Abstract

Impressive optical properties are numerically demonstrated in the partially hollowed dielectric meta-surface (p-HDMS), which consists of an air cavity array intercalated in an ultra-thin (~λ/6) high-index dielectric film. Multispectral transmission band-stop response with near-perfect spectral modulation depth is achieved. The spectral slop is up to 80%/nm, indicating the sharp and narrowband transmission behavior. Classical Malus law is confirmed by this sub-wavelength platform. Moreover, the multispectral light propagation manipulation can be perfectly reproduced by using the actual dielectric with absorption loss. In this all-dielectric meta-surface, conduction loss is avoided compared to its metallic plasmonic counterpart. Such configurations can therefore serve as excellent alternatives for plasmonic meta-surfaces and constitute an important step in nanophotonics.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Multi-band light perfect absorption by a metal layer-coupled dielectric metamaterial

Zhengqi Liu, Guiqiang Liu, Guolan Fu, Xiaoshan Liu, and Yan Wang
Opt. Express 24(5) 5020-5025 (2016)

Complementary transmissive ultra-thin meta-deflectors for broadband polarization-independent refractions in the microwave region

Yueyi Yuan, Kuang Zhang, Xumin Ding, Badreddine Ratni, Shah Nawaz Burokur, and Qun Wu
Photon. Res. 7(1) 80-88 (2019)

References

  • View by:
  • |
  • |
  • |

  1. A. Moreau, C. Ciracì, J. J. Mock, R. T. Hill, Q. Wang, B. J. Wiley, A. Chilkoti, and D. R. Smith, “Controlled-reflectance surfaces with film-coupled colloidal nanoantennas,” Nature 492(7427), 86–89 (2012).
    [Crossref] [PubMed]
  2. D. Chanda, K. Shigeta, T. Truong, E. Lui, A. Mihi, M. Schulmerich, P. V. Braun, R. Bhargava, and J. A. Rogers, “Coupling of plasmonic and optical cavity modes in quasi-three-dimensional plasmonic crystals,” Nat. Commun. 2, 479 (2011).
    [Crossref] [PubMed]
  3. A. Roszkiewicz and W. Nasalski, “Reflection suppression and absorption enhancement of optical field at thin metal gratings with narrow slits,” Opt. Lett. 37(18), 3759–3761 (2012).
    [Crossref] [PubMed]
  4. N. Engheta and R. W. Ziolkowski, Metamaterials: Physics and Engineering Explorations (Wiley, 2006).
  5. N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Three-dimensional photonic metamaterials at optical frequencies,” Nat. Mater. 7(1), 31–37 (2008).
    [Crossref] [PubMed]
  6. Y. Zhao and A. Alú, “Manipulating light polarization with ultrathin plasmonic metasurfaces,” Phys. Rev. B 84(20), 205428 (2011).
    [Crossref]
  7. J. Chen, P. Mao, R. Xu, C. Tang, Y. Liu, Q. Wang, and L. Zhang, “Strategy for realizing magnetic field enhancement based on diffraction coupling of magnetic plasmon resonances in embedded metamaterials,” Opt. Express 23(12), 16238–16245 (2015).
    [Crossref] [PubMed]
  8. L. Zhu, F. Y. Meng, L. Dong, J. H. Fu, F. Zhang, and Q. Wu, “Polarization manipulation based on electromagnetically induced transparency-like (EIT-like) effect,” Opt. Express 21(26), 32099–32110 (2013).
    [Crossref] [PubMed]
  9. K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
    [Crossref] [PubMed]
  10. S. Luo, J. Zhao, D. Zuo, and X. Wang, “Perfect narrow band absorber for sensing applications,” Opt. Express 24(9), 9288–9294 (2016).
    [Crossref] [PubMed]
  11. Z. Liu, M. Yu, S. Huang, X. Liu, Y. Wang, M. Liu, P. Pana, and G. Liu, “Enhancing refractive index sensing capability with hybrid plasmonic–photonic absorbers,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(17), 4222–4226 (2015).
    [Crossref]
  12. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
    [Crossref] [PubMed]
  13. X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
    [Crossref] [PubMed]
  14. Q. Zhao, J. Zhou, F. Zhang, and D. Lippens, “Mie resonance-based dielectric metamaterials,” Mater. Today 12(12), 60–69 (2009).
    [Crossref]
  15. S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nat. Nanotechnol. 11(1), 23–36 (2016).
    [Crossref] [PubMed]
  16. J. Zhang, W. Liu, Z. Zhu, X. Yuan, and S. Qin, “Strong field enhancement and light-matter interactions with all-dielectric metamaterials based on split bar resonators,” Opt. Express 22(25), 30889–30898 (2014).
    [Crossref] [PubMed]
  17. C. Wang, Z. Y. Jia, K. Zhang, Y. Zhou, R. H. Fan, X. Xiong, and R. W. Peng, “Broadband optical scattering in coupled silicon nanocylinders,” J. Appl. Phys. 115(24), 244312 (2014).
    [Crossref]
  18. J. Zhang, K. F. MacDonald, and N. I. Zheludev, “Giant optical forces in planar dielectric photonic metamaterials,” Opt. Lett. 39(16), 4883–4886 (2014).
    [Crossref] [PubMed]
  19. L. Shi, J. T. Harris, R. Fenollosa, I. Rodriguez, X. Lu, B. A. Korgel, and F. Meseguer, “Monodisperse silicon nanocavities and photonic crystals with magnetic response in the optical region,” Nat. Commun. 4, 1904 (2013).
    [Crossref] [PubMed]
  20. X. Liu, G. Liu, G. Fu, M. Liu, and Z. Liu, “Monochromatic filter with multiple manipulation approaches by the layered all-dielectric patch array,” Nanotechnology 27(12), 125202 (2016).
    [Crossref] [PubMed]
  21. I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7(9), 7824–7832 (2013).
    [Crossref] [PubMed]
  22. Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4, 1527 (2013).
    [Crossref] [PubMed]
  23. J. Cheng, D. Ansari-Oghol-Beig, and H. Mosallaei, “Wave manipulation with designer dielectric metasurfaces,” Opt. Lett. 39(21), 6285–6288 (2014).
    [Crossref] [PubMed]
  24. Y. Yang, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “All-dielectric metasurface analogue of electromagnetically induced transparency,” Nat. Commun. 5, 5753 (2014).
    [Crossref] [PubMed]
  25. M. I. Shalaev, J. Sun, A. Tsukernik, A. Pandey, K. Nikolskiy, and N. M. Litchinitser, “High efficiency all-dielectric metasurfaces for ultracompact beam manipulation in transmission mode,” Nano Lett. 15(9), 6261–6266 (2015).
    [Crossref] [PubMed]
  26. M. Caldarola, P. Albella, E. Cortés, M. Rahmani, T. Roschuk, G. Grinblat, R. F. Oulton, A. V. Bragas, and S. A. Maier, “Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion,” Nat. Commun. 6, 7915 (2015).
    [Crossref] [PubMed]
  27. J. Xiang, J. Li, H. Li, C. Zhang, Q. Dai, S. Tie, and S. Lan, “Polarization beam splitters, converters and analyzers based on a metasurface composed of regularly arranged silicon nanospheres with controllable coupling strength,” Opt. Express 24(11), 11420–11434 (2016).
    [Crossref] [PubMed]
  28. A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuk, and B. N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. B 82(4), 045404 (2010).
    [Crossref]
  29. M. A. van de Haar, J. van de Groep, B. J. M. Brenny, and A. Polman, “Controlling magnetic and electric dipole modes in hollow silicon nanocylinders,” Opt. Express 24(3), 2047–2064 (2016).
    [Crossref] [PubMed]
  30. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House Publishers, 2000).
  31. G. Q. Liu, Y. Hu, Z. Q. Liu, Y. H. Chen, Z. J. Cai, X. N. Zhang, and K. Huang, “Robust multispectral transparency in continuous metal film structures via multiple near-field plasmon coupling by a finite-difference time-domain method,” Phys. Chem. Chem. Phys. 16(9), 4320–4328 (2014).
    [Crossref] [PubMed]
  32. H. D. Deng, X. Y. Chen, Y. Xu, and A. E. Miroshnichenko, “Single protein sensing with asymmetric plasmonic hexamer via Fano resonance enhanced two-photon luminescence,” Nanoscale 7(48), 20405–20413 (2015).
    [Crossref] [PubMed]
  33. C. Li, C. Zhang, Z. Huang, X. Li, Q. Dai, S. Lan, and S. Tie, “Assembling of silicon nanoflowers with significantly enhanced second harmonic generation using silicon nanospheres fabricated by femtosecond laser ablation,” J. Phys. Chem. C 117(46), 24625–24631 (2013).
    [Crossref]
  34. Z. Li, S. Butun, and K. Aydin, “Ultranarrow band absorbers based on surface lattice resonances in nanostructured metal surfaces,” ACS Nano 8(8), 8242–8248 (2014).
    [Crossref] [PubMed]
  35. D. Goldstein, Polarized Light (CRC Press, 2011).
  36. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

2016 (5)

2015 (5)

J. Chen, P. Mao, R. Xu, C. Tang, Y. Liu, Q. Wang, and L. Zhang, “Strategy for realizing magnetic field enhancement based on diffraction coupling of magnetic plasmon resonances in embedded metamaterials,” Opt. Express 23(12), 16238–16245 (2015).
[Crossref] [PubMed]

H. D. Deng, X. Y. Chen, Y. Xu, and A. E. Miroshnichenko, “Single protein sensing with asymmetric plasmonic hexamer via Fano resonance enhanced two-photon luminescence,” Nanoscale 7(48), 20405–20413 (2015).
[Crossref] [PubMed]

M. I. Shalaev, J. Sun, A. Tsukernik, A. Pandey, K. Nikolskiy, and N. M. Litchinitser, “High efficiency all-dielectric metasurfaces for ultracompact beam manipulation in transmission mode,” Nano Lett. 15(9), 6261–6266 (2015).
[Crossref] [PubMed]

M. Caldarola, P. Albella, E. Cortés, M. Rahmani, T. Roschuk, G. Grinblat, R. F. Oulton, A. V. Bragas, and S. A. Maier, “Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion,” Nat. Commun. 6, 7915 (2015).
[Crossref] [PubMed]

Z. Liu, M. Yu, S. Huang, X. Liu, Y. Wang, M. Liu, P. Pana, and G. Liu, “Enhancing refractive index sensing capability with hybrid plasmonic–photonic absorbers,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(17), 4222–4226 (2015).
[Crossref]

2014 (7)

G. Q. Liu, Y. Hu, Z. Q. Liu, Y. H. Chen, Z. J. Cai, X. N. Zhang, and K. Huang, “Robust multispectral transparency in continuous metal film structures via multiple near-field plasmon coupling by a finite-difference time-domain method,” Phys. Chem. Chem. Phys. 16(9), 4320–4328 (2014).
[Crossref] [PubMed]

Y. Yang, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “All-dielectric metasurface analogue of electromagnetically induced transparency,” Nat. Commun. 5, 5753 (2014).
[Crossref] [PubMed]

C. Wang, Z. Y. Jia, K. Zhang, Y. Zhou, R. H. Fan, X. Xiong, and R. W. Peng, “Broadband optical scattering in coupled silicon nanocylinders,” J. Appl. Phys. 115(24), 244312 (2014).
[Crossref]

Z. Li, S. Butun, and K. Aydin, “Ultranarrow band absorbers based on surface lattice resonances in nanostructured metal surfaces,” ACS Nano 8(8), 8242–8248 (2014).
[Crossref] [PubMed]

J. Zhang, K. F. MacDonald, and N. I. Zheludev, “Giant optical forces in planar dielectric photonic metamaterials,” Opt. Lett. 39(16), 4883–4886 (2014).
[Crossref] [PubMed]

J. Cheng, D. Ansari-Oghol-Beig, and H. Mosallaei, “Wave manipulation with designer dielectric metasurfaces,” Opt. Lett. 39(21), 6285–6288 (2014).
[Crossref] [PubMed]

J. Zhang, W. Liu, Z. Zhu, X. Yuan, and S. Qin, “Strong field enhancement and light-matter interactions with all-dielectric metamaterials based on split bar resonators,” Opt. Express 22(25), 30889–30898 (2014).
[Crossref] [PubMed]

2013 (5)

L. Zhu, F. Y. Meng, L. Dong, J. H. Fu, F. Zhang, and Q. Wu, “Polarization manipulation based on electromagnetically induced transparency-like (EIT-like) effect,” Opt. Express 21(26), 32099–32110 (2013).
[Crossref] [PubMed]

C. Li, C. Zhang, Z. Huang, X. Li, Q. Dai, S. Lan, and S. Tie, “Assembling of silicon nanoflowers with significantly enhanced second harmonic generation using silicon nanospheres fabricated by femtosecond laser ablation,” J. Phys. Chem. C 117(46), 24625–24631 (2013).
[Crossref]

L. Shi, J. T. Harris, R. Fenollosa, I. Rodriguez, X. Lu, B. A. Korgel, and F. Meseguer, “Monodisperse silicon nanocavities and photonic crystals with magnetic response in the optical region,” Nat. Commun. 4, 1904 (2013).
[Crossref] [PubMed]

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7(9), 7824–7832 (2013).
[Crossref] [PubMed]

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4, 1527 (2013).
[Crossref] [PubMed]

2012 (2)

A. Moreau, C. Ciracì, J. J. Mock, R. T. Hill, Q. Wang, B. J. Wiley, A. Chilkoti, and D. R. Smith, “Controlled-reflectance surfaces with film-coupled colloidal nanoantennas,” Nature 492(7427), 86–89 (2012).
[Crossref] [PubMed]

A. Roszkiewicz and W. Nasalski, “Reflection suppression and absorption enhancement of optical field at thin metal gratings with narrow slits,” Opt. Lett. 37(18), 3759–3761 (2012).
[Crossref] [PubMed]

2011 (3)

D. Chanda, K. Shigeta, T. Truong, E. Lui, A. Mihi, M. Schulmerich, P. V. Braun, R. Bhargava, and J. A. Rogers, “Coupling of plasmonic and optical cavity modes in quasi-three-dimensional plasmonic crystals,” Nat. Commun. 2, 479 (2011).
[Crossref] [PubMed]

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Y. Zhao and A. Alú, “Manipulating light polarization with ultrathin plasmonic metasurfaces,” Phys. Rev. B 84(20), 205428 (2011).
[Crossref]

2010 (2)

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuk, and B. N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. B 82(4), 045404 (2010).
[Crossref]

2009 (1)

Q. Zhao, J. Zhou, F. Zhang, and D. Lippens, “Mie resonance-based dielectric metamaterials,” Mater. Today 12(12), 60–69 (2009).
[Crossref]

2008 (1)

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Three-dimensional photonic metamaterials at optical frequencies,” Nat. Mater. 7(1), 31–37 (2008).
[Crossref] [PubMed]

2007 (1)

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
[Crossref] [PubMed]

Albella, P.

M. Caldarola, P. Albella, E. Cortés, M. Rahmani, T. Roschuk, G. Grinblat, R. F. Oulton, A. V. Bragas, and S. A. Maier, “Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion,” Nat. Commun. 6, 7915 (2015).
[Crossref] [PubMed]

Alú, A.

Y. Zhao and A. Alú, “Manipulating light polarization with ultrathin plasmonic metasurfaces,” Phys. Rev. B 84(20), 205428 (2011).
[Crossref]

Ansari-Oghol-Beig, D.

Atwater, H. A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

Aydin, K.

Z. Li, S. Butun, and K. Aydin, “Ultranarrow band absorbers based on surface lattice resonances in nanostructured metal surfaces,” ACS Nano 8(8), 8242–8248 (2014).
[Crossref] [PubMed]

Bhargava, R.

D. Chanda, K. Shigeta, T. Truong, E. Lui, A. Mihi, M. Schulmerich, P. V. Braun, R. Bhargava, and J. A. Rogers, “Coupling of plasmonic and optical cavity modes in quasi-three-dimensional plasmonic crystals,” Nat. Commun. 2, 479 (2011).
[Crossref] [PubMed]

Bragas, A. V.

M. Caldarola, P. Albella, E. Cortés, M. Rahmani, T. Roschuk, G. Grinblat, R. F. Oulton, A. V. Bragas, and S. A. Maier, “Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion,” Nat. Commun. 6, 7915 (2015).
[Crossref] [PubMed]

Braun, P. V.

D. Chanda, K. Shigeta, T. Truong, E. Lui, A. Mihi, M. Schulmerich, P. V. Braun, R. Bhargava, and J. A. Rogers, “Coupling of plasmonic and optical cavity modes in quasi-three-dimensional plasmonic crystals,” Nat. Commun. 2, 479 (2011).
[Crossref] [PubMed]

Brener, I.

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7(9), 7824–7832 (2013).
[Crossref] [PubMed]

Brenny, B. J. M.

Briggs, D. P.

Y. Yang, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “All-dielectric metasurface analogue of electromagnetically induced transparency,” Nat. Commun. 5, 5753 (2014).
[Crossref] [PubMed]

Butun, S.

Z. Li, S. Butun, and K. Aydin, “Ultranarrow band absorbers based on surface lattice resonances in nanostructured metal surfaces,” ACS Nano 8(8), 8242–8248 (2014).
[Crossref] [PubMed]

Cai, Z. J.

G. Q. Liu, Y. Hu, Z. Q. Liu, Y. H. Chen, Z. J. Cai, X. N. Zhang, and K. Huang, “Robust multispectral transparency in continuous metal film structures via multiple near-field plasmon coupling by a finite-difference time-domain method,” Phys. Chem. Chem. Phys. 16(9), 4320–4328 (2014).
[Crossref] [PubMed]

Caldarola, M.

M. Caldarola, P. Albella, E. Cortés, M. Rahmani, T. Roschuk, G. Grinblat, R. F. Oulton, A. V. Bragas, and S. A. Maier, “Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion,” Nat. Commun. 6, 7915 (2015).
[Crossref] [PubMed]

Chanda, D.

D. Chanda, K. Shigeta, T. Truong, E. Lui, A. Mihi, M. Schulmerich, P. V. Braun, R. Bhargava, and J. A. Rogers, “Coupling of plasmonic and optical cavity modes in quasi-three-dimensional plasmonic crystals,” Nat. Commun. 2, 479 (2011).
[Crossref] [PubMed]

Chen, J.

Chen, X. Y.

H. D. Deng, X. Y. Chen, Y. Xu, and A. E. Miroshnichenko, “Single protein sensing with asymmetric plasmonic hexamer via Fano resonance enhanced two-photon luminescence,” Nanoscale 7(48), 20405–20413 (2015).
[Crossref] [PubMed]

Chen, Y. H.

G. Q. Liu, Y. Hu, Z. Q. Liu, Y. H. Chen, Z. J. Cai, X. N. Zhang, and K. Huang, “Robust multispectral transparency in continuous metal film structures via multiple near-field plasmon coupling by a finite-difference time-domain method,” Phys. Chem. Chem. Phys. 16(9), 4320–4328 (2014).
[Crossref] [PubMed]

Cheng, J.

Chichkov, B. N.

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuk, and B. N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. B 82(4), 045404 (2010).
[Crossref]

Chilkoti, A.

A. Moreau, C. Ciracì, J. J. Mock, R. T. Hill, Q. Wang, B. J. Wiley, A. Chilkoti, and D. R. Smith, “Controlled-reflectance surfaces with film-coupled colloidal nanoantennas,” Nature 492(7427), 86–89 (2012).
[Crossref] [PubMed]

Ciracì, C.

A. Moreau, C. Ciracì, J. J. Mock, R. T. Hill, Q. Wang, B. J. Wiley, A. Chilkoti, and D. R. Smith, “Controlled-reflectance surfaces with film-coupled colloidal nanoantennas,” Nature 492(7427), 86–89 (2012).
[Crossref] [PubMed]

Cortés, E.

M. Caldarola, P. Albella, E. Cortés, M. Rahmani, T. Roschuk, G. Grinblat, R. F. Oulton, A. V. Bragas, and S. A. Maier, “Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion,” Nat. Commun. 6, 7915 (2015).
[Crossref] [PubMed]

Dai, Q.

J. Xiang, J. Li, H. Li, C. Zhang, Q. Dai, S. Tie, and S. Lan, “Polarization beam splitters, converters and analyzers based on a metasurface composed of regularly arranged silicon nanospheres with controllable coupling strength,” Opt. Express 24(11), 11420–11434 (2016).
[Crossref] [PubMed]

C. Li, C. Zhang, Z. Huang, X. Li, Q. Dai, S. Lan, and S. Tie, “Assembling of silicon nanoflowers with significantly enhanced second harmonic generation using silicon nanospheres fabricated by femtosecond laser ablation,” J. Phys. Chem. C 117(46), 24625–24631 (2013).
[Crossref]

Decker, M.

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7(9), 7824–7832 (2013).
[Crossref] [PubMed]

Deng, H. D.

H. D. Deng, X. Y. Chen, Y. Xu, and A. E. Miroshnichenko, “Single protein sensing with asymmetric plasmonic hexamer via Fano resonance enhanced two-photon luminescence,” Nanoscale 7(48), 20405–20413 (2015).
[Crossref] [PubMed]

Dominguez, J.

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7(9), 7824–7832 (2013).
[Crossref] [PubMed]

Dong, L.

Evlyukhin, A. B.

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuk, and B. N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. B 82(4), 045404 (2010).
[Crossref]

Fan, R. H.

C. Wang, Z. Y. Jia, K. Zhang, Y. Zhou, R. H. Fan, X. Xiong, and R. W. Peng, “Broadband optical scattering in coupled silicon nanocylinders,” J. Appl. Phys. 115(24), 244312 (2014).
[Crossref]

Fenollosa, R.

L. Shi, J. T. Harris, R. Fenollosa, I. Rodriguez, X. Lu, B. A. Korgel, and F. Meseguer, “Monodisperse silicon nanocavities and photonic crystals with magnetic response in the optical region,” Nat. Commun. 4, 1904 (2013).
[Crossref] [PubMed]

Fofang, N. T.

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7(9), 7824–7832 (2013).
[Crossref] [PubMed]

Fu, G.

X. Liu, G. Liu, G. Fu, M. Liu, and Z. Liu, “Monochromatic filter with multiple manipulation approaches by the layered all-dielectric patch array,” Nanotechnology 27(12), 125202 (2016).
[Crossref] [PubMed]

Fu, J. H.

Fu, L.

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Three-dimensional photonic metamaterials at optical frequencies,” Nat. Mater. 7(1), 31–37 (2008).
[Crossref] [PubMed]

Fu, Y. H.

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4, 1527 (2013).
[Crossref] [PubMed]

Giessen, H.

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Three-dimensional photonic metamaterials at optical frequencies,” Nat. Mater. 7(1), 31–37 (2008).
[Crossref] [PubMed]

Gonzales, E.

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7(9), 7824–7832 (2013).
[Crossref] [PubMed]

Grinblat, G.

M. Caldarola, P. Albella, E. Cortés, M. Rahmani, T. Roschuk, G. Grinblat, R. F. Oulton, A. V. Bragas, and S. A. Maier, “Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion,” Nat. Commun. 6, 7915 (2015).
[Crossref] [PubMed]

Guo, H.

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Three-dimensional photonic metamaterials at optical frequencies,” Nat. Mater. 7(1), 31–37 (2008).
[Crossref] [PubMed]

Harris, J. T.

L. Shi, J. T. Harris, R. Fenollosa, I. Rodriguez, X. Lu, B. A. Korgel, and F. Meseguer, “Monodisperse silicon nanocavities and photonic crystals with magnetic response in the optical region,” Nat. Commun. 4, 1904 (2013).
[Crossref] [PubMed]

Hill, R. T.

A. Moreau, C. Ciracì, J. J. Mock, R. T. Hill, Q. Wang, B. J. Wiley, A. Chilkoti, and D. R. Smith, “Controlled-reflectance surfaces with film-coupled colloidal nanoantennas,” Nature 492(7427), 86–89 (2012).
[Crossref] [PubMed]

Hu, Y.

G. Q. Liu, Y. Hu, Z. Q. Liu, Y. H. Chen, Z. J. Cai, X. N. Zhang, and K. Huang, “Robust multispectral transparency in continuous metal film structures via multiple near-field plasmon coupling by a finite-difference time-domain method,” Phys. Chem. Chem. Phys. 16(9), 4320–4328 (2014).
[Crossref] [PubMed]

Huang, K.

G. Q. Liu, Y. Hu, Z. Q. Liu, Y. H. Chen, Z. J. Cai, X. N. Zhang, and K. Huang, “Robust multispectral transparency in continuous metal film structures via multiple near-field plasmon coupling by a finite-difference time-domain method,” Phys. Chem. Chem. Phys. 16(9), 4320–4328 (2014).
[Crossref] [PubMed]

Huang, S.

Z. Liu, M. Yu, S. Huang, X. Liu, Y. Wang, M. Liu, P. Pana, and G. Liu, “Enhancing refractive index sensing capability with hybrid plasmonic–photonic absorbers,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(17), 4222–4226 (2015).
[Crossref]

Huang, Z.

C. Li, C. Zhang, Z. Huang, X. Li, Q. Dai, S. Lan, and S. Tie, “Assembling of silicon nanoflowers with significantly enhanced second harmonic generation using silicon nanospheres fabricated by femtosecond laser ablation,” J. Phys. Chem. C 117(46), 24625–24631 (2013).
[Crossref]

Jacob, Z.

S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nat. Nanotechnol. 11(1), 23–36 (2016).
[Crossref] [PubMed]

Jahani, S.

S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nat. Nanotechnol. 11(1), 23–36 (2016).
[Crossref] [PubMed]

Jia, Z. Y.

C. Wang, Z. Y. Jia, K. Zhang, Y. Zhou, R. H. Fan, X. Xiong, and R. W. Peng, “Broadband optical scattering in coupled silicon nanocylinders,” J. Appl. Phys. 115(24), 244312 (2014).
[Crossref]

Jokerst, N. M.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Kaiser, S.

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Three-dimensional photonic metamaterials at optical frequencies,” Nat. Mater. 7(1), 31–37 (2008).
[Crossref] [PubMed]

Kivshar, Y.

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7(9), 7824–7832 (2013).
[Crossref] [PubMed]

Korgel, B. A.

L. Shi, J. T. Harris, R. Fenollosa, I. Rodriguez, X. Lu, B. A. Korgel, and F. Meseguer, “Monodisperse silicon nanocavities and photonic crystals with magnetic response in the optical region,” Nat. Commun. 4, 1904 (2013).
[Crossref] [PubMed]

Kravchenko, I. I.

Y. Yang, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “All-dielectric metasurface analogue of electromagnetically induced transparency,” Nat. Commun. 5, 5753 (2014).
[Crossref] [PubMed]

Kuznetsov, A. I.

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4, 1527 (2013).
[Crossref] [PubMed]

Lan, S.

J. Xiang, J. Li, H. Li, C. Zhang, Q. Dai, S. Tie, and S. Lan, “Polarization beam splitters, converters and analyzers based on a metasurface composed of regularly arranged silicon nanospheres with controllable coupling strength,” Opt. Express 24(11), 11420–11434 (2016).
[Crossref] [PubMed]

C. Li, C. Zhang, Z. Huang, X. Li, Q. Dai, S. Lan, and S. Tie, “Assembling of silicon nanoflowers with significantly enhanced second harmonic generation using silicon nanospheres fabricated by femtosecond laser ablation,” J. Phys. Chem. C 117(46), 24625–24631 (2013).
[Crossref]

Li, C.

C. Li, C. Zhang, Z. Huang, X. Li, Q. Dai, S. Lan, and S. Tie, “Assembling of silicon nanoflowers with significantly enhanced second harmonic generation using silicon nanospheres fabricated by femtosecond laser ablation,” J. Phys. Chem. C 117(46), 24625–24631 (2013).
[Crossref]

Li, H.

Li, J.

Li, X.

C. Li, C. Zhang, Z. Huang, X. Li, Q. Dai, S. Lan, and S. Tie, “Assembling of silicon nanoflowers with significantly enhanced second harmonic generation using silicon nanospheres fabricated by femtosecond laser ablation,” J. Phys. Chem. C 117(46), 24625–24631 (2013).
[Crossref]

Li, Z.

Z. Li, S. Butun, and K. Aydin, “Ultranarrow band absorbers based on surface lattice resonances in nanostructured metal surfaces,” ACS Nano 8(8), 8242–8248 (2014).
[Crossref] [PubMed]

Lippens, D.

Q. Zhao, J. Zhou, F. Zhang, and D. Lippens, “Mie resonance-based dielectric metamaterials,” Mater. Today 12(12), 60–69 (2009).
[Crossref]

Litchinitser, N. M.

M. I. Shalaev, J. Sun, A. Tsukernik, A. Pandey, K. Nikolskiy, and N. M. Litchinitser, “High efficiency all-dielectric metasurfaces for ultracompact beam manipulation in transmission mode,” Nano Lett. 15(9), 6261–6266 (2015).
[Crossref] [PubMed]

Liu, G.

X. Liu, G. Liu, G. Fu, M. Liu, and Z. Liu, “Monochromatic filter with multiple manipulation approaches by the layered all-dielectric patch array,” Nanotechnology 27(12), 125202 (2016).
[Crossref] [PubMed]

Z. Liu, M. Yu, S. Huang, X. Liu, Y. Wang, M. Liu, P. Pana, and G. Liu, “Enhancing refractive index sensing capability with hybrid plasmonic–photonic absorbers,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(17), 4222–4226 (2015).
[Crossref]

Liu, G. Q.

G. Q. Liu, Y. Hu, Z. Q. Liu, Y. H. Chen, Z. J. Cai, X. N. Zhang, and K. Huang, “Robust multispectral transparency in continuous metal film structures via multiple near-field plasmon coupling by a finite-difference time-domain method,” Phys. Chem. Chem. Phys. 16(9), 4320–4328 (2014).
[Crossref] [PubMed]

Liu, M.

X. Liu, G. Liu, G. Fu, M. Liu, and Z. Liu, “Monochromatic filter with multiple manipulation approaches by the layered all-dielectric patch array,” Nanotechnology 27(12), 125202 (2016).
[Crossref] [PubMed]

Z. Liu, M. Yu, S. Huang, X. Liu, Y. Wang, M. Liu, P. Pana, and G. Liu, “Enhancing refractive index sensing capability with hybrid plasmonic–photonic absorbers,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(17), 4222–4226 (2015).
[Crossref]

Liu, N.

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Three-dimensional photonic metamaterials at optical frequencies,” Nat. Mater. 7(1), 31–37 (2008).
[Crossref] [PubMed]

Liu, S.

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7(9), 7824–7832 (2013).
[Crossref] [PubMed]

Liu, W.

Liu, X.

X. Liu, G. Liu, G. Fu, M. Liu, and Z. Liu, “Monochromatic filter with multiple manipulation approaches by the layered all-dielectric patch array,” Nanotechnology 27(12), 125202 (2016).
[Crossref] [PubMed]

Z. Liu, M. Yu, S. Huang, X. Liu, Y. Wang, M. Liu, P. Pana, and G. Liu, “Enhancing refractive index sensing capability with hybrid plasmonic–photonic absorbers,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(17), 4222–4226 (2015).
[Crossref]

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Liu, Y.

Liu, Z.

X. Liu, G. Liu, G. Fu, M. Liu, and Z. Liu, “Monochromatic filter with multiple manipulation approaches by the layered all-dielectric patch array,” Nanotechnology 27(12), 125202 (2016).
[Crossref] [PubMed]

Z. Liu, M. Yu, S. Huang, X. Liu, Y. Wang, M. Liu, P. Pana, and G. Liu, “Enhancing refractive index sensing capability with hybrid plasmonic–photonic absorbers,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(17), 4222–4226 (2015).
[Crossref]

Liu, Z. Q.

G. Q. Liu, Y. Hu, Z. Q. Liu, Y. H. Chen, Z. J. Cai, X. N. Zhang, and K. Huang, “Robust multispectral transparency in continuous metal film structures via multiple near-field plasmon coupling by a finite-difference time-domain method,” Phys. Chem. Chem. Phys. 16(9), 4320–4328 (2014).
[Crossref] [PubMed]

Lu, X.

L. Shi, J. T. Harris, R. Fenollosa, I. Rodriguez, X. Lu, B. A. Korgel, and F. Meseguer, “Monodisperse silicon nanocavities and photonic crystals with magnetic response in the optical region,” Nat. Commun. 4, 1904 (2013).
[Crossref] [PubMed]

Lui, E.

D. Chanda, K. Shigeta, T. Truong, E. Lui, A. Mihi, M. Schulmerich, P. V. Braun, R. Bhargava, and J. A. Rogers, “Coupling of plasmonic and optical cavity modes in quasi-three-dimensional plasmonic crystals,” Nat. Commun. 2, 479 (2011).
[Crossref] [PubMed]

Luk, T. S.

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7(9), 7824–7832 (2013).
[Crossref] [PubMed]

Luk’yanchuk, B.

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4, 1527 (2013).
[Crossref] [PubMed]

Luk’yanchuk, B. S.

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuk, and B. N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. B 82(4), 045404 (2010).
[Crossref]

Luo, S.

MacDonald, K. F.

Maier, S. A.

M. Caldarola, P. Albella, E. Cortés, M. Rahmani, T. Roschuk, G. Grinblat, R. F. Oulton, A. V. Bragas, and S. A. Maier, “Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion,” Nat. Commun. 6, 7915 (2015).
[Crossref] [PubMed]

Mao, P.

Meng, F. Y.

Meseguer, F.

L. Shi, J. T. Harris, R. Fenollosa, I. Rodriguez, X. Lu, B. A. Korgel, and F. Meseguer, “Monodisperse silicon nanocavities and photonic crystals with magnetic response in the optical region,” Nat. Commun. 4, 1904 (2013).
[Crossref] [PubMed]

Mihi, A.

D. Chanda, K. Shigeta, T. Truong, E. Lui, A. Mihi, M. Schulmerich, P. V. Braun, R. Bhargava, and J. A. Rogers, “Coupling of plasmonic and optical cavity modes in quasi-three-dimensional plasmonic crystals,” Nat. Commun. 2, 479 (2011).
[Crossref] [PubMed]

Miroshnichenko, A. E.

H. D. Deng, X. Y. Chen, Y. Xu, and A. E. Miroshnichenko, “Single protein sensing with asymmetric plasmonic hexamer via Fano resonance enhanced two-photon luminescence,” Nanoscale 7(48), 20405–20413 (2015).
[Crossref] [PubMed]

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4, 1527 (2013).
[Crossref] [PubMed]

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7(9), 7824–7832 (2013).
[Crossref] [PubMed]

Mock, J. J.

A. Moreau, C. Ciracì, J. J. Mock, R. T. Hill, Q. Wang, B. J. Wiley, A. Chilkoti, and D. R. Smith, “Controlled-reflectance surfaces with film-coupled colloidal nanoantennas,” Nature 492(7427), 86–89 (2012).
[Crossref] [PubMed]

Moreau, A.

A. Moreau, C. Ciracì, J. J. Mock, R. T. Hill, Q. Wang, B. J. Wiley, A. Chilkoti, and D. R. Smith, “Controlled-reflectance surfaces with film-coupled colloidal nanoantennas,” Nature 492(7427), 86–89 (2012).
[Crossref] [PubMed]

Mosallaei, H.

Nasalski, W.

Neshev, D. N.

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7(9), 7824–7832 (2013).
[Crossref] [PubMed]

Nikolskiy, K.

M. I. Shalaev, J. Sun, A. Tsukernik, A. Pandey, K. Nikolskiy, and N. M. Litchinitser, “High efficiency all-dielectric metasurfaces for ultracompact beam manipulation in transmission mode,” Nano Lett. 15(9), 6261–6266 (2015).
[Crossref] [PubMed]

Oulton, R. F.

M. Caldarola, P. Albella, E. Cortés, M. Rahmani, T. Roschuk, G. Grinblat, R. F. Oulton, A. V. Bragas, and S. A. Maier, “Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion,” Nat. Commun. 6, 7915 (2015).
[Crossref] [PubMed]

Padilla, W. J.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Pana, P.

Z. Liu, M. Yu, S. Huang, X. Liu, Y. Wang, M. Liu, P. Pana, and G. Liu, “Enhancing refractive index sensing capability with hybrid plasmonic–photonic absorbers,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(17), 4222–4226 (2015).
[Crossref]

Pandey, A.

M. I. Shalaev, J. Sun, A. Tsukernik, A. Pandey, K. Nikolskiy, and N. M. Litchinitser, “High efficiency all-dielectric metasurfaces for ultracompact beam manipulation in transmission mode,” Nano Lett. 15(9), 6261–6266 (2015).
[Crossref] [PubMed]

Peng, R. W.

C. Wang, Z. Y. Jia, K. Zhang, Y. Zhou, R. H. Fan, X. Xiong, and R. W. Peng, “Broadband optical scattering in coupled silicon nanocylinders,” J. Appl. Phys. 115(24), 244312 (2014).
[Crossref]

Polman, A.

Qin, S.

Rahmani, M.

M. Caldarola, P. Albella, E. Cortés, M. Rahmani, T. Roschuk, G. Grinblat, R. F. Oulton, A. V. Bragas, and S. A. Maier, “Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion,” Nat. Commun. 6, 7915 (2015).
[Crossref] [PubMed]

Reinhardt, C.

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuk, and B. N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. B 82(4), 045404 (2010).
[Crossref]

Rodriguez, I.

L. Shi, J. T. Harris, R. Fenollosa, I. Rodriguez, X. Lu, B. A. Korgel, and F. Meseguer, “Monodisperse silicon nanocavities and photonic crystals with magnetic response in the optical region,” Nat. Commun. 4, 1904 (2013).
[Crossref] [PubMed]

Rogers, J. A.

D. Chanda, K. Shigeta, T. Truong, E. Lui, A. Mihi, M. Schulmerich, P. V. Braun, R. Bhargava, and J. A. Rogers, “Coupling of plasmonic and optical cavity modes in quasi-three-dimensional plasmonic crystals,” Nat. Commun. 2, 479 (2011).
[Crossref] [PubMed]

Roschuk, T.

M. Caldarola, P. Albella, E. Cortés, M. Rahmani, T. Roschuk, G. Grinblat, R. F. Oulton, A. V. Bragas, and S. A. Maier, “Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion,” Nat. Commun. 6, 7915 (2015).
[Crossref] [PubMed]

Roszkiewicz, A.

Schulmerich, M.

D. Chanda, K. Shigeta, T. Truong, E. Lui, A. Mihi, M. Schulmerich, P. V. Braun, R. Bhargava, and J. A. Rogers, “Coupling of plasmonic and optical cavity modes in quasi-three-dimensional plasmonic crystals,” Nat. Commun. 2, 479 (2011).
[Crossref] [PubMed]

Schweizer, H.

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Three-dimensional photonic metamaterials at optical frequencies,” Nat. Mater. 7(1), 31–37 (2008).
[Crossref] [PubMed]

Seidel, A.

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuk, and B. N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. B 82(4), 045404 (2010).
[Crossref]

Shalaev, M. I.

M. I. Shalaev, J. Sun, A. Tsukernik, A. Pandey, K. Nikolskiy, and N. M. Litchinitser, “High efficiency all-dielectric metasurfaces for ultracompact beam manipulation in transmission mode,” Nano Lett. 15(9), 6261–6266 (2015).
[Crossref] [PubMed]

Shi, L.

L. Shi, J. T. Harris, R. Fenollosa, I. Rodriguez, X. Lu, B. A. Korgel, and F. Meseguer, “Monodisperse silicon nanocavities and photonic crystals with magnetic response in the optical region,” Nat. Commun. 4, 1904 (2013).
[Crossref] [PubMed]

Shigeta, K.

D. Chanda, K. Shigeta, T. Truong, E. Lui, A. Mihi, M. Schulmerich, P. V. Braun, R. Bhargava, and J. A. Rogers, “Coupling of plasmonic and optical cavity modes in quasi-three-dimensional plasmonic crystals,” Nat. Commun. 2, 479 (2011).
[Crossref] [PubMed]

Smith, D. R.

A. Moreau, C. Ciracì, J. J. Mock, R. T. Hill, Q. Wang, B. J. Wiley, A. Chilkoti, and D. R. Smith, “Controlled-reflectance surfaces with film-coupled colloidal nanoantennas,” Nature 492(7427), 86–89 (2012).
[Crossref] [PubMed]

Starr, A. F.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Starr, T.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Staude, I.

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7(9), 7824–7832 (2013).
[Crossref] [PubMed]

Sun, J.

M. I. Shalaev, J. Sun, A. Tsukernik, A. Pandey, K. Nikolskiy, and N. M. Litchinitser, “High efficiency all-dielectric metasurfaces for ultracompact beam manipulation in transmission mode,” Nano Lett. 15(9), 6261–6266 (2015).
[Crossref] [PubMed]

Tang, C.

Tie, S.

J. Xiang, J. Li, H. Li, C. Zhang, Q. Dai, S. Tie, and S. Lan, “Polarization beam splitters, converters and analyzers based on a metasurface composed of regularly arranged silicon nanospheres with controllable coupling strength,” Opt. Express 24(11), 11420–11434 (2016).
[Crossref] [PubMed]

C. Li, C. Zhang, Z. Huang, X. Li, Q. Dai, S. Lan, and S. Tie, “Assembling of silicon nanoflowers with significantly enhanced second harmonic generation using silicon nanospheres fabricated by femtosecond laser ablation,” J. Phys. Chem. C 117(46), 24625–24631 (2013).
[Crossref]

Truong, T.

D. Chanda, K. Shigeta, T. Truong, E. Lui, A. Mihi, M. Schulmerich, P. V. Braun, R. Bhargava, and J. A. Rogers, “Coupling of plasmonic and optical cavity modes in quasi-three-dimensional plasmonic crystals,” Nat. Commun. 2, 479 (2011).
[Crossref] [PubMed]

Tsukernik, A.

M. I. Shalaev, J. Sun, A. Tsukernik, A. Pandey, K. Nikolskiy, and N. M. Litchinitser, “High efficiency all-dielectric metasurfaces for ultracompact beam manipulation in transmission mode,” Nano Lett. 15(9), 6261–6266 (2015).
[Crossref] [PubMed]

Tyler, T.

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Valentine, J.

Y. Yang, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “All-dielectric metasurface analogue of electromagnetically induced transparency,” Nat. Commun. 5, 5753 (2014).
[Crossref] [PubMed]

van de Groep, J.

van de Haar, M. A.

Van Duyne, R. P.

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
[Crossref] [PubMed]

Wang, C.

C. Wang, Z. Y. Jia, K. Zhang, Y. Zhou, R. H. Fan, X. Xiong, and R. W. Peng, “Broadband optical scattering in coupled silicon nanocylinders,” J. Appl. Phys. 115(24), 244312 (2014).
[Crossref]

Wang, Q.

J. Chen, P. Mao, R. Xu, C. Tang, Y. Liu, Q. Wang, and L. Zhang, “Strategy for realizing magnetic field enhancement based on diffraction coupling of magnetic plasmon resonances in embedded metamaterials,” Opt. Express 23(12), 16238–16245 (2015).
[Crossref] [PubMed]

A. Moreau, C. Ciracì, J. J. Mock, R. T. Hill, Q. Wang, B. J. Wiley, A. Chilkoti, and D. R. Smith, “Controlled-reflectance surfaces with film-coupled colloidal nanoantennas,” Nature 492(7427), 86–89 (2012).
[Crossref] [PubMed]

Wang, X.

Wang, Y.

Z. Liu, M. Yu, S. Huang, X. Liu, Y. Wang, M. Liu, P. Pana, and G. Liu, “Enhancing refractive index sensing capability with hybrid plasmonic–photonic absorbers,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(17), 4222–4226 (2015).
[Crossref]

Wiley, B. J.

A. Moreau, C. Ciracì, J. J. Mock, R. T. Hill, Q. Wang, B. J. Wiley, A. Chilkoti, and D. R. Smith, “Controlled-reflectance surfaces with film-coupled colloidal nanoantennas,” Nature 492(7427), 86–89 (2012).
[Crossref] [PubMed]

Willets, K. A.

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
[Crossref] [PubMed]

Wu, Q.

Xiang, J.

Xiong, X.

C. Wang, Z. Y. Jia, K. Zhang, Y. Zhou, R. H. Fan, X. Xiong, and R. W. Peng, “Broadband optical scattering in coupled silicon nanocylinders,” J. Appl. Phys. 115(24), 244312 (2014).
[Crossref]

Xu, R.

Xu, Y.

H. D. Deng, X. Y. Chen, Y. Xu, and A. E. Miroshnichenko, “Single protein sensing with asymmetric plasmonic hexamer via Fano resonance enhanced two-photon luminescence,” Nanoscale 7(48), 20405–20413 (2015).
[Crossref] [PubMed]

Yang, Y.

Y. Yang, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “All-dielectric metasurface analogue of electromagnetically induced transparency,” Nat. Commun. 5, 5753 (2014).
[Crossref] [PubMed]

Yu, M.

Z. Liu, M. Yu, S. Huang, X. Liu, Y. Wang, M. Liu, P. Pana, and G. Liu, “Enhancing refractive index sensing capability with hybrid plasmonic–photonic absorbers,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(17), 4222–4226 (2015).
[Crossref]

Yu, Y. F.

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4, 1527 (2013).
[Crossref] [PubMed]

Yuan, X.

Zhang, C.

J. Xiang, J. Li, H. Li, C. Zhang, Q. Dai, S. Tie, and S. Lan, “Polarization beam splitters, converters and analyzers based on a metasurface composed of regularly arranged silicon nanospheres with controllable coupling strength,” Opt. Express 24(11), 11420–11434 (2016).
[Crossref] [PubMed]

C. Li, C. Zhang, Z. Huang, X. Li, Q. Dai, S. Lan, and S. Tie, “Assembling of silicon nanoflowers with significantly enhanced second harmonic generation using silicon nanospheres fabricated by femtosecond laser ablation,” J. Phys. Chem. C 117(46), 24625–24631 (2013).
[Crossref]

Zhang, F.

Zhang, J.

Zhang, K.

C. Wang, Z. Y. Jia, K. Zhang, Y. Zhou, R. H. Fan, X. Xiong, and R. W. Peng, “Broadband optical scattering in coupled silicon nanocylinders,” J. Appl. Phys. 115(24), 244312 (2014).
[Crossref]

Zhang, L.

Zhang, X. N.

G. Q. Liu, Y. Hu, Z. Q. Liu, Y. H. Chen, Z. J. Cai, X. N. Zhang, and K. Huang, “Robust multispectral transparency in continuous metal film structures via multiple near-field plasmon coupling by a finite-difference time-domain method,” Phys. Chem. Chem. Phys. 16(9), 4320–4328 (2014).
[Crossref] [PubMed]

Zhao, J.

Zhao, Q.

Q. Zhao, J. Zhou, F. Zhang, and D. Lippens, “Mie resonance-based dielectric metamaterials,” Mater. Today 12(12), 60–69 (2009).
[Crossref]

Zhao, Y.

Y. Zhao and A. Alú, “Manipulating light polarization with ultrathin plasmonic metasurfaces,” Phys. Rev. B 84(20), 205428 (2011).
[Crossref]

Zheludev, N. I.

Zhou, J.

Q. Zhao, J. Zhou, F. Zhang, and D. Lippens, “Mie resonance-based dielectric metamaterials,” Mater. Today 12(12), 60–69 (2009).
[Crossref]

Zhou, Y.

C. Wang, Z. Y. Jia, K. Zhang, Y. Zhou, R. H. Fan, X. Xiong, and R. W. Peng, “Broadband optical scattering in coupled silicon nanocylinders,” J. Appl. Phys. 115(24), 244312 (2014).
[Crossref]

Zhu, L.

Zhu, Z.

Zuo, D.

ACS Nano (2)

I. Staude, A. E. Miroshnichenko, M. Decker, N. T. Fofang, S. Liu, E. Gonzales, J. Dominguez, T. S. Luk, D. N. Neshev, I. Brener, and Y. Kivshar, “Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks,” ACS Nano 7(9), 7824–7832 (2013).
[Crossref] [PubMed]

Z. Li, S. Butun, and K. Aydin, “Ultranarrow band absorbers based on surface lattice resonances in nanostructured metal surfaces,” ACS Nano 8(8), 8242–8248 (2014).
[Crossref] [PubMed]

Annu. Rev. Phys. Chem. (1)

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
[Crossref] [PubMed]

J. Appl. Phys. (1)

C. Wang, Z. Y. Jia, K. Zhang, Y. Zhou, R. H. Fan, X. Xiong, and R. W. Peng, “Broadband optical scattering in coupled silicon nanocylinders,” J. Appl. Phys. 115(24), 244312 (2014).
[Crossref]

J. Mater. Chem. C Mater. Opt. Electron. Devices (1)

Z. Liu, M. Yu, S. Huang, X. Liu, Y. Wang, M. Liu, P. Pana, and G. Liu, “Enhancing refractive index sensing capability with hybrid plasmonic–photonic absorbers,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(17), 4222–4226 (2015).
[Crossref]

J. Phys. Chem. C (1)

C. Li, C. Zhang, Z. Huang, X. Li, Q. Dai, S. Lan, and S. Tie, “Assembling of silicon nanoflowers with significantly enhanced second harmonic generation using silicon nanospheres fabricated by femtosecond laser ablation,” J. Phys. Chem. C 117(46), 24625–24631 (2013).
[Crossref]

Mater. Today (1)

Q. Zhao, J. Zhou, F. Zhang, and D. Lippens, “Mie resonance-based dielectric metamaterials,” Mater. Today 12(12), 60–69 (2009).
[Crossref]

Nano Lett. (1)

M. I. Shalaev, J. Sun, A. Tsukernik, A. Pandey, K. Nikolskiy, and N. M. Litchinitser, “High efficiency all-dielectric metasurfaces for ultracompact beam manipulation in transmission mode,” Nano Lett. 15(9), 6261–6266 (2015).
[Crossref] [PubMed]

Nanoscale (1)

H. D. Deng, X. Y. Chen, Y. Xu, and A. E. Miroshnichenko, “Single protein sensing with asymmetric plasmonic hexamer via Fano resonance enhanced two-photon luminescence,” Nanoscale 7(48), 20405–20413 (2015).
[Crossref] [PubMed]

Nanotechnology (1)

X. Liu, G. Liu, G. Fu, M. Liu, and Z. Liu, “Monochromatic filter with multiple manipulation approaches by the layered all-dielectric patch array,” Nanotechnology 27(12), 125202 (2016).
[Crossref] [PubMed]

Nat. Commun. (5)

Y. Yang, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “All-dielectric metasurface analogue of electromagnetically induced transparency,” Nat. Commun. 5, 5753 (2014).
[Crossref] [PubMed]

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat. Commun. 4, 1527 (2013).
[Crossref] [PubMed]

M. Caldarola, P. Albella, E. Cortés, M. Rahmani, T. Roschuk, G. Grinblat, R. F. Oulton, A. V. Bragas, and S. A. Maier, “Non-plasmonic nanoantennas for surface enhanced spectroscopies with ultra-low heat conversion,” Nat. Commun. 6, 7915 (2015).
[Crossref] [PubMed]

L. Shi, J. T. Harris, R. Fenollosa, I. Rodriguez, X. Lu, B. A. Korgel, and F. Meseguer, “Monodisperse silicon nanocavities and photonic crystals with magnetic response in the optical region,” Nat. Commun. 4, 1904 (2013).
[Crossref] [PubMed]

D. Chanda, K. Shigeta, T. Truong, E. Lui, A. Mihi, M. Schulmerich, P. V. Braun, R. Bhargava, and J. A. Rogers, “Coupling of plasmonic and optical cavity modes in quasi-three-dimensional plasmonic crystals,” Nat. Commun. 2, 479 (2011).
[Crossref] [PubMed]

Nat. Mater. (2)

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, “Three-dimensional photonic metamaterials at optical frequencies,” Nat. Mater. 7(1), 31–37 (2008).
[Crossref] [PubMed]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nat. Nanotechnol. 11(1), 23–36 (2016).
[Crossref] [PubMed]

Nature (1)

A. Moreau, C. Ciracì, J. J. Mock, R. T. Hill, Q. Wang, B. J. Wiley, A. Chilkoti, and D. R. Smith, “Controlled-reflectance surfaces with film-coupled colloidal nanoantennas,” Nature 492(7427), 86–89 (2012).
[Crossref] [PubMed]

Opt. Express (6)

Opt. Lett. (3)

Phys. Chem. Chem. Phys. (1)

G. Q. Liu, Y. Hu, Z. Q. Liu, Y. H. Chen, Z. J. Cai, X. N. Zhang, and K. Huang, “Robust multispectral transparency in continuous metal film structures via multiple near-field plasmon coupling by a finite-difference time-domain method,” Phys. Chem. Chem. Phys. 16(9), 4320–4328 (2014).
[Crossref] [PubMed]

Phys. Rev. B (2)

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuk, and B. N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. B 82(4), 045404 (2010).
[Crossref]

Y. Zhao and A. Alú, “Manipulating light polarization with ultrathin plasmonic metasurfaces,” Phys. Rev. B 84(20), 205428 (2011).
[Crossref]

Phys. Rev. Lett. (1)

X. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011).
[Crossref] [PubMed]

Other (4)

N. Engheta and R. W. Ziolkowski, Metamaterials: Physics and Engineering Explorations (Wiley, 2006).

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House Publishers, 2000).

D. Goldstein, Polarized Light (CRC Press, 2011).

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) Schematic of the partially hollowed dielectric meta-surface (p-HDMS) consisting of a hexagonally packed air cavity array (height, h) in the HID film (thickness, t). (b) Transmission and reflection of the p-HDMS. Four transmission dips are noted as λ1-λ4. (c) Transmission spectra of a continuous HID film with t = 250 nm (black line) and the HID film with an air cavity array (h = 250 nm, red line).
Fig. 2
Fig. 2 (a)-(d) Normalized electric field intensity distributions for the transmission dips at λ1-λ4 in the xoz plane, respectively. (e)-(h) Normalized magnetic field distributions for the transmission dips at λ1-λ4 in the xoz plane, respectively.
Fig. 3
Fig. 3 (a) Contour mapping of the p-HDMS with a cavity array under a tuning polarization state. (b) Plotted transmission curves for the dips at λ1-λ4 and the new emerged dip (λdip) as a function of polarization angle. The corresponding theoretical Malus law curves of the dips (λ2 and λdip) are also plotted for comparison study.
Fig. 4
Fig. 4 Scalability of the transmission manipulation for the p-HDMS with a cavity array (P = 800 nm, h = 100 nm) by tuning the cavity width (a) and by tuning the hollowing height of the air cavity (b) within a 250-nm-thick HID film. (c) Transmission response of the p-HDMS under a tuning refractive index n of the HID film. (d) Transmission comparison of the p-HDMS comprised of lossy and lossless HID film.

Metrics