Abstract

We investigate the role of material loss and mode volume of plasmonic nanostructures on strong plasmon-exciton coupling. We find that the field enhancement, and therefore loss, is not important for the magnitude of the Rabi splitting as such, but instead it is determined by the mode volume. Nevertheless, for reaching true strong coupling condition, that is, coupling greater than any dissipation, it is important to compromise losses. We also show that using such popular geometries as a dimer of two spheres or bow-tie nanoantennas, does not allow compressing the mode volume much in comparison to a single nanoparticle case, except for very narrow gaps, but rather it allows for efficient extraction of the mode out of the metal thus making it more accessible for excitons to interact with. Even more efficient mode extraction is achieved when high refractive index dielectric is placed in the gap. Our findings may find practical use for quantum plasmonics applications.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Angle-independent strong coupling between plasmonic magnetic resonances and excitons in monolayer WS2

Hongju Li, Meng Qin, Yongze Ren, and Jigang Hu
Opt. Express 27(16) 22951-22959 (2019)

Tunable strong exciton–plasmon–exciton coupling in WS2–J-aggregates–plasmonic nanocavity

Ping Jiang, Gang Song, Yilin Wang, Chao Li, Lulu Wang, and Li Yu
Opt. Express 27(12) 16613-16623 (2019)

References

  • View by:
  • |
  • |
  • |

  1. J. McKeever, A. Boca, A. D. Boozer, J. R. Buck, and H. J. Kimble, “Experimental realization of a one-atom laser in the regime of strong coupling,” Nature 425, 268–271 (2003).
    [Crossref] [PubMed]
  2. T. Volz, A. Reinhard, M. Winger, A. Badolato, K. J. Hennessy, E. L. Hu, and A. Imamoglu, “Ultrafast all-optical switching by single photons,” Nature Photon. 6, 605–609 (2012).
    [Crossref]
  3. H.-K. Lo and H. F. Chau, “Unconditional security of quantum key distribution over arbitrarily long distances,” Science 283, 2050–2056 (1999).
    [Crossref] [PubMed]
  4. G. Khitrova, M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, “Vacuum Rabi splitting in semiconductors,” Nature Phys. 2, 81–90 (2006).
    [Crossref]
  5. T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, and H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443, 671–674 (2006).
    [Crossref] [PubMed]
  6. W. Barnes, A. Dereux, and T. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
    [Crossref] [PubMed]
  7. P. Törmä and W. L. Barnes, “Strong coupling between surface plasmon polaritons and emitters: a review,” Rep. Prog. Phys. 78, 013901 (2015).
    [Crossref]
  8. J. Bellessa, C. Bonnand, J. C. Plenet, and J. Mugnier, “Strong coupling between surface plasmons and excitons in an organic semiconductor,” Phys. Rev. Lett. 93, 036404 (2004).
    [Crossref] [PubMed]
  9. J. Dintinger, S. Klein, F. Bustos, W. L. Barnes, and T. W. Ebbesen, “Strong coupling between surface plasmon-polaritons and organic molecules in subwavelength hole arrays,” Phys. Rev. B 71, 035424 (2005).
    [Crossref]
  10. T. Schwartz, J. A. Hutchison, C. Genet, and T. W. Ebbesen, “Reversible switching of ultrastrong light-molecule coupling,” Phys. Rev. Lett. 106, 196405 (2011).
    [Crossref] [PubMed]
  11. J. Bellessa, C. Symonds, K. Vynck, A. Lemaitre, A. Brioude, L. Beaur, J. C. Plenet, P. Viste, D. Felbacq, E. Cambril, and P. Valvin, “Giant rabi splitting between localized mixed plasmon-exciton states in a two-dimensional array of nanosize metallic disks in an organic semiconductor,” Phys. Rev. B 80, 033303 (2009).
    [Crossref]
  12. S. R. K. Rodriguez and J. G. Rivas, “Surface lattice resonances strongly coupled to rhodamine 6g excitons: tuning the plasmon-exciton-polariton mass and composition,” Opt. Express 21, 27411–27421 (2013).
    [Crossref] [PubMed]
  13. A. I. Väkeväinen, R. J. Moerland, H. T. Rekola, A.-P. Eskelinen, J.-P. Martikainen, D.-H. Kim, and P. Törmä, “Plasmonic surface lattice resonances at the strong coupling regime,” Nano Lett. 14, 1721–1727 (2014).
    [Crossref]
  14. G. Zengin, G. Johansson, P. Johansson, T. J. Antosiewicz, M. Käll, and T. Shegai, “Approaching the strong coupling limit in single plasmonic nanorods interacting with J-aggregates,” Sci. Rep. 3, 3074 (2013).
    [Crossref] [PubMed]
  15. G. Zengin, M. Wersäll, S. Nilsson, T. J. Antosiewicz, M. Käll, and T. Shegai, “Realizing strong light-matter interactions between single-nanoparticle plasmons and molecular excitons at ambient conditions,” Phys. Rev. Lett. 114, 157401 (2015).
    [Crossref] [PubMed]
  16. A. E. Schlather, N. Large, A. S. Urban, P. Nordlander, and N. J. Halas, “Near-field mediated plexitonic coupling and giant Rabi splitting in individual metallic dimers,” Nano Lett. 13, 3281–3286 (2013).
    [Crossref] [PubMed]
  17. N. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111, 3913–3961 (2011).
    [Crossref] [PubMed]
  18. E. Eizner, O. Avayu, R. Ditcovski, and T. Ellenbogen, “Aluminum nanoantenna complexes for strong coupling between excitons and localized surface plasmons,” Nano Lett. 15, 6215–6221 (2015).
    [Crossref] [PubMed]
  19. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced raman scattering (sers),” Phys. Rev. Lett. 78, 1667–1670 (1997).
    [Crossref]
  20. S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275, 1102–1106 (1997).
    [Crossref] [PubMed]
  21. H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering,” Phys. Rev. Lett. 83, 4357–4360 (1999).
    [Crossref]
  22. T. J. Antosiewicz, S. P. Apell, and T. Shegai, “Plasmon–exciton interactions in a core-shell geometry: From enhanced absorption to strong coupling,” ACS Photon. 1, 454–463 (2014).
    [Crossref]
  23. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nature Mater. 9, 205–213 (2010).
    [Crossref]
  24. T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004).
    [Crossref] [PubMed]
  25. S. A. Maier, “Plasmonic field enhancement and SERS in the effective mode volume picture,” Opt. Express 14, 1957–1964 (2006).
    [Crossref] [PubMed]
  26. X. Wu, S. K. Gray, and M. Pelton, “Quantum-dot-induced transparency in a nanoscale plasmonic resonator,” Opt. Express 18, 23633–23645 (2010).
    [Crossref] [PubMed]
  27. S. Savasta, R. Saija, A. Ridolfo, O. Di Stefano, P. Denti, and F. Borghese, “Nanopolaritons: Vacuum rabi splitting with a single quantum dot in the center of a dimer nanoantenna,” ACS Nano 4, 6369–6376 (2010).
    [Crossref] [PubMed]
  28. A. Manjavacas, F. J. G. d. Abajo, and P. Nordlander, “Quantum plexcitonics: Strongly interacting plasmons and excitons,” Nano Lett. 11, 2318–2323 (2011).
    [Crossref] [PubMed]
  29. T. Hartsfield, W. S. Chang, S. C. Yang, T. Ma, J. Shi, L. Sun, G. Shvest, S. Link, and X. Li, “Single quantum dot controls a plasmonic cavity’s scattering and anisotropy,” Proc. Natl. Acad. Sci. U.S.A. 112, 12288–12292 (2015).
    [Crossref]
  30. K. Santhosh, O. Bitton, L. Chuntonov, and G. Haran, “Vacuum rabi splitting in a plasmonic cavity at the single quantum emitter limit,” Nature Commun. 7, 11823 (2016).
    [Crossref]
  31. R. Chikkaraddy, B. de Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature, https://www.repository.cam.ac.uk/handle/1810/255143 (2016).
    [PubMed]
  32. A. F. Koenderink, “On the use of Purcell factors for plasmon antennas,” Opt. Lett. 35, 4208–4210 (2010).
    [Crossref] [PubMed]
  33. C. Sauvan, J. P. Hugonin, I. S. Maksymov, and P. Lalanne, “Theory of the spontaneous optical emission of nanosize photonic and plasmon resonators,” Phys. Rev. Lett. 110, 237401 (2013).
    [Crossref] [PubMed]
  34. P. T. Kristensen and S. Hughes, “Modes and mode volumes of leaky optical cavities and plasmonic nanoresonators,” ACS Photon. 1, 2–10 (2014).
    [Crossref]
  35. C. Zhang, B.-Q. Chen, and Z.-Y. Li, “Optical origin of subnanometer resolution in tip-enhanced raman mapping,” J. Phys. Chem. C 119, 11858–11871 (2015).
    [Crossref]
  36. W. W. Yu, L. Qu, W. Guo, and X. Peng, “Experimental determination of the extinction coefficient of cdte, cdse, and cds nanocrystals,” Chem. Mater. 15, 2854–2860 (2003).
    [Crossref]
  37. D. Englund, I. Fushman, and J. Vuckovic, “General recipe for designing photonic crystal cavities,” Opt. Express 13, 5961–5975 (2005).
    [Crossref] [PubMed]
  38. P. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
    [Crossref]
  39. P. Wróbel, T. Stefaniuk, M. Trzcinski, A. A. Wronkowska, A. Wronkowski, and T. Szoplik, “Ge wetting layer increases ohmic plasmon losses in Ag film due to segregation,” ACS Appl. Mater. Interf. 7, 8999–9005 (2015).
    [Crossref]
  40. G. Zengin, T. Gschneidtner, R. Verre, L. Shao, T. J. Antosiewicz, M. Käll, and T. Shegai, “Evaluating conditions for strong coupling between nanoparticle plasmons and organic dyes using scattering and absorption spectroscopy,” J. Phys. Chem. C, http://pubs.acs.org/doi/abs/10.1021/acs.jpcc.6b00219 (2016).

2016 (1)

K. Santhosh, O. Bitton, L. Chuntonov, and G. Haran, “Vacuum rabi splitting in a plasmonic cavity at the single quantum emitter limit,” Nature Commun. 7, 11823 (2016).
[Crossref]

2015 (6)

T. Hartsfield, W. S. Chang, S. C. Yang, T. Ma, J. Shi, L. Sun, G. Shvest, S. Link, and X. Li, “Single quantum dot controls a plasmonic cavity’s scattering and anisotropy,” Proc. Natl. Acad. Sci. U.S.A. 112, 12288–12292 (2015).
[Crossref]

C. Zhang, B.-Q. Chen, and Z.-Y. Li, “Optical origin of subnanometer resolution in tip-enhanced raman mapping,” J. Phys. Chem. C 119, 11858–11871 (2015).
[Crossref]

P. Wróbel, T. Stefaniuk, M. Trzcinski, A. A. Wronkowska, A. Wronkowski, and T. Szoplik, “Ge wetting layer increases ohmic plasmon losses in Ag film due to segregation,” ACS Appl. Mater. Interf. 7, 8999–9005 (2015).
[Crossref]

P. Törmä and W. L. Barnes, “Strong coupling between surface plasmon polaritons and emitters: a review,” Rep. Prog. Phys. 78, 013901 (2015).
[Crossref]

G. Zengin, M. Wersäll, S. Nilsson, T. J. Antosiewicz, M. Käll, and T. Shegai, “Realizing strong light-matter interactions between single-nanoparticle plasmons and molecular excitons at ambient conditions,” Phys. Rev. Lett. 114, 157401 (2015).
[Crossref] [PubMed]

E. Eizner, O. Avayu, R. Ditcovski, and T. Ellenbogen, “Aluminum nanoantenna complexes for strong coupling between excitons and localized surface plasmons,” Nano Lett. 15, 6215–6221 (2015).
[Crossref] [PubMed]

2014 (3)

A. I. Väkeväinen, R. J. Moerland, H. T. Rekola, A.-P. Eskelinen, J.-P. Martikainen, D.-H. Kim, and P. Törmä, “Plasmonic surface lattice resonances at the strong coupling regime,” Nano Lett. 14, 1721–1727 (2014).
[Crossref]

P. T. Kristensen and S. Hughes, “Modes and mode volumes of leaky optical cavities and plasmonic nanoresonators,” ACS Photon. 1, 2–10 (2014).
[Crossref]

T. J. Antosiewicz, S. P. Apell, and T. Shegai, “Plasmon–exciton interactions in a core-shell geometry: From enhanced absorption to strong coupling,” ACS Photon. 1, 454–463 (2014).
[Crossref]

2013 (4)

C. Sauvan, J. P. Hugonin, I. S. Maksymov, and P. Lalanne, “Theory of the spontaneous optical emission of nanosize photonic and plasmon resonators,” Phys. Rev. Lett. 110, 237401 (2013).
[Crossref] [PubMed]

G. Zengin, G. Johansson, P. Johansson, T. J. Antosiewicz, M. Käll, and T. Shegai, “Approaching the strong coupling limit in single plasmonic nanorods interacting with J-aggregates,” Sci. Rep. 3, 3074 (2013).
[Crossref] [PubMed]

A. E. Schlather, N. Large, A. S. Urban, P. Nordlander, and N. J. Halas, “Near-field mediated plexitonic coupling and giant Rabi splitting in individual metallic dimers,” Nano Lett. 13, 3281–3286 (2013).
[Crossref] [PubMed]

S. R. K. Rodriguez and J. G. Rivas, “Surface lattice resonances strongly coupled to rhodamine 6g excitons: tuning the plasmon-exciton-polariton mass and composition,” Opt. Express 21, 27411–27421 (2013).
[Crossref] [PubMed]

2012 (1)

T. Volz, A. Reinhard, M. Winger, A. Badolato, K. J. Hennessy, E. L. Hu, and A. Imamoglu, “Ultrafast all-optical switching by single photons,” Nature Photon. 6, 605–609 (2012).
[Crossref]

2011 (3)

N. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111, 3913–3961 (2011).
[Crossref] [PubMed]

T. Schwartz, J. A. Hutchison, C. Genet, and T. W. Ebbesen, “Reversible switching of ultrastrong light-molecule coupling,” Phys. Rev. Lett. 106, 196405 (2011).
[Crossref] [PubMed]

A. Manjavacas, F. J. G. d. Abajo, and P. Nordlander, “Quantum plexcitonics: Strongly interacting plasmons and excitons,” Nano Lett. 11, 2318–2323 (2011).
[Crossref] [PubMed]

2010 (4)

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nature Mater. 9, 205–213 (2010).
[Crossref]

S. Savasta, R. Saija, A. Ridolfo, O. Di Stefano, P. Denti, and F. Borghese, “Nanopolaritons: Vacuum rabi splitting with a single quantum dot in the center of a dimer nanoantenna,” ACS Nano 4, 6369–6376 (2010).
[Crossref] [PubMed]

X. Wu, S. K. Gray, and M. Pelton, “Quantum-dot-induced transparency in a nanoscale plasmonic resonator,” Opt. Express 18, 23633–23645 (2010).
[Crossref] [PubMed]

A. F. Koenderink, “On the use of Purcell factors for plasmon antennas,” Opt. Lett. 35, 4208–4210 (2010).
[Crossref] [PubMed]

2009 (1)

J. Bellessa, C. Symonds, K. Vynck, A. Lemaitre, A. Brioude, L. Beaur, J. C. Plenet, P. Viste, D. Felbacq, E. Cambril, and P. Valvin, “Giant rabi splitting between localized mixed plasmon-exciton states in a two-dimensional array of nanosize metallic disks in an organic semiconductor,” Phys. Rev. B 80, 033303 (2009).
[Crossref]

2006 (3)

G. Khitrova, M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, “Vacuum Rabi splitting in semiconductors,” Nature Phys. 2, 81–90 (2006).
[Crossref]

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, and H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443, 671–674 (2006).
[Crossref] [PubMed]

S. A. Maier, “Plasmonic field enhancement and SERS in the effective mode volume picture,” Opt. Express 14, 1957–1964 (2006).
[Crossref] [PubMed]

2005 (2)

D. Englund, I. Fushman, and J. Vuckovic, “General recipe for designing photonic crystal cavities,” Opt. Express 13, 5961–5975 (2005).
[Crossref] [PubMed]

J. Dintinger, S. Klein, F. Bustos, W. L. Barnes, and T. W. Ebbesen, “Strong coupling between surface plasmon-polaritons and organic molecules in subwavelength hole arrays,” Phys. Rev. B 71, 035424 (2005).
[Crossref]

2004 (2)

J. Bellessa, C. Bonnand, J. C. Plenet, and J. Mugnier, “Strong coupling between surface plasmons and excitons in an organic semiconductor,” Phys. Rev. Lett. 93, 036404 (2004).
[Crossref] [PubMed]

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004).
[Crossref] [PubMed]

2003 (3)

W. W. Yu, L. Qu, W. Guo, and X. Peng, “Experimental determination of the extinction coefficient of cdte, cdse, and cds nanocrystals,” Chem. Mater. 15, 2854–2860 (2003).
[Crossref]

J. McKeever, A. Boca, A. D. Boozer, J. R. Buck, and H. J. Kimble, “Experimental realization of a one-atom laser in the regime of strong coupling,” Nature 425, 268–271 (2003).
[Crossref] [PubMed]

W. Barnes, A. Dereux, and T. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref] [PubMed]

1999 (2)

H.-K. Lo and H. F. Chau, “Unconditional security of quantum key distribution over arbitrarily long distances,” Science 283, 2050–2056 (1999).
[Crossref] [PubMed]

H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering,” Phys. Rev. Lett. 83, 4357–4360 (1999).
[Crossref]

1997 (2)

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced raman scattering (sers),” Phys. Rev. Lett. 78, 1667–1670 (1997).
[Crossref]

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275, 1102–1106 (1997).
[Crossref] [PubMed]

1972 (1)

P. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Antosiewicz, T. J.

G. Zengin, M. Wersäll, S. Nilsson, T. J. Antosiewicz, M. Käll, and T. Shegai, “Realizing strong light-matter interactions between single-nanoparticle plasmons and molecular excitons at ambient conditions,” Phys. Rev. Lett. 114, 157401 (2015).
[Crossref] [PubMed]

T. J. Antosiewicz, S. P. Apell, and T. Shegai, “Plasmon–exciton interactions in a core-shell geometry: From enhanced absorption to strong coupling,” ACS Photon. 1, 454–463 (2014).
[Crossref]

G. Zengin, G. Johansson, P. Johansson, T. J. Antosiewicz, M. Käll, and T. Shegai, “Approaching the strong coupling limit in single plasmonic nanorods interacting with J-aggregates,” Sci. Rep. 3, 3074 (2013).
[Crossref] [PubMed]

G. Zengin, T. Gschneidtner, R. Verre, L. Shao, T. J. Antosiewicz, M. Käll, and T. Shegai, “Evaluating conditions for strong coupling between nanoparticle plasmons and organic dyes using scattering and absorption spectroscopy,” J. Phys. Chem. C, http://pubs.acs.org/doi/abs/10.1021/acs.jpcc.6b00219 (2016).

Aoki, T.

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, and H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443, 671–674 (2006).
[Crossref] [PubMed]

Apell, S. P.

T. J. Antosiewicz, S. P. Apell, and T. Shegai, “Plasmon–exciton interactions in a core-shell geometry: From enhanced absorption to strong coupling,” ACS Photon. 1, 454–463 (2014).
[Crossref]

Atwater, H. A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nature Mater. 9, 205–213 (2010).
[Crossref]

Avayu, O.

E. Eizner, O. Avayu, R. Ditcovski, and T. Ellenbogen, “Aluminum nanoantenna complexes for strong coupling between excitons and localized surface plasmons,” Nano Lett. 15, 6215–6221 (2015).
[Crossref] [PubMed]

Badolato, A.

T. Volz, A. Reinhard, M. Winger, A. Badolato, K. J. Hennessy, E. L. Hu, and A. Imamoglu, “Ultrafast all-optical switching by single photons,” Nature Photon. 6, 605–609 (2012).
[Crossref]

Barnes, W.

W. Barnes, A. Dereux, and T. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref] [PubMed]

Barnes, W. L.

P. Törmä and W. L. Barnes, “Strong coupling between surface plasmon polaritons and emitters: a review,” Rep. Prog. Phys. 78, 013901 (2015).
[Crossref]

J. Dintinger, S. Klein, F. Bustos, W. L. Barnes, and T. W. Ebbesen, “Strong coupling between surface plasmon-polaritons and organic molecules in subwavelength hole arrays,” Phys. Rev. B 71, 035424 (2005).
[Crossref]

Barrow, S. J.

R. Chikkaraddy, B. de Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature, https://www.repository.cam.ac.uk/handle/1810/255143 (2016).
[PubMed]

Baumberg, J. J.

R. Chikkaraddy, B. de Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature, https://www.repository.cam.ac.uk/handle/1810/255143 (2016).
[PubMed]

Beaur, L.

J. Bellessa, C. Symonds, K. Vynck, A. Lemaitre, A. Brioude, L. Beaur, J. C. Plenet, P. Viste, D. Felbacq, E. Cambril, and P. Valvin, “Giant rabi splitting between localized mixed plasmon-exciton states in a two-dimensional array of nanosize metallic disks in an organic semiconductor,” Phys. Rev. B 80, 033303 (2009).
[Crossref]

Bellessa, J.

J. Bellessa, C. Symonds, K. Vynck, A. Lemaitre, A. Brioude, L. Beaur, J. C. Plenet, P. Viste, D. Felbacq, E. Cambril, and P. Valvin, “Giant rabi splitting between localized mixed plasmon-exciton states in a two-dimensional array of nanosize metallic disks in an organic semiconductor,” Phys. Rev. B 80, 033303 (2009).
[Crossref]

J. Bellessa, C. Bonnand, J. C. Plenet, and J. Mugnier, “Strong coupling between surface plasmons and excitons in an organic semiconductor,” Phys. Rev. Lett. 93, 036404 (2004).
[Crossref] [PubMed]

Benz, F.

R. Chikkaraddy, B. de Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature, https://www.repository.cam.ac.uk/handle/1810/255143 (2016).
[PubMed]

Bitton, O.

K. Santhosh, O. Bitton, L. Chuntonov, and G. Haran, “Vacuum rabi splitting in a plasmonic cavity at the single quantum emitter limit,” Nature Commun. 7, 11823 (2016).
[Crossref]

Bjerneld, E. J.

H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering,” Phys. Rev. Lett. 83, 4357–4360 (1999).
[Crossref]

Boca, A.

J. McKeever, A. Boca, A. D. Boozer, J. R. Buck, and H. J. Kimble, “Experimental realization of a one-atom laser in the regime of strong coupling,” Nature 425, 268–271 (2003).
[Crossref] [PubMed]

Bonnand, C.

J. Bellessa, C. Bonnand, J. C. Plenet, and J. Mugnier, “Strong coupling between surface plasmons and excitons in an organic semiconductor,” Phys. Rev. Lett. 93, 036404 (2004).
[Crossref] [PubMed]

Boozer, A. D.

J. McKeever, A. Boca, A. D. Boozer, J. R. Buck, and H. J. Kimble, “Experimental realization of a one-atom laser in the regime of strong coupling,” Nature 425, 268–271 (2003).
[Crossref] [PubMed]

Borghese, F.

S. Savasta, R. Saija, A. Ridolfo, O. Di Stefano, P. Denti, and F. Borghese, “Nanopolaritons: Vacuum rabi splitting with a single quantum dot in the center of a dimer nanoantenna,” ACS Nano 4, 6369–6376 (2010).
[Crossref] [PubMed]

Börjesson, L.

H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering,” Phys. Rev. Lett. 83, 4357–4360 (1999).
[Crossref]

Bowen, W. P.

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, and H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443, 671–674 (2006).
[Crossref] [PubMed]

Brioude, A.

J. Bellessa, C. Symonds, K. Vynck, A. Lemaitre, A. Brioude, L. Beaur, J. C. Plenet, P. Viste, D. Felbacq, E. Cambril, and P. Valvin, “Giant rabi splitting between localized mixed plasmon-exciton states in a two-dimensional array of nanosize metallic disks in an organic semiconductor,” Phys. Rev. B 80, 033303 (2009).
[Crossref]

Buck, J. R.

J. McKeever, A. Boca, A. D. Boozer, J. R. Buck, and H. J. Kimble, “Experimental realization of a one-atom laser in the regime of strong coupling,” Nature 425, 268–271 (2003).
[Crossref] [PubMed]

Bustos, F.

J. Dintinger, S. Klein, F. Bustos, W. L. Barnes, and T. W. Ebbesen, “Strong coupling between surface plasmon-polaritons and organic molecules in subwavelength hole arrays,” Phys. Rev. B 71, 035424 (2005).
[Crossref]

Cambril, E.

J. Bellessa, C. Symonds, K. Vynck, A. Lemaitre, A. Brioude, L. Beaur, J. C. Plenet, P. Viste, D. Felbacq, E. Cambril, and P. Valvin, “Giant rabi splitting between localized mixed plasmon-exciton states in a two-dimensional array of nanosize metallic disks in an organic semiconductor,” Phys. Rev. B 80, 033303 (2009).
[Crossref]

Chang, W. S.

T. Hartsfield, W. S. Chang, S. C. Yang, T. Ma, J. Shi, L. Sun, G. Shvest, S. Link, and X. Li, “Single quantum dot controls a plasmonic cavity’s scattering and anisotropy,” Proc. Natl. Acad. Sci. U.S.A. 112, 12288–12292 (2015).
[Crossref]

Chang, W.-S.

N. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111, 3913–3961 (2011).
[Crossref] [PubMed]

Chau, H. F.

H.-K. Lo and H. F. Chau, “Unconditional security of quantum key distribution over arbitrarily long distances,” Science 283, 2050–2056 (1999).
[Crossref] [PubMed]

Chen, B.-Q.

C. Zhang, B.-Q. Chen, and Z.-Y. Li, “Optical origin of subnanometer resolution in tip-enhanced raman mapping,” J. Phys. Chem. C 119, 11858–11871 (2015).
[Crossref]

Chikkaraddy, R.

R. Chikkaraddy, B. de Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature, https://www.repository.cam.ac.uk/handle/1810/255143 (2016).
[PubMed]

Christy, R.

P. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Chuntonov, L.

K. Santhosh, O. Bitton, L. Chuntonov, and G. Haran, “Vacuum rabi splitting in a plasmonic cavity at the single quantum emitter limit,” Nature Commun. 7, 11823 (2016).
[Crossref]

Dasari, R. R.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced raman scattering (sers),” Phys. Rev. Lett. 78, 1667–1670 (1997).
[Crossref]

Dayan, B.

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, and H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443, 671–674 (2006).
[Crossref] [PubMed]

de Nijs, B.

R. Chikkaraddy, B. de Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature, https://www.repository.cam.ac.uk/handle/1810/255143 (2016).
[PubMed]

Demetriadou, A.

R. Chikkaraddy, B. de Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature, https://www.repository.cam.ac.uk/handle/1810/255143 (2016).
[PubMed]

Denti, P.

S. Savasta, R. Saija, A. Ridolfo, O. Di Stefano, P. Denti, and F. Borghese, “Nanopolaritons: Vacuum rabi splitting with a single quantum dot in the center of a dimer nanoantenna,” ACS Nano 4, 6369–6376 (2010).
[Crossref] [PubMed]

Deppe, D. G.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004).
[Crossref] [PubMed]

Dereux, A.

W. Barnes, A. Dereux, and T. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref] [PubMed]

Di Stefano, O.

S. Savasta, R. Saija, A. Ridolfo, O. Di Stefano, P. Denti, and F. Borghese, “Nanopolaritons: Vacuum rabi splitting with a single quantum dot in the center of a dimer nanoantenna,” ACS Nano 4, 6369–6376 (2010).
[Crossref] [PubMed]

Dintinger, J.

J. Dintinger, S. Klein, F. Bustos, W. L. Barnes, and T. W. Ebbesen, “Strong coupling between surface plasmon-polaritons and organic molecules in subwavelength hole arrays,” Phys. Rev. B 71, 035424 (2005).
[Crossref]

Ditcovski, R.

E. Eizner, O. Avayu, R. Ditcovski, and T. Ellenbogen, “Aluminum nanoantenna complexes for strong coupling between excitons and localized surface plasmons,” Nano Lett. 15, 6215–6221 (2015).
[Crossref] [PubMed]

Ebbesen, T.

W. Barnes, A. Dereux, and T. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref] [PubMed]

Ebbesen, T. W.

T. Schwartz, J. A. Hutchison, C. Genet, and T. W. Ebbesen, “Reversible switching of ultrastrong light-molecule coupling,” Phys. Rev. Lett. 106, 196405 (2011).
[Crossref] [PubMed]

J. Dintinger, S. Klein, F. Bustos, W. L. Barnes, and T. W. Ebbesen, “Strong coupling between surface plasmon-polaritons and organic molecules in subwavelength hole arrays,” Phys. Rev. B 71, 035424 (2005).
[Crossref]

Eizner, E.

E. Eizner, O. Avayu, R. Ditcovski, and T. Ellenbogen, “Aluminum nanoantenna complexes for strong coupling between excitons and localized surface plasmons,” Nano Lett. 15, 6215–6221 (2015).
[Crossref] [PubMed]

Ell, C.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004).
[Crossref] [PubMed]

Ellenbogen, T.

E. Eizner, O. Avayu, R. Ditcovski, and T. Ellenbogen, “Aluminum nanoantenna complexes for strong coupling between excitons and localized surface plasmons,” Nano Lett. 15, 6215–6221 (2015).
[Crossref] [PubMed]

Emory, S. R.

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275, 1102–1106 (1997).
[Crossref] [PubMed]

Englund, D.

Eskelinen, A.-P.

A. I. Väkeväinen, R. J. Moerland, H. T. Rekola, A.-P. Eskelinen, J.-P. Martikainen, D.-H. Kim, and P. Törmä, “Plasmonic surface lattice resonances at the strong coupling regime,” Nano Lett. 14, 1721–1727 (2014).
[Crossref]

Felbacq, D.

J. Bellessa, C. Symonds, K. Vynck, A. Lemaitre, A. Brioude, L. Beaur, J. C. Plenet, P. Viste, D. Felbacq, E. Cambril, and P. Valvin, “Giant rabi splitting between localized mixed plasmon-exciton states in a two-dimensional array of nanosize metallic disks in an organic semiconductor,” Phys. Rev. B 80, 033303 (2009).
[Crossref]

Feld, M. S.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced raman scattering (sers),” Phys. Rev. Lett. 78, 1667–1670 (1997).
[Crossref]

Fox, P.

R. Chikkaraddy, B. de Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature, https://www.repository.cam.ac.uk/handle/1810/255143 (2016).
[PubMed]

Fushman, I.

G. d. Abajo, F. J.

A. Manjavacas, F. J. G. d. Abajo, and P. Nordlander, “Quantum plexcitonics: Strongly interacting plasmons and excitons,” Nano Lett. 11, 2318–2323 (2011).
[Crossref] [PubMed]

Genet, C.

T. Schwartz, J. A. Hutchison, C. Genet, and T. W. Ebbesen, “Reversible switching of ultrastrong light-molecule coupling,” Phys. Rev. Lett. 106, 196405 (2011).
[Crossref] [PubMed]

Gibbs, H. M.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004).
[Crossref] [PubMed]

Gibbs, M.

G. Khitrova, M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, “Vacuum Rabi splitting in semiconductors,” Nature Phys. 2, 81–90 (2006).
[Crossref]

Gray, S. K.

Gschneidtner, T.

G. Zengin, T. Gschneidtner, R. Verre, L. Shao, T. J. Antosiewicz, M. Käll, and T. Shegai, “Evaluating conditions for strong coupling between nanoparticle plasmons and organic dyes using scattering and absorption spectroscopy,” J. Phys. Chem. C, http://pubs.acs.org/doi/abs/10.1021/acs.jpcc.6b00219 (2016).

Guo, W.

W. W. Yu, L. Qu, W. Guo, and X. Peng, “Experimental determination of the extinction coefficient of cdte, cdse, and cds nanocrystals,” Chem. Mater. 15, 2854–2860 (2003).
[Crossref]

Halas, N. J.

A. E. Schlather, N. Large, A. S. Urban, P. Nordlander, and N. J. Halas, “Near-field mediated plexitonic coupling and giant Rabi splitting in individual metallic dimers,” Nano Lett. 13, 3281–3286 (2013).
[Crossref] [PubMed]

N. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111, 3913–3961 (2011).
[Crossref] [PubMed]

Haran, G.

K. Santhosh, O. Bitton, L. Chuntonov, and G. Haran, “Vacuum rabi splitting in a plasmonic cavity at the single quantum emitter limit,” Nature Commun. 7, 11823 (2016).
[Crossref]

Hartsfield, T.

T. Hartsfield, W. S. Chang, S. C. Yang, T. Ma, J. Shi, L. Sun, G. Shvest, S. Link, and X. Li, “Single quantum dot controls a plasmonic cavity’s scattering and anisotropy,” Proc. Natl. Acad. Sci. U.S.A. 112, 12288–12292 (2015).
[Crossref]

Hendrickson, J.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004).
[Crossref] [PubMed]

Hennessy, K. J.

T. Volz, A. Reinhard, M. Winger, A. Badolato, K. J. Hennessy, E. L. Hu, and A. Imamoglu, “Ultrafast all-optical switching by single photons,” Nature Photon. 6, 605–609 (2012).
[Crossref]

Hess, O.

R. Chikkaraddy, B. de Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature, https://www.repository.cam.ac.uk/handle/1810/255143 (2016).
[PubMed]

Hu, E. L.

T. Volz, A. Reinhard, M. Winger, A. Badolato, K. J. Hennessy, E. L. Hu, and A. Imamoglu, “Ultrafast all-optical switching by single photons,” Nature Photon. 6, 605–609 (2012).
[Crossref]

Hughes, S.

P. T. Kristensen and S. Hughes, “Modes and mode volumes of leaky optical cavities and plasmonic nanoresonators,” ACS Photon. 1, 2–10 (2014).
[Crossref]

Hugonin, J. P.

C. Sauvan, J. P. Hugonin, I. S. Maksymov, and P. Lalanne, “Theory of the spontaneous optical emission of nanosize photonic and plasmon resonators,” Phys. Rev. Lett. 110, 237401 (2013).
[Crossref] [PubMed]

Hutchison, J. A.

T. Schwartz, J. A. Hutchison, C. Genet, and T. W. Ebbesen, “Reversible switching of ultrastrong light-molecule coupling,” Phys. Rev. Lett. 106, 196405 (2011).
[Crossref] [PubMed]

Imamoglu, A.

T. Volz, A. Reinhard, M. Winger, A. Badolato, K. J. Hennessy, E. L. Hu, and A. Imamoglu, “Ultrafast all-optical switching by single photons,” Nature Photon. 6, 605–609 (2012).
[Crossref]

Itzkan, I.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced raman scattering (sers),” Phys. Rev. Lett. 78, 1667–1670 (1997).
[Crossref]

Johansson, G.

G. Zengin, G. Johansson, P. Johansson, T. J. Antosiewicz, M. Käll, and T. Shegai, “Approaching the strong coupling limit in single plasmonic nanorods interacting with J-aggregates,” Sci. Rep. 3, 3074 (2013).
[Crossref] [PubMed]

Johansson, P.

G. Zengin, G. Johansson, P. Johansson, T. J. Antosiewicz, M. Käll, and T. Shegai, “Approaching the strong coupling limit in single plasmonic nanorods interacting with J-aggregates,” Sci. Rep. 3, 3074 (2013).
[Crossref] [PubMed]

Johnson, P.

P. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Käll, M.

G. Zengin, M. Wersäll, S. Nilsson, T. J. Antosiewicz, M. Käll, and T. Shegai, “Realizing strong light-matter interactions between single-nanoparticle plasmons and molecular excitons at ambient conditions,” Phys. Rev. Lett. 114, 157401 (2015).
[Crossref] [PubMed]

G. Zengin, G. Johansson, P. Johansson, T. J. Antosiewicz, M. Käll, and T. Shegai, “Approaching the strong coupling limit in single plasmonic nanorods interacting with J-aggregates,” Sci. Rep. 3, 3074 (2013).
[Crossref] [PubMed]

H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering,” Phys. Rev. Lett. 83, 4357–4360 (1999).
[Crossref]

G. Zengin, T. Gschneidtner, R. Verre, L. Shao, T. J. Antosiewicz, M. Käll, and T. Shegai, “Evaluating conditions for strong coupling between nanoparticle plasmons and organic dyes using scattering and absorption spectroscopy,” J. Phys. Chem. C, http://pubs.acs.org/doi/abs/10.1021/acs.jpcc.6b00219 (2016).

Khitrova, G.

G. Khitrova, M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, “Vacuum Rabi splitting in semiconductors,” Nature Phys. 2, 81–90 (2006).
[Crossref]

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004).
[Crossref] [PubMed]

Kim, D.-H.

A. I. Väkeväinen, R. J. Moerland, H. T. Rekola, A.-P. Eskelinen, J.-P. Martikainen, D.-H. Kim, and P. Törmä, “Plasmonic surface lattice resonances at the strong coupling regime,” Nano Lett. 14, 1721–1727 (2014).
[Crossref]

Kimble, H. J.

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, and H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443, 671–674 (2006).
[Crossref] [PubMed]

J. McKeever, A. Boca, A. D. Boozer, J. R. Buck, and H. J. Kimble, “Experimental realization of a one-atom laser in the regime of strong coupling,” Nature 425, 268–271 (2003).
[Crossref] [PubMed]

Kippenberg, T. J.

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, and H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443, 671–674 (2006).
[Crossref] [PubMed]

Kira, M.

G. Khitrova, M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, “Vacuum Rabi splitting in semiconductors,” Nature Phys. 2, 81–90 (2006).
[Crossref]

Klein, S.

J. Dintinger, S. Klein, F. Bustos, W. L. Barnes, and T. W. Ebbesen, “Strong coupling between surface plasmon-polaritons and organic molecules in subwavelength hole arrays,” Phys. Rev. B 71, 035424 (2005).
[Crossref]

Kneipp, H.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced raman scattering (sers),” Phys. Rev. Lett. 78, 1667–1670 (1997).
[Crossref]

Kneipp, K.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced raman scattering (sers),” Phys. Rev. Lett. 78, 1667–1670 (1997).
[Crossref]

Koch, S. W.

G. Khitrova, M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, “Vacuum Rabi splitting in semiconductors,” Nature Phys. 2, 81–90 (2006).
[Crossref]

Koenderink, A. F.

Kristensen, P. T.

P. T. Kristensen and S. Hughes, “Modes and mode volumes of leaky optical cavities and plasmonic nanoresonators,” ACS Photon. 1, 2–10 (2014).
[Crossref]

Lal, S.

N. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111, 3913–3961 (2011).
[Crossref] [PubMed]

Lalanne, P.

C. Sauvan, J. P. Hugonin, I. S. Maksymov, and P. Lalanne, “Theory of the spontaneous optical emission of nanosize photonic and plasmon resonators,” Phys. Rev. Lett. 110, 237401 (2013).
[Crossref] [PubMed]

Large, N.

A. E. Schlather, N. Large, A. S. Urban, P. Nordlander, and N. J. Halas, “Near-field mediated plexitonic coupling and giant Rabi splitting in individual metallic dimers,” Nano Lett. 13, 3281–3286 (2013).
[Crossref] [PubMed]

Lemaitre, A.

J. Bellessa, C. Symonds, K. Vynck, A. Lemaitre, A. Brioude, L. Beaur, J. C. Plenet, P. Viste, D. Felbacq, E. Cambril, and P. Valvin, “Giant rabi splitting between localized mixed plasmon-exciton states in a two-dimensional array of nanosize metallic disks in an organic semiconductor,” Phys. Rev. B 80, 033303 (2009).
[Crossref]

Li, X.

T. Hartsfield, W. S. Chang, S. C. Yang, T. Ma, J. Shi, L. Sun, G. Shvest, S. Link, and X. Li, “Single quantum dot controls a plasmonic cavity’s scattering and anisotropy,” Proc. Natl. Acad. Sci. U.S.A. 112, 12288–12292 (2015).
[Crossref]

Li, Z.-Y.

C. Zhang, B.-Q. Chen, and Z.-Y. Li, “Optical origin of subnanometer resolution in tip-enhanced raman mapping,” J. Phys. Chem. C 119, 11858–11871 (2015).
[Crossref]

Link, S.

T. Hartsfield, W. S. Chang, S. C. Yang, T. Ma, J. Shi, L. Sun, G. Shvest, S. Link, and X. Li, “Single quantum dot controls a plasmonic cavity’s scattering and anisotropy,” Proc. Natl. Acad. Sci. U.S.A. 112, 12288–12292 (2015).
[Crossref]

N. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111, 3913–3961 (2011).
[Crossref] [PubMed]

Lo, H.-K.

H.-K. Lo and H. F. Chau, “Unconditional security of quantum key distribution over arbitrarily long distances,” Science 283, 2050–2056 (1999).
[Crossref] [PubMed]

Ma, T.

T. Hartsfield, W. S. Chang, S. C. Yang, T. Ma, J. Shi, L. Sun, G. Shvest, S. Link, and X. Li, “Single quantum dot controls a plasmonic cavity’s scattering and anisotropy,” Proc. Natl. Acad. Sci. U.S.A. 112, 12288–12292 (2015).
[Crossref]

Maier, S. A.

Maksymov, I. S.

C. Sauvan, J. P. Hugonin, I. S. Maksymov, and P. Lalanne, “Theory of the spontaneous optical emission of nanosize photonic and plasmon resonators,” Phys. Rev. Lett. 110, 237401 (2013).
[Crossref] [PubMed]

Manjavacas, A.

A. Manjavacas, F. J. G. d. Abajo, and P. Nordlander, “Quantum plexcitonics: Strongly interacting plasmons and excitons,” Nano Lett. 11, 2318–2323 (2011).
[Crossref] [PubMed]

Martikainen, J.-P.

A. I. Väkeväinen, R. J. Moerland, H. T. Rekola, A.-P. Eskelinen, J.-P. Martikainen, D.-H. Kim, and P. Törmä, “Plasmonic surface lattice resonances at the strong coupling regime,” Nano Lett. 14, 1721–1727 (2014).
[Crossref]

McKeever, J.

J. McKeever, A. Boca, A. D. Boozer, J. R. Buck, and H. J. Kimble, “Experimental realization of a one-atom laser in the regime of strong coupling,” Nature 425, 268–271 (2003).
[Crossref] [PubMed]

Moerland, R. J.

A. I. Väkeväinen, R. J. Moerland, H. T. Rekola, A.-P. Eskelinen, J.-P. Martikainen, D.-H. Kim, and P. Törmä, “Plasmonic surface lattice resonances at the strong coupling regime,” Nano Lett. 14, 1721–1727 (2014).
[Crossref]

Mugnier, J.

J. Bellessa, C. Bonnand, J. C. Plenet, and J. Mugnier, “Strong coupling between surface plasmons and excitons in an organic semiconductor,” Phys. Rev. Lett. 93, 036404 (2004).
[Crossref] [PubMed]

Nie, S.

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275, 1102–1106 (1997).
[Crossref] [PubMed]

Nilsson, S.

G. Zengin, M. Wersäll, S. Nilsson, T. J. Antosiewicz, M. Käll, and T. Shegai, “Realizing strong light-matter interactions between single-nanoparticle plasmons and molecular excitons at ambient conditions,” Phys. Rev. Lett. 114, 157401 (2015).
[Crossref] [PubMed]

Nordlander, P.

A. E. Schlather, N. Large, A. S. Urban, P. Nordlander, and N. J. Halas, “Near-field mediated plexitonic coupling and giant Rabi splitting in individual metallic dimers,” Nano Lett. 13, 3281–3286 (2013).
[Crossref] [PubMed]

N. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111, 3913–3961 (2011).
[Crossref] [PubMed]

A. Manjavacas, F. J. G. d. Abajo, and P. Nordlander, “Quantum plexcitonics: Strongly interacting plasmons and excitons,” Nano Lett. 11, 2318–2323 (2011).
[Crossref] [PubMed]

Parkins, A. S.

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, and H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443, 671–674 (2006).
[Crossref] [PubMed]

Pelton, M.

Peng, X.

W. W. Yu, L. Qu, W. Guo, and X. Peng, “Experimental determination of the extinction coefficient of cdte, cdse, and cds nanocrystals,” Chem. Mater. 15, 2854–2860 (2003).
[Crossref]

Perelman, L. T.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced raman scattering (sers),” Phys. Rev. Lett. 78, 1667–1670 (1997).
[Crossref]

Plenet, J. C.

J. Bellessa, C. Symonds, K. Vynck, A. Lemaitre, A. Brioude, L. Beaur, J. C. Plenet, P. Viste, D. Felbacq, E. Cambril, and P. Valvin, “Giant rabi splitting between localized mixed plasmon-exciton states in a two-dimensional array of nanosize metallic disks in an organic semiconductor,” Phys. Rev. B 80, 033303 (2009).
[Crossref]

J. Bellessa, C. Bonnand, J. C. Plenet, and J. Mugnier, “Strong coupling between surface plasmons and excitons in an organic semiconductor,” Phys. Rev. Lett. 93, 036404 (2004).
[Crossref] [PubMed]

Polman, A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nature Mater. 9, 205–213 (2010).
[Crossref]

Qu, L.

W. W. Yu, L. Qu, W. Guo, and X. Peng, “Experimental determination of the extinction coefficient of cdte, cdse, and cds nanocrystals,” Chem. Mater. 15, 2854–2860 (2003).
[Crossref]

Reinhard, A.

T. Volz, A. Reinhard, M. Winger, A. Badolato, K. J. Hennessy, E. L. Hu, and A. Imamoglu, “Ultrafast all-optical switching by single photons,” Nature Photon. 6, 605–609 (2012).
[Crossref]

Rekola, H. T.

A. I. Väkeväinen, R. J. Moerland, H. T. Rekola, A.-P. Eskelinen, J.-P. Martikainen, D.-H. Kim, and P. Törmä, “Plasmonic surface lattice resonances at the strong coupling regime,” Nano Lett. 14, 1721–1727 (2014).
[Crossref]

Ridolfo, A.

S. Savasta, R. Saija, A. Ridolfo, O. Di Stefano, P. Denti, and F. Borghese, “Nanopolaritons: Vacuum rabi splitting with a single quantum dot in the center of a dimer nanoantenna,” ACS Nano 4, 6369–6376 (2010).
[Crossref] [PubMed]

Rivas, J. G.

Rodriguez, S. R. K.

Rosta, E.

R. Chikkaraddy, B. de Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature, https://www.repository.cam.ac.uk/handle/1810/255143 (2016).
[PubMed]

Rupper, G.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004).
[Crossref] [PubMed]

Saija, R.

S. Savasta, R. Saija, A. Ridolfo, O. Di Stefano, P. Denti, and F. Borghese, “Nanopolaritons: Vacuum rabi splitting with a single quantum dot in the center of a dimer nanoantenna,” ACS Nano 4, 6369–6376 (2010).
[Crossref] [PubMed]

Santhosh, K.

K. Santhosh, O. Bitton, L. Chuntonov, and G. Haran, “Vacuum rabi splitting in a plasmonic cavity at the single quantum emitter limit,” Nature Commun. 7, 11823 (2016).
[Crossref]

Sauvan, C.

C. Sauvan, J. P. Hugonin, I. S. Maksymov, and P. Lalanne, “Theory of the spontaneous optical emission of nanosize photonic and plasmon resonators,” Phys. Rev. Lett. 110, 237401 (2013).
[Crossref] [PubMed]

Savasta, S.

S. Savasta, R. Saija, A. Ridolfo, O. Di Stefano, P. Denti, and F. Borghese, “Nanopolaritons: Vacuum rabi splitting with a single quantum dot in the center of a dimer nanoantenna,” ACS Nano 4, 6369–6376 (2010).
[Crossref] [PubMed]

Scherer, A.

G. Khitrova, M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, “Vacuum Rabi splitting in semiconductors,” Nature Phys. 2, 81–90 (2006).
[Crossref]

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004).
[Crossref] [PubMed]

Scherman, O. A.

R. Chikkaraddy, B. de Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature, https://www.repository.cam.ac.uk/handle/1810/255143 (2016).
[PubMed]

Schlather, A. E.

A. E. Schlather, N. Large, A. S. Urban, P. Nordlander, and N. J. Halas, “Near-field mediated plexitonic coupling and giant Rabi splitting in individual metallic dimers,” Nano Lett. 13, 3281–3286 (2013).
[Crossref] [PubMed]

Schwartz, T.

T. Schwartz, J. A. Hutchison, C. Genet, and T. W. Ebbesen, “Reversible switching of ultrastrong light-molecule coupling,” Phys. Rev. Lett. 106, 196405 (2011).
[Crossref] [PubMed]

Shao, L.

G. Zengin, T. Gschneidtner, R. Verre, L. Shao, T. J. Antosiewicz, M. Käll, and T. Shegai, “Evaluating conditions for strong coupling between nanoparticle plasmons and organic dyes using scattering and absorption spectroscopy,” J. Phys. Chem. C, http://pubs.acs.org/doi/abs/10.1021/acs.jpcc.6b00219 (2016).

Shchekin, O. B.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004).
[Crossref] [PubMed]

Shegai, T.

G. Zengin, M. Wersäll, S. Nilsson, T. J. Antosiewicz, M. Käll, and T. Shegai, “Realizing strong light-matter interactions between single-nanoparticle plasmons and molecular excitons at ambient conditions,” Phys. Rev. Lett. 114, 157401 (2015).
[Crossref] [PubMed]

T. J. Antosiewicz, S. P. Apell, and T. Shegai, “Plasmon–exciton interactions in a core-shell geometry: From enhanced absorption to strong coupling,” ACS Photon. 1, 454–463 (2014).
[Crossref]

G. Zengin, G. Johansson, P. Johansson, T. J. Antosiewicz, M. Käll, and T. Shegai, “Approaching the strong coupling limit in single plasmonic nanorods interacting with J-aggregates,” Sci. Rep. 3, 3074 (2013).
[Crossref] [PubMed]

G. Zengin, T. Gschneidtner, R. Verre, L. Shao, T. J. Antosiewicz, M. Käll, and T. Shegai, “Evaluating conditions for strong coupling between nanoparticle plasmons and organic dyes using scattering and absorption spectroscopy,” J. Phys. Chem. C, http://pubs.acs.org/doi/abs/10.1021/acs.jpcc.6b00219 (2016).

Shi, J.

T. Hartsfield, W. S. Chang, S. C. Yang, T. Ma, J. Shi, L. Sun, G. Shvest, S. Link, and X. Li, “Single quantum dot controls a plasmonic cavity’s scattering and anisotropy,” Proc. Natl. Acad. Sci. U.S.A. 112, 12288–12292 (2015).
[Crossref]

Shvest, G.

T. Hartsfield, W. S. Chang, S. C. Yang, T. Ma, J. Shi, L. Sun, G. Shvest, S. Link, and X. Li, “Single quantum dot controls a plasmonic cavity’s scattering and anisotropy,” Proc. Natl. Acad. Sci. U.S.A. 112, 12288–12292 (2015).
[Crossref]

Stefaniuk, T.

P. Wróbel, T. Stefaniuk, M. Trzcinski, A. A. Wronkowska, A. Wronkowski, and T. Szoplik, “Ge wetting layer increases ohmic plasmon losses in Ag film due to segregation,” ACS Appl. Mater. Interf. 7, 8999–9005 (2015).
[Crossref]

Sun, L.

T. Hartsfield, W. S. Chang, S. C. Yang, T. Ma, J. Shi, L. Sun, G. Shvest, S. Link, and X. Li, “Single quantum dot controls a plasmonic cavity’s scattering and anisotropy,” Proc. Natl. Acad. Sci. U.S.A. 112, 12288–12292 (2015).
[Crossref]

Symonds, C.

J. Bellessa, C. Symonds, K. Vynck, A. Lemaitre, A. Brioude, L. Beaur, J. C. Plenet, P. Viste, D. Felbacq, E. Cambril, and P. Valvin, “Giant rabi splitting between localized mixed plasmon-exciton states in a two-dimensional array of nanosize metallic disks in an organic semiconductor,” Phys. Rev. B 80, 033303 (2009).
[Crossref]

Szoplik, T.

P. Wróbel, T. Stefaniuk, M. Trzcinski, A. A. Wronkowska, A. Wronkowski, and T. Szoplik, “Ge wetting layer increases ohmic plasmon losses in Ag film due to segregation,” ACS Appl. Mater. Interf. 7, 8999–9005 (2015).
[Crossref]

Törmä, P.

P. Törmä and W. L. Barnes, “Strong coupling between surface plasmon polaritons and emitters: a review,” Rep. Prog. Phys. 78, 013901 (2015).
[Crossref]

A. I. Väkeväinen, R. J. Moerland, H. T. Rekola, A.-P. Eskelinen, J.-P. Martikainen, D.-H. Kim, and P. Törmä, “Plasmonic surface lattice resonances at the strong coupling regime,” Nano Lett. 14, 1721–1727 (2014).
[Crossref]

Trzcinski, M.

P. Wróbel, T. Stefaniuk, M. Trzcinski, A. A. Wronkowska, A. Wronkowski, and T. Szoplik, “Ge wetting layer increases ohmic plasmon losses in Ag film due to segregation,” ACS Appl. Mater. Interf. 7, 8999–9005 (2015).
[Crossref]

Urban, A. S.

A. E. Schlather, N. Large, A. S. Urban, P. Nordlander, and N. J. Halas, “Near-field mediated plexitonic coupling and giant Rabi splitting in individual metallic dimers,” Nano Lett. 13, 3281–3286 (2013).
[Crossref] [PubMed]

Vahala, K. J.

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, and H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443, 671–674 (2006).
[Crossref] [PubMed]

Väkeväinen, A. I.

A. I. Väkeväinen, R. J. Moerland, H. T. Rekola, A.-P. Eskelinen, J.-P. Martikainen, D.-H. Kim, and P. Törmä, “Plasmonic surface lattice resonances at the strong coupling regime,” Nano Lett. 14, 1721–1727 (2014).
[Crossref]

Valvin, P.

J. Bellessa, C. Symonds, K. Vynck, A. Lemaitre, A. Brioude, L. Beaur, J. C. Plenet, P. Viste, D. Felbacq, E. Cambril, and P. Valvin, “Giant rabi splitting between localized mixed plasmon-exciton states in a two-dimensional array of nanosize metallic disks in an organic semiconductor,” Phys. Rev. B 80, 033303 (2009).
[Crossref]

Verre, R.

G. Zengin, T. Gschneidtner, R. Verre, L. Shao, T. J. Antosiewicz, M. Käll, and T. Shegai, “Evaluating conditions for strong coupling between nanoparticle plasmons and organic dyes using scattering and absorption spectroscopy,” J. Phys. Chem. C, http://pubs.acs.org/doi/abs/10.1021/acs.jpcc.6b00219 (2016).

Viste, P.

J. Bellessa, C. Symonds, K. Vynck, A. Lemaitre, A. Brioude, L. Beaur, J. C. Plenet, P. Viste, D. Felbacq, E. Cambril, and P. Valvin, “Giant rabi splitting between localized mixed plasmon-exciton states in a two-dimensional array of nanosize metallic disks in an organic semiconductor,” Phys. Rev. B 80, 033303 (2009).
[Crossref]

Volz, T.

T. Volz, A. Reinhard, M. Winger, A. Badolato, K. J. Hennessy, E. L. Hu, and A. Imamoglu, “Ultrafast all-optical switching by single photons,” Nature Photon. 6, 605–609 (2012).
[Crossref]

Vuckovic, J.

Vynck, K.

J. Bellessa, C. Symonds, K. Vynck, A. Lemaitre, A. Brioude, L. Beaur, J. C. Plenet, P. Viste, D. Felbacq, E. Cambril, and P. Valvin, “Giant rabi splitting between localized mixed plasmon-exciton states in a two-dimensional array of nanosize metallic disks in an organic semiconductor,” Phys. Rev. B 80, 033303 (2009).
[Crossref]

Wang, Y.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced raman scattering (sers),” Phys. Rev. Lett. 78, 1667–1670 (1997).
[Crossref]

Wersäll, M.

G. Zengin, M. Wersäll, S. Nilsson, T. J. Antosiewicz, M. Käll, and T. Shegai, “Realizing strong light-matter interactions between single-nanoparticle plasmons and molecular excitons at ambient conditions,” Phys. Rev. Lett. 114, 157401 (2015).
[Crossref] [PubMed]

Wilcut, E.

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, and H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443, 671–674 (2006).
[Crossref] [PubMed]

Winger, M.

T. Volz, A. Reinhard, M. Winger, A. Badolato, K. J. Hennessy, E. L. Hu, and A. Imamoglu, “Ultrafast all-optical switching by single photons,” Nature Photon. 6, 605–609 (2012).
[Crossref]

Wróbel, P.

P. Wróbel, T. Stefaniuk, M. Trzcinski, A. A. Wronkowska, A. Wronkowski, and T. Szoplik, “Ge wetting layer increases ohmic plasmon losses in Ag film due to segregation,” ACS Appl. Mater. Interf. 7, 8999–9005 (2015).
[Crossref]

Wronkowska, A. A.

P. Wróbel, T. Stefaniuk, M. Trzcinski, A. A. Wronkowska, A. Wronkowski, and T. Szoplik, “Ge wetting layer increases ohmic plasmon losses in Ag film due to segregation,” ACS Appl. Mater. Interf. 7, 8999–9005 (2015).
[Crossref]

Wronkowski, A.

P. Wróbel, T. Stefaniuk, M. Trzcinski, A. A. Wronkowska, A. Wronkowski, and T. Szoplik, “Ge wetting layer increases ohmic plasmon losses in Ag film due to segregation,” ACS Appl. Mater. Interf. 7, 8999–9005 (2015).
[Crossref]

Wu, X.

Xu, H.

H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering,” Phys. Rev. Lett. 83, 4357–4360 (1999).
[Crossref]

Yang, S. C.

T. Hartsfield, W. S. Chang, S. C. Yang, T. Ma, J. Shi, L. Sun, G. Shvest, S. Link, and X. Li, “Single quantum dot controls a plasmonic cavity’s scattering and anisotropy,” Proc. Natl. Acad. Sci. U.S.A. 112, 12288–12292 (2015).
[Crossref]

Yoshie, T.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004).
[Crossref] [PubMed]

Yu, W. W.

W. W. Yu, L. Qu, W. Guo, and X. Peng, “Experimental determination of the extinction coefficient of cdte, cdse, and cds nanocrystals,” Chem. Mater. 15, 2854–2860 (2003).
[Crossref]

Zengin, G.

G. Zengin, M. Wersäll, S. Nilsson, T. J. Antosiewicz, M. Käll, and T. Shegai, “Realizing strong light-matter interactions between single-nanoparticle plasmons and molecular excitons at ambient conditions,” Phys. Rev. Lett. 114, 157401 (2015).
[Crossref] [PubMed]

G. Zengin, G. Johansson, P. Johansson, T. J. Antosiewicz, M. Käll, and T. Shegai, “Approaching the strong coupling limit in single plasmonic nanorods interacting with J-aggregates,” Sci. Rep. 3, 3074 (2013).
[Crossref] [PubMed]

G. Zengin, T. Gschneidtner, R. Verre, L. Shao, T. J. Antosiewicz, M. Käll, and T. Shegai, “Evaluating conditions for strong coupling between nanoparticle plasmons and organic dyes using scattering and absorption spectroscopy,” J. Phys. Chem. C, http://pubs.acs.org/doi/abs/10.1021/acs.jpcc.6b00219 (2016).

Zhang, C.

C. Zhang, B.-Q. Chen, and Z.-Y. Li, “Optical origin of subnanometer resolution in tip-enhanced raman mapping,” J. Phys. Chem. C 119, 11858–11871 (2015).
[Crossref]

ACS Appl. Mater. Interf. (1)

P. Wróbel, T. Stefaniuk, M. Trzcinski, A. A. Wronkowska, A. Wronkowski, and T. Szoplik, “Ge wetting layer increases ohmic plasmon losses in Ag film due to segregation,” ACS Appl. Mater. Interf. 7, 8999–9005 (2015).
[Crossref]

ACS Nano (1)

S. Savasta, R. Saija, A. Ridolfo, O. Di Stefano, P. Denti, and F. Borghese, “Nanopolaritons: Vacuum rabi splitting with a single quantum dot in the center of a dimer nanoantenna,” ACS Nano 4, 6369–6376 (2010).
[Crossref] [PubMed]

ACS Photon. (2)

T. J. Antosiewicz, S. P. Apell, and T. Shegai, “Plasmon–exciton interactions in a core-shell geometry: From enhanced absorption to strong coupling,” ACS Photon. 1, 454–463 (2014).
[Crossref]

P. T. Kristensen and S. Hughes, “Modes and mode volumes of leaky optical cavities and plasmonic nanoresonators,” ACS Photon. 1, 2–10 (2014).
[Crossref]

Chem. Mater. (1)

W. W. Yu, L. Qu, W. Guo, and X. Peng, “Experimental determination of the extinction coefficient of cdte, cdse, and cds nanocrystals,” Chem. Mater. 15, 2854–2860 (2003).
[Crossref]

Chem. Rev. (1)

N. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111, 3913–3961 (2011).
[Crossref] [PubMed]

J. Phys. Chem. C (1)

C. Zhang, B.-Q. Chen, and Z.-Y. Li, “Optical origin of subnanometer resolution in tip-enhanced raman mapping,” J. Phys. Chem. C 119, 11858–11871 (2015).
[Crossref]

Nano Lett. (4)

A. E. Schlather, N. Large, A. S. Urban, P. Nordlander, and N. J. Halas, “Near-field mediated plexitonic coupling and giant Rabi splitting in individual metallic dimers,” Nano Lett. 13, 3281–3286 (2013).
[Crossref] [PubMed]

A. Manjavacas, F. J. G. d. Abajo, and P. Nordlander, “Quantum plexcitonics: Strongly interacting plasmons and excitons,” Nano Lett. 11, 2318–2323 (2011).
[Crossref] [PubMed]

E. Eizner, O. Avayu, R. Ditcovski, and T. Ellenbogen, “Aluminum nanoantenna complexes for strong coupling between excitons and localized surface plasmons,” Nano Lett. 15, 6215–6221 (2015).
[Crossref] [PubMed]

A. I. Väkeväinen, R. J. Moerland, H. T. Rekola, A.-P. Eskelinen, J.-P. Martikainen, D.-H. Kim, and P. Törmä, “Plasmonic surface lattice resonances at the strong coupling regime,” Nano Lett. 14, 1721–1727 (2014).
[Crossref]

Nature (4)

J. McKeever, A. Boca, A. D. Boozer, J. R. Buck, and H. J. Kimble, “Experimental realization of a one-atom laser in the regime of strong coupling,” Nature 425, 268–271 (2003).
[Crossref] [PubMed]

T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. J. Kippenberg, K. J. Vahala, and H. J. Kimble, “Observation of strong coupling between one atom and a monolithic microresonator,” Nature 443, 671–674 (2006).
[Crossref] [PubMed]

W. Barnes, A. Dereux, and T. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref] [PubMed]

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004).
[Crossref] [PubMed]

Nature Commun. (1)

K. Santhosh, O. Bitton, L. Chuntonov, and G. Haran, “Vacuum rabi splitting in a plasmonic cavity at the single quantum emitter limit,” Nature Commun. 7, 11823 (2016).
[Crossref]

Nature Mater. (1)

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nature Mater. 9, 205–213 (2010).
[Crossref]

Nature Photon. (1)

T. Volz, A. Reinhard, M. Winger, A. Badolato, K. J. Hennessy, E. L. Hu, and A. Imamoglu, “Ultrafast all-optical switching by single photons,” Nature Photon. 6, 605–609 (2012).
[Crossref]

Nature Phys. (1)

G. Khitrova, M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, “Vacuum Rabi splitting in semiconductors,” Nature Phys. 2, 81–90 (2006).
[Crossref]

Opt. Express (4)

Opt. Lett. (1)

Phys. Rev. B (3)

P. Johnson and R. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

J. Bellessa, C. Symonds, K. Vynck, A. Lemaitre, A. Brioude, L. Beaur, J. C. Plenet, P. Viste, D. Felbacq, E. Cambril, and P. Valvin, “Giant rabi splitting between localized mixed plasmon-exciton states in a two-dimensional array of nanosize metallic disks in an organic semiconductor,” Phys. Rev. B 80, 033303 (2009).
[Crossref]

J. Dintinger, S. Klein, F. Bustos, W. L. Barnes, and T. W. Ebbesen, “Strong coupling between surface plasmon-polaritons and organic molecules in subwavelength hole arrays,” Phys. Rev. B 71, 035424 (2005).
[Crossref]

Phys. Rev. Lett. (6)

T. Schwartz, J. A. Hutchison, C. Genet, and T. W. Ebbesen, “Reversible switching of ultrastrong light-molecule coupling,” Phys. Rev. Lett. 106, 196405 (2011).
[Crossref] [PubMed]

J. Bellessa, C. Bonnand, J. C. Plenet, and J. Mugnier, “Strong coupling between surface plasmons and excitons in an organic semiconductor,” Phys. Rev. Lett. 93, 036404 (2004).
[Crossref] [PubMed]

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced raman scattering (sers),” Phys. Rev. Lett. 78, 1667–1670 (1997).
[Crossref]

C. Sauvan, J. P. Hugonin, I. S. Maksymov, and P. Lalanne, “Theory of the spontaneous optical emission of nanosize photonic and plasmon resonators,” Phys. Rev. Lett. 110, 237401 (2013).
[Crossref] [PubMed]

G. Zengin, M. Wersäll, S. Nilsson, T. J. Antosiewicz, M. Käll, and T. Shegai, “Realizing strong light-matter interactions between single-nanoparticle plasmons and molecular excitons at ambient conditions,” Phys. Rev. Lett. 114, 157401 (2015).
[Crossref] [PubMed]

H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering,” Phys. Rev. Lett. 83, 4357–4360 (1999).
[Crossref]

Proc. Natl. Acad. Sci. U.S.A. (1)

T. Hartsfield, W. S. Chang, S. C. Yang, T. Ma, J. Shi, L. Sun, G. Shvest, S. Link, and X. Li, “Single quantum dot controls a plasmonic cavity’s scattering and anisotropy,” Proc. Natl. Acad. Sci. U.S.A. 112, 12288–12292 (2015).
[Crossref]

Rep. Prog. Phys. (1)

P. Törmä and W. L. Barnes, “Strong coupling between surface plasmon polaritons and emitters: a review,” Rep. Prog. Phys. 78, 013901 (2015).
[Crossref]

Sci. Rep. (1)

G. Zengin, G. Johansson, P. Johansson, T. J. Antosiewicz, M. Käll, and T. Shegai, “Approaching the strong coupling limit in single plasmonic nanorods interacting with J-aggregates,” Sci. Rep. 3, 3074 (2013).
[Crossref] [PubMed]

Science (2)

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275, 1102–1106 (1997).
[Crossref] [PubMed]

H.-K. Lo and H. F. Chau, “Unconditional security of quantum key distribution over arbitrarily long distances,” Science 283, 2050–2056 (1999).
[Crossref] [PubMed]

Other (2)

R. Chikkaraddy, B. de Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, and J. J. Baumberg, “Single-molecule strong coupling at room temperature in plasmonic nanocavities,” Nature, https://www.repository.cam.ac.uk/handle/1810/255143 (2016).
[PubMed]

G. Zengin, T. Gschneidtner, R. Verre, L. Shao, T. J. Antosiewicz, M. Käll, and T. Shegai, “Evaluating conditions for strong coupling between nanoparticle plasmons and organic dyes using scattering and absorption spectroscopy,” J. Phys. Chem. C, http://pubs.acs.org/doi/abs/10.1021/acs.jpcc.6b00219 (2016).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Investigated metal-dye nanostructures. (a) Metal sphere dm = 30 nm in diameter with a spherical dye particle dd = 5 nm in size, separation of 2.5 nm. (b) Dimer of identical spheres as in (a) separated by 10 nm with a centrally placed dye particle. (c) Two thin nanoprisms with an edge of 70 nm, corner rounding 7 nm radius, and thickness of 10 nm. Prism separation is 10 nm and the dye particle is as previously. (d) Top row: cross sections of the metal nanostructure (solid lines) and absorption cross section of the Lorentz sphere (dashed line, multiplied by indicated factor for readability). Bottom row: real and imaginary parts of the Lorentz permittivity.
Fig. 2
Fig. 2 (a–c) Extinction cross sections of a coupled metal sphere – dye nanoparticle structure. The damping of the metal increases by one order of magnitude and the peak splitting Ω (see the vertical dotted lines and the table) remains practically constant, only its visibility decreases up to a point when it almost disappears for the highest losses γp = 2 eV. (d–f) Field enhancement at the center of the Lorentz nanosphere (left y-axis, circles) and mode volume of the Drude metal sphere (right y-axis, squares) as function of the loss parameter γp of the metal sphere. Note the considerable decrease of the field enhancement accompanied by an almost constant mode volume. Extinction cross sections of dimers composed of (a) two spheres and (c) two triangles coupled to a dye nanoparticle. (b,d) Field enhancements (left y-axis) and mode volumes (right y-axis) of the sphere dimer and triangle dimer structures, respectively. The field enhancement values for the dimers are considerably larger than for the single sphere, yet the peak splitting, when normalized to the resonance energy of the plasmonic structure, is only slightly larger for the dimers. The mode volumes are, on the other hand, slightly smaller for the dimers than the single sphere, in agreement with the peak splitting dependence. Note, that while the field enhancement is strongly dependent on the damping, the mode volume and the peak splitting are not.
Fig. 3
Fig. 3 (a) Absorption cross sections for sphere dimers with the Lorentz nanoparticle moving out of the hot spot as indicated in the inset. The electric field is polarized along the axis joining the two metal spheres. As the exciton leaves the hot spot and experiences a deceasing field enhancement the peak splitting decreases (mainly due to smaller overlap between the molecules and the mode) and the dip becomes shallower (mainly due to a weaker field) in line with Ω ( r ) = 2 η ( r ) μ e | E vac |. (b) Comparison of measured (squares) and calculated (circles) splitting. The calculated splitting is multiplied by ca. 1.6 to match the measured values (see Fig. 5).
Fig. 4
Fig. 4 Compression of the mode volume of a silver bow-tie dimer loaded with a 4 nm dielectric sphere in the gap as a function of the sphere’s permittivity. Increase of from 1 to 25 deceases the mode volume to ca. 0.2 of the initial value. Although 25 is unrealistic at optical frequencies, = 6 is typical for quantum dots and this decreases V about 2.5 times, which increases the coupling strength 1.6-fold. This is consistent with the multiplicative factor used in Fig. 3.
Fig. 5
Fig. 5 (a) Dashed line shows M ~ 1 / V. Blue circles is an actual calculation of the field enhancement. Orange squares is calculated V. For all points loss is 0.59 eV. (b) Energy density distribution at loss equal 0.59 eV. (c) Scattering cross-section of a silver bow-tie nanoantenna loaded with (red) and without (blue) a CdSe QD having μ = 13 D ( = 6, f = 0.1, line position 1.77 eV, width 5 meV).

Tables (1)

Tables Icon

Table 1 Lorentz permittivity j ( ω ) = 1 f ω j 2 / ( ω j 2 ω 2 2 i γ j ω ) parameters used to model the optical properties of the dye: resonance frequency, line width, Lorentz permittivity, and transition dipole moment; λ0 is the resonance wavelength of the nanostructure. These parameters give in all cases a transition dipole moment of μe = 60 D.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

g = N μ e | E vac | ,
| E vac | = ω / 2 0 V
V = η ( r ) d V ,
η ( r ) = ρ ( r ) / ρ max
Ω ( r ) = 2 η ( r ) μ e | E vac | .

Metrics