–3537 (2011).
[Crossref] [PubMed]

R. F. Aroca, G. Y. Teo, H. Mohan, A. R. Guerrero, P. Albella, and F. Moreno, “Plasmon-enhanced fluorescence and spectral modification in SHINEF,” J. Phys. Chem. C 115(42), 20419–20424 (2011).
[Crossref]

2009 (2)

A. Taguchi, N. Hayazawa, K. Furusawa, H. Ishitobi, and S. Kawata, “Deep-UV tip-enhanced Raman scattering,” J. Raman Spectrosc. 40(9), 1324–1330 (2009).
[Crossref]

M. H. Chowdhury, K. Ray, S. K. Gray, J. Pond, and J. R. Lakowicz, “Aluminum nanoparticles as substrates for metal-enhanced fluorescence in the ultraviolet for the label-free detection of biomolecules,” Anal. Chem. 81(4), 1397–1403 (2009).
[Crossref] [PubMed]

2008 (4)

I. Lieberman, G. Shemer, T. Fried, E. M. Kosower, and G. Markovich, “Plasmon-resonance-enhanced absorption and circular dichroism,” Angew. Chem. Int. Ed. 47(26), 4855–4857 (2008).
[Crossref]

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

M. Pelton, J. Aizpurua, and G. Bryant, “Metal-nanoparticle plasmonics,” Laser Photon. Rev 2(3), 136–159 (2008).
[Crossref]

G. H. Chan, J. Zhao, G. C. Schatz, and R. P. V. Duyne, “Localized surface plasmon resonance spectroscopy of triangular aluminum nanoparticles,” J. Phys. Chem. C 112(36), 13958–13963 (2008).
[Crossref]

2007 (1)

P. C. Wu, M. Losurdo, T.-H. Kim, S. Choi, G. Bruno, and A. S. Brown, “In situ spectroscopic ellipsometry to monitor surface plasmon resonant group-III metals deposited by molecular beam epitaxy,” J. Vac. Sci. Technol. B 25(3), 1019 (2007).
[Crossref]

2006 (1)

A. Rai, K. Park, L. Zhou, and M. R. Zachariah, “Understanding the mechanism of aluminium nanoparticle oxidation,” Combust. Theor. Model. 10(5), 843–859 (2006).
[Crossref]

2005 (1)

K. Aslan, J. R. Lakowicz, and C. D. Geddes, “Plasmon light scattering in biology and medicine: new sensing approaches, visions and perspectives,” Curr. Opin. Chem. Biol. 9(5), 538–544 (2005).
[Crossref] [PubMed]

2003 (1)

M. F. Al-Kuhaili, S. M. A. Durrani, and E. E. Khawaja, “Optical properties of gallium oxide films deposited by electron-beam evaporation,” Appl. Phys. Lett. 83(22), 4533 (2003).
[Crossref]

2002 (1)

V. Fournier, P. Marcus, and I. Olefjord, “Oxidation of Magnesium,” Surf. Interface Anal. 34(1), 494–497 (2002).
[Crossref]

1994 (1)

1987 (1)

E. J. Zeman and G. C. Schatz, “An accurate electromagnetic theory study of surface enhancement factors for Ag, Au, Cu, Li, Na, AI, Ga, In, Zn, and Cd,” J. Phys. Chem. 91(14), 634–643 (1987).
[Crossref]

1982 (1)

P. F. Liao, “Lightning rod effect in surface enhanced Raman scattering,” J. Chem. Phys 76(1), 751 (1982).
[Crossref]

1977 (1)

G. Jezequel, J. C. Lemonnier, and J. Thomas, “Optical properties of gallium films between 2 and 15 eV,” J. Phys. F 7(8), 1613–1622 (1977).
[Crossref]

Aizpurua, J.

P. Alonso-González, P. Albella, F. Neubrech, C. Huck, J. Chen, F. Golmar, F. Casanova, L. E. Hueso, A. Pucci, J. Aizpurua, and R. Hillenbrand, “Experimental verification of the spectral shift between near- and far-field peak intensities of plasmonic infrared nanoantennas,” Phys. Rev. Lett. 110(20), 1–6 (2013).
[Crossref]

M. Pelton, J. Aizpurua, and G. Bryant, “Metal-nanoparticle plasmonics,” Laser Photon. Rev 2(3), 136–159 (2008).
[Crossref]

Akozbek, N.

Y. Yang, N. Akozbek, T.-h. Kim, J. M. Sanz, F. Moreno, M. Losurdo, A. S. Brown, and H. O. Everitt, “Ultraviolet–visible plasmonic properties of gallium nanoparticles investigated by variable-angle spectroscopic and Mueller matrix ellipsometry,” ACS Photonics 1(7), 582–589 (2014).
[Crossref]

Albella, P.

F. Moreno, P. Albella, and M. Nieto-Vesperinas, “Analysis of the spectral behavior of localized plasmon resonances in the near- and far-field regimes,” Langmuir 29(22), 6715–6721 (2013).
[Crossref] [PubMed]

P. Alonso-González, P. Albella, F. Neubrech, C. Huck, J. Chen, F. Golmar, F. Casanova, L. E. Hueso, A. Pucci, J. Aizpurua, and R. Hillenbrand, “Experimental verification of the spectral shift between near- and far-field peak intensities of plasmonic infrared nanoantennas,” Phys. Rev. Lett. 110(20), 1–6 (2013).
[Crossref]

P. Albella, B. Garcia-Cueto, F. González, F. Moreno, P. C. Wu, T. H. Kim, A. Brown, Y. Yang, H. O. Everitt, and G. Videen, “Shape matters: plasmonic nanoparticle shape enhances interaction with dielectric substrate,” Nano Lett. 11(9), 3531–3537 (2011).
[Crossref] [PubMed]

R. F. Aroca, G. Y. Teo, H. Mohan, A. R. Guerrero, P. Albella, and F. Moreno, “Plasmon-enhanced fluorescence and spectral modification in SHINEF,” J. Phys. Chem. C 115(42), 20419–20424 (2011).
[Crossref]

Alcaraz de la Osa, R.

A. M. Watson, X. Zhang, R. Alcaraz de la Osa, J. Marcos Sanz, F. González, F. Moreno, G. Finkelstein, J. Liu, and H. O. Everitt, “Rhodium nanoparticles for ultraviolet plasmonics,” Nano Lett. 15(2), 1095–1100 (2015).
[Crossref] [PubMed]

R. Alcaraz de la Osa, J. M. Sanz, A. I. Barreda, J. M. Saiz, F. González, H. O. Everitt, and F. Moreno, “Rhodium tripod stars for UV plasmonics,” J. Phys. Chem. C 119(22), 12572–12580 (2015).
[Crossref]

J. M. Sanz, D. Ortiz, R. Alcaraz de la Osa, J. M. Saiz, F. González, a. S. Brown, M. Losurdo, H. O. Everitt, and F. Moreno, “UV plasmonic behavior of various metal nanoparticles in the near- and far-field regimes: geometry and substrate effects,” J. Phys. Chem. C 117(38), 19606–19615 (2013).
[Crossref]

Al-Kuhaili, M. F.

M. F. Al-Kuhaili, S. M. A. Durrani, and E. E. Khawaja, “Optical properties of gallium oxide films deposited by electron-beam evaporation,” Appl. Phys. Lett. 83(22), 4533 (2003).
[Crossref]

Alonso-González, P.

P. Alonso-González, P. Albella, F. Neubrech, C. Huck, J. Chen, F. Golmar, F. Casanova, L. E. Hueso, A. Pucci, J. Aizpurua, and R. Hillenbrand, “Experimental verification of the spectral shift between near- and far-field peak intensities of plasmonic infrared nanoantennas,” Phys. Rev. Lett. 110(20), 1–6 (2013).
[Crossref]

Anker, J. N.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Aroca, R. F.

R. F. Aroca, G. Y. Teo, H. Mohan, A. R. Guerrero, P. Albella, and F. Moreno, “Plasmon-enhanced fluorescence and spectral modification in SHINEF,” J. Phys. Chem. C 115(42), 20419–20424 (2011).
[Crossref]

Aslan, K.

K. Aslan, J. R. Lakowicz, and C. D. Geddes, “Plasmon light scattering in biology and medicine: new sensing approaches, visions and perspectives,” Curr. Opin. Chem. Biol. 9(5), 538–544 (2005).
[Crossref] [PubMed]

Baffou, G.

A. Lalisse, G. Tessier, J. Plain, and G. Baffou, “Quantifying the efficiency of plasmonic materials for near-field enhancement and photothermal conversion,” J. Phys. Chem. C 119(45), 25518–25528 (2015).
[Crossref]

Barreda, Á.

X. Zhang, P. Li, Á. Barreda, Y. Gutiérrez, F. González, F. Moreno, H. O. Everitt, and J. Liu, “Size-tunable rhodium nanostructures for wavelength-tunable ultraviolet plasmonics,” Nanoscale Horiz. 1(1), 75–80 (2016).
[Crossref]

Barreda, A. I.

R. Alcaraz de la Osa, J. M. Sanz, A. I. Barreda, J. M. Saiz, F. González, H. O. Everitt, and F. Moreno, “Rhodium tripod stars for UV plasmonics,” J. Phys. Chem. C 119(22), 12572–12580 (2015).
[Crossref]

Blaber, M. G.

M. G. Blaber, C. J. Engel, S. R. C. Vivekchand, S. M. Lubin, T. W. Odom, and G. C. Schatz, “Eutectic liquid alloys for plasmonics: theory and experiment,” Nano Lett. 12(10), 5275–5280 (2012).
[Crossref] [PubMed]

Bohren, C. F.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-VCH, 1998).
[Crossref]

Brown, A.

P. Albella, B. Garcia-Cueto, F. González, F. Moreno, P. C. Wu, T. H. Kim, A. Brown, Y. Yang, H. O. Everitt, and G. Videen, “Shape matters: plasmonic nanoparticle shape enhances interaction with dielectric substrate,” Nano Lett. 11(9), 3531–3537 (2011).
[Crossref] [PubMed]

Brown, A. S.

Y. Yang, N. Akozbek, T.-h. Kim, J. M. Sanz, F. Moreno, M. Losurdo, A. S. Brown, and H. O. Everitt, “Ultraviolet–visible plasmonic properties of gallium nanoparticles investigated by variable-angle spectroscopic and Mueller matrix ellipsometry,” ACS Photonics 1(7), 582–589 (2014).
[Crossref]

J. M. Sanz, D. Ortiz, R. Alcaraz de la Osa, J. M. Saiz, F. González, a. S. Brown, M. Losurdo, H. O. Everitt, and F. Moreno, “UV plasmonic behavior of various metal nanoparticles in the near- and far-field regimes: geometry and substrate effects,” J. Phys. Chem. C 117(38), 19606–19615 (2013).
[Crossref]

P. C. Wu, M. Losurdo, T. H. Kim, B. Garcia-Cueto, F. Moreno, G. Bruno, and A. S. Brown, “Ga-Mg core-shell nanosystem for a novel full color plasmonics,” J. Phys. Chem. C 115(28), 13571–13576 (2011).
[Crossref]

P. C. Wu, M. Losurdo, T.-H. Kim, S. Choi, G. Bruno, and A. S. Brown, “In situ spectroscopic ellipsometry to monitor surface plasmon resonant group-III metals deposited by molecular beam epitaxy,” J. Vac. Sci. Technol. B 25(3), 1019 (2007).
[Crossref]

Brown, L.

M. W. Knight, L. Liu, Y. Wang, L. Brown, S. Mukherjee, N. S. King, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum plasmonic nanoantennas,” Nano Lett. 12(11), 6000–6004 (2012).
[Crossref] [PubMed]

Bruno, G.

P. C. Wu, M. Losurdo, T. H. Kim, B. Garcia-Cueto, F. Moreno, G. Bruno, and A. S. Brown, “Ga-Mg core-shell nanosystem for a novel full color plasmonics,” J. Phys. Chem. C 115(28), 13571–13576 (2011).
[Crossref]

P. C. Wu, M. Losurdo, T.-H. Kim, S. Choi, G. Bruno, and A. S. Brown, “In situ spectroscopic ellipsometry to monitor surface plasmon resonant group-III metals deposited by molecular beam epitaxy,” J. Vac. Sci. Technol. B 25(3), 1019 (2007).
[Crossref]

Bryant, G.

M. Pelton, J. Aizpurua, and G. Bryant, “Metal-nanoparticle plasmonics,” Laser Photon. Rev 2(3), 136–159 (2008).
[Crossref]

Casanova, F.

P. Alonso-González, P. Albella, F. Neubrech, C. Huck, J. Chen, F. Golmar, F. Casanova, L. E. Hueso, A. Pucci, J. Aizpurua, and R. Hillenbrand, “Experimental verification of the spectral shift between near- and far-field peak intensities of plasmonic infrared nanoantennas,” Phys. Rev. Lett. 110(20), 1–6 (2013).
[Crossref]

Chan, G. H.

G. H. Chan, J. Zhao, G. C. Schatz, and R. P. V. Duyne, “Localized surface plasmon resonance spectroscopy of triangular aluminum nanoparticles,” J. Phys. Chem. C 112(36), 13958–13963 (2008).
[Crossref]

Chen, J.

P. Alonso-González, P. Albella, F. Neubrech, C. Huck, J. Chen, F. Golmar, F. Casanova, L. E. Hueso, A. Pucci, J. Aizpurua, and R. Hillenbrand, “Experimental verification of the spectral shift between near- and far-field peak intensities of plasmonic infrared nanoantennas,” Phys. Rev. Lett. 110(20), 1–6 (2013).
[Crossref]

Chlpik, J.

A. Kuzma, M. Weis, S. Flickyngerova, J. Jakabovic, A. Satka, E. Dobrocka, J. Chlpik, J. Cirak, M. Donoval, P. Telek, F. Uherek, and D. Donoval, “Influence of surface oxidation on plasmon resonance in monolayer of gold and silver nanoparticles,” J. Appl. Phys 112(10), 103531 (2012).
[Crossref]

Choi, S.

P. C. Wu, M. Losurdo, T.-H. Kim, S. Choi, G. Bruno, and A. S. Brown, “In situ spectroscopic ellipsometry to monitor surface plasmon resonant group-III metals deposited by molecular beam epitaxy,” J. Vac. Sci. Technol. B 25(3), 1019 (2007).
[Crossref]

Chowdhury, M. H.

M. H. Chowdhury, K. Ray, S. K. Gray, J. Pond, and J. R. Lakowicz, “Aluminum nanoparticles as substrates for metal-enhanced fluorescence in the ultraviolet for the label-free detection of biomolecules,” Anal. Chem. 81(4), 1397–1403 (2009).
[Crossref] [PubMed]

Cirak, J.

A. Kuzma, M. Weis, S. Flickyngerova, J. Jakabovic, A. Satka, E. Dobrocka, J. Chlpik, J. Cirak, M. Donoval, P. Telek, F. Uherek, and D. Donoval, “Influence of surface oxidation on plasmon resonance in monolayer of gold and silver nanoparticles,” J. Appl. Phys 112(10), 103531 (2012).
[Crossref]

Dobrocka, E.

A. Kuzma, M. Weis, S. Flickyngerova, J. Jakabovic, A. Satka, E. Dobrocka, J. Chlpik, J. Cirak, M. Donoval, P. Telek, F. Uherek, and D. Donoval, “Influence of surface oxidation on plasmon resonance in monolayer of gold and silver nanoparticles,” J. Appl. Phys 112(10), 103531 (2012).
[Crossref]

Donoval, D.

A. Kuzma, M. Weis, S. Flickyngerova, J. Jakabovic, A. Satka, E. Dobrocka, J. Chlpik, J. Cirak, M. Donoval, P. Telek, F. Uherek, and D. Donoval, “Influence of surface oxidation on plasmon resonance in monolayer of gold and silver nanoparticles,” J. Appl. Phys 112(10), 103531 (2012).
[Crossref]

Donoval, M.

A. Kuzma, M. Weis, S. Flickyngerova, J. Jakabovic, A. Satka, E. Dobrocka, J. Chlpik, J. Cirak, M. Donoval, P. Telek, F. Uherek, and D. Donoval, “Influence of surface oxidation on plasmon resonance in monolayer of gold and silver nanoparticles,” J. Appl. Phys 112(10), 103531 (2012).
[Crossref]

Draine, B. T.

Durrani, S. M. A.

M. F. Al-Kuhaili, S. M. A. Durrani, and E. E. Khawaja, “Optical properties of gallium oxide films deposited by electron-beam evaporation,” Appl. Phys. Lett. 83(22), 4533 (2003).
[Crossref]

Duyne, R. P. V.

G. H. Chan, J. Zhao, G. C. Schatz, and R. P. V. Duyne, “Localized surface plasmon resonance spectroscopy of triangular aluminum nanoparticles,” J. Phys. Chem. C 112(36), 13958–13963 (2008).
[Crossref]

Engel, C. J.

M. G. Blaber, C. J. Engel, S. R. C. Vivekchand, S. M. Lubin, T. W. Odom, and G. C. Schatz, “Eutectic liquid alloys for plasmonics: theory and experiment,” Nano Lett. 12(10), 5275–5280 (2012).
[Crossref] [PubMed]

Everitt, H. O.

X. Zhang, P. Li, Á. Barreda, Y. Gutiérrez, F. González, F. Moreno, H. O. Everitt, and J. Liu, “Size-tunable rhodium nanostructures for wavelength-tunable ultraviolet plasmonics,” Nanoscale Horiz. 1(1), 75–80 (2016).
[Crossref]

R. Alcaraz de la Osa, J. M. Sanz, A. I. Barreda, J. M. Saiz, F. González, H. O. Everitt, and F. Moreno, “Rhodium tripod stars for UV plasmonics,” J. Phys. Chem. C 119(22), 12572–12580 (2015).
[Crossref]

A. M. Watson, X. Zhang, R. Alcaraz de la Osa, J. Marcos Sanz, F. González, F. Moreno, G. Finkelstein, J. Liu, and H. O. Everitt, “Rhodium nanoparticles for ultraviolet plasmonics,” Nano Lett. 15(2), 1095–1100 (2015).
[Crossref] [PubMed]

Y. Yang, N. Akozbek, T.-h. Kim, J. M. Sanz, F. Moreno, M. Losurdo, A. S. Brown, and H. O. Everitt, “Ultraviolet–visible plasmonic properties of gallium nanoparticles investigated by variable-angle spectroscopic and Mueller matrix ellipsometry,” ACS Photonics 1(7), 582–589 (2014).
[Crossref]

M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano 8(1), 834–840 (2014).
[Crossref]

J. M. Sanz, D. Ortiz, R. Alcaraz de la Osa, J. M. Saiz, F. González, a. S. Brown, M. Losurdo, H. O. Everitt, and F. Moreno, “UV plasmonic behavior of various metal nanoparticles in the near- and far-field regimes: geometry and substrate effects,” J. Phys. Chem. C 117(38), 19606–19615 (2013).
[Crossref]

M. W. Knight, L. Liu, Y. Wang, L. Brown, S. Mukherjee, N. S. King, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum plasmonic nanoantennas,” Nano Lett. 12(11), 6000–6004 (2012).
[Crossref] [PubMed]

P. Albella, B. Garcia-Cueto, F. González, F. Moreno, P. C. Wu, T. H. Kim, A. Brown, Y. Yang, H. O. Everitt, and G. Videen, “Shape matters: plasmonic nanoparticle shape enhances interaction with dielectric substrate,” Nano Lett. 11(9), 3531–3537 (2011).
[Crossref] [PubMed]

Finkelstein, G.

A. M. Watson, X. Zhang, R. Alcaraz de la Osa, J. Marcos Sanz, F. González, F. Moreno, G. Finkelstein, J. Liu, and H. O. Everitt, “Rhodium nanoparticles for ultraviolet plasmonics,” Nano Lett. 15(2), 1095–1100 (2015).
[Crossref] [PubMed]

Flatau, P. J.

Flickyngerova, S.

A. Kuzma, M. Weis, S. Flickyngerova, J. Jakabovic, A. Satka, E. Dobrocka, J. Chlpik, J. Cirak, M. Donoval, P. Telek, F. Uherek, and D. Donoval, “Influence of surface oxidation on plasmon resonance in monolayer of gold and silver nanoparticles,” J. Appl. Phys 112(10), 103531 (2012).
[Crossref]

Fournier, V.

V. Fournier, P. Marcus, and I. Olefjord, “Oxidation of Magnesium,” Surf. Interface Anal. 34(1), 494–497 (2002).
[Crossref]

Fried, T.

I. Lieberman, G. Shemer, T. Fried, E. M. Kosower, and G. Markovich, “Plasmon-resonance-enhanced absorption and circular dichroism,” Angew. Chem. Int. Ed. 47(26), 4855–4857 (2008).
[Crossref]

Frontiera, R. R.

B. Sharma, R. R. Frontiera, A.I. Henry, E. Ringe, and R. P. Van Duyne, “SERS: materials, applications, and the future,” Mater. Today 15(1), 16–25 (2012).
[Crossref]

Furusawa, K.

A. Taguchi, N. Hayazawa, K. Furusawa, H. Ishitobi, and S. Kawata, “Deep-UV tip-enhanced Raman scattering,” J. Raman Spectrosc. 40(9), 1324–1330 (2009).
[Crossref]

Garcia-Cueto, B.

P. Albella, B. Garcia-Cueto, F. González, F. Moreno, P. C. Wu, T. H. Kim, A. Brown, Y. Yang, H. O. Everitt, and G. Videen, “Shape matters: plasmonic nanoparticle shape enhances interaction with dielectric substrate,” Nano Lett. 11(9), 3531–3537 (2011).
[Crossref] [PubMed]

P. C. Wu, M. Losurdo, T. H. Kim, B. Garcia-Cueto, F. Moreno, G. Bruno, and A. S. Brown, “Ga-Mg core-shell nanosystem for a novel full color plasmonics,” J. Phys. Chem. C 115(28), 13571–13576 (2011).
[Crossref]

Geddes, C. D.

K. Aslan, J. R. Lakowicz, and C. D. Geddes, “Plasmon light scattering in biology and medicine: new sensing approaches, visions and perspectives,” Curr. Opin. Chem. Biol. 9(5), 538–544 (2005).
[Crossref] [PubMed]

Giessen, H.

F. Sterl, N. Strohfeldt, R. Walter, R. Griessen, A. Tittl, and H. Giessen, “Magnesium as novel material for active plasmonics in the visible wavelength range,” Nano Lett. 15(12), 7949–7955 (2015).
[Crossref] [PubMed]

Golmar, F.

P. Alonso-González, P. Albella, F. Neubrech, C. Huck, J. Chen, F. Golmar, F. Casanova, L. E. Hueso, A. Pucci, J. Aizpurua, and R. Hillenbrand, “Experimental verification of the spectral shift between near- and far-field peak intensities of plasmonic infrared nanoantennas,” Phys. Rev. Lett. 110(20), 1–6 (2013).
[Crossref]

González, F.

X. Zhang, P. Li, Á. Barreda, Y. Gutiérrez, F. González, F. Moreno, H. O. Everitt, and J. Liu, “Size-tunable rhodium nanostructures for wavelength-tunable ultraviolet plasmonics,” Nanoscale Horiz. 1(1), 75–80 (2016).
[Crossref]

R. Alcaraz de la Osa, J. M. Sanz, A. I. Barreda, J. M. Saiz, F. González, H. O. Everitt, and F. Moreno, “Rhodium tripod stars for UV plasmonics,” J. Phys. Chem. C 119(22), 12572–12580 (2015).
[Crossref]

A. M. Watson, X. Zhang, R. Alcaraz de la Osa, J. Marcos Sanz, F. González, F. Moreno, G. Finkelstein, J. Liu, and H. O. Everitt, “Rhodium nanoparticles for ultraviolet plasmonics,” Nano Lett. 15(2), 1095–1100 (2015).
[Crossref] [PubMed]

J. M. Sanz, D. Ortiz, R. Alcaraz de la Osa, J. M. Saiz, F. González, a. S. Brown, M. Losurdo, H. O. Everitt, and F. Moreno, “UV plasmonic behavior of various metal nanoparticles in the near- and far-field regimes: geometry and substrate effects,” J. Phys. Chem. C 117(38), 19606–19615 (2013).
[Crossref]

P. Albella, B. Garcia-Cueto, F. González, F. Moreno, P. C. Wu, T. H. Kim, A. Brown, Y. Yang, H. O. Everitt, and G. Videen, “Shape matters: plasmonic nanoparticle shape enhances interaction with dielectric substrate,” Nano Lett. 11(9), 3531–3537 (2011).
[Crossref] [PubMed]

Gray, S. K.

M. H. Chowdhury, K. Ray, S. K. Gray, J. Pond, and J. R. Lakowicz, “Aluminum nanoparticles as substrates for metal-enhanced fluorescence in the ultraviolet for the label-free detection of biomolecules,” Anal. Chem. 81(4), 1397–1403 (2009).
[Crossref] [PubMed]

Griessen, R.

F. Sterl, N. Strohfeldt, R. Walter, R. Griessen, A. Tittl, and H. Giessen, “Magnesium as novel material for active plasmonics in the visible wavelength range,” Nano Lett. 15(12), 7949–7955 (2015).
[Crossref] [PubMed]

Guerrero, A. R.

R. F. Aroca, G. Y. Teo, H. Mohan, A. R. Guerrero, P. Albella, and F. Moreno, “Plasmon-enhanced fluorescence and spectral modification in SHINEF,” J. Phys. Chem. C 115(42), 20419–20424 (2011).
[Crossref]

Gutiérrez, Y.

X. Zhang, P. Li, Á. Barreda, Y. Gutiérrez, F. González, F. Moreno, H. O. Everitt, and J. Liu, “Size-tunable rhodium nanostructures for wavelength-tunable ultraviolet plasmonics,” Nanoscale Horiz. 1(1), 75–80 (2016).
[Crossref]

Halas, N. J.

M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano 8(1), 834–840 (2014).
[Crossref]

M. W. Knight, L. Liu, Y. Wang, L. Brown, S. Mukherjee, N. S. King, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum plasmonic nanoantennas,” Nano Lett. 12(11), 6000–6004 (2012).
[Crossref] [PubMed]

Hall, W. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Hayazawa, N.

A. Taguchi, N. Hayazawa, K. Furusawa, H. Ishitobi, and S. Kawata, “Deep-UV tip-enhanced Raman scattering,” J. Raman Spectrosc. 40(9), 1324–1330 (2009).
[Crossref]

Haynes, W. M.

W. M. Haynes, CRC Handbook of Chemistry and Physics (Taylor and Francis Group, 2014).

Henry, A.I.

B. Sharma, R. R. Frontiera, A.I. Henry, E. Ringe, and R. P. Van Duyne, “SERS: materials, applications, and the future,” Mater. Today 15(1), 16–25 (2012).
[Crossref]

Hillenbrand, R.

P. Alonso-González, P. Albella, F. Neubrech, C. Huck, J. Chen, F. Golmar, F. Casanova, L. E. Hueso, A. Pucci, J. Aizpurua, and R. Hillenbrand, “Experimental verification of the spectral shift between near- and far-field peak intensities of plasmonic infrared nanoantennas,” Phys. Rev. Lett. 110(20), 1–6 (2013).
[Crossref]

Huck, C.

P. Alonso-González, P. Albella, F. Neubrech, C. Huck, J. Chen, F. Golmar, F. Casanova, L. E. Hueso, A. Pucci, J. Aizpurua, and R. Hillenbrand, “Experimental verification of the spectral shift between near- and far-field peak intensities of plasmonic infrared nanoantennas,” Phys. Rev. Lett. 110(20), 1–6 (2013).
[Crossref]

Hueso, L. E.

P. Alonso-González, P. Albella, F. Neubrech, C. Huck, J. Chen, F. Golmar, F. Casanova, L. E. Hueso, A. Pucci, J. Aizpurua, and R. Hillenbrand, “Experimental verification of the spectral shift between near- and far-field peak intensities of plasmonic infrared nanoantennas,” Phys. Rev. Lett. 110(20), 1–6 (2013).
[Crossref]

Huffman, D. R.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-VCH, 1998).
[Crossref]

Ishitobi, H.

A. Taguchi, N. Hayazawa, K. Furusawa, H. Ishitobi, and S. Kawata, “Deep-UV tip-enhanced Raman scattering,” J. Raman Spectrosc. 40(9), 1324–1330 (2009).
[Crossref]

Jakabovic, J.

A. Kuzma, M. Weis, S. Flickyngerova, J. Jakabovic, A. Satka, E. Dobrocka, J. Chlpik, J. Cirak, M. Donoval, P. Telek, F. Uherek, and D. Donoval, “Influence of surface oxidation on plasmon resonance in monolayer of gold and silver nanoparticles,” J. Appl. Phys 112(10), 103531 (2012).
[Crossref]

Jezequel, G.

G. Jezequel, J. C. Lemonnier, and J. Thomas, “Optical properties of gallium films between 2 and 15 eV,” J. Phys. F 7(8), 1613–1622 (1977).
[Crossref]

Kawata, S.

A. Taguchi, N. Hayazawa, K. Furusawa, H. Ishitobi, and S. Kawata, “Deep-UV tip-enhanced Raman scattering,” J. Raman Spectrosc. 40(9), 1324–1330 (2009).
[Crossref]

Khawaja, E. E.

M. F. Al-Kuhaili, S. M. A. Durrani, and E. E. Khawaja, “Optical properties of gallium oxide films deposited by electron-beam evaporation,” Appl. Phys. Lett. 83(22), 4533 (2003).
[Crossref]

Kim, T. H.

P. Albella, B. Garcia-Cueto, F. González, F. Moreno, P. C. Wu, T. H. Kim, A. Brown, Y. Yang, H. O. Everitt, and G. Videen, “Shape matters: plasmonic nanoparticle shape enhances interaction with dielectric substrate,” Nano Lett. 11(9), 3531–3537 (2011).
[Crossref] [PubMed]

P. C. Wu, M. Losurdo, T. H. Kim, B. Garcia-Cueto, F. Moreno, G. Bruno, and A. S. Brown, “Ga-Mg core-shell nanosystem for a novel full color plasmonics,” J. Phys. Chem. C 115(28), 13571–13576 (2011).
[Crossref]

Kim, T.-h.

Y. Yang, N. Akozbek, T.-h. Kim, J. M. Sanz, F. Moreno, M. Losurdo, A. S. Brown, and H. O. Everitt, “Ultraviolet–visible plasmonic properties of gallium nanoparticles investigated by variable-angle spectroscopic and Mueller matrix ellipsometry,” ACS Photonics 1(7), 582–589 (2014).
[Crossref]

P. C. Wu, M. Losurdo, T.-H. Kim, S. Choi, G. Bruno, and A. S. Brown, “In situ spectroscopic ellipsometry to monitor surface plasmon resonant group-III metals deposited by molecular beam epitaxy,” J. Vac. Sci. Technol. B 25(3), 1019 (2007).
[Crossref]

King, N. S.

M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano 8(1), 834–840 (2014).
[Crossref]

M. W. Knight, L. Liu, Y. Wang, L. Brown, S. Mukherjee, N. S. King, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum plasmonic nanoantennas,” Nano Lett. 12(11), 6000–6004 (2012).
[Crossref] [PubMed]

Knight, M. W.

M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano 8(1), 834–840 (2014).
[Crossref]

M. W. Knight, L. Liu, Y. Wang, L. Brown, S. Mukherjee, N. S. King, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum plasmonic nanoantennas,” Nano Lett. 12(11), 6000–6004 (2012).
[Crossref] [PubMed]

Kosower, E. M.

I. Lieberman, G. Shemer, T. Fried, E. M. Kosower, and G. Markovich, “Plasmon-resonance-enhanced absorption and circular dichroism,” Angew. Chem. Int. Ed. 47(26), 4855–4857 (2008).
[Crossref]

Kuzma, A.

A. Kuzma, M. Weis, S. Flickyngerova, J. Jakabovic, A. Satka, E. Dobrocka, J. Chlpik, J. Cirak, M. Donoval, P. Telek, F. Uherek, and D. Donoval, “Influence of surface oxidation on plasmon resonance in monolayer of gold and silver nanoparticles,” J. Appl. Phys 112(10), 103531 (2012).
[Crossref]

Lakowicz, J. R.

M. H. Chowdhury, K. Ray, S. K. Gray, J. Pond, and J. R. Lakowicz, “Aluminum nanoparticles as substrates for metal-enhanced fluorescence in the ultraviolet for the label-free detection of biomolecules,” Anal. Chem. 81(4), 1397–1403 (2009).
[Crossref] [PubMed]

K. Aslan, J. R. Lakowicz, and C. D. Geddes, “Plasmon light scattering in biology and medicine: new sensing approaches, visions and perspectives,” Curr. Opin. Chem. Biol. 9(5), 538–544 (2005).
[Crossref] [PubMed]

Lalisse, A.

A. Lalisse, G. Tessier, J. Plain, and G. Baffou, “Quantifying the efficiency of plasmonic materials for near-field enhancement and photothermal conversion,” J. Phys. Chem. C 119(45), 25518–25528 (2015).
[Crossref]

Lemonnier, J. C.

G. Jezequel, J. C. Lemonnier, and J. Thomas, “Optical properties of gallium films between 2 and 15 eV,” J. Phys. F 7(8), 1613–1622 (1977).
[Crossref]

Li, P.

X. Zhang, P. Li, Á. Barreda, Y. Gutiérrez, F. González, F. Moreno, H. O. Everitt, and J. Liu, “Size-tunable rhodium nanostructures for wavelength-tunable ultraviolet plasmonics,” Nanoscale Horiz. 1(1), 75–80 (2016).
[Crossref]

Liao, P. F.

P. F. Liao, “Lightning rod effect in surface enhanced Raman scattering,” J. Chem. Phys 76(1), 751 (1982).
[Crossref]

Lieberman, I.

I. Lieberman, G. Shemer, T. Fried, E. M. Kosower, and G. Markovich, “Plasmon-resonance-enhanced absorption and circular dichroism,” Angew. Chem. Int. Ed. 47(26), 4855–4857 (2008).
[Crossref]

Lipovskii, A. A.

S. A. Scherbak, O. V. Shustova, V. V. Zhurikhina, and A. A. Lipovskii, “Electric properties of hemispherical metal nanoparticles: influence of the dielectric cover and substrate,” Plasmonics 10(3), 519–527 (2014).
[Crossref]

Liu, J.

X. Zhang, P. Li, Á. Barreda, Y. Gutiérrez, F. González, F. Moreno, H. O. Everitt, and J. Liu, “Size-tunable rhodium nanostructures for wavelength-tunable ultraviolet plasmonics,” Nanoscale Horiz. 1(1), 75–80 (2016).
[Crossref]

A. M. Watson, X. Zhang, R. Alcaraz de la Osa, J. Marcos Sanz, F. González, F. Moreno, G. Finkelstein, J. Liu, and H. O. Everitt, “Rhodium nanoparticles for ultraviolet plasmonics,” Nano Lett. 15(2), 1095–1100 (2015).
[Crossref] [PubMed]

Liu, L.

M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano 8(1), 834–840 (2014).
[Crossref]

M. W. Knight, L. Liu, Y. Wang, L. Brown, S. Mukherjee, N. S. King, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum plasmonic nanoantennas,” Nano Lett. 12(11), 6000–6004 (2012).
[Crossref] [PubMed]

Losurdo, M.

Y. Yang, N. Akozbek, T.-h. Kim, J. M. Sanz, F. Moreno, M. Losurdo, A. S. Brown, and H. O. Everitt, “Ultraviolet–visible plasmonic properties of gallium nanoparticles investigated by variable-angle spectroscopic and Mueller matrix ellipsometry,” ACS Photonics 1(7), 582–589 (2014).
[Crossref]

J. M. Sanz, D. Ortiz, R. Alcaraz de la Osa, J. M. Saiz, F. González, a. S. Brown, M. Losurdo, H. O. Everitt, and F. Moreno, “UV plasmonic behavior of various metal nanoparticles in the near- and far-field regimes: geometry and substrate effects,” J. Phys. Chem. C 117(38), 19606–19615 (2013).
[Crossref]

P. C. Wu, M. Losurdo, T. H. Kim, B. Garcia-Cueto, F. Moreno, G. Bruno, and A. S. Brown, “Ga-Mg core-shell nanosystem for a novel full color plasmonics,” J. Phys. Chem. C 115(28), 13571–13576 (2011).
[Crossref]

P. C. Wu, M. Losurdo, T.-H. Kim, S. Choi, G. Bruno, and A. S. Brown, “In situ spectroscopic ellipsometry to monitor surface plasmon resonant group-III metals deposited by molecular beam epitaxy,” J. Vac. Sci. Technol. B 25(3), 1019 (2007).
[Crossref]

Lubin, S. M.

M. G. Blaber, C. J. Engel, S. R. C. Vivekchand, S. M. Lubin, T. W. Odom, and G. C. Schatz, “Eutectic liquid alloys for plasmonics: theory and experiment,” Nano Lett. 12(10), 5275–5280 (2012).
[Crossref] [PubMed]

Lyandres, O.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Maier, S. A.

S. A. Maier, Plasmonics: Fundamentals and Applications (SpringerUS, 2007).

Marcos Sanz, J.

A. M. Watson, X. Zhang, R. Alcaraz de la Osa, J. Marcos Sanz, F. González, F. Moreno, G. Finkelstein, J. Liu, and H. O. Everitt, “Rhodium nanoparticles for ultraviolet plasmonics,” Nano Lett. 15(2), 1095–1100 (2015).
[Crossref] [PubMed]

Marcus, P.

V. Fournier, P. Marcus, and I. Olefjord, “Oxidation of Magnesium,” Surf. Interface Anal. 34(1), 494–497 (2002).
[Crossref]

Markovich, G.

I. Lieberman, G. Shemer, T. Fried, E. M. Kosower, and G. Markovich, “Plasmon-resonance-enhanced absorption and circular dichroism,” Angew. Chem. Int. Ed. 47(26), 4855–4857 (2008).
[Crossref]

Mohan, H.

R. F. Aroca, G. Y. Teo, H. Mohan, A. R. Guerrero, P. Albella, and F. Moreno, “Plasmon-enhanced fluorescence and spectral modification in SHINEF,” J. Phys. Chem. C 115(42), 20419–20424 (2011).
[Crossref]

Moreno, F.

X. Zhang, P. Li, Á. Barreda, Y. Gutiérrez, F. González, F. Moreno, H. O. Everitt, and J. Liu, “Size-tunable rhodium nanostructures for wavelength-tunable ultraviolet plasmonics,” Nanoscale Horiz. 1(1), 75–80 (2016).
[Crossref]

R. Alcaraz de la Osa, J. M. Sanz, A. I. Barreda, J. M. Saiz, F. González, H. O. Everitt, and F. Moreno, “Rhodium tripod stars for UV plasmonics,” J. Phys. Chem. C 119(22), 12572–12580 (2015).
[Crossref]

A. M. Watson, X. Zhang, R. Alcaraz de la Osa, J. Marcos Sanz, F. González, F. Moreno, G. Finkelstein, J. Liu, and H. O. Everitt, “Rhodium nanoparticles for ultraviolet plasmonics,” Nano Lett. 15(2), 1095–1100 (2015).
[Crossref] [PubMed]

Y. Yang, N. Akozbek, T.-h. Kim, J. M. Sanz, F. Moreno, M. Losurdo, A. S. Brown, and H. O. Everitt, “Ultraviolet–visible plasmonic properties of gallium nanoparticles investigated by variable-angle spectroscopic and Mueller matrix ellipsometry,” ACS Photonics 1(7), 582–589 (2014).
[Crossref]

F. Moreno, P. Albella, and M. Nieto-Vesperinas, “Analysis of the spectral behavior of localized plasmon resonances in the near- and far-field regimes,” Langmuir 29(22), 6715–6721 (2013).
[Crossref] [PubMed]

J. M. Sanz, D. Ortiz, R. Alcaraz de la Osa, J. M. Saiz, F. González, a. S. Brown, M. Losurdo, H. O. Everitt, and F. Moreno, “UV plasmonic behavior of various metal nanoparticles in the near- and far-field regimes: geometry and substrate effects,” J. Phys. Chem. C 117(38), 19606–19615 (2013).
[Crossref]

P. Albella, B. Garcia-Cueto, F. González, F. Moreno, P. C. Wu, T. H. Kim, A. Brown, Y. Yang, H. O. Everitt, and G. Videen, “Shape matters: plasmonic nanoparticle shape enhances interaction with dielectric substrate,” Nano Lett. 11(9), 3531–3537 (2011).
[Crossref] [PubMed]

P. C. Wu, M. Losurdo, T. H. Kim, B. Garcia-Cueto, F. Moreno, G. Bruno, and A. S. Brown, “Ga-Mg core-shell nanosystem for a novel full color plasmonics,” J. Phys. Chem. C 115(28), 13571–13576 (2011).
[Crossref]

R. F. Aroca, G. Y. Teo, H. Mohan, A. R. Guerrero, P. Albella, and F. Moreno, “Plasmon-enhanced fluorescence and spectral modification in SHINEF,” J. Phys. Chem. C 115(42), 20419–20424 (2011).
[Crossref]

Mukherjee, S.

M. W. Knight, L. Liu, Y. Wang, L. Brown, S. Mukherjee, N. S. King, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum plasmonic nanoantennas,” Nano Lett. 12(11), 6000–6004 (2012).
[Crossref] [PubMed]

Neubrech, F.

P. Alonso-González, P. Albella, F. Neubrech, C. Huck, J. Chen, F. Golmar, F. Casanova, L. E. Hueso, A. Pucci, J. Aizpurua, and R. Hillenbrand, “Experimental verification of the spectral shift between near- and far-field peak intensities of plasmonic infrared nanoantennas,” Phys. Rev. Lett. 110(20), 1–6 (2013).
[Crossref]

Nieto-Vesperinas, M.

F. Moreno, P. Albella, and M. Nieto-Vesperinas, “Analysis of the spectral behavior of localized plasmon resonances in the near- and far-field regimes,” Langmuir 29(22), 6715–6721 (2013).
[Crossref] [PubMed]

Nordlander, P.

M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano 8(1), 834–840 (2014).
[Crossref]

M. W. Knight, L. Liu, Y. Wang, L. Brown, S. Mukherjee, N. S. King, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum plasmonic nanoantennas,” Nano Lett. 12(11), 6000–6004 (2012).
[Crossref] [PubMed]

Odom, T. W.

M. G. Blaber, C. J. Engel, S. R. C. Vivekchand, S. M. Lubin, T. W. Odom, and G. C. Schatz, “Eutectic liquid alloys for plasmonics: theory and experiment,” Nano Lett. 12(10), 5275–5280 (2012).
[Crossref] [PubMed]

Olefjord, I.

V. Fournier, P. Marcus, and I. Olefjord, “Oxidation of Magnesium,” Surf. Interface Anal. 34(1), 494–497 (2002).
[Crossref]

Ortiz, D.

J. M. Sanz, D. Ortiz, R. Alcaraz de la Osa, J. M. Saiz, F. González, a. S. Brown, M. Losurdo, H. O. Everitt, and F. Moreno, “UV plasmonic behavior of various metal nanoparticles in the near- and far-field regimes: geometry and substrate effects,” J. Phys. Chem. C 117(38), 19606–19615 (2013).
[Crossref]

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998).

Park, K.

A. Rai, K. Park, L. Zhou, and M. R. Zachariah, “Understanding the mechanism of aluminium nanoparticle oxidation,” Combust. Theor. Model. 10(5), 843–859 (2006).
[Crossref]

Pelton, M.

M. Pelton, J. Aizpurua, and G. Bryant, “Metal-nanoparticle plasmonics,” Laser Photon. Rev 2(3), 136–159 (2008).
[Crossref]

Plain, J.

A. Lalisse, G. Tessier, J. Plain, and G. Baffou, “Quantifying the efficiency of plasmonic materials for near-field enhancement and photothermal conversion,” J. Phys. Chem. C 119(45), 25518–25528 (2015).
[Crossref]

Pond, J.

M. H. Chowdhury, K. Ray, S. K. Gray, J. Pond, and J. R. Lakowicz, “Aluminum nanoparticles as substrates for metal-enhanced fluorescence in the ultraviolet for the label-free detection of biomolecules,” Anal. Chem. 81(4), 1397–1403 (2009).
[Crossref] [PubMed]

Pucci, A.

P. Alonso-González, P. Albella, F. Neubrech, C. Huck, J. Chen, F. Golmar, F. Casanova, L. E. Hueso, A. Pucci, J. Aizpurua, and R. Hillenbrand, “Experimental verification of the spectral shift between near- and far-field peak intensities of plasmonic infrared nanoantennas,” Phys. Rev. Lett. 110(20), 1–6 (2013).
[Crossref]

Rai, A.

A. Rai, K. Park, L. Zhou, and M. R. Zachariah, “Understanding the mechanism of aluminium nanoparticle oxidation,” Combust. Theor. Model. 10(5), 843–859 (2006).
[Crossref]

Ray, K.

M. H. Chowdhury, K. Ray, S. K. Gray, J. Pond, and J. R. Lakowicz, “Aluminum nanoparticles as substrates for metal-enhanced fluorescence in the ultraviolet for the label-free detection of biomolecules,” Anal. Chem. 81(4), 1397–1403 (2009).
[Crossref] [PubMed]

Ringe, E.

B. Sharma, R. R. Frontiera, A.I. Henry, E. Ringe, and R. P. Van Duyne, “SERS: materials, applications, and the future,” Mater. Today 15(1), 16–25 (2012).
[Crossref]

Saiz, J. M.

R. Alcaraz de la Osa, J. M. Sanz, A. I. Barreda, J. M. Saiz, F. González, H. O. Everitt, and F. Moreno, “Rhodium tripod stars for UV plasmonics,” J. Phys. Chem. C 119(22), 12572–12580 (2015).
[Crossref]

J. M. Sanz, D. Ortiz, R. Alcaraz de la Osa, J. M. Saiz, F. González, a. S. Brown, M. Losurdo, H. O. Everitt, and F. Moreno, “UV plasmonic behavior of various metal nanoparticles in the near- and far-field regimes: geometry and substrate effects,” J. Phys. Chem. C 117(38), 19606–19615 (2013).
[Crossref]

Sanz, J. M.

R. Alcaraz de la Osa, J. M. Sanz, A. I. Barreda, J. M. Saiz, F. González, H. O. Everitt, and F. Moreno, “Rhodium tripod stars for UV plasmonics,” J. Phys. Chem. C 119(22), 12572–12580 (2015).
[Crossref]

Y. Yang, N. Akozbek, T.-h. Kim, J. M. Sanz, F. Moreno, M. Losurdo, A. S. Brown, and H. O. Everitt, “Ultraviolet–visible plasmonic properties of gallium nanoparticles investigated by variable-angle spectroscopic and Mueller matrix ellipsometry,” ACS Photonics 1(7), 582–589 (2014).
[Crossref]

J. M. Sanz, D. Ortiz, R. Alcaraz de la Osa, J. M. Saiz, F. González, a. S. Brown, M. Losurdo, H. O. Everitt, and F. Moreno, “UV plasmonic behavior of various metal nanoparticles in the near- and far-field regimes: geometry and substrate effects,” J. Phys. Chem. C 117(38), 19606–19615 (2013).
[Crossref]

Satka, A.

A. Kuzma, M. Weis, S. Flickyngerova, J. Jakabovic, A. Satka, E. Dobrocka, J. Chlpik, J. Cirak, M. Donoval, P. Telek, F. Uherek, and D. Donoval, “Influence of surface oxidation on plasmon resonance in monolayer of gold and silver nanoparticles,” J. Appl. Phys 112(10), 103531 (2012).
[Crossref]

Schatz, G. C.

M. G. Blaber, C. J. Engel, S. R. C. Vivekchand, S. M. Lubin, T. W. Odom, and G. C. Schatz, “Eutectic liquid alloys for plasmonics: theory and experiment,” Nano Lett. 12(10), 5275–5280 (2012).
[Crossref] [PubMed]

G. H. Chan, J. Zhao, G. C. Schatz, and R. P. V. Duyne, “Localized surface plasmon resonance spectroscopy of triangular aluminum nanoparticles,” J. Phys. Chem. C 112(36), 13958–13963 (2008).
[Crossref]

E. J. Zeman and G. C. Schatz, “An accurate electromagnetic theory study of surface enhancement factors for Ag, Au, Cu, Li, Na, AI, Ga, In, Zn, and Cd,” J. Phys. Chem. 91(14), 634–643 (1987).
[Crossref]

Scherbak, S. A.

S. A. Scherbak, O. V. Shustova, V. V. Zhurikhina, and A. A. Lipovskii, “Electric properties of hemispherical metal nanoparticles: influence of the dielectric cover and substrate,” Plasmonics 10(3), 519–527 (2014).
[Crossref]

Shah, N. C.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Sharma, B.

B. Sharma, R. R. Frontiera, A.I. Henry, E. Ringe, and R. P. Van Duyne, “SERS: materials, applications, and the future,” Mater. Today 15(1), 16–25 (2012).
[Crossref]

Shemer, G.

I. Lieberman, G. Shemer, T. Fried, E. M. Kosower, and G. Markovich, “Plasmon-resonance-enhanced absorption and circular dichroism,” Angew. Chem. Int. Ed. 47(26), 4855–4857 (2008).
[Crossref]

Shustova, O. V.

S. A. Scherbak, O. V. Shustova, V. V. Zhurikhina, and A. A. Lipovskii, “Electric properties of hemispherical metal nanoparticles: influence of the dielectric cover and substrate,” Plasmonics 10(3), 519–527 (2014).
[Crossref]

Sterl, F.

F. Sterl, N. Strohfeldt, R. Walter, R. Griessen, A. Tittl, and H. Giessen, “Magnesium as novel material for active plasmonics in the visible wavelength range,” Nano Lett. 15(12), 7949–7955 (2015).
[Crossref] [PubMed]

Strohfeldt, N.

F. Sterl, N. Strohfeldt, R. Walter, R. Griessen, A. Tittl, and H. Giessen, “Magnesium as novel material for active plasmonics in the visible wavelength range,” Nano Lett. 15(12), 7949–7955 (2015).
[Crossref] [PubMed]

Taguchi, A.

A. Taguchi, N. Hayazawa, K. Furusawa, H. Ishitobi, and S. Kawata, “Deep-UV tip-enhanced Raman scattering,” J. Raman Spectrosc. 40(9), 1324–1330 (2009).
[Crossref]

Telek, P.

A. Kuzma, M. Weis, S. Flickyngerova, J. Jakabovic, A. Satka, E. Dobrocka, J. Chlpik, J. Cirak, M. Donoval, P. Telek, F. Uherek, and D. Donoval, “Influence of surface oxidation on plasmon resonance in monolayer of gold and silver nanoparticles,” J. Appl. Phys 112(10), 103531 (2012).
[Crossref]

Teo, G. Y.

R. F. Aroca, G. Y. Teo, H. Mohan, A. R. Guerrero, P. Albella, and F. Moreno, “Plasmon-enhanced fluorescence and spectral modification in SHINEF,” J. Phys. Chem. C 115(42), 20419–20424 (2011).
[Crossref]

Tessier, G.

A. Lalisse, G. Tessier, J. Plain, and G. Baffou, “Quantifying the efficiency of plasmonic materials for near-field enhancement and photothermal conversion,” J. Phys. Chem. C 119(45), 25518–25528 (2015).
[Crossref]

Thomas, J.

G. Jezequel, J. C. Lemonnier, and J. Thomas, “Optical properties of gallium films between 2 and 15 eV,” J. Phys. F 7(8), 1613–1622 (1977).
[Crossref]

Tittl, A.

F. Sterl, N. Strohfeldt, R. Walter, R. Griessen, A. Tittl, and H. Giessen, “Magnesium as novel material for active plasmonics in the visible wavelength range,” Nano Lett. 15(12), 7949–7955 (2015).
[Crossref] [PubMed]

Uherek, F.

A. Kuzma, M. Weis, S. Flickyngerova, J. Jakabovic, A. Satka, E. Dobrocka, J. Chlpik, J. Cirak, M. Donoval, P. Telek, F. Uherek, and D. Donoval, “Influence of surface oxidation on plasmon resonance in monolayer of gold and silver nanoparticles,” J. Appl. Phys 112(10), 103531 (2012).
[Crossref]

Van Duyne, R. P.

B. Sharma, R. R. Frontiera, A.I. Henry, E. Ringe, and R. P. Van Duyne, “SERS: materials, applications, and the future,” Mater. Today 15(1), 16–25 (2012).
[Crossref]

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Videen, G.

P. Albella, B. Garcia-Cueto, F. González, F. Moreno, P. C. Wu, T. H. Kim, A. Brown, Y. Yang, H. O. Everitt, and G. Videen, “Shape matters: plasmonic nanoparticle shape enhances interaction with dielectric substrate,” Nano Lett. 11(9), 3531–3537 (2011).
[Crossref] [PubMed]

Vivekchand, S. R. C.

M. G. Blaber, C. J. Engel, S. R. C. Vivekchand, S. M. Lubin, T. W. Odom, and G. C. Schatz, “Eutectic liquid alloys for plasmonics: theory and experiment,” Nano Lett. 12(10), 5275–5280 (2012).
[Crossref] [PubMed]

Walter, R.

F. Sterl, N. Strohfeldt, R. Walter, R. Griessen, A. Tittl, and H. Giessen, “Magnesium as novel material for active plasmonics in the visible wavelength range,” Nano Lett. 15(12), 7949–7955 (2015).
[Crossref] [PubMed]

Wang, Y.

M. W. Knight, L. Liu, Y. Wang, L. Brown, S. Mukherjee, N. S. King, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum plasmonic nanoantennas,” Nano Lett. 12(11), 6000–6004 (2012).
[Crossref] [PubMed]

Watson, A. M.

A. M. Watson, X. Zhang, R. Alcaraz de la Osa, J. Marcos Sanz, F. González, F. Moreno, G. Finkelstein, J. Liu, and H. O. Everitt, “Rhodium nanoparticles for ultraviolet plasmonics,” Nano Lett. 15(2), 1095–1100 (2015).
[Crossref] [PubMed]

Weis, M.

A. Kuzma, M. Weis, S. Flickyngerova, J. Jakabovic, A. Satka, E. Dobrocka, J. Chlpik, J. Cirak, M. Donoval, P. Telek, F. Uherek, and D. Donoval, “Influence of surface oxidation on plasmon resonance in monolayer of gold and silver nanoparticles,” J. Appl. Phys 112(10), 103531 (2012).
[Crossref]

Wu, P. C.

P. C. Wu, M. Losurdo, T. H. Kim, B. Garcia-Cueto, F. Moreno, G. Bruno, and A. S. Brown, “Ga-Mg core-shell nanosystem for a novel full color plasmonics,” J. Phys. Chem. C 115(28), 13571–13576 (2011).
[Crossref]

P. Albella, B. Garcia-Cueto, F. González, F. Moreno, P. C. Wu, T. H. Kim, A. Brown, Y. Yang, H. O. Everitt, and G. Videen, “Shape matters: plasmonic nanoparticle shape enhances interaction with dielectric substrate,” Nano Lett. 11(9), 3531–3537 (2011).
[Crossref] [PubMed]

P. C. Wu, M. Losurdo, T.-H. Kim, S. Choi, G. Bruno, and A. S. Brown, “In situ spectroscopic ellipsometry to monitor surface plasmon resonant group-III metals deposited by molecular beam epitaxy,” J. Vac. Sci. Technol. B 25(3), 1019 (2007).
[Crossref]

Yang, Y.

Y. Yang, N. Akozbek, T.-h. Kim, J. M. Sanz, F. Moreno, M. Losurdo, A. S. Brown, and H. O. Everitt, “Ultraviolet–visible plasmonic properties of gallium nanoparticles investigated by variable-angle spectroscopic and Mueller matrix ellipsometry,” ACS Photonics 1(7), 582–589 (2014).
[Crossref]

P. Albella, B. Garcia-Cueto, F. González, F. Moreno, P. C. Wu, T. H. Kim, A. Brown, Y. Yang, H. O. Everitt, and G. Videen, “Shape matters: plasmonic nanoparticle shape enhances interaction with dielectric substrate,” Nano Lett. 11(9), 3531–3537 (2011).
[Crossref] [PubMed]

Zachariah, M. R.

A. Rai, K. Park, L. Zhou, and M. R. Zachariah, “Understanding the mechanism of aluminium nanoparticle oxidation,” Combust. Theor. Model. 10(5), 843–859 (2006).
[Crossref]

Zeman, E. J.

E. J. Zeman and G. C. Schatz, “An accurate electromagnetic theory study of surface enhancement factors for Ag, Au, Cu, Li, Na, AI, Ga, In, Zn, and Cd,” J. Phys. Chem. 91(14), 634–643 (1987).
[Crossref]

Zhang, X.

X. Zhang, P. Li, Á. Barreda, Y. Gutiérrez, F. González, F. Moreno, H. O. Everitt, and J. Liu, “Size-tunable rhodium nanostructures for wavelength-tunable ultraviolet plasmonics,” Nanoscale Horiz. 1(1), 75–80 (2016).
[Crossref]

A. M. Watson, X. Zhang, R. Alcaraz de la Osa, J. Marcos Sanz, F. González, F. Moreno, G. Finkelstein, J. Liu, and H. O. Everitt, “Rhodium nanoparticles for ultraviolet plasmonics,” Nano Lett. 15(2), 1095–1100 (2015).
[Crossref] [PubMed]

Zhao, J.

G. H. Chan, J. Zhao, G. C. Schatz, and R. P. V. Duyne, “Localized surface plasmon resonance spectroscopy of triangular aluminum nanoparticles,” J. Phys. Chem. C 112(36), 13958–13963 (2008).
[Crossref]

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Zhou, L.

A. Rai, K. Park, L. Zhou, and M. R. Zachariah, “Understanding the mechanism of aluminium nanoparticle oxidation,” Combust. Theor. Model. 10(5), 843–859 (2006).
[Crossref]

Zhurikhina, V. V.

S. A. Scherbak, O. V. Shustova, V. V. Zhurikhina, and A. A. Lipovskii, “Electric properties of hemispherical metal nanoparticles: influence of the dielectric cover and substrate,” Plasmonics 10(3), 519–527 (2014).
[Crossref]

ACS Nano (1)

M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano 8(1), 834–840 (2014).
[Crossref]

ACS Photonics (1)

Y. Yang, N. Akozbek, T.-h. Kim, J. M. Sanz, F. Moreno, M. Losurdo, A. S. Brown, and H. O. Everitt, “Ultraviolet–visible plasmonic properties of gallium nanoparticles investigated by variable-angle spectroscopic and Mueller matrix ellipsometry,” ACS Photonics 1(7), 582–589 (2014).
[Crossref]

Anal. Chem. (1)

M. H. Chowdhury, K. Ray, S. K. Gray, J. Pond, and J. R. Lakowicz, “Aluminum nanoparticles as substrates for metal-enhanced fluorescence in the ultraviolet for the label-free detection of biomolecules,” Anal. Chem. 81(4), 1397–1403 (2009).
[Crossref] [PubMed]

Angew. Chem. Int. Ed. (1)

I. Lieberman, G. Shemer, T. Fried, E. M. Kosower, and G. Markovich, “Plasmon-resonance-enhanced absorption and circular dichroism,” Angew. Chem. Int. Ed. 47(26), 4855–4857 (2008).
[Crossref]

Appl. Phys. Lett. (1)

M. F. Al-Kuhaili, S. M. A. Durrani, and E. E. Khawaja, “Optical properties of gallium oxide films deposited by electron-beam evaporation,” Appl. Phys. Lett. 83(22), 4533 (2003).
[Crossref]

Combust. Theor. Model. (1)

A. Rai, K. Park, L. Zhou, and M. R. Zachariah, “Understanding the mechanism of aluminium nanoparticle oxidation,” Combust. Theor. Model. 10(5), 843–859 (2006).
[Crossref]

Curr. Opin. Chem. Biol. (1)

K. Aslan, J. R. Lakowicz, and C. D. Geddes, “Plasmon light scattering in biology and medicine: new sensing approaches, visions and perspectives,” Curr. Opin. Chem. Biol. 9(5), 538–544 (2005).
[Crossref] [PubMed]

J. Appl. Phys (1)

A. Kuzma, M. Weis, S. Flickyngerova, J. Jakabovic, A. Satka, E. Dobrocka, J. Chlpik, J. Cirak, M. Donoval, P. Telek, F. Uherek, and D. Donoval, “Influence of surface oxidation on plasmon resonance in monolayer of gold and silver nanoparticles,” J. Appl. Phys 112(10), 103531 (2012).
[Crossref]

J. Chem. Phys (1)

P. F. Liao, “Lightning rod effect in surface enhanced Raman scattering,” J. Chem. Phys 76(1), 751 (1982).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Phys. Chem. (1)

E. J. Zeman and G. C. Schatz, “An accurate electromagnetic theory study of surface enhancement factors for Ag, Au, Cu, Li, Na, AI, Ga, In, Zn, and Cd,” J. Phys. Chem. 91(14), 634–643 (1987).
[Crossref]

J. Phys. Chem. C (6)

J. M. Sanz, D. Ortiz, R. Alcaraz de la Osa, J. M. Saiz, F. González, a. S. Brown, M. Losurdo, H. O. Everitt, and F. Moreno, “UV plasmonic behavior of various metal nanoparticles in the near- and far-field regimes: geometry and substrate effects,” J. Phys. Chem. C 117(38), 19606–19615 (2013).
[Crossref]

P. C. Wu, M. Losurdo, T. H. Kim, B. Garcia-Cueto, F. Moreno, G. Bruno, and A. S. Brown, “Ga-Mg core-shell nanosystem for a novel full color plasmonics,” J. Phys. Chem. C 115(28), 13571–13576 (2011).
[Crossref]

R. Alcaraz de la Osa, J. M. Sanz, A. I. Barreda, J. M. Saiz, F. González, H. O. Everitt, and F. Moreno, “Rhodium tripod stars for UV plasmonics,” J. Phys. Chem. C 119(22), 12572–12580 (2015).
[Crossref]

A. Lalisse, G. Tessier, J. Plain, and G. Baffou, “Quantifying the efficiency of plasmonic materials for near-field enhancement and photothermal conversion,” J. Phys. Chem. C 119(45), 25518–25528 (2015).
[Crossref]

R. F. Aroca, G. Y. Teo, H. Mohan, A. R. Guerrero, P. Albella, and F. Moreno, “Plasmon-enhanced fluorescence and spectral modification in SHINEF,” J. Phys. Chem. C 115(42), 20419–20424 (2011).
[Crossref]

G. H. Chan, J. Zhao, G. C. Schatz, and R. P. V. Duyne, “Localized surface plasmon resonance spectroscopy of triangular aluminum nanoparticles,” J. Phys. Chem. C 112(36), 13958–13963 (2008).
[Crossref]

J. Phys. F (1)

G. Jezequel, J. C. Lemonnier, and J. Thomas, “Optical properties of gallium films between 2 and 15 eV,” J. Phys. F 7(8), 1613–1622 (1977).
[Crossref]

J. Raman Spectrosc. (1)

A. Taguchi, N. Hayazawa, K. Furusawa, H. Ishitobi, and S. Kawata, “Deep-UV tip-enhanced Raman scattering,” J. Raman Spectrosc. 40(9), 1324–1330 (2009).
[Crossref]

J. Vac. Sci. Technol. B (1)

P. C. Wu, M. Losurdo, T.-H. Kim, S. Choi, G. Bruno, and A. S. Brown, “In situ spectroscopic ellipsometry to monitor surface plasmon resonant group-III metals deposited by molecular beam epitaxy,” J. Vac. Sci. Technol. B 25(3), 1019 (2007).
[Crossref]

Langmuir (1)

F. Moreno, P. Albella, and M. Nieto-Vesperinas, “Analysis of the spectral behavior of localized plasmon resonances in the near- and far-field regimes,” Langmuir 29(22), 6715–6721 (2013).
[Crossref] [PubMed]

Laser Photon. Rev (1)

M. Pelton, J. Aizpurua, and G. Bryant, “Metal-nanoparticle plasmonics,” Laser Photon. Rev 2(3), 136–159 (2008).
[Crossref]

Mater. Today (1)

B. Sharma, R. R. Frontiera, A.I. Henry, E. Ringe, and R. P. Van Duyne, “SERS: materials, applications, and the future,” Mater. Today 15(1), 16–25 (2012).
[Crossref]

Nano Lett. (5)

F. Sterl, N. Strohfeldt, R. Walter, R. Griessen, A. Tittl, and H. Giessen, “Magnesium as novel material for active plasmonics in the visible wavelength range,” Nano Lett. 15(12), 7949–7955 (2015).
[Crossref] [PubMed]

A. M. Watson, X. Zhang, R. Alcaraz de la Osa, J. Marcos Sanz, F. González, F. Moreno, G. Finkelstein, J. Liu, and H. O. Everitt, “Rhodium nanoparticles for ultraviolet plasmonics,” Nano Lett. 15(2), 1095–1100 (2015).
[Crossref] [PubMed]

M. W. Knight, L. Liu, Y. Wang, L. Brown, S. Mukherjee, N. S. King, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum plasmonic nanoantennas,” Nano Lett. 12(11), 6000–6004 (2012).
[Crossref] [PubMed]

P. Albella, B. Garcia-Cueto, F. González, F. Moreno, P. C. Wu, T. H. Kim, A. Brown, Y. Yang, H. O. Everitt, and G. Videen, “Shape matters: plasmonic nanoparticle shape enhances interaction with dielectric substrate,” Nano Lett. 11(9), 3531–3537 (2011).
[Crossref] [PubMed]

M. G. Blaber, C. J. Engel, S. R. C. Vivekchand, S. M. Lubin, T. W. Odom, and G. C. Schatz, “Eutectic liquid alloys for plasmonics: theory and experiment,” Nano Lett. 12(10), 5275–5280 (2012).
[Crossref] [PubMed]

Nanoscale Horiz. (1)

X. Zhang, P. Li, Á. Barreda, Y. Gutiérrez, F. González, F. Moreno, H. O. Everitt, and J. Liu, “Size-tunable rhodium nanostructures for wavelength-tunable ultraviolet plasmonics,” Nanoscale Horiz. 1(1), 75–80 (2016).
[Crossref]

Nat. Mater. (1)

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

P. Alonso-González, P. Albella, F. Neubrech, C. Huck, J. Chen, F. Golmar, F. Casanova, L. E. Hueso, A. Pucci, J. Aizpurua, and R. Hillenbrand, “Experimental verification of the spectral shift between near- and far-field peak intensities of plasmonic infrared nanoantennas,” Phys. Rev. Lett. 110(20), 1–6 (2013).
[Crossref]

Plasmonics (1)

S. A. Scherbak, O. V. Shustova, V. V. Zhurikhina, and A. A. Lipovskii, “Electric properties of hemispherical metal nanoparticles: influence of the dielectric cover and substrate,” Plasmonics 10(3), 519–527 (2014).
[Crossref]

Surf. Interface Anal. (1)

V. Fournier, P. Marcus, and I. Olefjord, “Oxidation of Magnesium,” Surf. Interface Anal. 34(1), 494–497 (2002).
[Crossref]

Other (4)

W. M. Haynes, CRC Handbook of Chemistry and Physics (Taylor and Francis Group, 2014).

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-VCH, 1998).
[Crossref]

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998).

S. A. Maier, Plasmonics: Fundamentals and Applications (SpringerUS, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

The two analyzed scattering geometries: a) Isolated spherical geometry, b) Hemispherical geometry on a dielectric substrate. (R = 40 nm, Rcore will range from 20 nm to 40 nm).

Fig. 2
Fig. 2

Real (blue left axis) and imaginary (red right axis) part of the dielectric function for Al, Mg, and Ga (top row) and their oxides (bottom row).

Fig. 3
Fig. 3

(a) Absorption efficiency, Qabs, of a core-shell spherical nanoparticle and a hemispherical nanoparticle, for Mg/MgO (first column), Al/Al2O3 (second column) and Ga/Ga2O3 (third column). The particle overall radius is R = 40 nm while the core radius varies from Rcore = 20 to 40 nm. (b) 2D color map of the normalized absorption efficiency as a function of the wavelength and the core radius Rcore for Mg/MgO (first column), Al/Al2O3 (second column) and Ga/Ga2O3 (third column) spherical and hemispherical on substrate NPs.

Fig. 4
Fig. 4

Local electric field distribution for an isolated core-shell spherical and hemispherical nanoparticle for each metal, with R = 40 nm, Rcore = 30 nm, and a 10 nm thick oxide shell. The illuminating wavelength in each case corresponds to the one that makes Qabs maximum.

Fig. 5
Fig. 5

Evolution of 〈|E⃗core |2〉/〈|E⃗shell|2〉 for each metal as a function of the metallic core size for a spherical and hemispherical nanoparticle of radius 40 nm at the wavelength at which 〈|E⃗shell|2〉 takes its maximum in the electric dipolar resonance.

Fig. 6
Fig. 6

Evolution of the peak value (top) and location (bottom) for the Qabs (circles) and the 〈|E⃗|2〉 (squares) for spherical (red) and hemispherical (blue) nanoparticles of Mg/MgO, Al/Al2O3 and Ga/Ga2O3.

Metrics