Abstract

Low-cost surface-enhanced Raman scattering (SERS) substrate with the largest possible enhancement factor is highly desirable for SERS-based sensing applications. In this work, we systematically investigated how the density of plasmonic nanostructures affects the intensity of SERS signal. By directly depositing of metallic layer on electron-beam-lithography defined dielectric nanoposts, plasmonic structures array with different densities were reliably fabricated for SERS measurements. Two main experimental phenomena were obtained: (1) the SERS intensity did not increase monotonically when increasing the density of plasmonic structures, and (2) these ultra-dense plasmonic structures resulted in the maximal SERS intensity. These results could be well explained based on finite-difference time domain (FDTD) simulations and provide robust experimental evidences to guide the design of the best possible SERS substrate.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Understanding the effects of dielectric medium, substrate, and depth on electric fields and SERS of quasi-3D plasmonic nanostructures

Jiajie Xu, Pavel Kvasnička, Matthew Idso, Roger W. Jordan, Heng Gong, Jiří Homola, and Qiuming Yu
Opt. Express 19(21) 20493-20505 (2011)

Deterministic aperiodic arrays of metal nanoparticles for surface-enhanced Raman scattering (SERS)

Ashwin Gopinath, Svetlana V. Boriskina, Bjorn M. Reinhard, and Luca Dal Negro
Opt. Express 17(5) 3741-3753 (2009)

Optimization of Ag coated hydrogen silsesquioxane square array hybrid structure design for surface-enhanced Raman scattering substrate

Hong Wang, Zihang Huo, Zihao Zhang, Shaofei Chen, and Shaoji Jiang
Opt. Express 26(2) 1097-1107 (2018)

References

  • View by:
  • |
  • |
  • |

  1. M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26(2), 163–166 (1974).
    [Crossref]
  2. S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
    [Crossref] [PubMed]
  3. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1977).
    [Crossref]
  4. D. K. Lim, K. S. Jeon, H. M. Kim, J. M. Nam, and Y. D. Suh, “Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection,” Nat. Mater. 9(1), 60–67 (2010).
    [Crossref] [PubMed]
  5. Y. Chen, X. Tian, W. Zeng, X. Zhu, H. Hu, and H. Duan, “Vapor-phase preparation of gold nanocrystals by chloroauric acid pyrolysis,” J. Colloid Interface Sci. 439, 21–27 (2015).
    [Crossref] [PubMed]
  6. Y. C. Cao, R. Jin, and C. A. Mirkin, “Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection,” Science 297(5586), 1536–1540 (2002).
    [Crossref] [PubMed]
  7. D. K. Lim, K. S. Jeon, J. H. Hwang, H. Kim, S. Kwon, Y. D. Suh, and J. M. Nam, “Highly uniform and reproducible surface-enhanced Raman scattering from DNA-tailorable nanoparticles with 1-nm interior gap,” Nat. Nanotechnol. 6(7), 452–460 (2011).
    [Crossref] [PubMed]
  8. S. Kasera, F. Biedermann, J. J. Baumberg, O. A. Scherman, and S. Mahajan, “Quantitative SERS using the sequestration of small molecules inside precise plasmonic nanoconstructs,” Nano Lett. 12(11), 5924–5928 (2012).
    [Crossref] [PubMed]
  9. J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
    [Crossref] [PubMed]
  10. H. Duan, H. Hu, K. Kumar, Z. Shen, and J. K. W. Yang, “Direct and reliable patterning of plasmonic nanostructures with sub-10-nm gaps,” ACS Nano 5(9), 7593–7600 (2011).
    [Crossref] [PubMed]
  11. H. Duan, H. Hu, H. K. Hui, Z. Shen, and J. K. W. Yang, “Free-standing sub-10 nm nanostencils for the definition of gaps in plasmonic antennas,” Nanotechnology 24(18), 185301 (2013).
    [Crossref] [PubMed]
  12. Y. Chen, Z. Li, Q. Xiang, Y. Wang, Z. Zhang, and H. Duan, “Reliable fabrication of plasmonic nanostructures without an adhesion layer using dry lift-off,” Nanotechnology 26(40), 405301 (2015).
    [Crossref] [PubMed]
  13. N. A. Hatab, C. H. Hsueh, A. L. Gaddis, S. T. Retterer, J. H. Li, G. Eres, Z. Zhang, and B. Gu, “Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy,” Nano Lett. 10(12), 4952–4955 (2010).
    [Crossref] [PubMed]
  14. Q. Tao, S. Li, C. Ma, K. Liu, and Q. Y. Zhang, “A highly sensitive and recyclable SERS substrate based on Ag-nanoparticle-decorated ZnO nanoflowers in ordered arrays,” Dalton Trans. 44(7), 3447–3453 (2015).
    [Crossref] [PubMed]
  15. Q. Fu, Z. Zhan, J. Dou, X. Zheng, R. Xu, M. Wu, and Y. Lei, “Highly reproducible and sensitive SERS substrates with Ag Inter-nanoparticle gaps of 5 nm fabricated by ultrathin aluminum mask technique,” ACS Appl. Mater. Interfaces 7(24), 13322–13328 (2015).
    [Crossref] [PubMed]
  16. C. H. Lee, M. E. Hankus, L. Tian, P. M. Pellegrino, and S. Singamaneni, “Highly sensitive surface enhanced Raman scattering substrates based on filter paper loaded with plasmonic nanostructures,” Anal. Chem. 83(23), 8953–8958 (2011).
    [Crossref] [PubMed]
  17. T. T. B. Quyen, C. C. Chang, W. N. Su, Y. H. Uen, C. J. Pan, J. Y. Liu, J. Rick, K. Y. Lin, and B. J. Hwang, “Self-focusing Au@SiO2 nanorods with rhodamine 6G as highly sensitive SERS substrate for carcinoembryonic antigen detection,” J. Mater. Chem. B Mater. Biol. Med. 2(6), 629–636 (2014).
    [Crossref]
  18. Q. Yu, P. Guan, D. Qin, G. Golden, and P. M. Wallace, “Inverted size-dependence of surface-enhanced Raman scattering on gold nanohole and nanodisk arrays,” Nano Lett. 8(7), 1923–1928 (2008).
    [Crossref] [PubMed]
  19. X. Zhang, C. R. Yonzon, M. A. Young, D. A. Stuart, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy biosensors: excitation spectroscopy for optimisation of substrates fabricated by nanosphere lithography,” IEE Proc., Nanobiotechnol. 152(6), 195–206 (2005).
    [Crossref] [PubMed]
  20. M. Li, S. K. Cushing, J. Zhang, J. Lankford, Z. P. Aguilar, D. Ma, and N. Wu, “Shape-dependent surface-enhanced Raman scattering in gold-Raman probe-silica sandwiched nanoparticles for biocompatible applications,” Nanotechnology 23(11), 115501 (2012).
    [Crossref] [PubMed]
  21. N. A. Abu Hatab, J. M. Oran, and M. J. Sepaniak, “Surface-enhanced Raman spectroscopy substrates created via electron beam lithography and nanotransfer printing,” ACS Nano 2(2), 377–385 (2008).
    [Crossref] [PubMed]
  22. M. A. Mahmoud and M. A. El-Sayed, “Aggregation of gold nanoframes reduces, rather than enhances, SERS efficiency due to the trade-off of the inter- and intraparticle plasmonic fields,” Nano Lett. 9(8), 3025–3031 (2009).
    [Crossref] [PubMed]
  23. Y. Yokota, K. Ueno, and H. Misawa, “Essential nanogap effects on surface-enhanced Raman scattering signals from closely spaced gold nanoparticles,” Chem. Commun. (Camb.) 47(12), 3505–3507 (2011).
    [Crossref] [PubMed]
  24. T. R. Lin, S. W. Chang, S. L. Chuang, Z. Zhang, and P. J. Schuck, “Coating effect on optical resonance of plasmonic nanobowtie antenna,” Appl. Phys. Lett. 97(6), 063106 (2010).
    [Crossref]
  25. D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. Moerner, “Gap-dependent optical coupling of single “bowtie” nanoantennas resonant in the visible,” Nano Lett. 4(5), 957–961 (2004).
    [Crossref]
  26. A. Sundaramurthy, K. Crozier, G. Kino, D. Fromm, P. Schuck, and W. Moerner, “Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles,” Phys. Rev. B 72(16), 165409 (2005).
    [Crossref]
  27. S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
    [Crossref] [PubMed]
  28. B. K. Chao, S. C. Lin, L. W. Nien, J. H. Li, and C. H. Hsueh, “Effects of corner radius on periodic nanoantenna for surface-enhanced Raman spectroscopy,” J. Opt. 17(12), 125002 (2015).
    [Crossref]
  29. K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: Resonators for local field enhancement,” J. Appl. Phys. 94(7), 4632–4642 (2003).
    [Crossref]
  30. J. K. W. Yang, B. Cord, H. Duan, K. K. Berggren, J. Klingfus, S.-W. Nam, K.-B. Kim, and M. J. Rooks, “Understanding of hydrogen silsesquioxane electron resist for sub-5-nm-half-pitch lithography,” J. Vac. Sci. Technol. B 27(6), 2622–2627 (2009).
    [Crossref]
  31. M. Y. Khaywah, S. Jradi, G. Louarn, Y. Lacroute, J. Toufaily, T. Hamieh, and P.-M. Adam, “Ultrastable, uniform, reproducible, and highly sensitive bimetallic nanoparticles as reliable large scale SERS substrates,” J. Phys. Chem. C 119(46), 26091–26100 (2015).
    [Crossref]
  32. P. P. Patra and G. V. P. Kumar, “Single-molecule surface-enhanced Raman scattering sensitivity of Ag-core Au-shell nanoparticles: revealed by Bi-analyte method,” J. Phys. Chem. Lett. 4(7), 1167–1171 (2013).
    [Crossref] [PubMed]
  33. W. D. Li, F. Ding, J. Hu, and S. Y. Chou, “Three-dimensional cavity nanoantenna coupled plasmonic nanodots for ultrahigh and uniform surface-enhanced Raman scattering over large area,” Opt. Express 19(5), 3925–3936 (2011).
    [Crossref] [PubMed]
  34. O. Vazquez-Mena, K. Sidler, V. Savu, C. W. Park, L. Guillermo Villanueva, and J. Brugger, “Reliable and improved nanoscale stencil lithography by membrane stabilization, blurring, and clogging corrections,” IEEE Trans. NanoTechnol. 10(2), 352–357 (2011).
    [Crossref]
  35. W. C. Lin, S. H. Huang, C. L. Chen, C. C. Chen, D. P. Tsai, and H. P. Chiang, “Controlling SERS intensity by tuning the size and height of a silver nanoparticle array,” Appl. Phys., A Mater. Sci. Process. 101(1), 185–189 (2010).
    [Crossref]

2015 (6)

Y. Chen, X. Tian, W. Zeng, X. Zhu, H. Hu, and H. Duan, “Vapor-phase preparation of gold nanocrystals by chloroauric acid pyrolysis,” J. Colloid Interface Sci. 439, 21–27 (2015).
[Crossref] [PubMed]

Y. Chen, Z. Li, Q. Xiang, Y. Wang, Z. Zhang, and H. Duan, “Reliable fabrication of plasmonic nanostructures without an adhesion layer using dry lift-off,” Nanotechnology 26(40), 405301 (2015).
[Crossref] [PubMed]

Q. Tao, S. Li, C. Ma, K. Liu, and Q. Y. Zhang, “A highly sensitive and recyclable SERS substrate based on Ag-nanoparticle-decorated ZnO nanoflowers in ordered arrays,” Dalton Trans. 44(7), 3447–3453 (2015).
[Crossref] [PubMed]

Q. Fu, Z. Zhan, J. Dou, X. Zheng, R. Xu, M. Wu, and Y. Lei, “Highly reproducible and sensitive SERS substrates with Ag Inter-nanoparticle gaps of 5 nm fabricated by ultrathin aluminum mask technique,” ACS Appl. Mater. Interfaces 7(24), 13322–13328 (2015).
[Crossref] [PubMed]

M. Y. Khaywah, S. Jradi, G. Louarn, Y. Lacroute, J. Toufaily, T. Hamieh, and P.-M. Adam, “Ultrastable, uniform, reproducible, and highly sensitive bimetallic nanoparticles as reliable large scale SERS substrates,” J. Phys. Chem. C 119(46), 26091–26100 (2015).
[Crossref]

B. K. Chao, S. C. Lin, L. W. Nien, J. H. Li, and C. H. Hsueh, “Effects of corner radius on periodic nanoantenna for surface-enhanced Raman spectroscopy,” J. Opt. 17(12), 125002 (2015).
[Crossref]

2014 (1)

T. T. B. Quyen, C. C. Chang, W. N. Su, Y. H. Uen, C. J. Pan, J. Y. Liu, J. Rick, K. Y. Lin, and B. J. Hwang, “Self-focusing Au@SiO2 nanorods with rhodamine 6G as highly sensitive SERS substrate for carcinoembryonic antigen detection,” J. Mater. Chem. B Mater. Biol. Med. 2(6), 629–636 (2014).
[Crossref]

2013 (2)

P. P. Patra and G. V. P. Kumar, “Single-molecule surface-enhanced Raman scattering sensitivity of Ag-core Au-shell nanoparticles: revealed by Bi-analyte method,” J. Phys. Chem. Lett. 4(7), 1167–1171 (2013).
[Crossref] [PubMed]

H. Duan, H. Hu, H. K. Hui, Z. Shen, and J. K. W. Yang, “Free-standing sub-10 nm nanostencils for the definition of gaps in plasmonic antennas,” Nanotechnology 24(18), 185301 (2013).
[Crossref] [PubMed]

2012 (2)

M. Li, S. K. Cushing, J. Zhang, J. Lankford, Z. P. Aguilar, D. Ma, and N. Wu, “Shape-dependent surface-enhanced Raman scattering in gold-Raman probe-silica sandwiched nanoparticles for biocompatible applications,” Nanotechnology 23(11), 115501 (2012).
[Crossref] [PubMed]

S. Kasera, F. Biedermann, J. J. Baumberg, O. A. Scherman, and S. Mahajan, “Quantitative SERS using the sequestration of small molecules inside precise plasmonic nanoconstructs,” Nano Lett. 12(11), 5924–5928 (2012).
[Crossref] [PubMed]

2011 (6)

C. H. Lee, M. E. Hankus, L. Tian, P. M. Pellegrino, and S. Singamaneni, “Highly sensitive surface enhanced Raman scattering substrates based on filter paper loaded with plasmonic nanostructures,” Anal. Chem. 83(23), 8953–8958 (2011).
[Crossref] [PubMed]

D. K. Lim, K. S. Jeon, J. H. Hwang, H. Kim, S. Kwon, Y. D. Suh, and J. M. Nam, “Highly uniform and reproducible surface-enhanced Raman scattering from DNA-tailorable nanoparticles with 1-nm interior gap,” Nat. Nanotechnol. 6(7), 452–460 (2011).
[Crossref] [PubMed]

H. Duan, H. Hu, K. Kumar, Z. Shen, and J. K. W. Yang, “Direct and reliable patterning of plasmonic nanostructures with sub-10-nm gaps,” ACS Nano 5(9), 7593–7600 (2011).
[Crossref] [PubMed]

Y. Yokota, K. Ueno, and H. Misawa, “Essential nanogap effects on surface-enhanced Raman scattering signals from closely spaced gold nanoparticles,” Chem. Commun. (Camb.) 47(12), 3505–3507 (2011).
[Crossref] [PubMed]

O. Vazquez-Mena, K. Sidler, V. Savu, C. W. Park, L. Guillermo Villanueva, and J. Brugger, “Reliable and improved nanoscale stencil lithography by membrane stabilization, blurring, and clogging corrections,” IEEE Trans. NanoTechnol. 10(2), 352–357 (2011).
[Crossref]

W. D. Li, F. Ding, J. Hu, and S. Y. Chou, “Three-dimensional cavity nanoantenna coupled plasmonic nanodots for ultrahigh and uniform surface-enhanced Raman scattering over large area,” Opt. Express 19(5), 3925–3936 (2011).
[Crossref] [PubMed]

2010 (5)

W. C. Lin, S. H. Huang, C. L. Chen, C. C. Chen, D. P. Tsai, and H. P. Chiang, “Controlling SERS intensity by tuning the size and height of a silver nanoparticle array,” Appl. Phys., A Mater. Sci. Process. 101(1), 185–189 (2010).
[Crossref]

T. R. Lin, S. W. Chang, S. L. Chuang, Z. Zhang, and P. J. Schuck, “Coating effect on optical resonance of plasmonic nanobowtie antenna,” Appl. Phys. Lett. 97(6), 063106 (2010).
[Crossref]

N. A. Hatab, C. H. Hsueh, A. L. Gaddis, S. T. Retterer, J. H. Li, G. Eres, Z. Zhang, and B. Gu, “Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy,” Nano Lett. 10(12), 4952–4955 (2010).
[Crossref] [PubMed]

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

D. K. Lim, K. S. Jeon, H. M. Kim, J. M. Nam, and Y. D. Suh, “Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection,” Nat. Mater. 9(1), 60–67 (2010).
[Crossref] [PubMed]

2009 (2)

M. A. Mahmoud and M. A. El-Sayed, “Aggregation of gold nanoframes reduces, rather than enhances, SERS efficiency due to the trade-off of the inter- and intraparticle plasmonic fields,” Nano Lett. 9(8), 3025–3031 (2009).
[Crossref] [PubMed]

J. K. W. Yang, B. Cord, H. Duan, K. K. Berggren, J. Klingfus, S.-W. Nam, K.-B. Kim, and M. J. Rooks, “Understanding of hydrogen silsesquioxane electron resist for sub-5-nm-half-pitch lithography,” J. Vac. Sci. Technol. B 27(6), 2622–2627 (2009).
[Crossref]

2008 (3)

N. A. Abu Hatab, J. M. Oran, and M. J. Sepaniak, “Surface-enhanced Raman spectroscopy substrates created via electron beam lithography and nanotransfer printing,” ACS Nano 2(2), 377–385 (2008).
[Crossref] [PubMed]

S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[Crossref] [PubMed]

Q. Yu, P. Guan, D. Qin, G. Golden, and P. M. Wallace, “Inverted size-dependence of surface-enhanced Raman scattering on gold nanohole and nanodisk arrays,” Nano Lett. 8(7), 1923–1928 (2008).
[Crossref] [PubMed]

2005 (2)

X. Zhang, C. R. Yonzon, M. A. Young, D. A. Stuart, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy biosensors: excitation spectroscopy for optimisation of substrates fabricated by nanosphere lithography,” IEE Proc., Nanobiotechnol. 152(6), 195–206 (2005).
[Crossref] [PubMed]

A. Sundaramurthy, K. Crozier, G. Kino, D. Fromm, P. Schuck, and W. Moerner, “Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles,” Phys. Rev. B 72(16), 165409 (2005).
[Crossref]

2004 (1)

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. Moerner, “Gap-dependent optical coupling of single “bowtie” nanoantennas resonant in the visible,” Nano Lett. 4(5), 957–961 (2004).
[Crossref]

2003 (1)

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: Resonators for local field enhancement,” J. Appl. Phys. 94(7), 4632–4642 (2003).
[Crossref]

2002 (1)

Y. C. Cao, R. Jin, and C. A. Mirkin, “Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection,” Science 297(5586), 1536–1540 (2002).
[Crossref] [PubMed]

1997 (1)

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
[Crossref] [PubMed]

1977 (1)

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1977).
[Crossref]

1974 (1)

M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26(2), 163–166 (1974).
[Crossref]

Abu Hatab, N. A.

N. A. Abu Hatab, J. M. Oran, and M. J. Sepaniak, “Surface-enhanced Raman spectroscopy substrates created via electron beam lithography and nanotransfer printing,” ACS Nano 2(2), 377–385 (2008).
[Crossref] [PubMed]

Adam, P.-M.

M. Y. Khaywah, S. Jradi, G. Louarn, Y. Lacroute, J. Toufaily, T. Hamieh, and P.-M. Adam, “Ultrastable, uniform, reproducible, and highly sensitive bimetallic nanoparticles as reliable large scale SERS substrates,” J. Phys. Chem. C 119(46), 26091–26100 (2015).
[Crossref]

Aguilar, Z. P.

M. Li, S. K. Cushing, J. Zhang, J. Lankford, Z. P. Aguilar, D. Ma, and N. Wu, “Shape-dependent surface-enhanced Raman scattering in gold-Raman probe-silica sandwiched nanoparticles for biocompatible applications,” Nanotechnology 23(11), 115501 (2012).
[Crossref] [PubMed]

Baumberg, J. J.

S. Kasera, F. Biedermann, J. J. Baumberg, O. A. Scherman, and S. Mahajan, “Quantitative SERS using the sequestration of small molecules inside precise plasmonic nanoconstructs,” Nano Lett. 12(11), 5924–5928 (2012).
[Crossref] [PubMed]

Berggren, K. K.

J. K. W. Yang, B. Cord, H. Duan, K. K. Berggren, J. Klingfus, S.-W. Nam, K.-B. Kim, and M. J. Rooks, “Understanding of hydrogen silsesquioxane electron resist for sub-5-nm-half-pitch lithography,” J. Vac. Sci. Technol. B 27(6), 2622–2627 (2009).
[Crossref]

Biedermann, F.

S. Kasera, F. Biedermann, J. J. Baumberg, O. A. Scherman, and S. Mahajan, “Quantitative SERS using the sequestration of small molecules inside precise plasmonic nanoconstructs,” Nano Lett. 12(11), 5924–5928 (2012).
[Crossref] [PubMed]

Brugger, J.

O. Vazquez-Mena, K. Sidler, V. Savu, C. W. Park, L. Guillermo Villanueva, and J. Brugger, “Reliable and improved nanoscale stencil lithography by membrane stabilization, blurring, and clogging corrections,” IEEE Trans. NanoTechnol. 10(2), 352–357 (2011).
[Crossref]

Cao, Y. C.

Y. C. Cao, R. Jin, and C. A. Mirkin, “Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection,” Science 297(5586), 1536–1540 (2002).
[Crossref] [PubMed]

Chang, C. C.

T. T. B. Quyen, C. C. Chang, W. N. Su, Y. H. Uen, C. J. Pan, J. Y. Liu, J. Rick, K. Y. Lin, and B. J. Hwang, “Self-focusing Au@SiO2 nanorods with rhodamine 6G as highly sensitive SERS substrate for carcinoembryonic antigen detection,” J. Mater. Chem. B Mater. Biol. Med. 2(6), 629–636 (2014).
[Crossref]

Chang, S. W.

T. R. Lin, S. W. Chang, S. L. Chuang, Z. Zhang, and P. J. Schuck, “Coating effect on optical resonance of plasmonic nanobowtie antenna,” Appl. Phys. Lett. 97(6), 063106 (2010).
[Crossref]

Chao, B. K.

B. K. Chao, S. C. Lin, L. W. Nien, J. H. Li, and C. H. Hsueh, “Effects of corner radius on periodic nanoantenna for surface-enhanced Raman spectroscopy,” J. Opt. 17(12), 125002 (2015).
[Crossref]

Chen, C. C.

W. C. Lin, S. H. Huang, C. L. Chen, C. C. Chen, D. P. Tsai, and H. P. Chiang, “Controlling SERS intensity by tuning the size and height of a silver nanoparticle array,” Appl. Phys., A Mater. Sci. Process. 101(1), 185–189 (2010).
[Crossref]

Chen, C. L.

W. C. Lin, S. H. Huang, C. L. Chen, C. C. Chen, D. P. Tsai, and H. P. Chiang, “Controlling SERS intensity by tuning the size and height of a silver nanoparticle array,” Appl. Phys., A Mater. Sci. Process. 101(1), 185–189 (2010).
[Crossref]

Chen, Y.

Y. Chen, X. Tian, W. Zeng, X. Zhu, H. Hu, and H. Duan, “Vapor-phase preparation of gold nanocrystals by chloroauric acid pyrolysis,” J. Colloid Interface Sci. 439, 21–27 (2015).
[Crossref] [PubMed]

Y. Chen, Z. Li, Q. Xiang, Y. Wang, Z. Zhang, and H. Duan, “Reliable fabrication of plasmonic nanostructures without an adhesion layer using dry lift-off,” Nanotechnology 26(40), 405301 (2015).
[Crossref] [PubMed]

Chiang, H. P.

W. C. Lin, S. H. Huang, C. L. Chen, C. C. Chen, D. P. Tsai, and H. P. Chiang, “Controlling SERS intensity by tuning the size and height of a silver nanoparticle array,” Appl. Phys., A Mater. Sci. Process. 101(1), 185–189 (2010).
[Crossref]

Chou, S. Y.

Chuang, S. L.

T. R. Lin, S. W. Chang, S. L. Chuang, Z. Zhang, and P. J. Schuck, “Coating effect on optical resonance of plasmonic nanobowtie antenna,” Appl. Phys. Lett. 97(6), 063106 (2010).
[Crossref]

Cord, B.

J. K. W. Yang, B. Cord, H. Duan, K. K. Berggren, J. Klingfus, S.-W. Nam, K.-B. Kim, and M. J. Rooks, “Understanding of hydrogen silsesquioxane electron resist for sub-5-nm-half-pitch lithography,” J. Vac. Sci. Technol. B 27(6), 2622–2627 (2009).
[Crossref]

Crozier, K.

A. Sundaramurthy, K. Crozier, G. Kino, D. Fromm, P. Schuck, and W. Moerner, “Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles,” Phys. Rev. B 72(16), 165409 (2005).
[Crossref]

Crozier, K. B.

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: Resonators for local field enhancement,” J. Appl. Phys. 94(7), 4632–4642 (2003).
[Crossref]

Cushing, S. K.

M. Li, S. K. Cushing, J. Zhang, J. Lankford, Z. P. Aguilar, D. Ma, and N. Wu, “Shape-dependent surface-enhanced Raman scattering in gold-Raman probe-silica sandwiched nanoparticles for biocompatible applications,” Nanotechnology 23(11), 115501 (2012).
[Crossref] [PubMed]

Dasari, R. R.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1977).
[Crossref]

Ding, F.

Ding, Y.

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

Dou, J.

Q. Fu, Z. Zhan, J. Dou, X. Zheng, R. Xu, M. Wu, and Y. Lei, “Highly reproducible and sensitive SERS substrates with Ag Inter-nanoparticle gaps of 5 nm fabricated by ultrathin aluminum mask technique,” ACS Appl. Mater. Interfaces 7(24), 13322–13328 (2015).
[Crossref] [PubMed]

Duan, H.

Y. Chen, Z. Li, Q. Xiang, Y. Wang, Z. Zhang, and H. Duan, “Reliable fabrication of plasmonic nanostructures without an adhesion layer using dry lift-off,” Nanotechnology 26(40), 405301 (2015).
[Crossref] [PubMed]

Y. Chen, X. Tian, W. Zeng, X. Zhu, H. Hu, and H. Duan, “Vapor-phase preparation of gold nanocrystals by chloroauric acid pyrolysis,” J. Colloid Interface Sci. 439, 21–27 (2015).
[Crossref] [PubMed]

H. Duan, H. Hu, H. K. Hui, Z. Shen, and J. K. W. Yang, “Free-standing sub-10 nm nanostencils for the definition of gaps in plasmonic antennas,” Nanotechnology 24(18), 185301 (2013).
[Crossref] [PubMed]

H. Duan, H. Hu, K. Kumar, Z. Shen, and J. K. W. Yang, “Direct and reliable patterning of plasmonic nanostructures with sub-10-nm gaps,” ACS Nano 5(9), 7593–7600 (2011).
[Crossref] [PubMed]

J. K. W. Yang, B. Cord, H. Duan, K. K. Berggren, J. Klingfus, S.-W. Nam, K.-B. Kim, and M. J. Rooks, “Understanding of hydrogen silsesquioxane electron resist for sub-5-nm-half-pitch lithography,” J. Vac. Sci. Technol. B 27(6), 2622–2627 (2009).
[Crossref]

El-Sayed, M. A.

M. A. Mahmoud and M. A. El-Sayed, “Aggregation of gold nanoframes reduces, rather than enhances, SERS efficiency due to the trade-off of the inter- and intraparticle plasmonic fields,” Nano Lett. 9(8), 3025–3031 (2009).
[Crossref] [PubMed]

Emory, S. R.

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
[Crossref] [PubMed]

Eres, G.

N. A. Hatab, C. H. Hsueh, A. L. Gaddis, S. T. Retterer, J. H. Li, G. Eres, Z. Zhang, and B. Gu, “Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy,” Nano Lett. 10(12), 4952–4955 (2010).
[Crossref] [PubMed]

Fan, F. R.

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

Feld, M. S.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1977).
[Crossref]

Fleischmann, M.

M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26(2), 163–166 (1974).
[Crossref]

Fromm, D.

A. Sundaramurthy, K. Crozier, G. Kino, D. Fromm, P. Schuck, and W. Moerner, “Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles,” Phys. Rev. B 72(16), 165409 (2005).
[Crossref]

Fromm, D. P.

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. Moerner, “Gap-dependent optical coupling of single “bowtie” nanoantennas resonant in the visible,” Nano Lett. 4(5), 957–961 (2004).
[Crossref]

Fu, Q.

Q. Fu, Z. Zhan, J. Dou, X. Zheng, R. Xu, M. Wu, and Y. Lei, “Highly reproducible and sensitive SERS substrates with Ag Inter-nanoparticle gaps of 5 nm fabricated by ultrathin aluminum mask technique,” ACS Appl. Mater. Interfaces 7(24), 13322–13328 (2015).
[Crossref] [PubMed]

Gaddis, A. L.

N. A. Hatab, C. H. Hsueh, A. L. Gaddis, S. T. Retterer, J. H. Li, G. Eres, Z. Zhang, and B. Gu, “Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy,” Nano Lett. 10(12), 4952–4955 (2010).
[Crossref] [PubMed]

Golden, G.

Q. Yu, P. Guan, D. Qin, G. Golden, and P. M. Wallace, “Inverted size-dependence of surface-enhanced Raman scattering on gold nanohole and nanodisk arrays,” Nano Lett. 8(7), 1923–1928 (2008).
[Crossref] [PubMed]

Gu, B.

N. A. Hatab, C. H. Hsueh, A. L. Gaddis, S. T. Retterer, J. H. Li, G. Eres, Z. Zhang, and B. Gu, “Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy,” Nano Lett. 10(12), 4952–4955 (2010).
[Crossref] [PubMed]

Guan, P.

Q. Yu, P. Guan, D. Qin, G. Golden, and P. M. Wallace, “Inverted size-dependence of surface-enhanced Raman scattering on gold nanohole and nanodisk arrays,” Nano Lett. 8(7), 1923–1928 (2008).
[Crossref] [PubMed]

Guillermo Villanueva, L.

O. Vazquez-Mena, K. Sidler, V. Savu, C. W. Park, L. Guillermo Villanueva, and J. Brugger, “Reliable and improved nanoscale stencil lithography by membrane stabilization, blurring, and clogging corrections,” IEEE Trans. NanoTechnol. 10(2), 352–357 (2011).
[Crossref]

Hamieh, T.

M. Y. Khaywah, S. Jradi, G. Louarn, Y. Lacroute, J. Toufaily, T. Hamieh, and P.-M. Adam, “Ultrastable, uniform, reproducible, and highly sensitive bimetallic nanoparticles as reliable large scale SERS substrates,” J. Phys. Chem. C 119(46), 26091–26100 (2015).
[Crossref]

Hankus, M. E.

C. H. Lee, M. E. Hankus, L. Tian, P. M. Pellegrino, and S. Singamaneni, “Highly sensitive surface enhanced Raman scattering substrates based on filter paper loaded with plasmonic nanostructures,” Anal. Chem. 83(23), 8953–8958 (2011).
[Crossref] [PubMed]

Hatab, N. A.

N. A. Hatab, C. H. Hsueh, A. L. Gaddis, S. T. Retterer, J. H. Li, G. Eres, Z. Zhang, and B. Gu, “Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy,” Nano Lett. 10(12), 4952–4955 (2010).
[Crossref] [PubMed]

Hendra, P. J.

M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26(2), 163–166 (1974).
[Crossref]

Hsueh, C. H.

B. K. Chao, S. C. Lin, L. W. Nien, J. H. Li, and C. H. Hsueh, “Effects of corner radius on periodic nanoantenna for surface-enhanced Raman spectroscopy,” J. Opt. 17(12), 125002 (2015).
[Crossref]

N. A. Hatab, C. H. Hsueh, A. L. Gaddis, S. T. Retterer, J. H. Li, G. Eres, Z. Zhang, and B. Gu, “Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy,” Nano Lett. 10(12), 4952–4955 (2010).
[Crossref] [PubMed]

Hu, H.

Y. Chen, X. Tian, W. Zeng, X. Zhu, H. Hu, and H. Duan, “Vapor-phase preparation of gold nanocrystals by chloroauric acid pyrolysis,” J. Colloid Interface Sci. 439, 21–27 (2015).
[Crossref] [PubMed]

H. Duan, H. Hu, H. K. Hui, Z. Shen, and J. K. W. Yang, “Free-standing sub-10 nm nanostencils for the definition of gaps in plasmonic antennas,” Nanotechnology 24(18), 185301 (2013).
[Crossref] [PubMed]

H. Duan, H. Hu, K. Kumar, Z. Shen, and J. K. W. Yang, “Direct and reliable patterning of plasmonic nanostructures with sub-10-nm gaps,” ACS Nano 5(9), 7593–7600 (2011).
[Crossref] [PubMed]

Hu, J.

Huang, S. H.

W. C. Lin, S. H. Huang, C. L. Chen, C. C. Chen, D. P. Tsai, and H. P. Chiang, “Controlling SERS intensity by tuning the size and height of a silver nanoparticle array,” Appl. Phys., A Mater. Sci. Process. 101(1), 185–189 (2010).
[Crossref]

Huang, Y. F.

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

Hui, H. K.

H. Duan, H. Hu, H. K. Hui, Z. Shen, and J. K. W. Yang, “Free-standing sub-10 nm nanostencils for the definition of gaps in plasmonic antennas,” Nanotechnology 24(18), 185301 (2013).
[Crossref] [PubMed]

Hwang, B. J.

T. T. B. Quyen, C. C. Chang, W. N. Su, Y. H. Uen, C. J. Pan, J. Y. Liu, J. Rick, K. Y. Lin, and B. J. Hwang, “Self-focusing Au@SiO2 nanorods with rhodamine 6G as highly sensitive SERS substrate for carcinoembryonic antigen detection,” J. Mater. Chem. B Mater. Biol. Med. 2(6), 629–636 (2014).
[Crossref]

Hwang, J. H.

D. K. Lim, K. S. Jeon, J. H. Hwang, H. Kim, S. Kwon, Y. D. Suh, and J. M. Nam, “Highly uniform and reproducible surface-enhanced Raman scattering from DNA-tailorable nanoparticles with 1-nm interior gap,” Nat. Nanotechnol. 6(7), 452–460 (2011).
[Crossref] [PubMed]

Itzkan, I.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1977).
[Crossref]

Jeon, K. S.

D. K. Lim, K. S. Jeon, J. H. Hwang, H. Kim, S. Kwon, Y. D. Suh, and J. M. Nam, “Highly uniform and reproducible surface-enhanced Raman scattering from DNA-tailorable nanoparticles with 1-nm interior gap,” Nat. Nanotechnol. 6(7), 452–460 (2011).
[Crossref] [PubMed]

D. K. Lim, K. S. Jeon, H. M. Kim, J. M. Nam, and Y. D. Suh, “Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection,” Nat. Mater. 9(1), 60–67 (2010).
[Crossref] [PubMed]

Jin, J.

S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[Crossref] [PubMed]

Jin, R.

Y. C. Cao, R. Jin, and C. A. Mirkin, “Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection,” Science 297(5586), 1536–1540 (2002).
[Crossref] [PubMed]

Jradi, S.

M. Y. Khaywah, S. Jradi, G. Louarn, Y. Lacroute, J. Toufaily, T. Hamieh, and P.-M. Adam, “Ultrastable, uniform, reproducible, and highly sensitive bimetallic nanoparticles as reliable large scale SERS substrates,” J. Phys. Chem. C 119(46), 26091–26100 (2015).
[Crossref]

Kasera, S.

S. Kasera, F. Biedermann, J. J. Baumberg, O. A. Scherman, and S. Mahajan, “Quantitative SERS using the sequestration of small molecules inside precise plasmonic nanoconstructs,” Nano Lett. 12(11), 5924–5928 (2012).
[Crossref] [PubMed]

Khaywah, M. Y.

M. Y. Khaywah, S. Jradi, G. Louarn, Y. Lacroute, J. Toufaily, T. Hamieh, and P.-M. Adam, “Ultrastable, uniform, reproducible, and highly sensitive bimetallic nanoparticles as reliable large scale SERS substrates,” J. Phys. Chem. C 119(46), 26091–26100 (2015).
[Crossref]

Kim, H.

D. K. Lim, K. S. Jeon, J. H. Hwang, H. Kim, S. Kwon, Y. D. Suh, and J. M. Nam, “Highly uniform and reproducible surface-enhanced Raman scattering from DNA-tailorable nanoparticles with 1-nm interior gap,” Nat. Nanotechnol. 6(7), 452–460 (2011).
[Crossref] [PubMed]

Kim, H. M.

D. K. Lim, K. S. Jeon, H. M. Kim, J. M. Nam, and Y. D. Suh, “Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection,” Nat. Mater. 9(1), 60–67 (2010).
[Crossref] [PubMed]

Kim, K.-B.

J. K. W. Yang, B. Cord, H. Duan, K. K. Berggren, J. Klingfus, S.-W. Nam, K.-B. Kim, and M. J. Rooks, “Understanding of hydrogen silsesquioxane electron resist for sub-5-nm-half-pitch lithography,” J. Vac. Sci. Technol. B 27(6), 2622–2627 (2009).
[Crossref]

Kim, S.

S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[Crossref] [PubMed]

Kim, S.-W.

S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[Crossref] [PubMed]

Kim, Y.

S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[Crossref] [PubMed]

Kim, Y.-J.

S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[Crossref] [PubMed]

Kino, G.

A. Sundaramurthy, K. Crozier, G. Kino, D. Fromm, P. Schuck, and W. Moerner, “Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles,” Phys. Rev. B 72(16), 165409 (2005).
[Crossref]

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. Moerner, “Gap-dependent optical coupling of single “bowtie” nanoantennas resonant in the visible,” Nano Lett. 4(5), 957–961 (2004).
[Crossref]

Kino, G. S.

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: Resonators for local field enhancement,” J. Appl. Phys. 94(7), 4632–4642 (2003).
[Crossref]

Klingfus, J.

J. K. W. Yang, B. Cord, H. Duan, K. K. Berggren, J. Klingfus, S.-W. Nam, K.-B. Kim, and M. J. Rooks, “Understanding of hydrogen silsesquioxane electron resist for sub-5-nm-half-pitch lithography,” J. Vac. Sci. Technol. B 27(6), 2622–2627 (2009).
[Crossref]

Kneipp, H.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1977).
[Crossref]

Kneipp, K.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1977).
[Crossref]

Kumar, G. V. P.

P. P. Patra and G. V. P. Kumar, “Single-molecule surface-enhanced Raman scattering sensitivity of Ag-core Au-shell nanoparticles: revealed by Bi-analyte method,” J. Phys. Chem. Lett. 4(7), 1167–1171 (2013).
[Crossref] [PubMed]

Kumar, K.

H. Duan, H. Hu, K. Kumar, Z. Shen, and J. K. W. Yang, “Direct and reliable patterning of plasmonic nanostructures with sub-10-nm gaps,” ACS Nano 5(9), 7593–7600 (2011).
[Crossref] [PubMed]

Kwon, S.

D. K. Lim, K. S. Jeon, J. H. Hwang, H. Kim, S. Kwon, Y. D. Suh, and J. M. Nam, “Highly uniform and reproducible surface-enhanced Raman scattering from DNA-tailorable nanoparticles with 1-nm interior gap,” Nat. Nanotechnol. 6(7), 452–460 (2011).
[Crossref] [PubMed]

Lacroute, Y.

M. Y. Khaywah, S. Jradi, G. Louarn, Y. Lacroute, J. Toufaily, T. Hamieh, and P.-M. Adam, “Ultrastable, uniform, reproducible, and highly sensitive bimetallic nanoparticles as reliable large scale SERS substrates,” J. Phys. Chem. C 119(46), 26091–26100 (2015).
[Crossref]

Lankford, J.

M. Li, S. K. Cushing, J. Zhang, J. Lankford, Z. P. Aguilar, D. Ma, and N. Wu, “Shape-dependent surface-enhanced Raman scattering in gold-Raman probe-silica sandwiched nanoparticles for biocompatible applications,” Nanotechnology 23(11), 115501 (2012).
[Crossref] [PubMed]

Lee, C. H.

C. H. Lee, M. E. Hankus, L. Tian, P. M. Pellegrino, and S. Singamaneni, “Highly sensitive surface enhanced Raman scattering substrates based on filter paper loaded with plasmonic nanostructures,” Anal. Chem. 83(23), 8953–8958 (2011).
[Crossref] [PubMed]

Lei, Y.

Q. Fu, Z. Zhan, J. Dou, X. Zheng, R. Xu, M. Wu, and Y. Lei, “Highly reproducible and sensitive SERS substrates with Ag Inter-nanoparticle gaps of 5 nm fabricated by ultrathin aluminum mask technique,” ACS Appl. Mater. Interfaces 7(24), 13322–13328 (2015).
[Crossref] [PubMed]

Li, J. F.

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

Li, J. H.

B. K. Chao, S. C. Lin, L. W. Nien, J. H. Li, and C. H. Hsueh, “Effects of corner radius on periodic nanoantenna for surface-enhanced Raman spectroscopy,” J. Opt. 17(12), 125002 (2015).
[Crossref]

N. A. Hatab, C. H. Hsueh, A. L. Gaddis, S. T. Retterer, J. H. Li, G. Eres, Z. Zhang, and B. Gu, “Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy,” Nano Lett. 10(12), 4952–4955 (2010).
[Crossref] [PubMed]

Li, M.

M. Li, S. K. Cushing, J. Zhang, J. Lankford, Z. P. Aguilar, D. Ma, and N. Wu, “Shape-dependent surface-enhanced Raman scattering in gold-Raman probe-silica sandwiched nanoparticles for biocompatible applications,” Nanotechnology 23(11), 115501 (2012).
[Crossref] [PubMed]

Li, S.

Q. Tao, S. Li, C. Ma, K. Liu, and Q. Y. Zhang, “A highly sensitive and recyclable SERS substrate based on Ag-nanoparticle-decorated ZnO nanoflowers in ordered arrays,” Dalton Trans. 44(7), 3447–3453 (2015).
[Crossref] [PubMed]

Li, S. B.

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

Li, W. D.

Li, Z.

Y. Chen, Z. Li, Q. Xiang, Y. Wang, Z. Zhang, and H. Duan, “Reliable fabrication of plasmonic nanostructures without an adhesion layer using dry lift-off,” Nanotechnology 26(40), 405301 (2015).
[Crossref] [PubMed]

Lim, D. K.

D. K. Lim, K. S. Jeon, J. H. Hwang, H. Kim, S. Kwon, Y. D. Suh, and J. M. Nam, “Highly uniform and reproducible surface-enhanced Raman scattering from DNA-tailorable nanoparticles with 1-nm interior gap,” Nat. Nanotechnol. 6(7), 452–460 (2011).
[Crossref] [PubMed]

D. K. Lim, K. S. Jeon, H. M. Kim, J. M. Nam, and Y. D. Suh, “Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection,” Nat. Mater. 9(1), 60–67 (2010).
[Crossref] [PubMed]

Lin, K. Y.

T. T. B. Quyen, C. C. Chang, W. N. Su, Y. H. Uen, C. J. Pan, J. Y. Liu, J. Rick, K. Y. Lin, and B. J. Hwang, “Self-focusing Au@SiO2 nanorods with rhodamine 6G as highly sensitive SERS substrate for carcinoembryonic antigen detection,” J. Mater. Chem. B Mater. Biol. Med. 2(6), 629–636 (2014).
[Crossref]

Lin, S. C.

B. K. Chao, S. C. Lin, L. W. Nien, J. H. Li, and C. H. Hsueh, “Effects of corner radius on periodic nanoantenna for surface-enhanced Raman spectroscopy,” J. Opt. 17(12), 125002 (2015).
[Crossref]

Lin, T. R.

T. R. Lin, S. W. Chang, S. L. Chuang, Z. Zhang, and P. J. Schuck, “Coating effect on optical resonance of plasmonic nanobowtie antenna,” Appl. Phys. Lett. 97(6), 063106 (2010).
[Crossref]

Lin, W. C.

W. C. Lin, S. H. Huang, C. L. Chen, C. C. Chen, D. P. Tsai, and H. P. Chiang, “Controlling SERS intensity by tuning the size and height of a silver nanoparticle array,” Appl. Phys., A Mater. Sci. Process. 101(1), 185–189 (2010).
[Crossref]

Liu, J. Y.

T. T. B. Quyen, C. C. Chang, W. N. Su, Y. H. Uen, C. J. Pan, J. Y. Liu, J. Rick, K. Y. Lin, and B. J. Hwang, “Self-focusing Au@SiO2 nanorods with rhodamine 6G as highly sensitive SERS substrate for carcinoembryonic antigen detection,” J. Mater. Chem. B Mater. Biol. Med. 2(6), 629–636 (2014).
[Crossref]

Liu, K.

Q. Tao, S. Li, C. Ma, K. Liu, and Q. Y. Zhang, “A highly sensitive and recyclable SERS substrate based on Ag-nanoparticle-decorated ZnO nanoflowers in ordered arrays,” Dalton Trans. 44(7), 3447–3453 (2015).
[Crossref] [PubMed]

Louarn, G.

M. Y. Khaywah, S. Jradi, G. Louarn, Y. Lacroute, J. Toufaily, T. Hamieh, and P.-M. Adam, “Ultrastable, uniform, reproducible, and highly sensitive bimetallic nanoparticles as reliable large scale SERS substrates,” J. Phys. Chem. C 119(46), 26091–26100 (2015).
[Crossref]

Ma, C.

Q. Tao, S. Li, C. Ma, K. Liu, and Q. Y. Zhang, “A highly sensitive and recyclable SERS substrate based on Ag-nanoparticle-decorated ZnO nanoflowers in ordered arrays,” Dalton Trans. 44(7), 3447–3453 (2015).
[Crossref] [PubMed]

Ma, D.

M. Li, S. K. Cushing, J. Zhang, J. Lankford, Z. P. Aguilar, D. Ma, and N. Wu, “Shape-dependent surface-enhanced Raman scattering in gold-Raman probe-silica sandwiched nanoparticles for biocompatible applications,” Nanotechnology 23(11), 115501 (2012).
[Crossref] [PubMed]

Mahajan, S.

S. Kasera, F. Biedermann, J. J. Baumberg, O. A. Scherman, and S. Mahajan, “Quantitative SERS using the sequestration of small molecules inside precise plasmonic nanoconstructs,” Nano Lett. 12(11), 5924–5928 (2012).
[Crossref] [PubMed]

Mahmoud, M. A.

M. A. Mahmoud and M. A. El-Sayed, “Aggregation of gold nanoframes reduces, rather than enhances, SERS efficiency due to the trade-off of the inter- and intraparticle plasmonic fields,” Nano Lett. 9(8), 3025–3031 (2009).
[Crossref] [PubMed]

McQuillan, A. J.

M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26(2), 163–166 (1974).
[Crossref]

Mirkin, C. A.

Y. C. Cao, R. Jin, and C. A. Mirkin, “Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection,” Science 297(5586), 1536–1540 (2002).
[Crossref] [PubMed]

Misawa, H.

Y. Yokota, K. Ueno, and H. Misawa, “Essential nanogap effects on surface-enhanced Raman scattering signals from closely spaced gold nanoparticles,” Chem. Commun. (Camb.) 47(12), 3505–3507 (2011).
[Crossref] [PubMed]

Moerner, W.

A. Sundaramurthy, K. Crozier, G. Kino, D. Fromm, P. Schuck, and W. Moerner, “Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles,” Phys. Rev. B 72(16), 165409 (2005).
[Crossref]

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. Moerner, “Gap-dependent optical coupling of single “bowtie” nanoantennas resonant in the visible,” Nano Lett. 4(5), 957–961 (2004).
[Crossref]

Nam, J. M.

D. K. Lim, K. S. Jeon, J. H. Hwang, H. Kim, S. Kwon, Y. D. Suh, and J. M. Nam, “Highly uniform and reproducible surface-enhanced Raman scattering from DNA-tailorable nanoparticles with 1-nm interior gap,” Nat. Nanotechnol. 6(7), 452–460 (2011).
[Crossref] [PubMed]

D. K. Lim, K. S. Jeon, H. M. Kim, J. M. Nam, and Y. D. Suh, “Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection,” Nat. Mater. 9(1), 60–67 (2010).
[Crossref] [PubMed]

Nam, S.-W.

J. K. W. Yang, B. Cord, H. Duan, K. K. Berggren, J. Klingfus, S.-W. Nam, K.-B. Kim, and M. J. Rooks, “Understanding of hydrogen silsesquioxane electron resist for sub-5-nm-half-pitch lithography,” J. Vac. Sci. Technol. B 27(6), 2622–2627 (2009).
[Crossref]

Nie, S.

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
[Crossref] [PubMed]

Nien, L. W.

B. K. Chao, S. C. Lin, L. W. Nien, J. H. Li, and C. H. Hsueh, “Effects of corner radius on periodic nanoantenna for surface-enhanced Raman spectroscopy,” J. Opt. 17(12), 125002 (2015).
[Crossref]

Oran, J. M.

N. A. Abu Hatab, J. M. Oran, and M. J. Sepaniak, “Surface-enhanced Raman spectroscopy substrates created via electron beam lithography and nanotransfer printing,” ACS Nano 2(2), 377–385 (2008).
[Crossref] [PubMed]

Pan, C. J.

T. T. B. Quyen, C. C. Chang, W. N. Su, Y. H. Uen, C. J. Pan, J. Y. Liu, J. Rick, K. Y. Lin, and B. J. Hwang, “Self-focusing Au@SiO2 nanorods with rhodamine 6G as highly sensitive SERS substrate for carcinoembryonic antigen detection,” J. Mater. Chem. B Mater. Biol. Med. 2(6), 629–636 (2014).
[Crossref]

Park, C. W.

O. Vazquez-Mena, K. Sidler, V. Savu, C. W. Park, L. Guillermo Villanueva, and J. Brugger, “Reliable and improved nanoscale stencil lithography by membrane stabilization, blurring, and clogging corrections,” IEEE Trans. NanoTechnol. 10(2), 352–357 (2011).
[Crossref]

Park, I.-Y.

S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[Crossref] [PubMed]

Patra, P. P.

P. P. Patra and G. V. P. Kumar, “Single-molecule surface-enhanced Raman scattering sensitivity of Ag-core Au-shell nanoparticles: revealed by Bi-analyte method,” J. Phys. Chem. Lett. 4(7), 1167–1171 (2013).
[Crossref] [PubMed]

Pellegrino, P. M.

C. H. Lee, M. E. Hankus, L. Tian, P. M. Pellegrino, and S. Singamaneni, “Highly sensitive surface enhanced Raman scattering substrates based on filter paper loaded with plasmonic nanostructures,” Anal. Chem. 83(23), 8953–8958 (2011).
[Crossref] [PubMed]

Perelman, L. T.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1977).
[Crossref]

Qin, D.

Q. Yu, P. Guan, D. Qin, G. Golden, and P. M. Wallace, “Inverted size-dependence of surface-enhanced Raman scattering on gold nanohole and nanodisk arrays,” Nano Lett. 8(7), 1923–1928 (2008).
[Crossref] [PubMed]

Quate, C. F.

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: Resonators for local field enhancement,” J. Appl. Phys. 94(7), 4632–4642 (2003).
[Crossref]

Quyen, T. T. B.

T. T. B. Quyen, C. C. Chang, W. N. Su, Y. H. Uen, C. J. Pan, J. Y. Liu, J. Rick, K. Y. Lin, and B. J. Hwang, “Self-focusing Au@SiO2 nanorods with rhodamine 6G as highly sensitive SERS substrate for carcinoembryonic antigen detection,” J. Mater. Chem. B Mater. Biol. Med. 2(6), 629–636 (2014).
[Crossref]

Ren, B.

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

Retterer, S. T.

N. A. Hatab, C. H. Hsueh, A. L. Gaddis, S. T. Retterer, J. H. Li, G. Eres, Z. Zhang, and B. Gu, “Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy,” Nano Lett. 10(12), 4952–4955 (2010).
[Crossref] [PubMed]

Rick, J.

T. T. B. Quyen, C. C. Chang, W. N. Su, Y. H. Uen, C. J. Pan, J. Y. Liu, J. Rick, K. Y. Lin, and B. J. Hwang, “Self-focusing Au@SiO2 nanorods with rhodamine 6G as highly sensitive SERS substrate for carcinoembryonic antigen detection,” J. Mater. Chem. B Mater. Biol. Med. 2(6), 629–636 (2014).
[Crossref]

Rooks, M. J.

J. K. W. Yang, B. Cord, H. Duan, K. K. Berggren, J. Klingfus, S.-W. Nam, K.-B. Kim, and M. J. Rooks, “Understanding of hydrogen silsesquioxane electron resist for sub-5-nm-half-pitch lithography,” J. Vac. Sci. Technol. B 27(6), 2622–2627 (2009).
[Crossref]

Savu, V.

O. Vazquez-Mena, K. Sidler, V. Savu, C. W. Park, L. Guillermo Villanueva, and J. Brugger, “Reliable and improved nanoscale stencil lithography by membrane stabilization, blurring, and clogging corrections,” IEEE Trans. NanoTechnol. 10(2), 352–357 (2011).
[Crossref]

Scherman, O. A.

S. Kasera, F. Biedermann, J. J. Baumberg, O. A. Scherman, and S. Mahajan, “Quantitative SERS using the sequestration of small molecules inside precise plasmonic nanoconstructs,” Nano Lett. 12(11), 5924–5928 (2012).
[Crossref] [PubMed]

Schuck, P.

A. Sundaramurthy, K. Crozier, G. Kino, D. Fromm, P. Schuck, and W. Moerner, “Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles,” Phys. Rev. B 72(16), 165409 (2005).
[Crossref]

Schuck, P. J.

T. R. Lin, S. W. Chang, S. L. Chuang, Z. Zhang, and P. J. Schuck, “Coating effect on optical resonance of plasmonic nanobowtie antenna,” Appl. Phys. Lett. 97(6), 063106 (2010).
[Crossref]

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. Moerner, “Gap-dependent optical coupling of single “bowtie” nanoantennas resonant in the visible,” Nano Lett. 4(5), 957–961 (2004).
[Crossref]

Sepaniak, M. J.

N. A. Abu Hatab, J. M. Oran, and M. J. Sepaniak, “Surface-enhanced Raman spectroscopy substrates created via electron beam lithography and nanotransfer printing,” ACS Nano 2(2), 377–385 (2008).
[Crossref] [PubMed]

Shen, Z.

H. Duan, H. Hu, H. K. Hui, Z. Shen, and J. K. W. Yang, “Free-standing sub-10 nm nanostencils for the definition of gaps in plasmonic antennas,” Nanotechnology 24(18), 185301 (2013).
[Crossref] [PubMed]

H. Duan, H. Hu, K. Kumar, Z. Shen, and J. K. W. Yang, “Direct and reliable patterning of plasmonic nanostructures with sub-10-nm gaps,” ACS Nano 5(9), 7593–7600 (2011).
[Crossref] [PubMed]

Sidler, K.

O. Vazquez-Mena, K. Sidler, V. Savu, C. W. Park, L. Guillermo Villanueva, and J. Brugger, “Reliable and improved nanoscale stencil lithography by membrane stabilization, blurring, and clogging corrections,” IEEE Trans. NanoTechnol. 10(2), 352–357 (2011).
[Crossref]

Singamaneni, S.

C. H. Lee, M. E. Hankus, L. Tian, P. M. Pellegrino, and S. Singamaneni, “Highly sensitive surface enhanced Raman scattering substrates based on filter paper loaded with plasmonic nanostructures,” Anal. Chem. 83(23), 8953–8958 (2011).
[Crossref] [PubMed]

Stuart, D. A.

X. Zhang, C. R. Yonzon, M. A. Young, D. A. Stuart, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy biosensors: excitation spectroscopy for optimisation of substrates fabricated by nanosphere lithography,” IEE Proc., Nanobiotechnol. 152(6), 195–206 (2005).
[Crossref] [PubMed]

Su, W. N.

T. T. B. Quyen, C. C. Chang, W. N. Su, Y. H. Uen, C. J. Pan, J. Y. Liu, J. Rick, K. Y. Lin, and B. J. Hwang, “Self-focusing Au@SiO2 nanorods with rhodamine 6G as highly sensitive SERS substrate for carcinoembryonic antigen detection,” J. Mater. Chem. B Mater. Biol. Med. 2(6), 629–636 (2014).
[Crossref]

Suh, Y. D.

D. K. Lim, K. S. Jeon, J. H. Hwang, H. Kim, S. Kwon, Y. D. Suh, and J. M. Nam, “Highly uniform and reproducible surface-enhanced Raman scattering from DNA-tailorable nanoparticles with 1-nm interior gap,” Nat. Nanotechnol. 6(7), 452–460 (2011).
[Crossref] [PubMed]

D. K. Lim, K. S. Jeon, H. M. Kim, J. M. Nam, and Y. D. Suh, “Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection,” Nat. Mater. 9(1), 60–67 (2010).
[Crossref] [PubMed]

Sundaramurthy, A.

A. Sundaramurthy, K. Crozier, G. Kino, D. Fromm, P. Schuck, and W. Moerner, “Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles,” Phys. Rev. B 72(16), 165409 (2005).
[Crossref]

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. Moerner, “Gap-dependent optical coupling of single “bowtie” nanoantennas resonant in the visible,” Nano Lett. 4(5), 957–961 (2004).
[Crossref]

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: Resonators for local field enhancement,” J. Appl. Phys. 94(7), 4632–4642 (2003).
[Crossref]

Tao, Q.

Q. Tao, S. Li, C. Ma, K. Liu, and Q. Y. Zhang, “A highly sensitive and recyclable SERS substrate based on Ag-nanoparticle-decorated ZnO nanoflowers in ordered arrays,” Dalton Trans. 44(7), 3447–3453 (2015).
[Crossref] [PubMed]

Tian, L.

C. H. Lee, M. E. Hankus, L. Tian, P. M. Pellegrino, and S. Singamaneni, “Highly sensitive surface enhanced Raman scattering substrates based on filter paper loaded with plasmonic nanostructures,” Anal. Chem. 83(23), 8953–8958 (2011).
[Crossref] [PubMed]

Tian, X.

Y. Chen, X. Tian, W. Zeng, X. Zhu, H. Hu, and H. Duan, “Vapor-phase preparation of gold nanocrystals by chloroauric acid pyrolysis,” J. Colloid Interface Sci. 439, 21–27 (2015).
[Crossref] [PubMed]

Tian, Z. Q.

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

Toufaily, J.

M. Y. Khaywah, S. Jradi, G. Louarn, Y. Lacroute, J. Toufaily, T. Hamieh, and P.-M. Adam, “Ultrastable, uniform, reproducible, and highly sensitive bimetallic nanoparticles as reliable large scale SERS substrates,” J. Phys. Chem. C 119(46), 26091–26100 (2015).
[Crossref]

Tsai, D. P.

W. C. Lin, S. H. Huang, C. L. Chen, C. C. Chen, D. P. Tsai, and H. P. Chiang, “Controlling SERS intensity by tuning the size and height of a silver nanoparticle array,” Appl. Phys., A Mater. Sci. Process. 101(1), 185–189 (2010).
[Crossref]

Uen, Y. H.

T. T. B. Quyen, C. C. Chang, W. N. Su, Y. H. Uen, C. J. Pan, J. Y. Liu, J. Rick, K. Y. Lin, and B. J. Hwang, “Self-focusing Au@SiO2 nanorods with rhodamine 6G as highly sensitive SERS substrate for carcinoembryonic antigen detection,” J. Mater. Chem. B Mater. Biol. Med. 2(6), 629–636 (2014).
[Crossref]

Ueno, K.

Y. Yokota, K. Ueno, and H. Misawa, “Essential nanogap effects on surface-enhanced Raman scattering signals from closely spaced gold nanoparticles,” Chem. Commun. (Camb.) 47(12), 3505–3507 (2011).
[Crossref] [PubMed]

Van Duyne, R. P.

X. Zhang, C. R. Yonzon, M. A. Young, D. A. Stuart, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy biosensors: excitation spectroscopy for optimisation of substrates fabricated by nanosphere lithography,” IEE Proc., Nanobiotechnol. 152(6), 195–206 (2005).
[Crossref] [PubMed]

Vazquez-Mena, O.

O. Vazquez-Mena, K. Sidler, V. Savu, C. W. Park, L. Guillermo Villanueva, and J. Brugger, “Reliable and improved nanoscale stencil lithography by membrane stabilization, blurring, and clogging corrections,” IEEE Trans. NanoTechnol. 10(2), 352–357 (2011).
[Crossref]

Wallace, P. M.

Q. Yu, P. Guan, D. Qin, G. Golden, and P. M. Wallace, “Inverted size-dependence of surface-enhanced Raman scattering on gold nanohole and nanodisk arrays,” Nano Lett. 8(7), 1923–1928 (2008).
[Crossref] [PubMed]

Wang, Y.

Y. Chen, Z. Li, Q. Xiang, Y. Wang, Z. Zhang, and H. Duan, “Reliable fabrication of plasmonic nanostructures without an adhesion layer using dry lift-off,” Nanotechnology 26(40), 405301 (2015).
[Crossref] [PubMed]

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1977).
[Crossref]

Wang, Z. L.

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

Wu, D. Y.

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

Wu, M.

Q. Fu, Z. Zhan, J. Dou, X. Zheng, R. Xu, M. Wu, and Y. Lei, “Highly reproducible and sensitive SERS substrates with Ag Inter-nanoparticle gaps of 5 nm fabricated by ultrathin aluminum mask technique,” ACS Appl. Mater. Interfaces 7(24), 13322–13328 (2015).
[Crossref] [PubMed]

Wu, N.

M. Li, S. K. Cushing, J. Zhang, J. Lankford, Z. P. Aguilar, D. Ma, and N. Wu, “Shape-dependent surface-enhanced Raman scattering in gold-Raman probe-silica sandwiched nanoparticles for biocompatible applications,” Nanotechnology 23(11), 115501 (2012).
[Crossref] [PubMed]

Xiang, Q.

Y. Chen, Z. Li, Q. Xiang, Y. Wang, Z. Zhang, and H. Duan, “Reliable fabrication of plasmonic nanostructures without an adhesion layer using dry lift-off,” Nanotechnology 26(40), 405301 (2015).
[Crossref] [PubMed]

Xu, R.

Q. Fu, Z. Zhan, J. Dou, X. Zheng, R. Xu, M. Wu, and Y. Lei, “Highly reproducible and sensitive SERS substrates with Ag Inter-nanoparticle gaps of 5 nm fabricated by ultrathin aluminum mask technique,” ACS Appl. Mater. Interfaces 7(24), 13322–13328 (2015).
[Crossref] [PubMed]

Yang, J. K. W.

H. Duan, H. Hu, H. K. Hui, Z. Shen, and J. K. W. Yang, “Free-standing sub-10 nm nanostencils for the definition of gaps in plasmonic antennas,” Nanotechnology 24(18), 185301 (2013).
[Crossref] [PubMed]

H. Duan, H. Hu, K. Kumar, Z. Shen, and J. K. W. Yang, “Direct and reliable patterning of plasmonic nanostructures with sub-10-nm gaps,” ACS Nano 5(9), 7593–7600 (2011).
[Crossref] [PubMed]

J. K. W. Yang, B. Cord, H. Duan, K. K. Berggren, J. Klingfus, S.-W. Nam, K.-B. Kim, and M. J. Rooks, “Understanding of hydrogen silsesquioxane electron resist for sub-5-nm-half-pitch lithography,” J. Vac. Sci. Technol. B 27(6), 2622–2627 (2009).
[Crossref]

Yang, Z. L.

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

Yokota, Y.

Y. Yokota, K. Ueno, and H. Misawa, “Essential nanogap effects on surface-enhanced Raman scattering signals from closely spaced gold nanoparticles,” Chem. Commun. (Camb.) 47(12), 3505–3507 (2011).
[Crossref] [PubMed]

Yonzon, C. R.

X. Zhang, C. R. Yonzon, M. A. Young, D. A. Stuart, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy biosensors: excitation spectroscopy for optimisation of substrates fabricated by nanosphere lithography,” IEE Proc., Nanobiotechnol. 152(6), 195–206 (2005).
[Crossref] [PubMed]

Young, M. A.

X. Zhang, C. R. Yonzon, M. A. Young, D. A. Stuart, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy biosensors: excitation spectroscopy for optimisation of substrates fabricated by nanosphere lithography,” IEE Proc., Nanobiotechnol. 152(6), 195–206 (2005).
[Crossref] [PubMed]

Yu, Q.

Q. Yu, P. Guan, D. Qin, G. Golden, and P. M. Wallace, “Inverted size-dependence of surface-enhanced Raman scattering on gold nanohole and nanodisk arrays,” Nano Lett. 8(7), 1923–1928 (2008).
[Crossref] [PubMed]

Zeng, W.

Y. Chen, X. Tian, W. Zeng, X. Zhu, H. Hu, and H. Duan, “Vapor-phase preparation of gold nanocrystals by chloroauric acid pyrolysis,” J. Colloid Interface Sci. 439, 21–27 (2015).
[Crossref] [PubMed]

Zhan, Z.

Q. Fu, Z. Zhan, J. Dou, X. Zheng, R. Xu, M. Wu, and Y. Lei, “Highly reproducible and sensitive SERS substrates with Ag Inter-nanoparticle gaps of 5 nm fabricated by ultrathin aluminum mask technique,” ACS Appl. Mater. Interfaces 7(24), 13322–13328 (2015).
[Crossref] [PubMed]

Zhang, J.

M. Li, S. K. Cushing, J. Zhang, J. Lankford, Z. P. Aguilar, D. Ma, and N. Wu, “Shape-dependent surface-enhanced Raman scattering in gold-Raman probe-silica sandwiched nanoparticles for biocompatible applications,” Nanotechnology 23(11), 115501 (2012).
[Crossref] [PubMed]

Zhang, Q. Y.

Q. Tao, S. Li, C. Ma, K. Liu, and Q. Y. Zhang, “A highly sensitive and recyclable SERS substrate based on Ag-nanoparticle-decorated ZnO nanoflowers in ordered arrays,” Dalton Trans. 44(7), 3447–3453 (2015).
[Crossref] [PubMed]

Zhang, W.

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

Zhang, X.

X. Zhang, C. R. Yonzon, M. A. Young, D. A. Stuart, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy biosensors: excitation spectroscopy for optimisation of substrates fabricated by nanosphere lithography,” IEE Proc., Nanobiotechnol. 152(6), 195–206 (2005).
[Crossref] [PubMed]

Zhang, Z.

Y. Chen, Z. Li, Q. Xiang, Y. Wang, Z. Zhang, and H. Duan, “Reliable fabrication of plasmonic nanostructures without an adhesion layer using dry lift-off,” Nanotechnology 26(40), 405301 (2015).
[Crossref] [PubMed]

N. A. Hatab, C. H. Hsueh, A. L. Gaddis, S. T. Retterer, J. H. Li, G. Eres, Z. Zhang, and B. Gu, “Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy,” Nano Lett. 10(12), 4952–4955 (2010).
[Crossref] [PubMed]

T. R. Lin, S. W. Chang, S. L. Chuang, Z. Zhang, and P. J. Schuck, “Coating effect on optical resonance of plasmonic nanobowtie antenna,” Appl. Phys. Lett. 97(6), 063106 (2010).
[Crossref]

Zheng, X.

Q. Fu, Z. Zhan, J. Dou, X. Zheng, R. Xu, M. Wu, and Y. Lei, “Highly reproducible and sensitive SERS substrates with Ag Inter-nanoparticle gaps of 5 nm fabricated by ultrathin aluminum mask technique,” ACS Appl. Mater. Interfaces 7(24), 13322–13328 (2015).
[Crossref] [PubMed]

Zhou, X. S.

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

Zhou, Z. Y.

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

Zhu, X.

Y. Chen, X. Tian, W. Zeng, X. Zhu, H. Hu, and H. Duan, “Vapor-phase preparation of gold nanocrystals by chloroauric acid pyrolysis,” J. Colloid Interface Sci. 439, 21–27 (2015).
[Crossref] [PubMed]

ACS Appl. Mater. Interfaces (1)

Q. Fu, Z. Zhan, J. Dou, X. Zheng, R. Xu, M. Wu, and Y. Lei, “Highly reproducible and sensitive SERS substrates with Ag Inter-nanoparticle gaps of 5 nm fabricated by ultrathin aluminum mask technique,” ACS Appl. Mater. Interfaces 7(24), 13322–13328 (2015).
[Crossref] [PubMed]

ACS Nano (2)

H. Duan, H. Hu, K. Kumar, Z. Shen, and J. K. W. Yang, “Direct and reliable patterning of plasmonic nanostructures with sub-10-nm gaps,” ACS Nano 5(9), 7593–7600 (2011).
[Crossref] [PubMed]

N. A. Abu Hatab, J. M. Oran, and M. J. Sepaniak, “Surface-enhanced Raman spectroscopy substrates created via electron beam lithography and nanotransfer printing,” ACS Nano 2(2), 377–385 (2008).
[Crossref] [PubMed]

Anal. Chem. (1)

C. H. Lee, M. E. Hankus, L. Tian, P. M. Pellegrino, and S. Singamaneni, “Highly sensitive surface enhanced Raman scattering substrates based on filter paper loaded with plasmonic nanostructures,” Anal. Chem. 83(23), 8953–8958 (2011).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

T. R. Lin, S. W. Chang, S. L. Chuang, Z. Zhang, and P. J. Schuck, “Coating effect on optical resonance of plasmonic nanobowtie antenna,” Appl. Phys. Lett. 97(6), 063106 (2010).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

W. C. Lin, S. H. Huang, C. L. Chen, C. C. Chen, D. P. Tsai, and H. P. Chiang, “Controlling SERS intensity by tuning the size and height of a silver nanoparticle array,” Appl. Phys., A Mater. Sci. Process. 101(1), 185–189 (2010).
[Crossref]

Chem. Commun. (Camb.) (1)

Y. Yokota, K. Ueno, and H. Misawa, “Essential nanogap effects on surface-enhanced Raman scattering signals from closely spaced gold nanoparticles,” Chem. Commun. (Camb.) 47(12), 3505–3507 (2011).
[Crossref] [PubMed]

Chem. Phys. Lett. (1)

M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26(2), 163–166 (1974).
[Crossref]

Dalton Trans. (1)

Q. Tao, S. Li, C. Ma, K. Liu, and Q. Y. Zhang, “A highly sensitive and recyclable SERS substrate based on Ag-nanoparticle-decorated ZnO nanoflowers in ordered arrays,” Dalton Trans. 44(7), 3447–3453 (2015).
[Crossref] [PubMed]

IEE Proc., Nanobiotechnol. (1)

X. Zhang, C. R. Yonzon, M. A. Young, D. A. Stuart, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy biosensors: excitation spectroscopy for optimisation of substrates fabricated by nanosphere lithography,” IEE Proc., Nanobiotechnol. 152(6), 195–206 (2005).
[Crossref] [PubMed]

IEEE Trans. NanoTechnol. (1)

O. Vazquez-Mena, K. Sidler, V. Savu, C. W. Park, L. Guillermo Villanueva, and J. Brugger, “Reliable and improved nanoscale stencil lithography by membrane stabilization, blurring, and clogging corrections,” IEEE Trans. NanoTechnol. 10(2), 352–357 (2011).
[Crossref]

J. Appl. Phys. (1)

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: Resonators for local field enhancement,” J. Appl. Phys. 94(7), 4632–4642 (2003).
[Crossref]

J. Colloid Interface Sci. (1)

Y. Chen, X. Tian, W. Zeng, X. Zhu, H. Hu, and H. Duan, “Vapor-phase preparation of gold nanocrystals by chloroauric acid pyrolysis,” J. Colloid Interface Sci. 439, 21–27 (2015).
[Crossref] [PubMed]

J. Mater. Chem. B Mater. Biol. Med. (1)

T. T. B. Quyen, C. C. Chang, W. N. Su, Y. H. Uen, C. J. Pan, J. Y. Liu, J. Rick, K. Y. Lin, and B. J. Hwang, “Self-focusing Au@SiO2 nanorods with rhodamine 6G as highly sensitive SERS substrate for carcinoembryonic antigen detection,” J. Mater. Chem. B Mater. Biol. Med. 2(6), 629–636 (2014).
[Crossref]

J. Opt. (1)

B. K. Chao, S. C. Lin, L. W. Nien, J. H. Li, and C. H. Hsueh, “Effects of corner radius on periodic nanoantenna for surface-enhanced Raman spectroscopy,” J. Opt. 17(12), 125002 (2015).
[Crossref]

J. Phys. Chem. C (1)

M. Y. Khaywah, S. Jradi, G. Louarn, Y. Lacroute, J. Toufaily, T. Hamieh, and P.-M. Adam, “Ultrastable, uniform, reproducible, and highly sensitive bimetallic nanoparticles as reliable large scale SERS substrates,” J. Phys. Chem. C 119(46), 26091–26100 (2015).
[Crossref]

J. Phys. Chem. Lett. (1)

P. P. Patra and G. V. P. Kumar, “Single-molecule surface-enhanced Raman scattering sensitivity of Ag-core Au-shell nanoparticles: revealed by Bi-analyte method,” J. Phys. Chem. Lett. 4(7), 1167–1171 (2013).
[Crossref] [PubMed]

J. Vac. Sci. Technol. B (1)

J. K. W. Yang, B. Cord, H. Duan, K. K. Berggren, J. Klingfus, S.-W. Nam, K.-B. Kim, and M. J. Rooks, “Understanding of hydrogen silsesquioxane electron resist for sub-5-nm-half-pitch lithography,” J. Vac. Sci. Technol. B 27(6), 2622–2627 (2009).
[Crossref]

Nano Lett. (5)

M. A. Mahmoud and M. A. El-Sayed, “Aggregation of gold nanoframes reduces, rather than enhances, SERS efficiency due to the trade-off of the inter- and intraparticle plasmonic fields,” Nano Lett. 9(8), 3025–3031 (2009).
[Crossref] [PubMed]

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. Moerner, “Gap-dependent optical coupling of single “bowtie” nanoantennas resonant in the visible,” Nano Lett. 4(5), 957–961 (2004).
[Crossref]

Q. Yu, P. Guan, D. Qin, G. Golden, and P. M. Wallace, “Inverted size-dependence of surface-enhanced Raman scattering on gold nanohole and nanodisk arrays,” Nano Lett. 8(7), 1923–1928 (2008).
[Crossref] [PubMed]

N. A. Hatab, C. H. Hsueh, A. L. Gaddis, S. T. Retterer, J. H. Li, G. Eres, Z. Zhang, and B. Gu, “Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy,” Nano Lett. 10(12), 4952–4955 (2010).
[Crossref] [PubMed]

S. Kasera, F. Biedermann, J. J. Baumberg, O. A. Scherman, and S. Mahajan, “Quantitative SERS using the sequestration of small molecules inside precise plasmonic nanoconstructs,” Nano Lett. 12(11), 5924–5928 (2012).
[Crossref] [PubMed]

Nanotechnology (3)

H. Duan, H. Hu, H. K. Hui, Z. Shen, and J. K. W. Yang, “Free-standing sub-10 nm nanostencils for the definition of gaps in plasmonic antennas,” Nanotechnology 24(18), 185301 (2013).
[Crossref] [PubMed]

Y. Chen, Z. Li, Q. Xiang, Y. Wang, Z. Zhang, and H. Duan, “Reliable fabrication of plasmonic nanostructures without an adhesion layer using dry lift-off,” Nanotechnology 26(40), 405301 (2015).
[Crossref] [PubMed]

M. Li, S. K. Cushing, J. Zhang, J. Lankford, Z. P. Aguilar, D. Ma, and N. Wu, “Shape-dependent surface-enhanced Raman scattering in gold-Raman probe-silica sandwiched nanoparticles for biocompatible applications,” Nanotechnology 23(11), 115501 (2012).
[Crossref] [PubMed]

Nat. Mater. (1)

D. K. Lim, K. S. Jeon, H. M. Kim, J. M. Nam, and Y. D. Suh, “Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection,” Nat. Mater. 9(1), 60–67 (2010).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

D. K. Lim, K. S. Jeon, J. H. Hwang, H. Kim, S. Kwon, Y. D. Suh, and J. M. Nam, “Highly uniform and reproducible surface-enhanced Raman scattering from DNA-tailorable nanoparticles with 1-nm interior gap,” Nat. Nanotechnol. 6(7), 452–460 (2011).
[Crossref] [PubMed]

Nature (2)

J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature 464(7287), 392–395 (2010).
[Crossref] [PubMed]

S. Kim, J. Jin, Y.-J. Kim, I.-Y. Park, Y. Kim, and S.-W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[Crossref] [PubMed]

Opt. Express (1)

Phys. Rev. B (1)

A. Sundaramurthy, K. Crozier, G. Kino, D. Fromm, P. Schuck, and W. Moerner, “Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles,” Phys. Rev. B 72(16), 165409 (2005).
[Crossref]

Phys. Rev. Lett. (1)

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1977).
[Crossref]

Science (2)

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
[Crossref] [PubMed]

Y. C. Cao, R. Jin, and C. A. Mirkin, “Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection,” Science 297(5586), 1536–1540 (2002).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Schematics of EBL-defined HSQ nanoposts with diameter of d and pitch of p. (b) Schematics of the plasmonic naonstructures after depositing metal on HSQ nanoposts. (c) SEM image of HSQ nanoposts with diameter of 120 nm and pitch of 240 nm. (d) SEM image of the plasmonic nanostructure array after metal deposition on HSQ nanoposts in (c).
Fig. 2
Fig. 2 (a-d) Representative plasmonic nanostructure arrays with different densities. The diameter of the structures was 125 nm, and the pitch of the arrays was 500 nm (a), 240 nm (b), 175 nm (c), and 135 nm (d), respectively. (e) Single particle SERS measurement from sample (a). (f) The SERS mapping result of a corner of the 500-nm-pitch plasmonic structures.
Fig. 3
Fig. 3 (a) Raman scattering spectra of plasmonic nanostructures with varied density. (b) The SERS intensity as a function of the particle density.
Fig. 4
Fig. 4 Schematics showing how the density of plasmonic nanostructures affects the light-matter interactions: (a) isolated or extremely sparse structures; (b) relatively sparse structures; (c) relatively dense structures; (d) extremely dense structures with tiny nanogaps.
Fig. 5
Fig. 5 Simulated near-field distribution of 120-nm-diameter plasmonic nanoparticles with different pitches: (a) 360 nm; (b) 240 nm; (c) 180 nm; (d) 150 nm; (e) 135 nm. (f) The cross-section view of the near-field distribution of the plasmonic system in (e), showing the field was mainly confined at the top region. The excitation wavelength in the simulation was 633 nm.

Metrics