Abstract

An all-metal structural color printing platform based on aluminum plasmonic metasurfaces is proposed and demonstrated with high color performance using only a one-step etching process on aluminum surface. A wide visible color range is realized with the designed metallic square-shaped disk arrays by simply adjusting the geometrical parameters of the disk etching depth, disk width and unit cell period. The demonstrated all-metal microscale structural color printing on aluminum surface offers great potential for many practical color related applications.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Realizing structural color generation with aluminum plasmonic V-groove metasurfaces

Wei Wang, Daniel Rosenmann, David A. Czaplewski, Xiaodong Yang, and Jie Gao
Opt. Express 25(17) 20454-20465 (2017)

Aluminum plasmonic metamaterials for structural color printing

Fei Cheng, Jie Gao, Liliana Stan, Daniel Rosenmann, David Czaplewski, and Xiaodong Yang
Opt. Express 23(11) 14552-14560 (2015)

Enhanced structural color generation in aluminum metamaterials coated with a thin polymer layer

Fei Cheng, Xiaodong Yang, Daniel Rosenmann, Liliana Stan, David Czaplewski, and Jie Gao
Opt. Express 23(19) 25329-25339 (2015)

References

  • View by:
  • |
  • |
  • |

  1. K. Nassau, “The physics and chemistry of color: The 15 mechanisms,” in The Science of Color, 2nd ed. (2003), pp. 247–280.
  2. H. Park, Y. Dan, K. Seo, Y. J. Yu, P. K. Duane, M. Wober, and K. B. Crozier, “Filter-free image sensor pixels comprising silicon nanowires with selective color absorption,” Nano Lett. 14(4), 1804–1809 (2014).
    [Crossref] [PubMed]
  3. K. Seo, M. Wober, P. Steinvurzel, E. Schonbrun, Y. Dan, T. Ellenbogen, and K. B. Crozier, “Multicolored vertical silicon nanowires,” Nano Lett. 11(4), 1851–1856 (2011).
    [Crossref] [PubMed]
  4. L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
    [Crossref]
  5. A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
    [Crossref]
  6. N. Meinzer, W. L. Barnes, and I. R. Hooper, “Plasmonic meta-atoms and metasurfaces,” Nat. Photonics 8(12), 889–898 (2014).
    [Crossref]
  7. N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
    [Crossref] [PubMed]
  8. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
    [Crossref] [PubMed]
  9. H. J. Park, T. Xu, J. Y. Lee, A. Ledbetter, and L. J. Guo, “Photonic color filters integrated with organic solar cells for energy harvesting,” ACS Nano 5(9), 7055–7060 (2011).
    [Crossref] [PubMed]
  10. B. Zeng, Y. Gao, and F. J. Bartoli, “Ultrathin nanostructured metals for highly transmissive plasmonic subtractive color filters,” Sci. Rep. 3, 2840 (2013).
    [Crossref] [PubMed]
  11. M. J. Uddin, T. Khaleque, and R. Magnusson, “Guided-mode resonant polarization-controlled tunable color filters,” Opt. Express 22(10), 12307–12315 (2014).
    [Crossref] [PubMed]
  12. C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
    [Crossref] [PubMed]
  13. Q. Chen and D. R. S. Cumming, “High transmission and low color cross-talk plasmonic color filters using triangular-lattice hole arrays in aluminum films,” Opt. Express 18(13), 14056–14062 (2010).
    [Crossref] [PubMed]
  14. D. Inoue, A. Miura, T. Nomura, H. Fujikawa, K. Sato, N. Ikeda, D. Tsuya, Y. Sugimoto, and Y. Koide, “Polarization independent visible color filter comprising an aluminum film with surface-plasmon enhanced transmission through a subwavelength array of holes,” Appl. Phys. Lett. 98(9), 093113 (2011).
    [Crossref]
  15. S. Yokogawa, S. P. Burgos, and H. A. Atwater, “Plasmonic color filters for CMOS image sensor applications,” Nano Lett. 12(8), 4349–4354 (2012).
    [Crossref] [PubMed]
  16. Z. Li, A. W. Clark, and J. M. Cooper, “Dual color plasmonic pixels create a polarization controlled nano color palette,” ACS Nano 10(1), 492–498 (2016).
    [Crossref] [PubMed]
  17. T. Ellenbogen, K. Seo, and K. B. Crozier, “Chromatic plasmonic polarizers for active visible color filtering and polarimetry,” Nano Lett. 12(2), 1026–1031 (2012).
    [Crossref] [PubMed]
  18. G. Si, Y. Zhao, J. Lv, M. Lu, F. Wang, H. Liu, N. Xiang, T. J. Huang, A. J. Danner, J. Teng, and Y. J. Liu, “Reflective plasmonic color filters based on lithographically patterned silver nanorod arrays,” Nanoscale 5(14), 6243–6248 (2013).
    [Crossref] [PubMed]
  19. J. Do, M. Fedoruk, F. Jäckel, and J. Feldmann, “Two-color laser printing of individual gold nanorods,” Nano Lett. 13(9), 4164–4168 (2013).
    [Crossref] [PubMed]
  20. J. S. Clausen, E. Højlund-Nielsen, A. B. Christiansen, S. Yazdi, M. Grajower, H. Taha, U. Levy, A. Kristensen, and N. A. Mortensen, “Plasmonic metasurfaces for coloration of plastic consumer products,” Nano Lett. 14(8), 4499–4504 (2014).
    [Crossref] [PubMed]
  21. C. Saeidi and D. van der Weide, “Bandwidth-tunable optical spatial filters with nanoparticle arrays,” Opt. Express 22(10), 12499–12504 (2014).
    [Crossref] [PubMed]
  22. T. Xu, Y.-K. Wu, X. Luo, and L. J. Guo, “Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging,” Nat. Commun. 1(5), 59 (2010).
    [Crossref] [PubMed]
  23. A. F. Kaplan, T. Xu, and L. Jay Guo, “High efficiency resonance-based spectrum filters with tunable transmission bandwidth fabricated using nanoimprint lithography,” Appl. Phys. Lett. 99(14), 143111 (2011).
    [Crossref]
  24. A. S. Roberts, A. Pors, O. Albrektsen, and S. I. Bozhevolnyi, “Subwavelength plasmonic color printing protected for ambient use,” Nano Lett. 14(2), 783–787 (2014).
    [Crossref] [PubMed]
  25. F. Cheng, J. Gao, T. S. Luk, and X. Yang, “Structural color printing based on plasmonic metasurfaces of perfect light absorption,” Sci. Rep. 5, 11045 (2015).
    [Crossref] [PubMed]
  26. F. Cheng, J. Gao, L. Stan, D. Rosenmann, D. Czaplewski, and X. Yang, “Aluminum plasmonic metamaterials for structural color printing,” Opt. Express 23(11), 14552–14560 (2015).
    [Crossref] [PubMed]
  27. F. Cheng, X. Yang, D. Rosenmann, L. Stan, D. Czaplewski, and J. Gao, “Enhanced structural color generation in aluminum metamaterials coated with a thin polymer layer,” Opt. Express 23(19), 25329–25339 (2015).
    [Crossref] [PubMed]
  28. K. Kumar, H. Duan, R. S. Hegde, S. C. W. Koh, J. N. Wei, and J. K. W. Yang, “Printing colour at the optical diffraction limit,” Nat. Nanotechnol. 7(9), 557–561 (2012).
    [Crossref] [PubMed]
  29. X. M. Goh, Y. Zheng, S. J. Tan, L. Zhang, K. Kumar, C.-W. Qiu, and J. K. W. Yang, “Three-dimensional plasmonic stereoscopic prints in full colour,” Nat. Commun. 5, 5361 (2014).
    [Crossref] [PubMed]
  30. S. J. Tan, L. Zhang, D. Zhu, X. M. Goh, Y. M. Wang, K. Kumar, C. W. Qiu, and J. K. W. Yang, “Plasmonic color palettes for photorealistic printing with aluminum nanostructures,” Nano Lett. 14(7), 4023–4029 (2014).
    [Crossref] [PubMed]
  31. C. L. Haynes, A. D. McFarland, L. L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Käll, “Nanoparticle optics: The importance of radiative dipole coupling in two-dimensional nanoparticle arrays,” J. Phys. Chem. B 107(30), 7337–7342 (2003).
    [Crossref]
  32. S. Zou and G. C. Schatz, “Theoretical studies of plasmon resonances in one-dimensional nanoparticle chains: narrow lineshapes with tunable widths,” Nanotechnology 17(11), 2813–2820 (2006).
    [Crossref]
  33. V. A. Markel and A. K. Sarychev, “Propagation of surface plasmons in ordered and disordered chains of metal nanospheres,” Phys. Rev. B 75(8), 085426 (2007).
    [Crossref]
  34. Y.-K. R. Wu, A. E. Hollowell, C. Zhang, and L. J. Guo, “Angle-insensitive structural colours based on metallic nanocavities and coloured pixels beyond the diffraction limit,” Sci. Rep. 3, 1194 (2013).
    [Crossref] [PubMed]
  35. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 86, 1114–1117 (1998).
  36. L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
    [Crossref] [PubMed]
  37. H. Liu and P. Lalanne, “Microscopic theory of the extraordinary optical transmission,” Nature 452(7188), 728–731 (2008).
    [Crossref] [PubMed]
  38. R. J. H. Ng, X. M. Goh, and J. K. W. Yang, “All-metal nanostructured substrates as subtractive color reflectors with near-perfect absorptance,” Opt. Express 23(25), 32597–32605 (2015).
    [Crossref] [PubMed]
  39. J. Zhang, J.-Y. Ou, N. Papasimakis, Y. Chen, K. F. Macdonald, and N. I. Zheludev, “Continuous metal plasmonic frequency selective surfaces,” Opt. Express 19(23), 23279–23285 (2011).
    [Crossref] [PubMed]
  40. V. R. Shrestha, S. S. Lee, E. S. Kim, and D. Y. Choi, “Aluminum plasmonics based highly transmissive polarization-independent subtractive color filters exploiting a nanopatch array,” Nano Lett. 14(11), 6672–6678 (2014).
    [Crossref] [PubMed]
  41. L. Wang, R. J. H. Ng, S. S. Dinachali, M. Jalali, Y. Yu, and J. K. W. Yang, “Large area plasmonic color palettes with expanded gamut using colloidal self-assembly,” ACS Photonics 3(4), 627–633 (2016).
    [Crossref]
  42. T. Søndergaard, S. M. Novikov, T. Holmgaard, R. L. Eriksen, J. Beermann, Z. Han, K. Pedersen, and S. I. Bozhevolnyi, “Plasmonic black gold by adiabatic nanofocusing and absorption of light in ultra-sharp convex grooves,” Nat. Commun. 3, 969 (2012).
    [Crossref] [PubMed]
  43. T. Søndergaard and S. I. Bozhevolnyi, “Theoretical analysis of plasmonic black gold: Periodic arrays of ultra-sharp grooves,” New J. Phys. 15, 013034 (2013).
  44. S. Westland, C. Ripamonti, and V. Cheung, “Computing CIE tristimulus values,” in Computational Colour Science Using MATLAB® (John Wiley and Sons, Ltd., 2012), pp. 27–47.
  45. V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, and N. I. Zheludev, “Planar electromagnetic metamaterial with a fish scale structure,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(5), 056613 (2005).
    [Crossref] [PubMed]
  46. W. Cai, U. K. Chettiar, H.-K. Yuan, V. C. de Silva, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Metamagnetics with rainbow colors,” Opt. Express 15(6), 3333–3341 (2007).
    [Crossref] [PubMed]
  47. Z. Fang, Y.-R. Zhen, L. Fan, X. Zhu, and P. Nordlander, “Tunable wide-angle plasmonic perfect absorber at visible frequencies,” Phys. Rev. B 85(24), 1–7 (2012).
    [Crossref]
  48. T. Xu, H. Shi, Y. K. Wu, A. F. Kaplan, J. G. Ok, and L. J. Guo, “Structural colors: From plasmonic to carbon nanostructures,” Small 7(22), 3128–3136 (2011).
    [Crossref] [PubMed]

2016 (2)

Z. Li, A. W. Clark, and J. M. Cooper, “Dual color plasmonic pixels create a polarization controlled nano color palette,” ACS Nano 10(1), 492–498 (2016).
[Crossref] [PubMed]

L. Wang, R. J. H. Ng, S. S. Dinachali, M. Jalali, Y. Yu, and J. K. W. Yang, “Large area plasmonic color palettes with expanded gamut using colloidal self-assembly,” ACS Photonics 3(4), 627–633 (2016).
[Crossref]

2015 (4)

2014 (10)

J. S. Clausen, E. Højlund-Nielsen, A. B. Christiansen, S. Yazdi, M. Grajower, H. Taha, U. Levy, A. Kristensen, and N. A. Mortensen, “Plasmonic metasurfaces for coloration of plastic consumer products,” Nano Lett. 14(8), 4499–4504 (2014).
[Crossref] [PubMed]

C. Saeidi and D. van der Weide, “Bandwidth-tunable optical spatial filters with nanoparticle arrays,” Opt. Express 22(10), 12499–12504 (2014).
[Crossref] [PubMed]

X. M. Goh, Y. Zheng, S. J. Tan, L. Zhang, K. Kumar, C.-W. Qiu, and J. K. W. Yang, “Three-dimensional plasmonic stereoscopic prints in full colour,” Nat. Commun. 5, 5361 (2014).
[Crossref] [PubMed]

S. J. Tan, L. Zhang, D. Zhu, X. M. Goh, Y. M. Wang, K. Kumar, C. W. Qiu, and J. K. W. Yang, “Plasmonic color palettes for photorealistic printing with aluminum nanostructures,” Nano Lett. 14(7), 4023–4029 (2014).
[Crossref] [PubMed]

A. S. Roberts, A. Pors, O. Albrektsen, and S. I. Bozhevolnyi, “Subwavelength plasmonic color printing protected for ambient use,” Nano Lett. 14(2), 783–787 (2014).
[Crossref] [PubMed]

M. J. Uddin, T. Khaleque, and R. Magnusson, “Guided-mode resonant polarization-controlled tunable color filters,” Opt. Express 22(10), 12307–12315 (2014).
[Crossref] [PubMed]

H. Park, Y. Dan, K. Seo, Y. J. Yu, P. K. Duane, M. Wober, and K. B. Crozier, “Filter-free image sensor pixels comprising silicon nanowires with selective color absorption,” Nano Lett. 14(4), 1804–1809 (2014).
[Crossref] [PubMed]

N. Meinzer, W. L. Barnes, and I. R. Hooper, “Plasmonic meta-atoms and metasurfaces,” Nat. Photonics 8(12), 889–898 (2014).
[Crossref]

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref] [PubMed]

V. R. Shrestha, S. S. Lee, E. S. Kim, and D. Y. Choi, “Aluminum plasmonics based highly transmissive polarization-independent subtractive color filters exploiting a nanopatch array,” Nano Lett. 14(11), 6672–6678 (2014).
[Crossref] [PubMed]

2013 (7)

T. Søndergaard and S. I. Bozhevolnyi, “Theoretical analysis of plasmonic black gold: Periodic arrays of ultra-sharp grooves,” New J. Phys. 15, 013034 (2013).

B. Zeng, Y. Gao, and F. J. Bartoli, “Ultrathin nanostructured metals for highly transmissive plasmonic subtractive color filters,” Sci. Rep. 3, 2840 (2013).
[Crossref] [PubMed]

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
[Crossref]

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
[Crossref]

G. Si, Y. Zhao, J. Lv, M. Lu, F. Wang, H. Liu, N. Xiang, T. J. Huang, A. J. Danner, J. Teng, and Y. J. Liu, “Reflective plasmonic color filters based on lithographically patterned silver nanorod arrays,” Nanoscale 5(14), 6243–6248 (2013).
[Crossref] [PubMed]

J. Do, M. Fedoruk, F. Jäckel, and J. Feldmann, “Two-color laser printing of individual gold nanorods,” Nano Lett. 13(9), 4164–4168 (2013).
[Crossref] [PubMed]

Y.-K. R. Wu, A. E. Hollowell, C. Zhang, and L. J. Guo, “Angle-insensitive structural colours based on metallic nanocavities and coloured pixels beyond the diffraction limit,” Sci. Rep. 3, 1194 (2013).
[Crossref] [PubMed]

2012 (5)

S. Yokogawa, S. P. Burgos, and H. A. Atwater, “Plasmonic color filters for CMOS image sensor applications,” Nano Lett. 12(8), 4349–4354 (2012).
[Crossref] [PubMed]

K. Kumar, H. Duan, R. S. Hegde, S. C. W. Koh, J. N. Wei, and J. K. W. Yang, “Printing colour at the optical diffraction limit,” Nat. Nanotechnol. 7(9), 557–561 (2012).
[Crossref] [PubMed]

T. Ellenbogen, K. Seo, and K. B. Crozier, “Chromatic plasmonic polarizers for active visible color filtering and polarimetry,” Nano Lett. 12(2), 1026–1031 (2012).
[Crossref] [PubMed]

T. Søndergaard, S. M. Novikov, T. Holmgaard, R. L. Eriksen, J. Beermann, Z. Han, K. Pedersen, and S. I. Bozhevolnyi, “Plasmonic black gold by adiabatic nanofocusing and absorption of light in ultra-sharp convex grooves,” Nat. Commun. 3, 969 (2012).
[Crossref] [PubMed]

Z. Fang, Y.-R. Zhen, L. Fan, X. Zhu, and P. Nordlander, “Tunable wide-angle plasmonic perfect absorber at visible frequencies,” Phys. Rev. B 85(24), 1–7 (2012).
[Crossref]

2011 (6)

T. Xu, H. Shi, Y. K. Wu, A. F. Kaplan, J. G. Ok, and L. J. Guo, “Structural colors: From plasmonic to carbon nanostructures,” Small 7(22), 3128–3136 (2011).
[Crossref] [PubMed]

J. Zhang, J.-Y. Ou, N. Papasimakis, Y. Chen, K. F. Macdonald, and N. I. Zheludev, “Continuous metal plasmonic frequency selective surfaces,” Opt. Express 19(23), 23279–23285 (2011).
[Crossref] [PubMed]

D. Inoue, A. Miura, T. Nomura, H. Fujikawa, K. Sato, N. Ikeda, D. Tsuya, Y. Sugimoto, and Y. Koide, “Polarization independent visible color filter comprising an aluminum film with surface-plasmon enhanced transmission through a subwavelength array of holes,” Appl. Phys. Lett. 98(9), 093113 (2011).
[Crossref]

K. Seo, M. Wober, P. Steinvurzel, E. Schonbrun, Y. Dan, T. Ellenbogen, and K. B. Crozier, “Multicolored vertical silicon nanowires,” Nano Lett. 11(4), 1851–1856 (2011).
[Crossref] [PubMed]

H. J. Park, T. Xu, J. Y. Lee, A. Ledbetter, and L. J. Guo, “Photonic color filters integrated with organic solar cells for energy harvesting,” ACS Nano 5(9), 7055–7060 (2011).
[Crossref] [PubMed]

A. F. Kaplan, T. Xu, and L. Jay Guo, “High efficiency resonance-based spectrum filters with tunable transmission bandwidth fabricated using nanoimprint lithography,” Appl. Phys. Lett. 99(14), 143111 (2011).
[Crossref]

2010 (3)

T. Xu, Y.-K. Wu, X. Luo, and L. J. Guo, “Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging,” Nat. Commun. 1(5), 59 (2010).
[Crossref] [PubMed]

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Q. Chen and D. R. S. Cumming, “High transmission and low color cross-talk plasmonic color filters using triangular-lattice hole arrays in aluminum films,” Opt. Express 18(13), 14056–14062 (2010).
[Crossref] [PubMed]

2008 (1)

H. Liu and P. Lalanne, “Microscopic theory of the extraordinary optical transmission,” Nature 452(7188), 728–731 (2008).
[Crossref] [PubMed]

2007 (3)

W. Cai, U. K. Chettiar, H.-K. Yuan, V. C. de Silva, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Metamagnetics with rainbow colors,” Opt. Express 15(6), 3333–3341 (2007).
[Crossref] [PubMed]

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[Crossref] [PubMed]

V. A. Markel and A. K. Sarychev, “Propagation of surface plasmons in ordered and disordered chains of metal nanospheres,” Phys. Rev. B 75(8), 085426 (2007).
[Crossref]

2006 (1)

S. Zou and G. C. Schatz, “Theoretical studies of plasmon resonances in one-dimensional nanoparticle chains: narrow lineshapes with tunable widths,” Nanotechnology 17(11), 2813–2820 (2006).
[Crossref]

2005 (1)

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, and N. I. Zheludev, “Planar electromagnetic metamaterial with a fish scale structure,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(5), 056613 (2005).
[Crossref] [PubMed]

2003 (1)

C. L. Haynes, A. D. McFarland, L. L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Käll, “Nanoparticle optics: The importance of radiative dipole coupling in two-dimensional nanoparticle arrays,” J. Phys. Chem. B 107(30), 7337–7342 (2003).
[Crossref]

2001 (1)

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
[Crossref] [PubMed]

1998 (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 86, 1114–1117 (1998).

Albrektsen, O.

A. S. Roberts, A. Pors, O. Albrektsen, and S. I. Bozhevolnyi, “Subwavelength plasmonic color printing protected for ambient use,” Nano Lett. 14(2), 783–787 (2014).
[Crossref] [PubMed]

Atwater, H. A.

S. Yokogawa, S. P. Burgos, and H. A. Atwater, “Plasmonic color filters for CMOS image sensor applications,” Nano Lett. 12(8), 4349–4354 (2012).
[Crossref] [PubMed]

Bai, B.

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
[Crossref]

Barnard, E. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Barnes, W. L.

N. Meinzer, W. L. Barnes, and I. R. Hooper, “Plasmonic meta-atoms and metasurfaces,” Nat. Photonics 8(12), 889–898 (2014).
[Crossref]

Bartoli, F. J.

B. Zeng, Y. Gao, and F. J. Bartoli, “Ultrathin nanostructured metals for highly transmissive plasmonic subtractive color filters,” Sci. Rep. 3, 2840 (2013).
[Crossref] [PubMed]

Beermann, J.

T. Søndergaard, S. M. Novikov, T. Holmgaard, R. L. Eriksen, J. Beermann, Z. Han, K. Pedersen, and S. I. Bozhevolnyi, “Plasmonic black gold by adiabatic nanofocusing and absorption of light in ultra-sharp convex grooves,” Nat. Commun. 3, 969 (2012).
[Crossref] [PubMed]

Belov, P.

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
[Crossref]

Bozhevolnyi, S. I.

A. S. Roberts, A. Pors, O. Albrektsen, and S. I. Bozhevolnyi, “Subwavelength plasmonic color printing protected for ambient use,” Nano Lett. 14(2), 783–787 (2014).
[Crossref] [PubMed]

T. Søndergaard and S. I. Bozhevolnyi, “Theoretical analysis of plasmonic black gold: Periodic arrays of ultra-sharp grooves,” New J. Phys. 15, 013034 (2013).

T. Søndergaard, S. M. Novikov, T. Holmgaard, R. L. Eriksen, J. Beermann, Z. Han, K. Pedersen, and S. I. Bozhevolnyi, “Plasmonic black gold by adiabatic nanofocusing and absorption of light in ultra-sharp convex grooves,” Nat. Commun. 3, 969 (2012).
[Crossref] [PubMed]

Brongersma, M. L.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Burgos, S. P.

S. Yokogawa, S. P. Burgos, and H. A. Atwater, “Plasmonic color filters for CMOS image sensor applications,” Nano Lett. 12(8), 4349–4354 (2012).
[Crossref] [PubMed]

Cai, W.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

W. Cai, U. K. Chettiar, H.-K. Yuan, V. C. de Silva, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Metamagnetics with rainbow colors,” Opt. Express 15(6), 3333–3341 (2007).
[Crossref] [PubMed]

Capasso, F.

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref] [PubMed]

Cheah, K.-W.

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
[Crossref]

Chen, Q.

Chen, S.

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
[Crossref]

Chen, X.

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
[Crossref]

Chen, Y.

Cheng, F.

Chettiar, U. K.

Choi, D. Y.

V. R. Shrestha, S. S. Lee, E. S. Kim, and D. Y. Choi, “Aluminum plasmonics based highly transmissive polarization-independent subtractive color filters exploiting a nanopatch array,” Nano Lett. 14(11), 6672–6678 (2014).
[Crossref] [PubMed]

Christiansen, A. B.

J. S. Clausen, E. Højlund-Nielsen, A. B. Christiansen, S. Yazdi, M. Grajower, H. Taha, U. Levy, A. Kristensen, and N. A. Mortensen, “Plasmonic metasurfaces for coloration of plastic consumer products,” Nano Lett. 14(8), 4499–4504 (2014).
[Crossref] [PubMed]

Clark, A. W.

Z. Li, A. W. Clark, and J. M. Cooper, “Dual color plasmonic pixels create a polarization controlled nano color palette,” ACS Nano 10(1), 492–498 (2016).
[Crossref] [PubMed]

Clausen, J. S.

J. S. Clausen, E. Højlund-Nielsen, A. B. Christiansen, S. Yazdi, M. Grajower, H. Taha, U. Levy, A. Kristensen, and N. A. Mortensen, “Plasmonic metasurfaces for coloration of plastic consumer products,” Nano Lett. 14(8), 4499–4504 (2014).
[Crossref] [PubMed]

Cooper, J. M.

Z. Li, A. W. Clark, and J. M. Cooper, “Dual color plasmonic pixels create a polarization controlled nano color palette,” ACS Nano 10(1), 492–498 (2016).
[Crossref] [PubMed]

Crozier, K. B.

H. Park, Y. Dan, K. Seo, Y. J. Yu, P. K. Duane, M. Wober, and K. B. Crozier, “Filter-free image sensor pixels comprising silicon nanowires with selective color absorption,” Nano Lett. 14(4), 1804–1809 (2014).
[Crossref] [PubMed]

T. Ellenbogen, K. Seo, and K. B. Crozier, “Chromatic plasmonic polarizers for active visible color filtering and polarimetry,” Nano Lett. 12(2), 1026–1031 (2012).
[Crossref] [PubMed]

K. Seo, M. Wober, P. Steinvurzel, E. Schonbrun, Y. Dan, T. Ellenbogen, and K. B. Crozier, “Multicolored vertical silicon nanowires,” Nano Lett. 11(4), 1851–1856 (2011).
[Crossref] [PubMed]

Cumming, D. R. S.

Czaplewski, D.

Dan, Y.

H. Park, Y. Dan, K. Seo, Y. J. Yu, P. K. Duane, M. Wober, and K. B. Crozier, “Filter-free image sensor pixels comprising silicon nanowires with selective color absorption,” Nano Lett. 14(4), 1804–1809 (2014).
[Crossref] [PubMed]

K. Seo, M. Wober, P. Steinvurzel, E. Schonbrun, Y. Dan, T. Ellenbogen, and K. B. Crozier, “Multicolored vertical silicon nanowires,” Nano Lett. 11(4), 1851–1856 (2011).
[Crossref] [PubMed]

Danner, A. J.

G. Si, Y. Zhao, J. Lv, M. Lu, F. Wang, H. Liu, N. Xiang, T. J. Huang, A. J. Danner, J. Teng, and Y. J. Liu, “Reflective plasmonic color filters based on lithographically patterned silver nanorod arrays,” Nanoscale 5(14), 6243–6248 (2013).
[Crossref] [PubMed]

de Silva, V. C.

Dinachali, S. S.

L. Wang, R. J. H. Ng, S. S. Dinachali, M. Jalali, Y. Yu, and J. K. W. Yang, “Large area plasmonic color palettes with expanded gamut using colloidal self-assembly,” ACS Photonics 3(4), 627–633 (2016).
[Crossref]

Do, J.

J. Do, M. Fedoruk, F. Jäckel, and J. Feldmann, “Two-color laser printing of individual gold nanorods,” Nano Lett. 13(9), 4164–4168 (2013).
[Crossref] [PubMed]

Drachev, V. P.

Duan, H.

K. Kumar, H. Duan, R. S. Hegde, S. C. W. Koh, J. N. Wei, and J. K. W. Yang, “Printing colour at the optical diffraction limit,” Nat. Nanotechnol. 7(9), 557–561 (2012).
[Crossref] [PubMed]

Duane, P. K.

H. Park, Y. Dan, K. Seo, Y. J. Yu, P. K. Duane, M. Wober, and K. B. Crozier, “Filter-free image sensor pixels comprising silicon nanowires with selective color absorption,” Nano Lett. 14(4), 1804–1809 (2014).
[Crossref] [PubMed]

Ebbesen, T. W.

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[Crossref] [PubMed]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
[Crossref] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 86, 1114–1117 (1998).

Ellenbogen, T.

T. Ellenbogen, K. Seo, and K. B. Crozier, “Chromatic plasmonic polarizers for active visible color filtering and polarimetry,” Nano Lett. 12(2), 1026–1031 (2012).
[Crossref] [PubMed]

K. Seo, M. Wober, P. Steinvurzel, E. Schonbrun, Y. Dan, T. Ellenbogen, and K. B. Crozier, “Multicolored vertical silicon nanowires,” Nano Lett. 11(4), 1851–1856 (2011).
[Crossref] [PubMed]

Eriksen, R. L.

T. Søndergaard, S. M. Novikov, T. Holmgaard, R. L. Eriksen, J. Beermann, Z. Han, K. Pedersen, and S. I. Bozhevolnyi, “Plasmonic black gold by adiabatic nanofocusing and absorption of light in ultra-sharp convex grooves,” Nat. Commun. 3, 969 (2012).
[Crossref] [PubMed]

Fan, L.

Z. Fang, Y.-R. Zhen, L. Fan, X. Zhu, and P. Nordlander, “Tunable wide-angle plasmonic perfect absorber at visible frequencies,” Phys. Rev. B 85(24), 1–7 (2012).
[Crossref]

Fang, Z.

Z. Fang, Y.-R. Zhen, L. Fan, X. Zhu, and P. Nordlander, “Tunable wide-angle plasmonic perfect absorber at visible frequencies,” Phys. Rev. B 85(24), 1–7 (2012).
[Crossref]

Fedoruk, M.

J. Do, M. Fedoruk, F. Jäckel, and J. Feldmann, “Two-color laser printing of individual gold nanorods,” Nano Lett. 13(9), 4164–4168 (2013).
[Crossref] [PubMed]

Fedotov, V. A.

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, and N. I. Zheludev, “Planar electromagnetic metamaterial with a fish scale structure,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(5), 056613 (2005).
[Crossref] [PubMed]

Feldmann, J.

J. Do, M. Fedoruk, F. Jäckel, and J. Feldmann, “Two-color laser printing of individual gold nanorods,” Nano Lett. 13(9), 4164–4168 (2013).
[Crossref] [PubMed]

Fujikawa, H.

D. Inoue, A. Miura, T. Nomura, H. Fujikawa, K. Sato, N. Ikeda, D. Tsuya, Y. Sugimoto, and Y. Koide, “Polarization independent visible color filter comprising an aluminum film with surface-plasmon enhanced transmission through a subwavelength array of holes,” Appl. Phys. Lett. 98(9), 093113 (2011).
[Crossref]

Gao, J.

Gao, Y.

B. Zeng, Y. Gao, and F. J. Bartoli, “Ultrathin nanostructured metals for highly transmissive plasmonic subtractive color filters,” Sci. Rep. 3, 2840 (2013).
[Crossref] [PubMed]

García-Vidal, F. J.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
[Crossref] [PubMed]

Genet, C.

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[Crossref] [PubMed]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 86, 1114–1117 (1998).

Goh, X. M.

R. J. H. Ng, X. M. Goh, and J. K. W. Yang, “All-metal nanostructured substrates as subtractive color reflectors with near-perfect absorptance,” Opt. Express 23(25), 32597–32605 (2015).
[Crossref] [PubMed]

S. J. Tan, L. Zhang, D. Zhu, X. M. Goh, Y. M. Wang, K. Kumar, C. W. Qiu, and J. K. W. Yang, “Plasmonic color palettes for photorealistic printing with aluminum nanostructures,” Nano Lett. 14(7), 4023–4029 (2014).
[Crossref] [PubMed]

X. M. Goh, Y. Zheng, S. J. Tan, L. Zhang, K. Kumar, C.-W. Qiu, and J. K. W. Yang, “Three-dimensional plasmonic stereoscopic prints in full colour,” Nat. Commun. 5, 5361 (2014).
[Crossref] [PubMed]

Grajower, M.

J. S. Clausen, E. Højlund-Nielsen, A. B. Christiansen, S. Yazdi, M. Grajower, H. Taha, U. Levy, A. Kristensen, and N. A. Mortensen, “Plasmonic metasurfaces for coloration of plastic consumer products,” Nano Lett. 14(8), 4499–4504 (2014).
[Crossref] [PubMed]

Gunnarsson, L.

C. L. Haynes, A. D. McFarland, L. L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Käll, “Nanoparticle optics: The importance of radiative dipole coupling in two-dimensional nanoparticle arrays,” J. Phys. Chem. B 107(30), 7337–7342 (2003).
[Crossref]

Guo, L. J.

Y.-K. R. Wu, A. E. Hollowell, C. Zhang, and L. J. Guo, “Angle-insensitive structural colours based on metallic nanocavities and coloured pixels beyond the diffraction limit,” Sci. Rep. 3, 1194 (2013).
[Crossref] [PubMed]

H. J. Park, T. Xu, J. Y. Lee, A. Ledbetter, and L. J. Guo, “Photonic color filters integrated with organic solar cells for energy harvesting,” ACS Nano 5(9), 7055–7060 (2011).
[Crossref] [PubMed]

T. Xu, H. Shi, Y. K. Wu, A. F. Kaplan, J. G. Ok, and L. J. Guo, “Structural colors: From plasmonic to carbon nanostructures,” Small 7(22), 3128–3136 (2011).
[Crossref] [PubMed]

T. Xu, Y.-K. Wu, X. Luo, and L. J. Guo, “Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging,” Nat. Commun. 1(5), 59 (2010).
[Crossref] [PubMed]

Han, Z.

T. Søndergaard, S. M. Novikov, T. Holmgaard, R. L. Eriksen, J. Beermann, Z. Han, K. Pedersen, and S. I. Bozhevolnyi, “Plasmonic black gold by adiabatic nanofocusing and absorption of light in ultra-sharp convex grooves,” Nat. Commun. 3, 969 (2012).
[Crossref] [PubMed]

Haynes, C. L.

C. L. Haynes, A. D. McFarland, L. L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Käll, “Nanoparticle optics: The importance of radiative dipole coupling in two-dimensional nanoparticle arrays,” J. Phys. Chem. B 107(30), 7337–7342 (2003).
[Crossref]

Hegde, R. S.

K. Kumar, H. Duan, R. S. Hegde, S. C. W. Koh, J. N. Wei, and J. K. W. Yang, “Printing colour at the optical diffraction limit,” Nat. Nanotechnol. 7(9), 557–561 (2012).
[Crossref] [PubMed]

Højlund-Nielsen, E.

J. S. Clausen, E. Højlund-Nielsen, A. B. Christiansen, S. Yazdi, M. Grajower, H. Taha, U. Levy, A. Kristensen, and N. A. Mortensen, “Plasmonic metasurfaces for coloration of plastic consumer products,” Nano Lett. 14(8), 4499–4504 (2014).
[Crossref] [PubMed]

Hollowell, A. E.

Y.-K. R. Wu, A. E. Hollowell, C. Zhang, and L. J. Guo, “Angle-insensitive structural colours based on metallic nanocavities and coloured pixels beyond the diffraction limit,” Sci. Rep. 3, 1194 (2013).
[Crossref] [PubMed]

Holmgaard, T.

T. Søndergaard, S. M. Novikov, T. Holmgaard, R. L. Eriksen, J. Beermann, Z. Han, K. Pedersen, and S. I. Bozhevolnyi, “Plasmonic black gold by adiabatic nanofocusing and absorption of light in ultra-sharp convex grooves,” Nat. Commun. 3, 969 (2012).
[Crossref] [PubMed]

Hooper, I. R.

N. Meinzer, W. L. Barnes, and I. R. Hooper, “Plasmonic meta-atoms and metasurfaces,” Nat. Photonics 8(12), 889–898 (2014).
[Crossref]

Huang, L.

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
[Crossref]

Huang, T. J.

G. Si, Y. Zhao, J. Lv, M. Lu, F. Wang, H. Liu, N. Xiang, T. J. Huang, A. J. Danner, J. Teng, and Y. J. Liu, “Reflective plasmonic color filters based on lithographically patterned silver nanorod arrays,” Nanoscale 5(14), 6243–6248 (2013).
[Crossref] [PubMed]

Ikeda, N.

D. Inoue, A. Miura, T. Nomura, H. Fujikawa, K. Sato, N. Ikeda, D. Tsuya, Y. Sugimoto, and Y. Koide, “Polarization independent visible color filter comprising an aluminum film with surface-plasmon enhanced transmission through a subwavelength array of holes,” Appl. Phys. Lett. 98(9), 093113 (2011).
[Crossref]

Inoue, D.

D. Inoue, A. Miura, T. Nomura, H. Fujikawa, K. Sato, N. Ikeda, D. Tsuya, Y. Sugimoto, and Y. Koide, “Polarization independent visible color filter comprising an aluminum film with surface-plasmon enhanced transmission through a subwavelength array of holes,” Appl. Phys. Lett. 98(9), 093113 (2011).
[Crossref]

Iorsh, I.

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
[Crossref]

Jäckel, F.

J. Do, M. Fedoruk, F. Jäckel, and J. Feldmann, “Two-color laser printing of individual gold nanorods,” Nano Lett. 13(9), 4164–4168 (2013).
[Crossref] [PubMed]

Jalali, M.

L. Wang, R. J. H. Ng, S. S. Dinachali, M. Jalali, Y. Yu, and J. K. W. Yang, “Large area plasmonic color palettes with expanded gamut using colloidal self-assembly,” ACS Photonics 3(4), 627–633 (2016).
[Crossref]

Jay Guo, L.

A. F. Kaplan, T. Xu, and L. Jay Guo, “High efficiency resonance-based spectrum filters with tunable transmission bandwidth fabricated using nanoimprint lithography,” Appl. Phys. Lett. 99(14), 143111 (2011).
[Crossref]

Jin, G.

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
[Crossref]

Jun, Y. C.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Käll, M.

C. L. Haynes, A. D. McFarland, L. L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Käll, “Nanoparticle optics: The importance of radiative dipole coupling in two-dimensional nanoparticle arrays,” J. Phys. Chem. B 107(30), 7337–7342 (2003).
[Crossref]

Kaplan, A. F.

A. F. Kaplan, T. Xu, and L. Jay Guo, “High efficiency resonance-based spectrum filters with tunable transmission bandwidth fabricated using nanoimprint lithography,” Appl. Phys. Lett. 99(14), 143111 (2011).
[Crossref]

T. Xu, H. Shi, Y. K. Wu, A. F. Kaplan, J. G. Ok, and L. J. Guo, “Structural colors: From plasmonic to carbon nanostructures,” Small 7(22), 3128–3136 (2011).
[Crossref] [PubMed]

Kasemo, B.

C. L. Haynes, A. D. McFarland, L. L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Käll, “Nanoparticle optics: The importance of radiative dipole coupling in two-dimensional nanoparticle arrays,” J. Phys. Chem. B 107(30), 7337–7342 (2003).
[Crossref]

Khaleque, T.

Kildishev, A. V.

Kim, E. S.

V. R. Shrestha, S. S. Lee, E. S. Kim, and D. Y. Choi, “Aluminum plasmonics based highly transmissive polarization-independent subtractive color filters exploiting a nanopatch array,” Nano Lett. 14(11), 6672–6678 (2014).
[Crossref] [PubMed]

Kivshar, Y.

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
[Crossref]

Koh, S. C. W.

K. Kumar, H. Duan, R. S. Hegde, S. C. W. Koh, J. N. Wei, and J. K. W. Yang, “Printing colour at the optical diffraction limit,” Nat. Nanotechnol. 7(9), 557–561 (2012).
[Crossref] [PubMed]

Koide, Y.

D. Inoue, A. Miura, T. Nomura, H. Fujikawa, K. Sato, N. Ikeda, D. Tsuya, Y. Sugimoto, and Y. Koide, “Polarization independent visible color filter comprising an aluminum film with surface-plasmon enhanced transmission through a subwavelength array of holes,” Appl. Phys. Lett. 98(9), 093113 (2011).
[Crossref]

Kristensen, A.

J. S. Clausen, E. Højlund-Nielsen, A. B. Christiansen, S. Yazdi, M. Grajower, H. Taha, U. Levy, A. Kristensen, and N. A. Mortensen, “Plasmonic metasurfaces for coloration of plastic consumer products,” Nano Lett. 14(8), 4499–4504 (2014).
[Crossref] [PubMed]

Kumar, K.

X. M. Goh, Y. Zheng, S. J. Tan, L. Zhang, K. Kumar, C.-W. Qiu, and J. K. W. Yang, “Three-dimensional plasmonic stereoscopic prints in full colour,” Nat. Commun. 5, 5361 (2014).
[Crossref] [PubMed]

S. J. Tan, L. Zhang, D. Zhu, X. M. Goh, Y. M. Wang, K. Kumar, C. W. Qiu, and J. K. W. Yang, “Plasmonic color palettes for photorealistic printing with aluminum nanostructures,” Nano Lett. 14(7), 4023–4029 (2014).
[Crossref] [PubMed]

K. Kumar, H. Duan, R. S. Hegde, S. C. W. Koh, J. N. Wei, and J. K. W. Yang, “Printing colour at the optical diffraction limit,” Nat. Nanotechnol. 7(9), 557–561 (2012).
[Crossref] [PubMed]

Lalanne, P.

H. Liu and P. Lalanne, “Microscopic theory of the extraordinary optical transmission,” Nature 452(7188), 728–731 (2008).
[Crossref] [PubMed]

Ledbetter, A.

H. J. Park, T. Xu, J. Y. Lee, A. Ledbetter, and L. J. Guo, “Photonic color filters integrated with organic solar cells for energy harvesting,” ACS Nano 5(9), 7055–7060 (2011).
[Crossref] [PubMed]

Lee, J. Y.

H. J. Park, T. Xu, J. Y. Lee, A. Ledbetter, and L. J. Guo, “Photonic color filters integrated with organic solar cells for energy harvesting,” ACS Nano 5(9), 7055–7060 (2011).
[Crossref] [PubMed]

Lee, S. S.

V. R. Shrestha, S. S. Lee, E. S. Kim, and D. Y. Choi, “Aluminum plasmonics based highly transmissive polarization-independent subtractive color filters exploiting a nanopatch array,” Nano Lett. 14(11), 6672–6678 (2014).
[Crossref] [PubMed]

Levy, U.

J. S. Clausen, E. Højlund-Nielsen, A. B. Christiansen, S. Yazdi, M. Grajower, H. Taha, U. Levy, A. Kristensen, and N. A. Mortensen, “Plasmonic metasurfaces for coloration of plastic consumer products,” Nano Lett. 14(8), 4499–4504 (2014).
[Crossref] [PubMed]

Lezec, H. J.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
[Crossref] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 86, 1114–1117 (1998).

Li, J.

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
[Crossref]

Li, Z.

Z. Li, A. W. Clark, and J. M. Cooper, “Dual color plasmonic pixels create a polarization controlled nano color palette,” ACS Nano 10(1), 492–498 (2016).
[Crossref] [PubMed]

Liu, H.

G. Si, Y. Zhao, J. Lv, M. Lu, F. Wang, H. Liu, N. Xiang, T. J. Huang, A. J. Danner, J. Teng, and Y. J. Liu, “Reflective plasmonic color filters based on lithographically patterned silver nanorod arrays,” Nanoscale 5(14), 6243–6248 (2013).
[Crossref] [PubMed]

H. Liu and P. Lalanne, “Microscopic theory of the extraordinary optical transmission,” Nature 452(7188), 728–731 (2008).
[Crossref] [PubMed]

Liu, Y. J.

G. Si, Y. Zhao, J. Lv, M. Lu, F. Wang, H. Liu, N. Xiang, T. J. Huang, A. J. Danner, J. Teng, and Y. J. Liu, “Reflective plasmonic color filters based on lithographically patterned silver nanorod arrays,” Nanoscale 5(14), 6243–6248 (2013).
[Crossref] [PubMed]

Lu, M.

G. Si, Y. Zhao, J. Lv, M. Lu, F. Wang, H. Liu, N. Xiang, T. J. Huang, A. J. Danner, J. Teng, and Y. J. Liu, “Reflective plasmonic color filters based on lithographically patterned silver nanorod arrays,” Nanoscale 5(14), 6243–6248 (2013).
[Crossref] [PubMed]

Luk, T. S.

F. Cheng, J. Gao, T. S. Luk, and X. Yang, “Structural color printing based on plasmonic metasurfaces of perfect light absorption,” Sci. Rep. 5, 11045 (2015).
[Crossref] [PubMed]

Luo, X.

T. Xu, Y.-K. Wu, X. Luo, and L. J. Guo, “Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging,” Nat. Commun. 1(5), 59 (2010).
[Crossref] [PubMed]

Lv, J.

G. Si, Y. Zhao, J. Lv, M. Lu, F. Wang, H. Liu, N. Xiang, T. J. Huang, A. J. Danner, J. Teng, and Y. J. Liu, “Reflective plasmonic color filters based on lithographically patterned silver nanorod arrays,” Nanoscale 5(14), 6243–6248 (2013).
[Crossref] [PubMed]

Macdonald, K. F.

Magnusson, R.

Markel, V. A.

V. A. Markel and A. K. Sarychev, “Propagation of surface plasmons in ordered and disordered chains of metal nanospheres,” Phys. Rev. B 75(8), 085426 (2007).
[Crossref]

Martín-Moreno, L.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
[Crossref] [PubMed]

McFarland, A. D.

C. L. Haynes, A. D. McFarland, L. L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Käll, “Nanoparticle optics: The importance of radiative dipole coupling in two-dimensional nanoparticle arrays,” J. Phys. Chem. B 107(30), 7337–7342 (2003).
[Crossref]

Meinzer, N.

N. Meinzer, W. L. Barnes, and I. R. Hooper, “Plasmonic meta-atoms and metasurfaces,” Nat. Photonics 8(12), 889–898 (2014).
[Crossref]

Miura, A.

D. Inoue, A. Miura, T. Nomura, H. Fujikawa, K. Sato, N. Ikeda, D. Tsuya, Y. Sugimoto, and Y. Koide, “Polarization independent visible color filter comprising an aluminum film with surface-plasmon enhanced transmission through a subwavelength array of holes,” Appl. Phys. Lett. 98(9), 093113 (2011).
[Crossref]

Mladyonov, P. L.

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, and N. I. Zheludev, “Planar electromagnetic metamaterial with a fish scale structure,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(5), 056613 (2005).
[Crossref] [PubMed]

Mortensen, N. A.

J. S. Clausen, E. Højlund-Nielsen, A. B. Christiansen, S. Yazdi, M. Grajower, H. Taha, U. Levy, A. Kristensen, and N. A. Mortensen, “Plasmonic metasurfaces for coloration of plastic consumer products,” Nano Lett. 14(8), 4499–4504 (2014).
[Crossref] [PubMed]

Mühlenbernd, H.

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
[Crossref]

Ng, R. J. H.

L. Wang, R. J. H. Ng, S. S. Dinachali, M. Jalali, Y. Yu, and J. K. W. Yang, “Large area plasmonic color palettes with expanded gamut using colloidal self-assembly,” ACS Photonics 3(4), 627–633 (2016).
[Crossref]

R. J. H. Ng, X. M. Goh, and J. K. W. Yang, “All-metal nanostructured substrates as subtractive color reflectors with near-perfect absorptance,” Opt. Express 23(25), 32597–32605 (2015).
[Crossref] [PubMed]

Nomura, T.

D. Inoue, A. Miura, T. Nomura, H. Fujikawa, K. Sato, N. Ikeda, D. Tsuya, Y. Sugimoto, and Y. Koide, “Polarization independent visible color filter comprising an aluminum film with surface-plasmon enhanced transmission through a subwavelength array of holes,” Appl. Phys. Lett. 98(9), 093113 (2011).
[Crossref]

Nordlander, P.

Z. Fang, Y.-R. Zhen, L. Fan, X. Zhu, and P. Nordlander, “Tunable wide-angle plasmonic perfect absorber at visible frequencies,” Phys. Rev. B 85(24), 1–7 (2012).
[Crossref]

Novikov, S. M.

T. Søndergaard, S. M. Novikov, T. Holmgaard, R. L. Eriksen, J. Beermann, Z. Han, K. Pedersen, and S. I. Bozhevolnyi, “Plasmonic black gold by adiabatic nanofocusing and absorption of light in ultra-sharp convex grooves,” Nat. Commun. 3, 969 (2012).
[Crossref] [PubMed]

Ok, J. G.

T. Xu, H. Shi, Y. K. Wu, A. F. Kaplan, J. G. Ok, and L. J. Guo, “Structural colors: From plasmonic to carbon nanostructures,” Small 7(22), 3128–3136 (2011).
[Crossref] [PubMed]

Ou, J.-Y.

Papasimakis, N.

Park, H.

H. Park, Y. Dan, K. Seo, Y. J. Yu, P. K. Duane, M. Wober, and K. B. Crozier, “Filter-free image sensor pixels comprising silicon nanowires with selective color absorption,” Nano Lett. 14(4), 1804–1809 (2014).
[Crossref] [PubMed]

Park, H. J.

H. J. Park, T. Xu, J. Y. Lee, A. Ledbetter, and L. J. Guo, “Photonic color filters integrated with organic solar cells for energy harvesting,” ACS Nano 5(9), 7055–7060 (2011).
[Crossref] [PubMed]

Pedersen, K.

T. Søndergaard, S. M. Novikov, T. Holmgaard, R. L. Eriksen, J. Beermann, Z. Han, K. Pedersen, and S. I. Bozhevolnyi, “Plasmonic black gold by adiabatic nanofocusing and absorption of light in ultra-sharp convex grooves,” Nat. Commun. 3, 969 (2012).
[Crossref] [PubMed]

Pellerin, K. M.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
[Crossref] [PubMed]

Pendry, J. B.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
[Crossref] [PubMed]

Poddubny, A.

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
[Crossref]

Pors, A.

A. S. Roberts, A. Pors, O. Albrektsen, and S. I. Bozhevolnyi, “Subwavelength plasmonic color printing protected for ambient use,” Nano Lett. 14(2), 783–787 (2014).
[Crossref] [PubMed]

Prikulis, J.

C. L. Haynes, A. D. McFarland, L. L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Käll, “Nanoparticle optics: The importance of radiative dipole coupling in two-dimensional nanoparticle arrays,” J. Phys. Chem. B 107(30), 7337–7342 (2003).
[Crossref]

Prosvirnin, S. L.

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, and N. I. Zheludev, “Planar electromagnetic metamaterial with a fish scale structure,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(5), 056613 (2005).
[Crossref] [PubMed]

Qiu, C. W.

S. J. Tan, L. Zhang, D. Zhu, X. M. Goh, Y. M. Wang, K. Kumar, C. W. Qiu, and J. K. W. Yang, “Plasmonic color palettes for photorealistic printing with aluminum nanostructures,” Nano Lett. 14(7), 4023–4029 (2014).
[Crossref] [PubMed]

Qiu, C.-W.

X. M. Goh, Y. Zheng, S. J. Tan, L. Zhang, K. Kumar, C.-W. Qiu, and J. K. W. Yang, “Three-dimensional plasmonic stereoscopic prints in full colour,” Nat. Commun. 5, 5361 (2014).
[Crossref] [PubMed]

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
[Crossref]

Roberts, A. S.

A. S. Roberts, A. Pors, O. Albrektsen, and S. I. Bozhevolnyi, “Subwavelength plasmonic color printing protected for ambient use,” Nano Lett. 14(2), 783–787 (2014).
[Crossref] [PubMed]

Rosenmann, D.

Saeidi, C.

Sarychev, A. K.

V. A. Markel and A. K. Sarychev, “Propagation of surface plasmons in ordered and disordered chains of metal nanospheres,” Phys. Rev. B 75(8), 085426 (2007).
[Crossref]

Sato, K.

D. Inoue, A. Miura, T. Nomura, H. Fujikawa, K. Sato, N. Ikeda, D. Tsuya, Y. Sugimoto, and Y. Koide, “Polarization independent visible color filter comprising an aluminum film with surface-plasmon enhanced transmission through a subwavelength array of holes,” Appl. Phys. Lett. 98(9), 093113 (2011).
[Crossref]

Schatz, G. C.

S. Zou and G. C. Schatz, “Theoretical studies of plasmon resonances in one-dimensional nanoparticle chains: narrow lineshapes with tunable widths,” Nanotechnology 17(11), 2813–2820 (2006).
[Crossref]

C. L. Haynes, A. D. McFarland, L. L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Käll, “Nanoparticle optics: The importance of radiative dipole coupling in two-dimensional nanoparticle arrays,” J. Phys. Chem. B 107(30), 7337–7342 (2003).
[Crossref]

Schonbrun, E.

K. Seo, M. Wober, P. Steinvurzel, E. Schonbrun, Y. Dan, T. Ellenbogen, and K. B. Crozier, “Multicolored vertical silicon nanowires,” Nano Lett. 11(4), 1851–1856 (2011).
[Crossref] [PubMed]

Schuller, J. A.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Seo, K.

H. Park, Y. Dan, K. Seo, Y. J. Yu, P. K. Duane, M. Wober, and K. B. Crozier, “Filter-free image sensor pixels comprising silicon nanowires with selective color absorption,” Nano Lett. 14(4), 1804–1809 (2014).
[Crossref] [PubMed]

T. Ellenbogen, K. Seo, and K. B. Crozier, “Chromatic plasmonic polarizers for active visible color filtering and polarimetry,” Nano Lett. 12(2), 1026–1031 (2012).
[Crossref] [PubMed]

K. Seo, M. Wober, P. Steinvurzel, E. Schonbrun, Y. Dan, T. Ellenbogen, and K. B. Crozier, “Multicolored vertical silicon nanowires,” Nano Lett. 11(4), 1851–1856 (2011).
[Crossref] [PubMed]

Shalaev, V. M.

Shi, H.

T. Xu, H. Shi, Y. K. Wu, A. F. Kaplan, J. G. Ok, and L. J. Guo, “Structural colors: From plasmonic to carbon nanostructures,” Small 7(22), 3128–3136 (2011).
[Crossref] [PubMed]

Shrestha, V. R.

V. R. Shrestha, S. S. Lee, E. S. Kim, and D. Y. Choi, “Aluminum plasmonics based highly transmissive polarization-independent subtractive color filters exploiting a nanopatch array,” Nano Lett. 14(11), 6672–6678 (2014).
[Crossref] [PubMed]

Si, G.

G. Si, Y. Zhao, J. Lv, M. Lu, F. Wang, H. Liu, N. Xiang, T. J. Huang, A. J. Danner, J. Teng, and Y. J. Liu, “Reflective plasmonic color filters based on lithographically patterned silver nanorod arrays,” Nanoscale 5(14), 6243–6248 (2013).
[Crossref] [PubMed]

Søndergaard, T.

T. Søndergaard and S. I. Bozhevolnyi, “Theoretical analysis of plasmonic black gold: Periodic arrays of ultra-sharp grooves,” New J. Phys. 15, 013034 (2013).

T. Søndergaard, S. M. Novikov, T. Holmgaard, R. L. Eriksen, J. Beermann, Z. Han, K. Pedersen, and S. I. Bozhevolnyi, “Plasmonic black gold by adiabatic nanofocusing and absorption of light in ultra-sharp convex grooves,” Nat. Commun. 3, 969 (2012).
[Crossref] [PubMed]

Stan, L.

Steinvurzel, P.

K. Seo, M. Wober, P. Steinvurzel, E. Schonbrun, Y. Dan, T. Ellenbogen, and K. B. Crozier, “Multicolored vertical silicon nanowires,” Nano Lett. 11(4), 1851–1856 (2011).
[Crossref] [PubMed]

Sugimoto, Y.

D. Inoue, A. Miura, T. Nomura, H. Fujikawa, K. Sato, N. Ikeda, D. Tsuya, Y. Sugimoto, and Y. Koide, “Polarization independent visible color filter comprising an aluminum film with surface-plasmon enhanced transmission through a subwavelength array of holes,” Appl. Phys. Lett. 98(9), 093113 (2011).
[Crossref]

Taha, H.

J. S. Clausen, E. Højlund-Nielsen, A. B. Christiansen, S. Yazdi, M. Grajower, H. Taha, U. Levy, A. Kristensen, and N. A. Mortensen, “Plasmonic metasurfaces for coloration of plastic consumer products,” Nano Lett. 14(8), 4499–4504 (2014).
[Crossref] [PubMed]

Tan, Q.

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
[Crossref]

Tan, S. J.

S. J. Tan, L. Zhang, D. Zhu, X. M. Goh, Y. M. Wang, K. Kumar, C. W. Qiu, and J. K. W. Yang, “Plasmonic color palettes for photorealistic printing with aluminum nanostructures,” Nano Lett. 14(7), 4023–4029 (2014).
[Crossref] [PubMed]

X. M. Goh, Y. Zheng, S. J. Tan, L. Zhang, K. Kumar, C.-W. Qiu, and J. K. W. Yang, “Three-dimensional plasmonic stereoscopic prints in full colour,” Nat. Commun. 5, 5361 (2014).
[Crossref] [PubMed]

Teng, J.

G. Si, Y. Zhao, J. Lv, M. Lu, F. Wang, H. Liu, N. Xiang, T. J. Huang, A. J. Danner, J. Teng, and Y. J. Liu, “Reflective plasmonic color filters based on lithographically patterned silver nanorod arrays,” Nanoscale 5(14), 6243–6248 (2013).
[Crossref] [PubMed]

Thio, T.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
[Crossref] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 86, 1114–1117 (1998).

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 86, 1114–1117 (1998).

Tsuya, D.

D. Inoue, A. Miura, T. Nomura, H. Fujikawa, K. Sato, N. Ikeda, D. Tsuya, Y. Sugimoto, and Y. Koide, “Polarization independent visible color filter comprising an aluminum film with surface-plasmon enhanced transmission through a subwavelength array of holes,” Appl. Phys. Lett. 98(9), 093113 (2011).
[Crossref]

Uddin, M. J.

van der Weide, D.

Van Duyne, R. P.

C. L. Haynes, A. D. McFarland, L. L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Käll, “Nanoparticle optics: The importance of radiative dipole coupling in two-dimensional nanoparticle arrays,” J. Phys. Chem. B 107(30), 7337–7342 (2003).
[Crossref]

Wang, F.

G. Si, Y. Zhao, J. Lv, M. Lu, F. Wang, H. Liu, N. Xiang, T. J. Huang, A. J. Danner, J. Teng, and Y. J. Liu, “Reflective plasmonic color filters based on lithographically patterned silver nanorod arrays,” Nanoscale 5(14), 6243–6248 (2013).
[Crossref] [PubMed]

Wang, L.

L. Wang, R. J. H. Ng, S. S. Dinachali, M. Jalali, Y. Yu, and J. K. W. Yang, “Large area plasmonic color palettes with expanded gamut using colloidal self-assembly,” ACS Photonics 3(4), 627–633 (2016).
[Crossref]

Wang, Y. M.

S. J. Tan, L. Zhang, D. Zhu, X. M. Goh, Y. M. Wang, K. Kumar, C. W. Qiu, and J. K. W. Yang, “Plasmonic color palettes for photorealistic printing with aluminum nanostructures,” Nano Lett. 14(7), 4023–4029 (2014).
[Crossref] [PubMed]

Wei, J. N.

K. Kumar, H. Duan, R. S. Hegde, S. C. W. Koh, J. N. Wei, and J. K. W. Yang, “Printing colour at the optical diffraction limit,” Nat. Nanotechnol. 7(9), 557–561 (2012).
[Crossref] [PubMed]

White, J. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Wober, M.

H. Park, Y. Dan, K. Seo, Y. J. Yu, P. K. Duane, M. Wober, and K. B. Crozier, “Filter-free image sensor pixels comprising silicon nanowires with selective color absorption,” Nano Lett. 14(4), 1804–1809 (2014).
[Crossref] [PubMed]

K. Seo, M. Wober, P. Steinvurzel, E. Schonbrun, Y. Dan, T. Ellenbogen, and K. B. Crozier, “Multicolored vertical silicon nanowires,” Nano Lett. 11(4), 1851–1856 (2011).
[Crossref] [PubMed]

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 86, 1114–1117 (1998).

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 86, 1114–1117 (1998).

Wu, Y. K.

T. Xu, H. Shi, Y. K. Wu, A. F. Kaplan, J. G. Ok, and L. J. Guo, “Structural colors: From plasmonic to carbon nanostructures,” Small 7(22), 3128–3136 (2011).
[Crossref] [PubMed]

Wu, Y.-K.

T. Xu, Y.-K. Wu, X. Luo, and L. J. Guo, “Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging,” Nat. Commun. 1(5), 59 (2010).
[Crossref] [PubMed]

Wu, Y.-K. R.

Y.-K. R. Wu, A. E. Hollowell, C. Zhang, and L. J. Guo, “Angle-insensitive structural colours based on metallic nanocavities and coloured pixels beyond the diffraction limit,” Sci. Rep. 3, 1194 (2013).
[Crossref] [PubMed]

Xiang, N.

G. Si, Y. Zhao, J. Lv, M. Lu, F. Wang, H. Liu, N. Xiang, T. J. Huang, A. J. Danner, J. Teng, and Y. J. Liu, “Reflective plasmonic color filters based on lithographically patterned silver nanorod arrays,” Nanoscale 5(14), 6243–6248 (2013).
[Crossref] [PubMed]

Xu, T.

H. J. Park, T. Xu, J. Y. Lee, A. Ledbetter, and L. J. Guo, “Photonic color filters integrated with organic solar cells for energy harvesting,” ACS Nano 5(9), 7055–7060 (2011).
[Crossref] [PubMed]

A. F. Kaplan, T. Xu, and L. Jay Guo, “High efficiency resonance-based spectrum filters with tunable transmission bandwidth fabricated using nanoimprint lithography,” Appl. Phys. Lett. 99(14), 143111 (2011).
[Crossref]

T. Xu, H. Shi, Y. K. Wu, A. F. Kaplan, J. G. Ok, and L. J. Guo, “Structural colors: From plasmonic to carbon nanostructures,” Small 7(22), 3128–3136 (2011).
[Crossref] [PubMed]

T. Xu, Y.-K. Wu, X. Luo, and L. J. Guo, “Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging,” Nat. Commun. 1(5), 59 (2010).
[Crossref] [PubMed]

Yang, J. K. W.

L. Wang, R. J. H. Ng, S. S. Dinachali, M. Jalali, Y. Yu, and J. K. W. Yang, “Large area plasmonic color palettes with expanded gamut using colloidal self-assembly,” ACS Photonics 3(4), 627–633 (2016).
[Crossref]

R. J. H. Ng, X. M. Goh, and J. K. W. Yang, “All-metal nanostructured substrates as subtractive color reflectors with near-perfect absorptance,” Opt. Express 23(25), 32597–32605 (2015).
[Crossref] [PubMed]

X. M. Goh, Y. Zheng, S. J. Tan, L. Zhang, K. Kumar, C.-W. Qiu, and J. K. W. Yang, “Three-dimensional plasmonic stereoscopic prints in full colour,” Nat. Commun. 5, 5361 (2014).
[Crossref] [PubMed]

S. J. Tan, L. Zhang, D. Zhu, X. M. Goh, Y. M. Wang, K. Kumar, C. W. Qiu, and J. K. W. Yang, “Plasmonic color palettes for photorealistic printing with aluminum nanostructures,” Nano Lett. 14(7), 4023–4029 (2014).
[Crossref] [PubMed]

K. Kumar, H. Duan, R. S. Hegde, S. C. W. Koh, J. N. Wei, and J. K. W. Yang, “Printing colour at the optical diffraction limit,” Nat. Nanotechnol. 7(9), 557–561 (2012).
[Crossref] [PubMed]

Yang, X.

Yazdi, S.

J. S. Clausen, E. Højlund-Nielsen, A. B. Christiansen, S. Yazdi, M. Grajower, H. Taha, U. Levy, A. Kristensen, and N. A. Mortensen, “Plasmonic metasurfaces for coloration of plastic consumer products,” Nano Lett. 14(8), 4499–4504 (2014).
[Crossref] [PubMed]

Yokogawa, S.

S. Yokogawa, S. P. Burgos, and H. A. Atwater, “Plasmonic color filters for CMOS image sensor applications,” Nano Lett. 12(8), 4349–4354 (2012).
[Crossref] [PubMed]

Yu, N.

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref] [PubMed]

Yu, Y.

L. Wang, R. J. H. Ng, S. S. Dinachali, M. Jalali, Y. Yu, and J. K. W. Yang, “Large area plasmonic color palettes with expanded gamut using colloidal self-assembly,” ACS Photonics 3(4), 627–633 (2016).
[Crossref]

Yu, Y. J.

H. Park, Y. Dan, K. Seo, Y. J. Yu, P. K. Duane, M. Wober, and K. B. Crozier, “Filter-free image sensor pixels comprising silicon nanowires with selective color absorption,” Nano Lett. 14(4), 1804–1809 (2014).
[Crossref] [PubMed]

Yuan, H.-K.

Zeng, B.

B. Zeng, Y. Gao, and F. J. Bartoli, “Ultrathin nanostructured metals for highly transmissive plasmonic subtractive color filters,” Sci. Rep. 3, 2840 (2013).
[Crossref] [PubMed]

Zentgraf, T.

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
[Crossref]

Zhang, C.

Y.-K. R. Wu, A. E. Hollowell, C. Zhang, and L. J. Guo, “Angle-insensitive structural colours based on metallic nanocavities and coloured pixels beyond the diffraction limit,” Sci. Rep. 3, 1194 (2013).
[Crossref] [PubMed]

Zhang, H.

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
[Crossref]

Zhang, J.

Zhang, L.

S. J. Tan, L. Zhang, D. Zhu, X. M. Goh, Y. M. Wang, K. Kumar, C. W. Qiu, and J. K. W. Yang, “Plasmonic color palettes for photorealistic printing with aluminum nanostructures,” Nano Lett. 14(7), 4023–4029 (2014).
[Crossref] [PubMed]

X. M. Goh, Y. Zheng, S. J. Tan, L. Zhang, K. Kumar, C.-W. Qiu, and J. K. W. Yang, “Three-dimensional plasmonic stereoscopic prints in full colour,” Nat. Commun. 5, 5361 (2014).
[Crossref] [PubMed]

Zhang, S.

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
[Crossref]

Zhao, L. L.

C. L. Haynes, A. D. McFarland, L. L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Käll, “Nanoparticle optics: The importance of radiative dipole coupling in two-dimensional nanoparticle arrays,” J. Phys. Chem. B 107(30), 7337–7342 (2003).
[Crossref]

Zhao, Y.

G. Si, Y. Zhao, J. Lv, M. Lu, F. Wang, H. Liu, N. Xiang, T. J. Huang, A. J. Danner, J. Teng, and Y. J. Liu, “Reflective plasmonic color filters based on lithographically patterned silver nanorod arrays,” Nanoscale 5(14), 6243–6248 (2013).
[Crossref] [PubMed]

Zheludev, N. I.

J. Zhang, J.-Y. Ou, N. Papasimakis, Y. Chen, K. F. Macdonald, and N. I. Zheludev, “Continuous metal plasmonic frequency selective surfaces,” Opt. Express 19(23), 23279–23285 (2011).
[Crossref] [PubMed]

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, and N. I. Zheludev, “Planar electromagnetic metamaterial with a fish scale structure,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(5), 056613 (2005).
[Crossref] [PubMed]

Zhen, Y.-R.

Z. Fang, Y.-R. Zhen, L. Fan, X. Zhu, and P. Nordlander, “Tunable wide-angle plasmonic perfect absorber at visible frequencies,” Phys. Rev. B 85(24), 1–7 (2012).
[Crossref]

Zheng, Y.

X. M. Goh, Y. Zheng, S. J. Tan, L. Zhang, K. Kumar, C.-W. Qiu, and J. K. W. Yang, “Three-dimensional plasmonic stereoscopic prints in full colour,” Nat. Commun. 5, 5361 (2014).
[Crossref] [PubMed]

Zhu, D.

S. J. Tan, L. Zhang, D. Zhu, X. M. Goh, Y. M. Wang, K. Kumar, C. W. Qiu, and J. K. W. Yang, “Plasmonic color palettes for photorealistic printing with aluminum nanostructures,” Nano Lett. 14(7), 4023–4029 (2014).
[Crossref] [PubMed]

Zhu, X.

Z. Fang, Y.-R. Zhen, L. Fan, X. Zhu, and P. Nordlander, “Tunable wide-angle plasmonic perfect absorber at visible frequencies,” Phys. Rev. B 85(24), 1–7 (2012).
[Crossref]

Zou, S.

S. Zou and G. C. Schatz, “Theoretical studies of plasmon resonances in one-dimensional nanoparticle chains: narrow lineshapes with tunable widths,” Nanotechnology 17(11), 2813–2820 (2006).
[Crossref]

ACS Nano (2)

H. J. Park, T. Xu, J. Y. Lee, A. Ledbetter, and L. J. Guo, “Photonic color filters integrated with organic solar cells for energy harvesting,” ACS Nano 5(9), 7055–7060 (2011).
[Crossref] [PubMed]

Z. Li, A. W. Clark, and J. M. Cooper, “Dual color plasmonic pixels create a polarization controlled nano color palette,” ACS Nano 10(1), 492–498 (2016).
[Crossref] [PubMed]

ACS Photonics (1)

L. Wang, R. J. H. Ng, S. S. Dinachali, M. Jalali, Y. Yu, and J. K. W. Yang, “Large area plasmonic color palettes with expanded gamut using colloidal self-assembly,” ACS Photonics 3(4), 627–633 (2016).
[Crossref]

Appl. Phys. Lett. (2)

D. Inoue, A. Miura, T. Nomura, H. Fujikawa, K. Sato, N. Ikeda, D. Tsuya, Y. Sugimoto, and Y. Koide, “Polarization independent visible color filter comprising an aluminum film with surface-plasmon enhanced transmission through a subwavelength array of holes,” Appl. Phys. Lett. 98(9), 093113 (2011).
[Crossref]

A. F. Kaplan, T. Xu, and L. Jay Guo, “High efficiency resonance-based spectrum filters with tunable transmission bandwidth fabricated using nanoimprint lithography,” Appl. Phys. Lett. 99(14), 143111 (2011).
[Crossref]

J. Phys. Chem. B (1)

C. L. Haynes, A. D. McFarland, L. L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Käll, “Nanoparticle optics: The importance of radiative dipole coupling in two-dimensional nanoparticle arrays,” J. Phys. Chem. B 107(30), 7337–7342 (2003).
[Crossref]

Nano Lett. (9)

S. J. Tan, L. Zhang, D. Zhu, X. M. Goh, Y. M. Wang, K. Kumar, C. W. Qiu, and J. K. W. Yang, “Plasmonic color palettes for photorealistic printing with aluminum nanostructures,” Nano Lett. 14(7), 4023–4029 (2014).
[Crossref] [PubMed]

A. S. Roberts, A. Pors, O. Albrektsen, and S. I. Bozhevolnyi, “Subwavelength plasmonic color printing protected for ambient use,” Nano Lett. 14(2), 783–787 (2014).
[Crossref] [PubMed]

J. Do, M. Fedoruk, F. Jäckel, and J. Feldmann, “Two-color laser printing of individual gold nanorods,” Nano Lett. 13(9), 4164–4168 (2013).
[Crossref] [PubMed]

J. S. Clausen, E. Højlund-Nielsen, A. B. Christiansen, S. Yazdi, M. Grajower, H. Taha, U. Levy, A. Kristensen, and N. A. Mortensen, “Plasmonic metasurfaces for coloration of plastic consumer products,” Nano Lett. 14(8), 4499–4504 (2014).
[Crossref] [PubMed]

S. Yokogawa, S. P. Burgos, and H. A. Atwater, “Plasmonic color filters for CMOS image sensor applications,” Nano Lett. 12(8), 4349–4354 (2012).
[Crossref] [PubMed]

T. Ellenbogen, K. Seo, and K. B. Crozier, “Chromatic plasmonic polarizers for active visible color filtering and polarimetry,” Nano Lett. 12(2), 1026–1031 (2012).
[Crossref] [PubMed]

H. Park, Y. Dan, K. Seo, Y. J. Yu, P. K. Duane, M. Wober, and K. B. Crozier, “Filter-free image sensor pixels comprising silicon nanowires with selective color absorption,” Nano Lett. 14(4), 1804–1809 (2014).
[Crossref] [PubMed]

K. Seo, M. Wober, P. Steinvurzel, E. Schonbrun, Y. Dan, T. Ellenbogen, and K. B. Crozier, “Multicolored vertical silicon nanowires,” Nano Lett. 11(4), 1851–1856 (2011).
[Crossref] [PubMed]

V. R. Shrestha, S. S. Lee, E. S. Kim, and D. Y. Choi, “Aluminum plasmonics based highly transmissive polarization-independent subtractive color filters exploiting a nanopatch array,” Nano Lett. 14(11), 6672–6678 (2014).
[Crossref] [PubMed]

Nanoscale (1)

G. Si, Y. Zhao, J. Lv, M. Lu, F. Wang, H. Liu, N. Xiang, T. J. Huang, A. J. Danner, J. Teng, and Y. J. Liu, “Reflective plasmonic color filters based on lithographically patterned silver nanorod arrays,” Nanoscale 5(14), 6243–6248 (2013).
[Crossref] [PubMed]

Nanotechnology (1)

S. Zou and G. C. Schatz, “Theoretical studies of plasmon resonances in one-dimensional nanoparticle chains: narrow lineshapes with tunable widths,” Nanotechnology 17(11), 2813–2820 (2006).
[Crossref]

Nat. Commun. (4)

X. M. Goh, Y. Zheng, S. J. Tan, L. Zhang, K. Kumar, C.-W. Qiu, and J. K. W. Yang, “Three-dimensional plasmonic stereoscopic prints in full colour,” Nat. Commun. 5, 5361 (2014).
[Crossref] [PubMed]

T. Xu, Y.-K. Wu, X. Luo, and L. J. Guo, “Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging,” Nat. Commun. 1(5), 59 (2010).
[Crossref] [PubMed]

L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, “Three-dimensional optical holography using a plasmonic metasurface,” Nat. Commun. 4, 2808 (2013).
[Crossref]

T. Søndergaard, S. M. Novikov, T. Holmgaard, R. L. Eriksen, J. Beermann, Z. Han, K. Pedersen, and S. I. Bozhevolnyi, “Plasmonic black gold by adiabatic nanofocusing and absorption of light in ultra-sharp convex grooves,” Nat. Commun. 3, 969 (2012).
[Crossref] [PubMed]

Nat. Mater. (2)

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref] [PubMed]

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

K. Kumar, H. Duan, R. S. Hegde, S. C. W. Koh, J. N. Wei, and J. K. W. Yang, “Printing colour at the optical diffraction limit,” Nat. Nanotechnol. 7(9), 557–561 (2012).
[Crossref] [PubMed]

Nat. Photonics (2)

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
[Crossref]

N. Meinzer, W. L. Barnes, and I. R. Hooper, “Plasmonic meta-atoms and metasurfaces,” Nat. Photonics 8(12), 889–898 (2014).
[Crossref]

Nature (3)

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[Crossref] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 86, 1114–1117 (1998).

H. Liu and P. Lalanne, “Microscopic theory of the extraordinary optical transmission,” Nature 452(7188), 728–731 (2008).
[Crossref] [PubMed]

New J. Phys. (1)

T. Søndergaard and S. I. Bozhevolnyi, “Theoretical analysis of plasmonic black gold: Periodic arrays of ultra-sharp grooves,” New J. Phys. 15, 013034 (2013).

Opt. Express (8)

R. J. H. Ng, X. M. Goh, and J. K. W. Yang, “All-metal nanostructured substrates as subtractive color reflectors with near-perfect absorptance,” Opt. Express 23(25), 32597–32605 (2015).
[Crossref] [PubMed]

J. Zhang, J.-Y. Ou, N. Papasimakis, Y. Chen, K. F. Macdonald, and N. I. Zheludev, “Continuous metal plasmonic frequency selective surfaces,” Opt. Express 19(23), 23279–23285 (2011).
[Crossref] [PubMed]

W. Cai, U. K. Chettiar, H.-K. Yuan, V. C. de Silva, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Metamagnetics with rainbow colors,” Opt. Express 15(6), 3333–3341 (2007).
[Crossref] [PubMed]

F. Cheng, J. Gao, L. Stan, D. Rosenmann, D. Czaplewski, and X. Yang, “Aluminum plasmonic metamaterials for structural color printing,” Opt. Express 23(11), 14552–14560 (2015).
[Crossref] [PubMed]

F. Cheng, X. Yang, D. Rosenmann, L. Stan, D. Czaplewski, and J. Gao, “Enhanced structural color generation in aluminum metamaterials coated with a thin polymer layer,” Opt. Express 23(19), 25329–25339 (2015).
[Crossref] [PubMed]

C. Saeidi and D. van der Weide, “Bandwidth-tunable optical spatial filters with nanoparticle arrays,” Opt. Express 22(10), 12499–12504 (2014).
[Crossref] [PubMed]

Q. Chen and D. R. S. Cumming, “High transmission and low color cross-talk plasmonic color filters using triangular-lattice hole arrays in aluminum films,” Opt. Express 18(13), 14056–14062 (2010).
[Crossref] [PubMed]

M. J. Uddin, T. Khaleque, and R. Magnusson, “Guided-mode resonant polarization-controlled tunable color filters,” Opt. Express 22(10), 12307–12315 (2014).
[Crossref] [PubMed]

Phys. Rev. B (2)

V. A. Markel and A. K. Sarychev, “Propagation of surface plasmons in ordered and disordered chains of metal nanospheres,” Phys. Rev. B 75(8), 085426 (2007).
[Crossref]

Z. Fang, Y.-R. Zhen, L. Fan, X. Zhu, and P. Nordlander, “Tunable wide-angle plasmonic perfect absorber at visible frequencies,” Phys. Rev. B 85(24), 1–7 (2012).
[Crossref]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, and N. I. Zheludev, “Planar electromagnetic metamaterial with a fish scale structure,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(5), 056613 (2005).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
[Crossref] [PubMed]

Sci. Rep. (3)

Y.-K. R. Wu, A. E. Hollowell, C. Zhang, and L. J. Guo, “Angle-insensitive structural colours based on metallic nanocavities and coloured pixels beyond the diffraction limit,” Sci. Rep. 3, 1194 (2013).
[Crossref] [PubMed]

F. Cheng, J. Gao, T. S. Luk, and X. Yang, “Structural color printing based on plasmonic metasurfaces of perfect light absorption,” Sci. Rep. 5, 11045 (2015).
[Crossref] [PubMed]

B. Zeng, Y. Gao, and F. J. Bartoli, “Ultrathin nanostructured metals for highly transmissive plasmonic subtractive color filters,” Sci. Rep. 3, 2840 (2013).
[Crossref] [PubMed]

Small (1)

T. Xu, H. Shi, Y. K. Wu, A. F. Kaplan, J. G. Ok, and L. J. Guo, “Structural colors: From plasmonic to carbon nanostructures,” Small 7(22), 3128–3136 (2011).
[Crossref] [PubMed]

Other (2)

S. Westland, C. Ripamonti, and V. Cheung, “Computing CIE tristimulus values,” in Computational Colour Science Using MATLAB® (John Wiley and Sons, Ltd., 2012), pp. 27–47.

K. Nassau, “The physics and chemistry of color: The 15 mechanisms,” in The Science of Color, 2nd ed. (2003), pp. 247–280.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Schematic of square-shaped disk array on aluminum surface. (b-d) SEM images of square-shaped disk arrays fabricated on h = 250 nm thick aluminum film with different geometric parameters of (b) P = 400 nm, d = 135 nm, w = 245 nm, (c) P = 400 nm, d = 227 nm, w = 200 nm, and (d) P = 400 nm, d = 82 nm, w = 245 nm. Insets: Optical reflection microscope images of 20 × 20 µm2 disk arrays. Scale bars: 1 μm.
Fig. 2
Fig. 2 Measured (black solid line) and simulated (red dashed line) optical reflection spectra of three groups of disk array samples (a) by varying disk etching depth d from 82 nm to 135 nm with constant P = 400 nm and w = 245 nm, (b) by changing disk width w from 250 nm to 200 nm with constant P = 400 nm and d as a function of w, and (c) by changing period P from 350 nm to 600 nm with constant d = 82 nm and P - w = 147 nm. Insets show the optical reflection microscope images of 20 × 20 µm2 disk arrays. Normal light incidence is employed.
Fig. 3
Fig. 3 Measured (black square) and simulated (red circle) results in the CIE 1931 xy chromaticity coordinates for three groups of disk array samples by changing (a) d, (b) w, and (c) P. The reflection spectrum data are obtained from Figs. 2(a)-2(c). The beginning and ending points of parameter variations are labeled for each case.
Fig. 4
Fig. 4 (a) Cross section of the time-averaged magnetic field (color map) and electric displacement (red arrows) distributions for a selected disk array (with P = 400 nm, w = 245 nm and d = 114 nm) at the resonance wavelength. (b) Cross section of the time-averaged optical power flow vector distribution.
Fig. 5
Fig. 5 Color palettes generated from square-shaped disk arrays with varying disk etching depth d, disk width w and unit cell period P. (a) Color palette with constant P = 400 nm but varying w from 267 nm to 138 nm and d from 51 nm to 505 nm. Each fabricated disk array has an area of 15 × 15 µm2. (b) Color palette with a certain P in each row changing from 360 nm to 500 nm and varying w from 293 nm to 154 nm and d from 91 nm to 456 nm. Each fabricated disk array has an area of 10 × 10 µm2. The dimensions are measured from the SEM images.
Fig. 6
Fig. 6 (a) Original landscape painting with different colors. (b) The measured bright-field optical microscope image of the plasmonic painting with size of 50 µm by 35 µm. (c) SEM image of the fabricated plasmonic painting with various disk array patterns. (d) SEM image of the area outlined in panel (c). (e) SEM image of the area outlined in panel (d). Both SEM images in panels (d) and (e) are tilted with an angle of 52 to show clear three-dimensional disk array structures. Scale bars: 20 µm in (b) and (c), 5 µm in (d), and 3 µm in (e).
Fig. 7
Fig. 7 Simulated incident angle dependent (a) TE and (b) TM polarized optical reflection spectra for a selected disk array (with P = 400 nm, w = 245 nm and d = 114 nm). (c) Incident angle resolved chromaticity coordinates calculated from the reflection spectra for TE (red circle) and TM (black square) polarizations.

Metrics