Abstract

Subwavelength plasmonic apertures have been foundational for direct optical manipulation of nanoscale specimens including sub-100 nm polymeric beads, metallic nanoparticles and proteins. While most plasmonic traps result in two-dimensional localization, three-dimensional manipulation has been demonstrated by integrating a plasmonic aperture on an optical fiber tip. However, such 3D traps are usually inefficient since the optical mode of the fiber and the subwavelength aperture only weakly couple. In this paper we design more efficient optical-fiber-based plasmonic tweezers combining a coaxial plasmonic aperture with a plasmonic grating coupler at the fiber tip facet. Using full-field finite difference time domain analysis, we optimize the grating design for both gold and silver fiber-based coaxial tweezers such that the optical transmission through the apertures is maximized. With the optimized grating, we show that the maximum transmission efficiency increases from 2.5% to 19.6% and from 1.48% to 16.7% for the gold and silver structures respectively. To evaluate their performance as optical tweezers, we calculate the optical forces and the corresponding trapping potential on dielectric particles interacting with the apertures. We demonstrate that the enahncement in the transmission translates into an equivalent increase in the optical forces. Consequently, the optical power required to achieve stable optical trapping is significantly reduced allowing for efficient localization and 3D manipulation of sub-30 nm dielectric particles.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Fiber-integrated optical nano-tweezer based on a bowtie-aperture nano-antenna at the apex of a SNOM tip

Ali El Eter, Nyha M. Hameed, Fadi I. Baida, Roland Salut, Claudine Filiatre, Dusan Nedeljkovic, Elie Atie, Samuel Bole, and Thierry Grosjean
Opt. Express 22(8) 10072-10080 (2014)

Optical fiber nano-tip and 3D bottle beam as non-plasmonic optical tweezers

Samir K. Mondal, Sudipta Sarkar Pal, and Pawan Kapur
Opt. Express 20(15) 16180-16185 (2012)

Tapered fiber optical tweezers for microscopic particle trapping: fabrication and application

Zhihai Liu, Chengkai Guo, Jun Yang, and Libo Yuan
Opt. Express 14(25) 12510-12516 (2006)

References

  • View by:
  • |
  • |
  • |

  1. E. F. Nichols and G. F. Hull, “The pressure due to radiation.(second paper.),” Phys. Rev. (Series I) 17, 26 (1903).
    [Crossref]
  2. A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970).
    [Crossref]
  3. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986).
    [Crossref] [PubMed]
  4. A. Ashkin and J. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235, 1517–1520 (1987).
    [Crossref] [PubMed]
  5. F. M. Fazal and S. M. Block, “Optical tweezers study life under tension,” Nat. photon. 5, 318–321 (2011).
    [Crossref]
  6. K. Svoboda, C. F. Schmidt, B. J. Schnapp, and S. M. Block, “Direct observation of kinesin stepping by optical trapping interferometry,” Nature 365, 721–727 (1993).
    [Crossref]
  7. J. T. Finer, R. M. Simmons, and J. A. Spudich, “Single myosin molecule mechanics: piconewton forces and nanometre steps,” Nature 368, 113–119 (1994).
    [Crossref] [PubMed]
  8. G. R. Kirkham, E. Britchford, T. Upton, J. Ware, G. M. Gibson, Y. Devaud, M. Ehrbar, M. Padgett, S. Allen, L. D. Buttery, and K. Shakesheff, “Precision assembly of complex cellular microenvironments using holographic optical tweezers,” Sci. Rep. 5, 8577 (2015).
    [Crossref] [PubMed]
  9. S. Chu, J. E. Bjorkholm, A. Ashkin, and A. Cable, “Experimental observation of optically trapped atoms,” Phys. Rev. Lett. 57, 314–317 (1986).
    [Crossref] [PubMed]
  10. A. M. Kaufman, B. J. Lester, and C. A. Regal, “Cooling a single atom in an optical tweezer to its quantum ground state,” Phys. Rev. X 2, 041014 (2012).
  11. C. L. Asbury, A. N. Fehr, and S. M. Block, “Kinesin moves by an asymmetric hand-over-hand mechanism,” Science 302, 2130–2134 (2003).
    [Crossref] [PubMed]
  12. F. M. Fazal, C. A. Meng, K. Murakami, R. D. Kornberg, and S. M. Block, “Real-time observation of the initiation of RNA polymerase II transcription,” Nature 525, 274–277 (2015).
    [Crossref] [PubMed]
  13. M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photon. 5, 349–356 (2011).
    [Crossref]
  14. M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, “Self-induced back-action optical trapping of dielectric nanoparticles,” Nat. Phys. 5, 915–919 (2009).
    [Crossref]
  15. C. Chen, M. L. Juan, Y. Li, G. Maes, G. Borghs, P. V. Dorpe, and R. Quidant, “Enhanced optical trapping and arrangement of nano-objects in a plasmonic nanocavity,” Nano Lett. 12, 125–132 (2012).
    [Crossref]
  16. Y. Pang and R. Gordon, “Optical trapping of 12 nm dielectric spheres using double-nanoholes in a gold film,” Nano Lett. 11, 3763–3767 (2011).
    [Crossref] [PubMed]
  17. Y. Pang and R. Gordon, “Optical trapping of a single protein,” Nano lett. 12, 402–406 (2011).
    [Crossref] [PubMed]
  18. M. Righini, P. Ghenuche, S. Cherukulappurath, V. Myroshnychenko, F. J. G. de Abajo, and R. Quidant, “Nano-optical trapping of rayleigh particles and escherichia coli bacteria with resonant optical antennas,” Nano Lett. 9, 3387–3391 (2009).
    [Crossref] [PubMed]
  19. W. Zhang, L. Huang, C. Santschi, and O. J. Martin, “Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas,” Nano lett. 101006–1011 (2010).
    [Crossref] [PubMed]
  20. K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, “Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink,” Nat. Commun. 2, 469 (2011).
    [Crossref]
  21. B. J. Roxworthy, K. D. Ko, A. Kumar, K. H. Fung, E. K. C. Chow, G. L. Liu, N. X. Fang, J. Kimani, and C. Toussaint, “Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting,” Nano Lett. 12, 796–801 (2012).
    [Crossref] [PubMed]
  22. A. N. Grigorenko, N. W. Roberts, M. R. Dickinson, and Y. Zhang, “Nanometric optical tweezers based on nanostructured substrates,” Nat. Photon. 2, 365–370 (2008).
    [Crossref]
  23. J. C. Ndukaife, A. V. Kildishev, A. G. A. Nnanna, V. M. Shalaev, S. T. Wereley, and A. Boltasseva, “Long-range and rapid transport of individual nano-objects by a hybrid electrothermoplasmonic nanotweezer,” Nat. Nanotech. 11, 53–59 (2016).
    [Crossref]
  24. R. A. Jensen, I. C. Huang, O. Chen, J. T. Choy, T. S. Bischof, M. Loncar, and M. G. Bawendi, “Optical trapping and two-Photon excitation of colloidal quantum dots using bowtie apertures,” ACS Photonics 3, 423–427 (2016).
    [Crossref]
  25. J. Berthelot, S. Aćimović, M. Juan, M. Kreuzer, J. Renger, and R. Quidant, “Three-dimensional manipulation with scanning near-field optical nanotweezers,” Nat. nanotech. 9, 295–299 (2014).
    [Crossref]
  26. R. M. Gelfand, S. Wheaton, and R. Gordon, “Cleaved fiber optic double nanohole optical tweezers for trapping nanoparticles,” Opt. lett. 39, 6415–6417 (2014).
    [Crossref] [PubMed]
  27. A. A. E. Saleh and J. A. Dionne, “Toward efficient optical trapping of sub-10-nm particles with coaxial plasmonic apertures,” Nano lett. 12, 5581–5586 (2012).
    [Crossref] [PubMed]
  28. Y. Zhao, A. A. E. Saleh, and J. A. Dionne, “Enantioselective optical trapping of chiral nanoparticles with plasmonic tweezers,” ACS Photonics 3, 304–309 (2016).
    [Crossref]
  29. A. Taflove and S. C. Hagness, Computational electrodynamics: the Finite-Difference Time-Domain method (Artech House, 2005).
  30. M. Melli, A. Polyakov, D. Gargas, C. Huynh, L. Scipioni, W. Bao, D. F. Ogletree, P. J. Schuck, S. Cabrini, and A. Weber-Bargioni, “Reaching the theoretical resonance quality factor limit in coaxial plasmonic nanoresonators fabricated by helium ion lithography,” Nano lett. 13, 2687–2691 (2013).
    [Crossref] [PubMed]
  31. M. van de Haar and A. Polman, “Fabrication process of a coaxial plasmonic metamaterial,” Opt. Mater. Express 6, 884–911 (2016).
    [Crossref]
  32. D. Yoo, N. Nguyen, L. Martin-Moreno, D. A. Mohr, S. Carretero-Palacios, J. Shaver, J. Peraire, T. W. Ebbesen, and S. Oh, “High-throughput fabrication of resonant metamaterials with ultrasmall coaxial apertures via atomic layer lithography,” Nano lett. 16, 2040–2046 (2016).
    [Crossref] [PubMed]
  33. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. rev. B 64370 (1972).
    [Crossref]
  34. T. Thio, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, G. D. Lewen, A. Nahata, and R. A. Linke, “Giant optical transmission of sub-wavelength apertures: physics and applications,” Nanotechnology 13, 429 (2002).
    [Crossref]
  35. O. Mahboub, S. C. Palacios, C. Genet, F. Garcia-Vidal, S. G. Rodrigo, L. Martin-Moreno, and T. Ebbesen, “Optimization of bull’s eye structures for transmission enhancement,” Opt. Express 18, 11292–11299 (2010).
    [Crossref] [PubMed]
  36. S. Carretero-Palacios, O. Mahboub, F. Garcia-Vidal, L. Martin-Moreno, S. G. Rodrigo, C. Genet, and T. Ebbesen, “Mechanisms for extraordinary optical transmission through bull’s eye structures,” Opt. Express 19, 10429–10442 (2011).
    [Crossref] [PubMed]
  37. M. Pournoury, H. Arabi, and K. Oh, “Strong polarization dependence in the optical transmission through a bull’s eye with an elliptical sub-wavelength aperture,” Opt. Express 20, 26798–26805 (2012).
    [Crossref] [PubMed]
  38. D. Wang, T. Yang, and K. B. Crozier, “Optical antennas integrated with concentric ring gratings: electric field enhancement and directional radiation,” Opt. Express 19, 2148–2157 (2011).
    [Crossref] [PubMed]
  39. E. Laux, C. Genet, T. Skauli, and T. W. Ebbesen, “Plasmonic photon sorters for spectral and polarimetric imaging,” Nat. Photon. 2, 161–164 (2008).
    [Crossref]
  40. S. J. Adams, “Electromagnetic Theory” (McGraw-Hill, 1941).
  41. L. Novotny, “Forces in Optical Near-Fields” (Springer Berlin / Heidelberg, 2001), vol. 81 of Topics in Applied Physics, pp. 123–141.
  42. T. L. McMeekin, M. L. Groves, and N. J. Hipp, “Amino acids and serum proteins,” Adv. Chem. 44, 54–66 (1964).
  43. L. W. Wang and A. Zunger, “Pseudopotential calculations of nanoscale CdSe quantum dots,” Phys. Rev. B 53, 9579 (1996).
    [Crossref]
  44. B. J. Roxworthy, A. M. Bhuiya, S. P. Vanka, and K. C. Toussaint, “Understanding and controlling plasmon-induced convection,” Nat. Commun. 5, 3173 (2014).
    [Crossref]
  45. M. J. Yi, A. Cuche, E. Devaux, C. Genet, and T. W. Ebbesen, “Beaming visible light with a plasmonic aperture antenna,” ACS photonics 1, 365–370 (2014).
    [Crossref] [PubMed]
  46. E. T. Rogers, S. Savo, J. Lindberg, T. Roy, M. R. Dennis, and N. I. Zheludev, “Super-oscillatory optical needle,” Appl. Phys. Lett.,  102, 031108 (2013).
    [Crossref]

2016 (5)

J. C. Ndukaife, A. V. Kildishev, A. G. A. Nnanna, V. M. Shalaev, S. T. Wereley, and A. Boltasseva, “Long-range and rapid transport of individual nano-objects by a hybrid electrothermoplasmonic nanotweezer,” Nat. Nanotech. 11, 53–59 (2016).
[Crossref]

R. A. Jensen, I. C. Huang, O. Chen, J. T. Choy, T. S. Bischof, M. Loncar, and M. G. Bawendi, “Optical trapping and two-Photon excitation of colloidal quantum dots using bowtie apertures,” ACS Photonics 3, 423–427 (2016).
[Crossref]

Y. Zhao, A. A. E. Saleh, and J. A. Dionne, “Enantioselective optical trapping of chiral nanoparticles with plasmonic tweezers,” ACS Photonics 3, 304–309 (2016).
[Crossref]

D. Yoo, N. Nguyen, L. Martin-Moreno, D. A. Mohr, S. Carretero-Palacios, J. Shaver, J. Peraire, T. W. Ebbesen, and S. Oh, “High-throughput fabrication of resonant metamaterials with ultrasmall coaxial apertures via atomic layer lithography,” Nano lett. 16, 2040–2046 (2016).
[Crossref] [PubMed]

M. van de Haar and A. Polman, “Fabrication process of a coaxial plasmonic metamaterial,” Opt. Mater. Express 6, 884–911 (2016).
[Crossref]

2015 (2)

G. R. Kirkham, E. Britchford, T. Upton, J. Ware, G. M. Gibson, Y. Devaud, M. Ehrbar, M. Padgett, S. Allen, L. D. Buttery, and K. Shakesheff, “Precision assembly of complex cellular microenvironments using holographic optical tweezers,” Sci. Rep. 5, 8577 (2015).
[Crossref] [PubMed]

F. M. Fazal, C. A. Meng, K. Murakami, R. D. Kornberg, and S. M. Block, “Real-time observation of the initiation of RNA polymerase II transcription,” Nature 525, 274–277 (2015).
[Crossref] [PubMed]

2014 (4)

B. J. Roxworthy, A. M. Bhuiya, S. P. Vanka, and K. C. Toussaint, “Understanding and controlling plasmon-induced convection,” Nat. Commun. 5, 3173 (2014).
[Crossref]

M. J. Yi, A. Cuche, E. Devaux, C. Genet, and T. W. Ebbesen, “Beaming visible light with a plasmonic aperture antenna,” ACS photonics 1, 365–370 (2014).
[Crossref] [PubMed]

J. Berthelot, S. Aćimović, M. Juan, M. Kreuzer, J. Renger, and R. Quidant, “Three-dimensional manipulation with scanning near-field optical nanotweezers,” Nat. nanotech. 9, 295–299 (2014).
[Crossref]

R. M. Gelfand, S. Wheaton, and R. Gordon, “Cleaved fiber optic double nanohole optical tweezers for trapping nanoparticles,” Opt. lett. 39, 6415–6417 (2014).
[Crossref] [PubMed]

2013 (2)

M. Melli, A. Polyakov, D. Gargas, C. Huynh, L. Scipioni, W. Bao, D. F. Ogletree, P. J. Schuck, S. Cabrini, and A. Weber-Bargioni, “Reaching the theoretical resonance quality factor limit in coaxial plasmonic nanoresonators fabricated by helium ion lithography,” Nano lett. 13, 2687–2691 (2013).
[Crossref] [PubMed]

E. T. Rogers, S. Savo, J. Lindberg, T. Roy, M. R. Dennis, and N. I. Zheludev, “Super-oscillatory optical needle,” Appl. Phys. Lett.,  102, 031108 (2013).
[Crossref]

2012 (5)

B. J. Roxworthy, K. D. Ko, A. Kumar, K. H. Fung, E. K. C. Chow, G. L. Liu, N. X. Fang, J. Kimani, and C. Toussaint, “Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting,” Nano Lett. 12, 796–801 (2012).
[Crossref] [PubMed]

A. A. E. Saleh and J. A. Dionne, “Toward efficient optical trapping of sub-10-nm particles with coaxial plasmonic apertures,” Nano lett. 12, 5581–5586 (2012).
[Crossref] [PubMed]

C. Chen, M. L. Juan, Y. Li, G. Maes, G. Borghs, P. V. Dorpe, and R. Quidant, “Enhanced optical trapping and arrangement of nano-objects in a plasmonic nanocavity,” Nano Lett. 12, 125–132 (2012).
[Crossref]

A. M. Kaufman, B. J. Lester, and C. A. Regal, “Cooling a single atom in an optical tweezer to its quantum ground state,” Phys. Rev. X 2, 041014 (2012).

M. Pournoury, H. Arabi, and K. Oh, “Strong polarization dependence in the optical transmission through a bull’s eye with an elliptical sub-wavelength aperture,” Opt. Express 20, 26798–26805 (2012).
[Crossref] [PubMed]

2011 (7)

D. Wang, T. Yang, and K. B. Crozier, “Optical antennas integrated with concentric ring gratings: electric field enhancement and directional radiation,” Opt. Express 19, 2148–2157 (2011).
[Crossref] [PubMed]

S. Carretero-Palacios, O. Mahboub, F. Garcia-Vidal, L. Martin-Moreno, S. G. Rodrigo, C. Genet, and T. Ebbesen, “Mechanisms for extraordinary optical transmission through bull’s eye structures,” Opt. Express 19, 10429–10442 (2011).
[Crossref] [PubMed]

F. M. Fazal and S. M. Block, “Optical tweezers study life under tension,” Nat. photon. 5, 318–321 (2011).
[Crossref]

Y. Pang and R. Gordon, “Optical trapping of 12 nm dielectric spheres using double-nanoholes in a gold film,” Nano Lett. 11, 3763–3767 (2011).
[Crossref] [PubMed]

Y. Pang and R. Gordon, “Optical trapping of a single protein,” Nano lett. 12, 402–406 (2011).
[Crossref] [PubMed]

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photon. 5, 349–356 (2011).
[Crossref]

K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, “Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink,” Nat. Commun. 2, 469 (2011).
[Crossref]

2010 (2)

W. Zhang, L. Huang, C. Santschi, and O. J. Martin, “Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas,” Nano lett. 101006–1011 (2010).
[Crossref] [PubMed]

O. Mahboub, S. C. Palacios, C. Genet, F. Garcia-Vidal, S. G. Rodrigo, L. Martin-Moreno, and T. Ebbesen, “Optimization of bull’s eye structures for transmission enhancement,” Opt. Express 18, 11292–11299 (2010).
[Crossref] [PubMed]

2009 (2)

M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, “Self-induced back-action optical trapping of dielectric nanoparticles,” Nat. Phys. 5, 915–919 (2009).
[Crossref]

M. Righini, P. Ghenuche, S. Cherukulappurath, V. Myroshnychenko, F. J. G. de Abajo, and R. Quidant, “Nano-optical trapping of rayleigh particles and escherichia coli bacteria with resonant optical antennas,” Nano Lett. 9, 3387–3391 (2009).
[Crossref] [PubMed]

2008 (2)

A. N. Grigorenko, N. W. Roberts, M. R. Dickinson, and Y. Zhang, “Nanometric optical tweezers based on nanostructured substrates,” Nat. Photon. 2, 365–370 (2008).
[Crossref]

E. Laux, C. Genet, T. Skauli, and T. W. Ebbesen, “Plasmonic photon sorters for spectral and polarimetric imaging,” Nat. Photon. 2, 161–164 (2008).
[Crossref]

2003 (1)

C. L. Asbury, A. N. Fehr, and S. M. Block, “Kinesin moves by an asymmetric hand-over-hand mechanism,” Science 302, 2130–2134 (2003).
[Crossref] [PubMed]

2002 (1)

T. Thio, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, G. D. Lewen, A. Nahata, and R. A. Linke, “Giant optical transmission of sub-wavelength apertures: physics and applications,” Nanotechnology 13, 429 (2002).
[Crossref]

1996 (1)

L. W. Wang and A. Zunger, “Pseudopotential calculations of nanoscale CdSe quantum dots,” Phys. Rev. B 53, 9579 (1996).
[Crossref]

1994 (1)

J. T. Finer, R. M. Simmons, and J. A. Spudich, “Single myosin molecule mechanics: piconewton forces and nanometre steps,” Nature 368, 113–119 (1994).
[Crossref] [PubMed]

1993 (1)

K. Svoboda, C. F. Schmidt, B. J. Schnapp, and S. M. Block, “Direct observation of kinesin stepping by optical trapping interferometry,” Nature 365, 721–727 (1993).
[Crossref]

1987 (1)

A. Ashkin and J. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235, 1517–1520 (1987).
[Crossref] [PubMed]

1986 (2)

S. Chu, J. E. Bjorkholm, A. Ashkin, and A. Cable, “Experimental observation of optically trapped atoms,” Phys. Rev. Lett. 57, 314–317 (1986).
[Crossref] [PubMed]

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986).
[Crossref] [PubMed]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. rev. B 64370 (1972).
[Crossref]

1970 (1)

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970).
[Crossref]

1964 (1)

T. L. McMeekin, M. L. Groves, and N. J. Hipp, “Amino acids and serum proteins,” Adv. Chem. 44, 54–66 (1964).

1903 (1)

E. F. Nichols and G. F. Hull, “The pressure due to radiation.(second paper.),” Phys. Rev. (Series I) 17, 26 (1903).
[Crossref]

Acimovic, S.

J. Berthelot, S. Aćimović, M. Juan, M. Kreuzer, J. Renger, and R. Quidant, “Three-dimensional manipulation with scanning near-field optical nanotweezers,” Nat. nanotech. 9, 295–299 (2014).
[Crossref]

Adams, S. J.

S. J. Adams, “Electromagnetic Theory” (McGraw-Hill, 1941).

Allen, S.

G. R. Kirkham, E. Britchford, T. Upton, J. Ware, G. M. Gibson, Y. Devaud, M. Ehrbar, M. Padgett, S. Allen, L. D. Buttery, and K. Shakesheff, “Precision assembly of complex cellular microenvironments using holographic optical tweezers,” Sci. Rep. 5, 8577 (2015).
[Crossref] [PubMed]

Arabi, H.

Asbury, C. L.

C. L. Asbury, A. N. Fehr, and S. M. Block, “Kinesin moves by an asymmetric hand-over-hand mechanism,” Science 302, 2130–2134 (2003).
[Crossref] [PubMed]

Ashkin, A.

A. Ashkin and J. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235, 1517–1520 (1987).
[Crossref] [PubMed]

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986).
[Crossref] [PubMed]

S. Chu, J. E. Bjorkholm, A. Ashkin, and A. Cable, “Experimental observation of optically trapped atoms,” Phys. Rev. Lett. 57, 314–317 (1986).
[Crossref] [PubMed]

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970).
[Crossref]

Bao, W.

M. Melli, A. Polyakov, D. Gargas, C. Huynh, L. Scipioni, W. Bao, D. F. Ogletree, P. J. Schuck, S. Cabrini, and A. Weber-Bargioni, “Reaching the theoretical resonance quality factor limit in coaxial plasmonic nanoresonators fabricated by helium ion lithography,” Nano lett. 13, 2687–2691 (2013).
[Crossref] [PubMed]

Bawendi, M. G.

R. A. Jensen, I. C. Huang, O. Chen, J. T. Choy, T. S. Bischof, M. Loncar, and M. G. Bawendi, “Optical trapping and two-Photon excitation of colloidal quantum dots using bowtie apertures,” ACS Photonics 3, 423–427 (2016).
[Crossref]

Berthelot, J.

J. Berthelot, S. Aćimović, M. Juan, M. Kreuzer, J. Renger, and R. Quidant, “Three-dimensional manipulation with scanning near-field optical nanotweezers,” Nat. nanotech. 9, 295–299 (2014).
[Crossref]

Bhuiya, A. M.

B. J. Roxworthy, A. M. Bhuiya, S. P. Vanka, and K. C. Toussaint, “Understanding and controlling plasmon-induced convection,” Nat. Commun. 5, 3173 (2014).
[Crossref]

Bischof, T. S.

R. A. Jensen, I. C. Huang, O. Chen, J. T. Choy, T. S. Bischof, M. Loncar, and M. G. Bawendi, “Optical trapping and two-Photon excitation of colloidal quantum dots using bowtie apertures,” ACS Photonics 3, 423–427 (2016).
[Crossref]

Bjorkholm, J. E.

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986).
[Crossref] [PubMed]

S. Chu, J. E. Bjorkholm, A. Ashkin, and A. Cable, “Experimental observation of optically trapped atoms,” Phys. Rev. Lett. 57, 314–317 (1986).
[Crossref] [PubMed]

Block, S. M.

F. M. Fazal, C. A. Meng, K. Murakami, R. D. Kornberg, and S. M. Block, “Real-time observation of the initiation of RNA polymerase II transcription,” Nature 525, 274–277 (2015).
[Crossref] [PubMed]

F. M. Fazal and S. M. Block, “Optical tweezers study life under tension,” Nat. photon. 5, 318–321 (2011).
[Crossref]

C. L. Asbury, A. N. Fehr, and S. M. Block, “Kinesin moves by an asymmetric hand-over-hand mechanism,” Science 302, 2130–2134 (2003).
[Crossref] [PubMed]

K. Svoboda, C. F. Schmidt, B. J. Schnapp, and S. M. Block, “Direct observation of kinesin stepping by optical trapping interferometry,” Nature 365, 721–727 (1993).
[Crossref]

Boltasseva, A.

J. C. Ndukaife, A. V. Kildishev, A. G. A. Nnanna, V. M. Shalaev, S. T. Wereley, and A. Boltasseva, “Long-range and rapid transport of individual nano-objects by a hybrid electrothermoplasmonic nanotweezer,” Nat. Nanotech. 11, 53–59 (2016).
[Crossref]

Borghs, G.

C. Chen, M. L. Juan, Y. Li, G. Maes, G. Borghs, P. V. Dorpe, and R. Quidant, “Enhanced optical trapping and arrangement of nano-objects in a plasmonic nanocavity,” Nano Lett. 12, 125–132 (2012).
[Crossref]

Britchford, E.

G. R. Kirkham, E. Britchford, T. Upton, J. Ware, G. M. Gibson, Y. Devaud, M. Ehrbar, M. Padgett, S. Allen, L. D. Buttery, and K. Shakesheff, “Precision assembly of complex cellular microenvironments using holographic optical tweezers,” Sci. Rep. 5, 8577 (2015).
[Crossref] [PubMed]

Buttery, L. D.

G. R. Kirkham, E. Britchford, T. Upton, J. Ware, G. M. Gibson, Y. Devaud, M. Ehrbar, M. Padgett, S. Allen, L. D. Buttery, and K. Shakesheff, “Precision assembly of complex cellular microenvironments using holographic optical tweezers,” Sci. Rep. 5, 8577 (2015).
[Crossref] [PubMed]

Cable, A.

S. Chu, J. E. Bjorkholm, A. Ashkin, and A. Cable, “Experimental observation of optically trapped atoms,” Phys. Rev. Lett. 57, 314–317 (1986).
[Crossref] [PubMed]

Cabrini, S.

M. Melli, A. Polyakov, D. Gargas, C. Huynh, L. Scipioni, W. Bao, D. F. Ogletree, P. J. Schuck, S. Cabrini, and A. Weber-Bargioni, “Reaching the theoretical resonance quality factor limit in coaxial plasmonic nanoresonators fabricated by helium ion lithography,” Nano lett. 13, 2687–2691 (2013).
[Crossref] [PubMed]

Carretero-Palacios, S.

D. Yoo, N. Nguyen, L. Martin-Moreno, D. A. Mohr, S. Carretero-Palacios, J. Shaver, J. Peraire, T. W. Ebbesen, and S. Oh, “High-throughput fabrication of resonant metamaterials with ultrasmall coaxial apertures via atomic layer lithography,” Nano lett. 16, 2040–2046 (2016).
[Crossref] [PubMed]

S. Carretero-Palacios, O. Mahboub, F. Garcia-Vidal, L. Martin-Moreno, S. G. Rodrigo, C. Genet, and T. Ebbesen, “Mechanisms for extraordinary optical transmission through bull’s eye structures,” Opt. Express 19, 10429–10442 (2011).
[Crossref] [PubMed]

Chen, C.

C. Chen, M. L. Juan, Y. Li, G. Maes, G. Borghs, P. V. Dorpe, and R. Quidant, “Enhanced optical trapping and arrangement of nano-objects in a plasmonic nanocavity,” Nano Lett. 12, 125–132 (2012).
[Crossref]

Chen, O.

R. A. Jensen, I. C. Huang, O. Chen, J. T. Choy, T. S. Bischof, M. Loncar, and M. G. Bawendi, “Optical trapping and two-Photon excitation of colloidal quantum dots using bowtie apertures,” ACS Photonics 3, 423–427 (2016).
[Crossref]

Cherukulappurath, S.

M. Righini, P. Ghenuche, S. Cherukulappurath, V. Myroshnychenko, F. J. G. de Abajo, and R. Quidant, “Nano-optical trapping of rayleigh particles and escherichia coli bacteria with resonant optical antennas,” Nano Lett. 9, 3387–3391 (2009).
[Crossref] [PubMed]

Chow, E. K. C.

B. J. Roxworthy, K. D. Ko, A. Kumar, K. H. Fung, E. K. C. Chow, G. L. Liu, N. X. Fang, J. Kimani, and C. Toussaint, “Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting,” Nano Lett. 12, 796–801 (2012).
[Crossref] [PubMed]

Choy, J. T.

R. A. Jensen, I. C. Huang, O. Chen, J. T. Choy, T. S. Bischof, M. Loncar, and M. G. Bawendi, “Optical trapping and two-Photon excitation of colloidal quantum dots using bowtie apertures,” ACS Photonics 3, 423–427 (2016).
[Crossref]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. rev. B 64370 (1972).
[Crossref]

Chu, S.

S. Chu, J. E. Bjorkholm, A. Ashkin, and A. Cable, “Experimental observation of optically trapped atoms,” Phys. Rev. Lett. 57, 314–317 (1986).
[Crossref] [PubMed]

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986).
[Crossref] [PubMed]

Crozier, K. B.

K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, “Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink,” Nat. Commun. 2, 469 (2011).
[Crossref]

D. Wang, T. Yang, and K. B. Crozier, “Optical antennas integrated with concentric ring gratings: electric field enhancement and directional radiation,” Opt. Express 19, 2148–2157 (2011).
[Crossref] [PubMed]

Cuche, A.

M. J. Yi, A. Cuche, E. Devaux, C. Genet, and T. W. Ebbesen, “Beaming visible light with a plasmonic aperture antenna,” ACS photonics 1, 365–370 (2014).
[Crossref] [PubMed]

de Abajo, F. J. G.

M. Righini, P. Ghenuche, S. Cherukulappurath, V. Myroshnychenko, F. J. G. de Abajo, and R. Quidant, “Nano-optical trapping of rayleigh particles and escherichia coli bacteria with resonant optical antennas,” Nano Lett. 9, 3387–3391 (2009).
[Crossref] [PubMed]

Dennis, M. R.

E. T. Rogers, S. Savo, J. Lindberg, T. Roy, M. R. Dennis, and N. I. Zheludev, “Super-oscillatory optical needle,” Appl. Phys. Lett.,  102, 031108 (2013).
[Crossref]

Devaud, Y.

G. R. Kirkham, E. Britchford, T. Upton, J. Ware, G. M. Gibson, Y. Devaud, M. Ehrbar, M. Padgett, S. Allen, L. D. Buttery, and K. Shakesheff, “Precision assembly of complex cellular microenvironments using holographic optical tweezers,” Sci. Rep. 5, 8577 (2015).
[Crossref] [PubMed]

Devaux, E.

M. J. Yi, A. Cuche, E. Devaux, C. Genet, and T. W. Ebbesen, “Beaming visible light with a plasmonic aperture antenna,” ACS photonics 1, 365–370 (2014).
[Crossref] [PubMed]

Dickinson, M. R.

A. N. Grigorenko, N. W. Roberts, M. R. Dickinson, and Y. Zhang, “Nanometric optical tweezers based on nanostructured substrates,” Nat. Photon. 2, 365–370 (2008).
[Crossref]

Dionne, J. A.

Y. Zhao, A. A. E. Saleh, and J. A. Dionne, “Enantioselective optical trapping of chiral nanoparticles with plasmonic tweezers,” ACS Photonics 3, 304–309 (2016).
[Crossref]

A. A. E. Saleh and J. A. Dionne, “Toward efficient optical trapping of sub-10-nm particles with coaxial plasmonic apertures,” Nano lett. 12, 5581–5586 (2012).
[Crossref] [PubMed]

Dorpe, P. V.

C. Chen, M. L. Juan, Y. Li, G. Maes, G. Borghs, P. V. Dorpe, and R. Quidant, “Enhanced optical trapping and arrangement of nano-objects in a plasmonic nanocavity,” Nano Lett. 12, 125–132 (2012).
[Crossref]

Dziedzic, J.

A. Ashkin and J. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235, 1517–1520 (1987).
[Crossref] [PubMed]

Dziedzic, J. M.

Ebbesen, T.

Ebbesen, T. W.

D. Yoo, N. Nguyen, L. Martin-Moreno, D. A. Mohr, S. Carretero-Palacios, J. Shaver, J. Peraire, T. W. Ebbesen, and S. Oh, “High-throughput fabrication of resonant metamaterials with ultrasmall coaxial apertures via atomic layer lithography,” Nano lett. 16, 2040–2046 (2016).
[Crossref] [PubMed]

M. J. Yi, A. Cuche, E. Devaux, C. Genet, and T. W. Ebbesen, “Beaming visible light with a plasmonic aperture antenna,” ACS photonics 1, 365–370 (2014).
[Crossref] [PubMed]

E. Laux, C. Genet, T. Skauli, and T. W. Ebbesen, “Plasmonic photon sorters for spectral and polarimetric imaging,” Nat. Photon. 2, 161–164 (2008).
[Crossref]

T. Thio, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, G. D. Lewen, A. Nahata, and R. A. Linke, “Giant optical transmission of sub-wavelength apertures: physics and applications,” Nanotechnology 13, 429 (2002).
[Crossref]

Eftekhari, F.

M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, “Self-induced back-action optical trapping of dielectric nanoparticles,” Nat. Phys. 5, 915–919 (2009).
[Crossref]

Ehrbar, M.

G. R. Kirkham, E. Britchford, T. Upton, J. Ware, G. M. Gibson, Y. Devaud, M. Ehrbar, M. Padgett, S. Allen, L. D. Buttery, and K. Shakesheff, “Precision assembly of complex cellular microenvironments using holographic optical tweezers,” Sci. Rep. 5, 8577 (2015).
[Crossref] [PubMed]

Fang, N. X.

B. J. Roxworthy, K. D. Ko, A. Kumar, K. H. Fung, E. K. C. Chow, G. L. Liu, N. X. Fang, J. Kimani, and C. Toussaint, “Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting,” Nano Lett. 12, 796–801 (2012).
[Crossref] [PubMed]

Fazal, F. M.

F. M. Fazal, C. A. Meng, K. Murakami, R. D. Kornberg, and S. M. Block, “Real-time observation of the initiation of RNA polymerase II transcription,” Nature 525, 274–277 (2015).
[Crossref] [PubMed]

F. M. Fazal and S. M. Block, “Optical tweezers study life under tension,” Nat. photon. 5, 318–321 (2011).
[Crossref]

Fehr, A. N.

C. L. Asbury, A. N. Fehr, and S. M. Block, “Kinesin moves by an asymmetric hand-over-hand mechanism,” Science 302, 2130–2134 (2003).
[Crossref] [PubMed]

Finer, J. T.

J. T. Finer, R. M. Simmons, and J. A. Spudich, “Single myosin molecule mechanics: piconewton forces and nanometre steps,” Nature 368, 113–119 (1994).
[Crossref] [PubMed]

Fung, K. H.

B. J. Roxworthy, K. D. Ko, A. Kumar, K. H. Fung, E. K. C. Chow, G. L. Liu, N. X. Fang, J. Kimani, and C. Toussaint, “Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting,” Nano Lett. 12, 796–801 (2012).
[Crossref] [PubMed]

Garcia-Vidal, F.

Gargas, D.

M. Melli, A. Polyakov, D. Gargas, C. Huynh, L. Scipioni, W. Bao, D. F. Ogletree, P. J. Schuck, S. Cabrini, and A. Weber-Bargioni, “Reaching the theoretical resonance quality factor limit in coaxial plasmonic nanoresonators fabricated by helium ion lithography,” Nano lett. 13, 2687–2691 (2013).
[Crossref] [PubMed]

Gelfand, R. M.

Genet, C.

Ghenuche, P.

M. Righini, P. Ghenuche, S. Cherukulappurath, V. Myroshnychenko, F. J. G. de Abajo, and R. Quidant, “Nano-optical trapping of rayleigh particles and escherichia coli bacteria with resonant optical antennas,” Nano Lett. 9, 3387–3391 (2009).
[Crossref] [PubMed]

Gibson, G. M.

G. R. Kirkham, E. Britchford, T. Upton, J. Ware, G. M. Gibson, Y. Devaud, M. Ehrbar, M. Padgett, S. Allen, L. D. Buttery, and K. Shakesheff, “Precision assembly of complex cellular microenvironments using holographic optical tweezers,” Sci. Rep. 5, 8577 (2015).
[Crossref] [PubMed]

Gordon, R.

R. M. Gelfand, S. Wheaton, and R. Gordon, “Cleaved fiber optic double nanohole optical tweezers for trapping nanoparticles,” Opt. lett. 39, 6415–6417 (2014).
[Crossref] [PubMed]

Y. Pang and R. Gordon, “Optical trapping of 12 nm dielectric spheres using double-nanoholes in a gold film,” Nano Lett. 11, 3763–3767 (2011).
[Crossref] [PubMed]

Y. Pang and R. Gordon, “Optical trapping of a single protein,” Nano lett. 12, 402–406 (2011).
[Crossref] [PubMed]

M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, “Self-induced back-action optical trapping of dielectric nanoparticles,” Nat. Phys. 5, 915–919 (2009).
[Crossref]

Grigorenko, A. N.

A. N. Grigorenko, N. W. Roberts, M. R. Dickinson, and Y. Zhang, “Nanometric optical tweezers based on nanostructured substrates,” Nat. Photon. 2, 365–370 (2008).
[Crossref]

Groves, M. L.

T. L. McMeekin, M. L. Groves, and N. J. Hipp, “Amino acids and serum proteins,” Adv. Chem. 44, 54–66 (1964).

Hagness, S. C.

A. Taflove and S. C. Hagness, Computational electrodynamics: the Finite-Difference Time-Domain method (Artech House, 2005).

Hipp, N. J.

T. L. McMeekin, M. L. Groves, and N. J. Hipp, “Amino acids and serum proteins,” Adv. Chem. 44, 54–66 (1964).

Huang, I. C.

R. A. Jensen, I. C. Huang, O. Chen, J. T. Choy, T. S. Bischof, M. Loncar, and M. G. Bawendi, “Optical trapping and two-Photon excitation of colloidal quantum dots using bowtie apertures,” ACS Photonics 3, 423–427 (2016).
[Crossref]

Huang, L.

W. Zhang, L. Huang, C. Santschi, and O. J. Martin, “Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas,” Nano lett. 101006–1011 (2010).
[Crossref] [PubMed]

Hull, G. F.

E. F. Nichols and G. F. Hull, “The pressure due to radiation.(second paper.),” Phys. Rev. (Series I) 17, 26 (1903).
[Crossref]

Huynh, C.

M. Melli, A. Polyakov, D. Gargas, C. Huynh, L. Scipioni, W. Bao, D. F. Ogletree, P. J. Schuck, S. Cabrini, and A. Weber-Bargioni, “Reaching the theoretical resonance quality factor limit in coaxial plasmonic nanoresonators fabricated by helium ion lithography,” Nano lett. 13, 2687–2691 (2013).
[Crossref] [PubMed]

Jensen, R. A.

R. A. Jensen, I. C. Huang, O. Chen, J. T. Choy, T. S. Bischof, M. Loncar, and M. G. Bawendi, “Optical trapping and two-Photon excitation of colloidal quantum dots using bowtie apertures,” ACS Photonics 3, 423–427 (2016).
[Crossref]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. rev. B 64370 (1972).
[Crossref]

Juan, M.

J. Berthelot, S. Aćimović, M. Juan, M. Kreuzer, J. Renger, and R. Quidant, “Three-dimensional manipulation with scanning near-field optical nanotweezers,” Nat. nanotech. 9, 295–299 (2014).
[Crossref]

Juan, M. L.

C. Chen, M. L. Juan, Y. Li, G. Maes, G. Borghs, P. V. Dorpe, and R. Quidant, “Enhanced optical trapping and arrangement of nano-objects in a plasmonic nanocavity,” Nano Lett. 12, 125–132 (2012).
[Crossref]

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photon. 5, 349–356 (2011).
[Crossref]

M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, “Self-induced back-action optical trapping of dielectric nanoparticles,” Nat. Phys. 5, 915–919 (2009).
[Crossref]

Kaufman, A. M.

A. M. Kaufman, B. J. Lester, and C. A. Regal, “Cooling a single atom in an optical tweezer to its quantum ground state,” Phys. Rev. X 2, 041014 (2012).

Kildishev, A. V.

J. C. Ndukaife, A. V. Kildishev, A. G. A. Nnanna, V. M. Shalaev, S. T. Wereley, and A. Boltasseva, “Long-range and rapid transport of individual nano-objects by a hybrid electrothermoplasmonic nanotweezer,” Nat. Nanotech. 11, 53–59 (2016).
[Crossref]

Kimani, J.

B. J. Roxworthy, K. D. Ko, A. Kumar, K. H. Fung, E. K. C. Chow, G. L. Liu, N. X. Fang, J. Kimani, and C. Toussaint, “Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting,” Nano Lett. 12, 796–801 (2012).
[Crossref] [PubMed]

Kirkham, G. R.

G. R. Kirkham, E. Britchford, T. Upton, J. Ware, G. M. Gibson, Y. Devaud, M. Ehrbar, M. Padgett, S. Allen, L. D. Buttery, and K. Shakesheff, “Precision assembly of complex cellular microenvironments using holographic optical tweezers,” Sci. Rep. 5, 8577 (2015).
[Crossref] [PubMed]

Ko, K. D.

B. J. Roxworthy, K. D. Ko, A. Kumar, K. H. Fung, E. K. C. Chow, G. L. Liu, N. X. Fang, J. Kimani, and C. Toussaint, “Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting,” Nano Lett. 12, 796–801 (2012).
[Crossref] [PubMed]

Kornberg, R. D.

F. M. Fazal, C. A. Meng, K. Murakami, R. D. Kornberg, and S. M. Block, “Real-time observation of the initiation of RNA polymerase II transcription,” Nature 525, 274–277 (2015).
[Crossref] [PubMed]

Kreuzer, M.

J. Berthelot, S. Aćimović, M. Juan, M. Kreuzer, J. Renger, and R. Quidant, “Three-dimensional manipulation with scanning near-field optical nanotweezers,” Nat. nanotech. 9, 295–299 (2014).
[Crossref]

Kumar, A.

B. J. Roxworthy, K. D. Ko, A. Kumar, K. H. Fung, E. K. C. Chow, G. L. Liu, N. X. Fang, J. Kimani, and C. Toussaint, “Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting,” Nano Lett. 12, 796–801 (2012).
[Crossref] [PubMed]

Laux, E.

E. Laux, C. Genet, T. Skauli, and T. W. Ebbesen, “Plasmonic photon sorters for spectral and polarimetric imaging,” Nat. Photon. 2, 161–164 (2008).
[Crossref]

Lester, B. J.

A. M. Kaufman, B. J. Lester, and C. A. Regal, “Cooling a single atom in an optical tweezer to its quantum ground state,” Phys. Rev. X 2, 041014 (2012).

Lewen, G. D.

T. Thio, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, G. D. Lewen, A. Nahata, and R. A. Linke, “Giant optical transmission of sub-wavelength apertures: physics and applications,” Nanotechnology 13, 429 (2002).
[Crossref]

Lezec, H. J.

T. Thio, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, G. D. Lewen, A. Nahata, and R. A. Linke, “Giant optical transmission of sub-wavelength apertures: physics and applications,” Nanotechnology 13, 429 (2002).
[Crossref]

Li, Y.

C. Chen, M. L. Juan, Y. Li, G. Maes, G. Borghs, P. V. Dorpe, and R. Quidant, “Enhanced optical trapping and arrangement of nano-objects in a plasmonic nanocavity,” Nano Lett. 12, 125–132 (2012).
[Crossref]

Lindberg, J.

E. T. Rogers, S. Savo, J. Lindberg, T. Roy, M. R. Dennis, and N. I. Zheludev, “Super-oscillatory optical needle,” Appl. Phys. Lett.,  102, 031108 (2013).
[Crossref]

Linke, R. A.

T. Thio, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, G. D. Lewen, A. Nahata, and R. A. Linke, “Giant optical transmission of sub-wavelength apertures: physics and applications,” Nanotechnology 13, 429 (2002).
[Crossref]

Liu, G. L.

B. J. Roxworthy, K. D. Ko, A. Kumar, K. H. Fung, E. K. C. Chow, G. L. Liu, N. X. Fang, J. Kimani, and C. Toussaint, “Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting,” Nano Lett. 12, 796–801 (2012).
[Crossref] [PubMed]

Loncar, M.

R. A. Jensen, I. C. Huang, O. Chen, J. T. Choy, T. S. Bischof, M. Loncar, and M. G. Bawendi, “Optical trapping and two-Photon excitation of colloidal quantum dots using bowtie apertures,” ACS Photonics 3, 423–427 (2016).
[Crossref]

Maes, G.

C. Chen, M. L. Juan, Y. Li, G. Maes, G. Borghs, P. V. Dorpe, and R. Quidant, “Enhanced optical trapping and arrangement of nano-objects in a plasmonic nanocavity,” Nano Lett. 12, 125–132 (2012).
[Crossref]

Mahboub, O.

Martin, O. J.

W. Zhang, L. Huang, C. Santschi, and O. J. Martin, “Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas,” Nano lett. 101006–1011 (2010).
[Crossref] [PubMed]

Martin-Moreno, L.

McMeekin, T. L.

T. L. McMeekin, M. L. Groves, and N. J. Hipp, “Amino acids and serum proteins,” Adv. Chem. 44, 54–66 (1964).

Melli, M.

M. Melli, A. Polyakov, D. Gargas, C. Huynh, L. Scipioni, W. Bao, D. F. Ogletree, P. J. Schuck, S. Cabrini, and A. Weber-Bargioni, “Reaching the theoretical resonance quality factor limit in coaxial plasmonic nanoresonators fabricated by helium ion lithography,” Nano lett. 13, 2687–2691 (2013).
[Crossref] [PubMed]

Meng, C. A.

F. M. Fazal, C. A. Meng, K. Murakami, R. D. Kornberg, and S. M. Block, “Real-time observation of the initiation of RNA polymerase II transcription,” Nature 525, 274–277 (2015).
[Crossref] [PubMed]

Mohr, D. A.

D. Yoo, N. Nguyen, L. Martin-Moreno, D. A. Mohr, S. Carretero-Palacios, J. Shaver, J. Peraire, T. W. Ebbesen, and S. Oh, “High-throughput fabrication of resonant metamaterials with ultrasmall coaxial apertures via atomic layer lithography,” Nano lett. 16, 2040–2046 (2016).
[Crossref] [PubMed]

Murakami, K.

F. M. Fazal, C. A. Meng, K. Murakami, R. D. Kornberg, and S. M. Block, “Real-time observation of the initiation of RNA polymerase II transcription,” Nature 525, 274–277 (2015).
[Crossref] [PubMed]

Myroshnychenko, V.

M. Righini, P. Ghenuche, S. Cherukulappurath, V. Myroshnychenko, F. J. G. de Abajo, and R. Quidant, “Nano-optical trapping of rayleigh particles and escherichia coli bacteria with resonant optical antennas,” Nano Lett. 9, 3387–3391 (2009).
[Crossref] [PubMed]

Nahata, A.

T. Thio, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, G. D. Lewen, A. Nahata, and R. A. Linke, “Giant optical transmission of sub-wavelength apertures: physics and applications,” Nanotechnology 13, 429 (2002).
[Crossref]

Ndukaife, J. C.

J. C. Ndukaife, A. V. Kildishev, A. G. A. Nnanna, V. M. Shalaev, S. T. Wereley, and A. Boltasseva, “Long-range and rapid transport of individual nano-objects by a hybrid electrothermoplasmonic nanotweezer,” Nat. Nanotech. 11, 53–59 (2016).
[Crossref]

Nguyen, N.

D. Yoo, N. Nguyen, L. Martin-Moreno, D. A. Mohr, S. Carretero-Palacios, J. Shaver, J. Peraire, T. W. Ebbesen, and S. Oh, “High-throughput fabrication of resonant metamaterials with ultrasmall coaxial apertures via atomic layer lithography,” Nano lett. 16, 2040–2046 (2016).
[Crossref] [PubMed]

Nichols, E. F.

E. F. Nichols and G. F. Hull, “The pressure due to radiation.(second paper.),” Phys. Rev. (Series I) 17, 26 (1903).
[Crossref]

Nnanna, A. G. A.

J. C. Ndukaife, A. V. Kildishev, A. G. A. Nnanna, V. M. Shalaev, S. T. Wereley, and A. Boltasseva, “Long-range and rapid transport of individual nano-objects by a hybrid electrothermoplasmonic nanotweezer,” Nat. Nanotech. 11, 53–59 (2016).
[Crossref]

Novotny, L.

L. Novotny, “Forces in Optical Near-Fields” (Springer Berlin / Heidelberg, 2001), vol. 81 of Topics in Applied Physics, pp. 123–141.

Ogletree, D. F.

M. Melli, A. Polyakov, D. Gargas, C. Huynh, L. Scipioni, W. Bao, D. F. Ogletree, P. J. Schuck, S. Cabrini, and A. Weber-Bargioni, “Reaching the theoretical resonance quality factor limit in coaxial plasmonic nanoresonators fabricated by helium ion lithography,” Nano lett. 13, 2687–2691 (2013).
[Crossref] [PubMed]

Oh, K.

Oh, S.

D. Yoo, N. Nguyen, L. Martin-Moreno, D. A. Mohr, S. Carretero-Palacios, J. Shaver, J. Peraire, T. W. Ebbesen, and S. Oh, “High-throughput fabrication of resonant metamaterials with ultrasmall coaxial apertures via atomic layer lithography,” Nano lett. 16, 2040–2046 (2016).
[Crossref] [PubMed]

Padgett, M.

G. R. Kirkham, E. Britchford, T. Upton, J. Ware, G. M. Gibson, Y. Devaud, M. Ehrbar, M. Padgett, S. Allen, L. D. Buttery, and K. Shakesheff, “Precision assembly of complex cellular microenvironments using holographic optical tweezers,” Sci. Rep. 5, 8577 (2015).
[Crossref] [PubMed]

Palacios, S. C.

Pang, Y.

Y. Pang and R. Gordon, “Optical trapping of 12 nm dielectric spheres using double-nanoholes in a gold film,” Nano Lett. 11, 3763–3767 (2011).
[Crossref] [PubMed]

Y. Pang and R. Gordon, “Optical trapping of a single protein,” Nano lett. 12, 402–406 (2011).
[Crossref] [PubMed]

M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, “Self-induced back-action optical trapping of dielectric nanoparticles,” Nat. Phys. 5, 915–919 (2009).
[Crossref]

Pellerin, K. M.

T. Thio, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, G. D. Lewen, A. Nahata, and R. A. Linke, “Giant optical transmission of sub-wavelength apertures: physics and applications,” Nanotechnology 13, 429 (2002).
[Crossref]

Peraire, J.

D. Yoo, N. Nguyen, L. Martin-Moreno, D. A. Mohr, S. Carretero-Palacios, J. Shaver, J. Peraire, T. W. Ebbesen, and S. Oh, “High-throughput fabrication of resonant metamaterials with ultrasmall coaxial apertures via atomic layer lithography,” Nano lett. 16, 2040–2046 (2016).
[Crossref] [PubMed]

Polman, A.

Polyakov, A.

M. Melli, A. Polyakov, D. Gargas, C. Huynh, L. Scipioni, W. Bao, D. F. Ogletree, P. J. Schuck, S. Cabrini, and A. Weber-Bargioni, “Reaching the theoretical resonance quality factor limit in coaxial plasmonic nanoresonators fabricated by helium ion lithography,” Nano lett. 13, 2687–2691 (2013).
[Crossref] [PubMed]

Pournoury, M.

Quidant, R.

J. Berthelot, S. Aćimović, M. Juan, M. Kreuzer, J. Renger, and R. Quidant, “Three-dimensional manipulation with scanning near-field optical nanotweezers,” Nat. nanotech. 9, 295–299 (2014).
[Crossref]

C. Chen, M. L. Juan, Y. Li, G. Maes, G. Borghs, P. V. Dorpe, and R. Quidant, “Enhanced optical trapping and arrangement of nano-objects in a plasmonic nanocavity,” Nano Lett. 12, 125–132 (2012).
[Crossref]

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photon. 5, 349–356 (2011).
[Crossref]

M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, “Self-induced back-action optical trapping of dielectric nanoparticles,” Nat. Phys. 5, 915–919 (2009).
[Crossref]

M. Righini, P. Ghenuche, S. Cherukulappurath, V. Myroshnychenko, F. J. G. de Abajo, and R. Quidant, “Nano-optical trapping of rayleigh particles and escherichia coli bacteria with resonant optical antennas,” Nano Lett. 9, 3387–3391 (2009).
[Crossref] [PubMed]

Regal, C. A.

A. M. Kaufman, B. J. Lester, and C. A. Regal, “Cooling a single atom in an optical tweezer to its quantum ground state,” Phys. Rev. X 2, 041014 (2012).

Renger, J.

J. Berthelot, S. Aćimović, M. Juan, M. Kreuzer, J. Renger, and R. Quidant, “Three-dimensional manipulation with scanning near-field optical nanotweezers,” Nat. nanotech. 9, 295–299 (2014).
[Crossref]

Righini, M.

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photon. 5, 349–356 (2011).
[Crossref]

M. Righini, P. Ghenuche, S. Cherukulappurath, V. Myroshnychenko, F. J. G. de Abajo, and R. Quidant, “Nano-optical trapping of rayleigh particles and escherichia coli bacteria with resonant optical antennas,” Nano Lett. 9, 3387–3391 (2009).
[Crossref] [PubMed]

Roberts, N. W.

A. N. Grigorenko, N. W. Roberts, M. R. Dickinson, and Y. Zhang, “Nanometric optical tweezers based on nanostructured substrates,” Nat. Photon. 2, 365–370 (2008).
[Crossref]

Rodrigo, S. G.

Rogers, E. T.

E. T. Rogers, S. Savo, J. Lindberg, T. Roy, M. R. Dennis, and N. I. Zheludev, “Super-oscillatory optical needle,” Appl. Phys. Lett.,  102, 031108 (2013).
[Crossref]

Roxworthy, B. J.

B. J. Roxworthy, A. M. Bhuiya, S. P. Vanka, and K. C. Toussaint, “Understanding and controlling plasmon-induced convection,” Nat. Commun. 5, 3173 (2014).
[Crossref]

B. J. Roxworthy, K. D. Ko, A. Kumar, K. H. Fung, E. K. C. Chow, G. L. Liu, N. X. Fang, J. Kimani, and C. Toussaint, “Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting,” Nano Lett. 12, 796–801 (2012).
[Crossref] [PubMed]

Roy, T.

E. T. Rogers, S. Savo, J. Lindberg, T. Roy, M. R. Dennis, and N. I. Zheludev, “Super-oscillatory optical needle,” Appl. Phys. Lett.,  102, 031108 (2013).
[Crossref]

Saleh, A. A. E.

Y. Zhao, A. A. E. Saleh, and J. A. Dionne, “Enantioselective optical trapping of chiral nanoparticles with plasmonic tweezers,” ACS Photonics 3, 304–309 (2016).
[Crossref]

A. A. E. Saleh and J. A. Dionne, “Toward efficient optical trapping of sub-10-nm particles with coaxial plasmonic apertures,” Nano lett. 12, 5581–5586 (2012).
[Crossref] [PubMed]

Santschi, C.

W. Zhang, L. Huang, C. Santschi, and O. J. Martin, “Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas,” Nano lett. 101006–1011 (2010).
[Crossref] [PubMed]

Savo, S.

E. T. Rogers, S. Savo, J. Lindberg, T. Roy, M. R. Dennis, and N. I. Zheludev, “Super-oscillatory optical needle,” Appl. Phys. Lett.,  102, 031108 (2013).
[Crossref]

Schmidt, C. F.

K. Svoboda, C. F. Schmidt, B. J. Schnapp, and S. M. Block, “Direct observation of kinesin stepping by optical trapping interferometry,” Nature 365, 721–727 (1993).
[Crossref]

Schnapp, B. J.

K. Svoboda, C. F. Schmidt, B. J. Schnapp, and S. M. Block, “Direct observation of kinesin stepping by optical trapping interferometry,” Nature 365, 721–727 (1993).
[Crossref]

Schonbrun, E.

K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, “Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink,” Nat. Commun. 2, 469 (2011).
[Crossref]

Schuck, P. J.

M. Melli, A. Polyakov, D. Gargas, C. Huynh, L. Scipioni, W. Bao, D. F. Ogletree, P. J. Schuck, S. Cabrini, and A. Weber-Bargioni, “Reaching the theoretical resonance quality factor limit in coaxial plasmonic nanoresonators fabricated by helium ion lithography,” Nano lett. 13, 2687–2691 (2013).
[Crossref] [PubMed]

Scipioni, L.

M. Melli, A. Polyakov, D. Gargas, C. Huynh, L. Scipioni, W. Bao, D. F. Ogletree, P. J. Schuck, S. Cabrini, and A. Weber-Bargioni, “Reaching the theoretical resonance quality factor limit in coaxial plasmonic nanoresonators fabricated by helium ion lithography,” Nano lett. 13, 2687–2691 (2013).
[Crossref] [PubMed]

Shakesheff, K.

G. R. Kirkham, E. Britchford, T. Upton, J. Ware, G. M. Gibson, Y. Devaud, M. Ehrbar, M. Padgett, S. Allen, L. D. Buttery, and K. Shakesheff, “Precision assembly of complex cellular microenvironments using holographic optical tweezers,” Sci. Rep. 5, 8577 (2015).
[Crossref] [PubMed]

Shalaev, V. M.

J. C. Ndukaife, A. V. Kildishev, A. G. A. Nnanna, V. M. Shalaev, S. T. Wereley, and A. Boltasseva, “Long-range and rapid transport of individual nano-objects by a hybrid electrothermoplasmonic nanotweezer,” Nat. Nanotech. 11, 53–59 (2016).
[Crossref]

Shaver, J.

D. Yoo, N. Nguyen, L. Martin-Moreno, D. A. Mohr, S. Carretero-Palacios, J. Shaver, J. Peraire, T. W. Ebbesen, and S. Oh, “High-throughput fabrication of resonant metamaterials with ultrasmall coaxial apertures via atomic layer lithography,” Nano lett. 16, 2040–2046 (2016).
[Crossref] [PubMed]

Simmons, R. M.

J. T. Finer, R. M. Simmons, and J. A. Spudich, “Single myosin molecule mechanics: piconewton forces and nanometre steps,” Nature 368, 113–119 (1994).
[Crossref] [PubMed]

Skauli, T.

E. Laux, C. Genet, T. Skauli, and T. W. Ebbesen, “Plasmonic photon sorters for spectral and polarimetric imaging,” Nat. Photon. 2, 161–164 (2008).
[Crossref]

Spudich, J. A.

J. T. Finer, R. M. Simmons, and J. A. Spudich, “Single myosin molecule mechanics: piconewton forces and nanometre steps,” Nature 368, 113–119 (1994).
[Crossref] [PubMed]

Steinvurzel, P.

K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, “Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink,” Nat. Commun. 2, 469 (2011).
[Crossref]

Svoboda, K.

K. Svoboda, C. F. Schmidt, B. J. Schnapp, and S. M. Block, “Direct observation of kinesin stepping by optical trapping interferometry,” Nature 365, 721–727 (1993).
[Crossref]

Taflove, A.

A. Taflove and S. C. Hagness, Computational electrodynamics: the Finite-Difference Time-Domain method (Artech House, 2005).

Thio, T.

T. Thio, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, G. D. Lewen, A. Nahata, and R. A. Linke, “Giant optical transmission of sub-wavelength apertures: physics and applications,” Nanotechnology 13, 429 (2002).
[Crossref]

Toussaint, C.

B. J. Roxworthy, K. D. Ko, A. Kumar, K. H. Fung, E. K. C. Chow, G. L. Liu, N. X. Fang, J. Kimani, and C. Toussaint, “Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting,” Nano Lett. 12, 796–801 (2012).
[Crossref] [PubMed]

Toussaint, K. C.

B. J. Roxworthy, A. M. Bhuiya, S. P. Vanka, and K. C. Toussaint, “Understanding and controlling plasmon-induced convection,” Nat. Commun. 5, 3173 (2014).
[Crossref]

Upton, T.

G. R. Kirkham, E. Britchford, T. Upton, J. Ware, G. M. Gibson, Y. Devaud, M. Ehrbar, M. Padgett, S. Allen, L. D. Buttery, and K. Shakesheff, “Precision assembly of complex cellular microenvironments using holographic optical tweezers,” Sci. Rep. 5, 8577 (2015).
[Crossref] [PubMed]

van de Haar, M.

Vanka, S. P.

B. J. Roxworthy, A. M. Bhuiya, S. P. Vanka, and K. C. Toussaint, “Understanding and controlling plasmon-induced convection,” Nat. Commun. 5, 3173 (2014).
[Crossref]

Wang, D.

Wang, K.

K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, “Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink,” Nat. Commun. 2, 469 (2011).
[Crossref]

Wang, L. W.

L. W. Wang and A. Zunger, “Pseudopotential calculations of nanoscale CdSe quantum dots,” Phys. Rev. B 53, 9579 (1996).
[Crossref]

Ware, J.

G. R. Kirkham, E. Britchford, T. Upton, J. Ware, G. M. Gibson, Y. Devaud, M. Ehrbar, M. Padgett, S. Allen, L. D. Buttery, and K. Shakesheff, “Precision assembly of complex cellular microenvironments using holographic optical tweezers,” Sci. Rep. 5, 8577 (2015).
[Crossref] [PubMed]

Weber-Bargioni, A.

M. Melli, A. Polyakov, D. Gargas, C. Huynh, L. Scipioni, W. Bao, D. F. Ogletree, P. J. Schuck, S. Cabrini, and A. Weber-Bargioni, “Reaching the theoretical resonance quality factor limit in coaxial plasmonic nanoresonators fabricated by helium ion lithography,” Nano lett. 13, 2687–2691 (2013).
[Crossref] [PubMed]

Wereley, S. T.

J. C. Ndukaife, A. V. Kildishev, A. G. A. Nnanna, V. M. Shalaev, S. T. Wereley, and A. Boltasseva, “Long-range and rapid transport of individual nano-objects by a hybrid electrothermoplasmonic nanotweezer,” Nat. Nanotech. 11, 53–59 (2016).
[Crossref]

Wheaton, S.

Yang, T.

Yi, M. J.

M. J. Yi, A. Cuche, E. Devaux, C. Genet, and T. W. Ebbesen, “Beaming visible light with a plasmonic aperture antenna,” ACS photonics 1, 365–370 (2014).
[Crossref] [PubMed]

Yoo, D.

D. Yoo, N. Nguyen, L. Martin-Moreno, D. A. Mohr, S. Carretero-Palacios, J. Shaver, J. Peraire, T. W. Ebbesen, and S. Oh, “High-throughput fabrication of resonant metamaterials with ultrasmall coaxial apertures via atomic layer lithography,” Nano lett. 16, 2040–2046 (2016).
[Crossref] [PubMed]

Zhang, W.

W. Zhang, L. Huang, C. Santschi, and O. J. Martin, “Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas,” Nano lett. 101006–1011 (2010).
[Crossref] [PubMed]

Zhang, Y.

A. N. Grigorenko, N. W. Roberts, M. R. Dickinson, and Y. Zhang, “Nanometric optical tweezers based on nanostructured substrates,” Nat. Photon. 2, 365–370 (2008).
[Crossref]

Zhao, Y.

Y. Zhao, A. A. E. Saleh, and J. A. Dionne, “Enantioselective optical trapping of chiral nanoparticles with plasmonic tweezers,” ACS Photonics 3, 304–309 (2016).
[Crossref]

Zheludev, N. I.

E. T. Rogers, S. Savo, J. Lindberg, T. Roy, M. R. Dennis, and N. I. Zheludev, “Super-oscillatory optical needle,” Appl. Phys. Lett.,  102, 031108 (2013).
[Crossref]

Zunger, A.

L. W. Wang and A. Zunger, “Pseudopotential calculations of nanoscale CdSe quantum dots,” Phys. Rev. B 53, 9579 (1996).
[Crossref]

ACS Photonics (2)

R. A. Jensen, I. C. Huang, O. Chen, J. T. Choy, T. S. Bischof, M. Loncar, and M. G. Bawendi, “Optical trapping and two-Photon excitation of colloidal quantum dots using bowtie apertures,” ACS Photonics 3, 423–427 (2016).
[Crossref]

Y. Zhao, A. A. E. Saleh, and J. A. Dionne, “Enantioselective optical trapping of chiral nanoparticles with plasmonic tweezers,” ACS Photonics 3, 304–309 (2016).
[Crossref]

M. J. Yi, A. Cuche, E. Devaux, C. Genet, and T. W. Ebbesen, “Beaming visible light with a plasmonic aperture antenna,” ACS photonics 1, 365–370 (2014).
[Crossref] [PubMed]

Adv. Chem. (1)

T. L. McMeekin, M. L. Groves, and N. J. Hipp, “Amino acids and serum proteins,” Adv. Chem. 44, 54–66 (1964).

Appl. Phys. Lett. (1)

E. T. Rogers, S. Savo, J. Lindberg, T. Roy, M. R. Dennis, and N. I. Zheludev, “Super-oscillatory optical needle,” Appl. Phys. Lett.,  102, 031108 (2013).
[Crossref]

Nano lett. (5)

A. A. E. Saleh and J. A. Dionne, “Toward efficient optical trapping of sub-10-nm particles with coaxial plasmonic apertures,” Nano lett. 12, 5581–5586 (2012).
[Crossref] [PubMed]

B. J. Roxworthy, K. D. Ko, A. Kumar, K. H. Fung, E. K. C. Chow, G. L. Liu, N. X. Fang, J. Kimani, and C. Toussaint, “Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting,” Nano Lett. 12, 796–801 (2012).
[Crossref] [PubMed]

M. Melli, A. Polyakov, D. Gargas, C. Huynh, L. Scipioni, W. Bao, D. F. Ogletree, P. J. Schuck, S. Cabrini, and A. Weber-Bargioni, “Reaching the theoretical resonance quality factor limit in coaxial plasmonic nanoresonators fabricated by helium ion lithography,” Nano lett. 13, 2687–2691 (2013).
[Crossref] [PubMed]

D. Yoo, N. Nguyen, L. Martin-Moreno, D. A. Mohr, S. Carretero-Palacios, J. Shaver, J. Peraire, T. W. Ebbesen, and S. Oh, “High-throughput fabrication of resonant metamaterials with ultrasmall coaxial apertures via atomic layer lithography,” Nano lett. 16, 2040–2046 (2016).
[Crossref] [PubMed]

C. Chen, M. L. Juan, Y. Li, G. Maes, G. Borghs, P. V. Dorpe, and R. Quidant, “Enhanced optical trapping and arrangement of nano-objects in a plasmonic nanocavity,” Nano Lett. 12, 125–132 (2012).
[Crossref]

Y. Pang and R. Gordon, “Optical trapping of 12 nm dielectric spheres using double-nanoholes in a gold film,” Nano Lett. 11, 3763–3767 (2011).
[Crossref] [PubMed]

Y. Pang and R. Gordon, “Optical trapping of a single protein,” Nano lett. 12, 402–406 (2011).
[Crossref] [PubMed]

M. Righini, P. Ghenuche, S. Cherukulappurath, V. Myroshnychenko, F. J. G. de Abajo, and R. Quidant, “Nano-optical trapping of rayleigh particles and escherichia coli bacteria with resonant optical antennas,” Nano Lett. 9, 3387–3391 (2009).
[Crossref] [PubMed]

W. Zhang, L. Huang, C. Santschi, and O. J. Martin, “Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas,” Nano lett. 101006–1011 (2010).
[Crossref] [PubMed]

Nanotechnology (1)

T. Thio, H. J. Lezec, T. W. Ebbesen, K. M. Pellerin, G. D. Lewen, A. Nahata, and R. A. Linke, “Giant optical transmission of sub-wavelength apertures: physics and applications,” Nanotechnology 13, 429 (2002).
[Crossref]

Nat. Commun. (2)

K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, “Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink,” Nat. Commun. 2, 469 (2011).
[Crossref]

B. J. Roxworthy, A. M. Bhuiya, S. P. Vanka, and K. C. Toussaint, “Understanding and controlling plasmon-induced convection,” Nat. Commun. 5, 3173 (2014).
[Crossref]

Nat. Nanotech. (1)

J. C. Ndukaife, A. V. Kildishev, A. G. A. Nnanna, V. M. Shalaev, S. T. Wereley, and A. Boltasseva, “Long-range and rapid transport of individual nano-objects by a hybrid electrothermoplasmonic nanotweezer,” Nat. Nanotech. 11, 53–59 (2016).
[Crossref]

J. Berthelot, S. Aćimović, M. Juan, M. Kreuzer, J. Renger, and R. Quidant, “Three-dimensional manipulation with scanning near-field optical nanotweezers,” Nat. nanotech. 9, 295–299 (2014).
[Crossref]

Nat. Photon. (3)

A. N. Grigorenko, N. W. Roberts, M. R. Dickinson, and Y. Zhang, “Nanometric optical tweezers based on nanostructured substrates,” Nat. Photon. 2, 365–370 (2008).
[Crossref]

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photon. 5, 349–356 (2011).
[Crossref]

F. M. Fazal and S. M. Block, “Optical tweezers study life under tension,” Nat. photon. 5, 318–321 (2011).
[Crossref]

E. Laux, C. Genet, T. Skauli, and T. W. Ebbesen, “Plasmonic photon sorters for spectral and polarimetric imaging,” Nat. Photon. 2, 161–164 (2008).
[Crossref]

Nat. Phys. (1)

M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, “Self-induced back-action optical trapping of dielectric nanoparticles,” Nat. Phys. 5, 915–919 (2009).
[Crossref]

Nature (3)

K. Svoboda, C. F. Schmidt, B. J. Schnapp, and S. M. Block, “Direct observation of kinesin stepping by optical trapping interferometry,” Nature 365, 721–727 (1993).
[Crossref]

J. T. Finer, R. M. Simmons, and J. A. Spudich, “Single myosin molecule mechanics: piconewton forces and nanometre steps,” Nature 368, 113–119 (1994).
[Crossref] [PubMed]

F. M. Fazal, C. A. Meng, K. Murakami, R. D. Kornberg, and S. M. Block, “Real-time observation of the initiation of RNA polymerase II transcription,” Nature 525, 274–277 (2015).
[Crossref] [PubMed]

Opt. Express (4)

Opt. lett. (1)

Opt. Mater. Express (1)

Phys. Rev. (Series I) (1)

E. F. Nichols and G. F. Hull, “The pressure due to radiation.(second paper.),” Phys. Rev. (Series I) 17, 26 (1903).
[Crossref]

Phys. rev. B (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. rev. B 64370 (1972).
[Crossref]

L. W. Wang and A. Zunger, “Pseudopotential calculations of nanoscale CdSe quantum dots,” Phys. Rev. B 53, 9579 (1996).
[Crossref]

Phys. Rev. Lett. (2)

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970).
[Crossref]

S. Chu, J. E. Bjorkholm, A. Ashkin, and A. Cable, “Experimental observation of optically trapped atoms,” Phys. Rev. Lett. 57, 314–317 (1986).
[Crossref] [PubMed]

Phys. Rev. X (1)

A. M. Kaufman, B. J. Lester, and C. A. Regal, “Cooling a single atom in an optical tweezer to its quantum ground state,” Phys. Rev. X 2, 041014 (2012).

Sci. Rep. (1)

G. R. Kirkham, E. Britchford, T. Upton, J. Ware, G. M. Gibson, Y. Devaud, M. Ehrbar, M. Padgett, S. Allen, L. D. Buttery, and K. Shakesheff, “Precision assembly of complex cellular microenvironments using holographic optical tweezers,” Sci. Rep. 5, 8577 (2015).
[Crossref] [PubMed]

Science (2)

A. Ashkin and J. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235, 1517–1520 (1987).
[Crossref] [PubMed]

C. L. Asbury, A. N. Fehr, and S. M. Block, “Kinesin moves by an asymmetric hand-over-hand mechanism,” Science 302, 2130–2134 (2003).
[Crossref] [PubMed]

Other (3)

A. Taflove and S. C. Hagness, Computational electrodynamics: the Finite-Difference Time-Domain method (Artech House, 2005).

S. J. Adams, “Electromagnetic Theory” (McGraw-Hill, 1941).

L. Novotny, “Forces in Optical Near-Fields” (Springer Berlin / Heidelberg, 2001), vol. 81 of Topics in Applied Physics, pp. 123–141.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Cross-sectional schematic of the fiber-based optical tweezer, consisting of a nanoscale coaxial aperture on a metal-coated fiber tip. A grating is integrated at the fiber/metal interface around the coaxial aperture to focus the optical energy on the coaxial aperture. The grating period P, groove width w, groove height s, and offset from the coaxial aperture, a are optimized to maximally increase the transmission efficiency of the aperture and hence decrease the optical power required to trap a dielectric nanoparticle of diameter dp.

Fig. 2
Fig. 2

The transmission spectra of two coaxial apertures integrated onto fiber tips, including an Ag/SiO2 coaxial aperture with a 120 nm core and 25 nm thick channel (blue) and an Au/air coaxial aperture with a 300 nm core and 50 nm thick channel (red).

Fig. 3
Fig. 3

(a,b) The maximum transmission efficiency of the two coaxial apertures as a function of the grating period, P, and the distance to the first groove, a. (c) The normalized electric field amplitude 5 nm away from the input side of the aperture for three different grating dimensions of the silver tip: (i) a = 270 nm, P = 430 nm (Optimal), (ii) a = 230 nm, P = 430 nm and (iii) a = 270 nm, P = 480 nm. All fields are normalized to the maximum field amplitude of (iii).

Fig. 4
Fig. 4

(a,b) The transmission spectra of the two fiber tips under consideration before (red curve) and after (blue curve) introducing the optimized coupling grating.(c,d) The electric field intensity enhancement 20 nm away from the two coaxial apertures before and after introducing the optimized grating.

Fig. 5
Fig. 5

(a) The transverse confining force (Fx) exerted on a 30 nm dielectric particle as the particle moves across the gold aperture along the x-axis normalized to 100 mW of input power. The red curve shows the force in the absence of the coupling grating while the blue curve shows the force after introducing the grating. (c) The resulting transverse confining potential along the x-axis due to the confining force (Fx). (b,d) The transverse confining force (Fx) exerted on a 10 nm dielectric particle as the particle moves across the silver aperture along the x-axis normalized to 100 mW of input power and the corresponding trapping potential. (e,f) The evolution of the pulling force (Fz) as the particle moves away from the aperture in the z-direction.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

T = 1 2 Re [ EE * + μ HH * 1 2 ( | E | 2 + μ | H | 2 ) I ] ,
F = S T d S ,
U ( r 0 ) = r 0 F ( r ) d r ,

Metrics