Abstract

We propose an all-solid-state tunable Bragg filter with a phase transition material as the defect layer. Bragg filters based on a vanadium dioxide defect layer sandwiched between silicon dioxide/titanium dioxide Bragg gratings are experimentally demonstrated. Temperature dependent reflection spectroscopy shows the dynamic tunability and hysteresis properties of the Bragg filter. Temperature dependent Raman spectroscopy reveals the connection between the tunability and the phase transition of the vanadium dioxide defect layer. This work paves a new avenue in tunable Bragg filter designs and promises more applications by combining phase transition materials and optical cavities.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Frequency tunable near-infrared metamaterials based on VO2 phase transition

Matthew J. Dicken, Koray Aydin, Imogen M. Pryce, Luke A. Sweatlock, Elizabeth M. Boyd, Sameer Walavalkar, James Ma, and Harry A. Atwater
Opt. Express 17(20) 18330-18339 (2009)

Characterizing the tunable refractive index of vanadium dioxide

Marc Currie, Michael A. Mastro, and Virginia D. Wheeler
Opt. Mater. Express 7(5) 1697-1707 (2017)

References

  • View by:
  • |
  • |
  • |

  1. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
    [Crossref] [PubMed]
  2. E. Yablonovitch, “Photonic band-gap structures,” J. Opt. Soc. Am. B 10(2), 283–295 (1993).
    [Crossref]
  3. S. J. Orfanidis, “Electromagnetic waves and antennas.” (2002), http://www.ece.rutgers.edu/~orfanidi/ewa .
  4. G. Calo, A. D’Orazio, M. De Sario, L. Mescia, V. Petruzzelli, and F. Prudenzano, “Tunability of photonic band gap notch filters,” IEEE Trans. NanoTechnol. 7(3), 273–284 (2008).
    [Crossref]
  5. R. Zengerle and O. Leminger, “Phase-shifted Bragg-grating filters with improved transmission characteristics,” J. Lightwave Technol. 13(12), 2354–2358 (1995).
    [Crossref]
  6. D. R. Smith, S. L. McCall, P. M. Platzman, R. Dalichaouch, N. Kroll, and S. Schultz, “Photonic band structure and defects in one and two dimensions,” J. Opt. Soc. Am. B 10(2), 314–321 (1993).
    [Crossref]
  7. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-Gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
    [Crossref] [PubMed]
  8. J. Yoon, W. Lee, J. M. Caruge, M. Bawendi, E. L. Thomas, S. Kooi, and P. N. Prasad, “Defect-mode mirrorless lasing in dye-doped organic/inorganic hybrid one-dimensional photonic crystal,” Appl. Phys. Lett. 88(9), 091102 (2006).
    [Crossref]
  9. G. P. Agrawal and S. Radic, “Phase-shifted fiber Bragg gratings and their application for wavelength demultiplexing,” IEEE Photonics Technol. Lett. 6(8), 995–997 (1994).
    [Crossref]
  10. T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15(8), 1277–1294 (1997).
    [Crossref]
  11. H. C. Kim, K. Ikeda, and Y. Fainman, “Tunable transmission resonant filter and modulator with vertical gratings,” J. Lightwave Technol. 25(5), 1147–1151 (2007).
    [Crossref]
  12. Q. Wu and Y. Okabe, “High-sensitivity ultrasonic phase-shifted fiber Bragg grating balanced sensing system,” Opt. Express 20(27), 28353–28362 (2012).
    [Crossref] [PubMed]
  13. C. J. S. Matos, P. Torres, L. C. G. Valente, W. Margulis, and R. Stubbe, “Fiber Bragg grating (FBG) characterization and shaping by local pressure,” J. Lightwave Technol. 19(8), 1206–1211 (2001).
    [Crossref]
  14. X. Chen, Y. Painchaud, K. Ogusu, and H. Li, “Phase shifts induced by the piezoelectric transducers attached to a linearly chirped fiber Bragg grating,” J. Lightwave Technol. 28(14), 2017–2022 (2010).
    [Crossref]
  15. S. Y. Li, N. Q. Ngo, S. C. Tjin, P. Shum, and J. Zhang, “Thermally tunable narrow-bandpass filter based on a linearly chirped fiber Bragg grating,” Opt. Lett. 29(1), 29–31 (2004).
    [Crossref] [PubMed]
  16. Q. Zhu and Y. Zhang, “Defect modes and wavelength tuning of one-dimensional photonic crystal with lithium niobate,” Optik (Stuttg.) 120(4), 195–198 (2009).
    [Crossref]
  17. C. J. Wu, J. J. Liao, and T. W. Chang, “Tunable multilayer Fabry-Perot resonator using electro-optical defect layer,” J. Electromagnet. Wave. 24(4), 531–542 (2010).
  18. P. Halevi and F. Ramos-Mendieta, “Tunable photonic crystals with semiconducting constituents,” Phys. Rev. Lett. 85(9), 1875–1878 (2000).
    [Crossref] [PubMed]
  19. H. C. Hung, C. J. Wu, and S. J. Chang, “A mid-infrared tunable filter in a semiconductor-dielectric photonic crystal containing doped semiconductor defect,” Solid State Commun. 151(22), 1677–1680 (2011).
    [Crossref]
  20. J. López, L. E. González, M. F. Quiñonez, N. Porras-Montenegro, G. Zambrano, and M. E. Gómez, “Band structure of a 2d photonic crystal based on ferrofluids of Co0.8Zn0.2Fe2O4 nanoparticles under perpendicular applied magnetic fields,” J. Phys. Conf. Ser. 480(1), 012033 (2014).
    [Crossref]
  21. Y. K. Ha, Y. C. Yang, J. E. Kim, H. Y. Park, C. S. Kee, H. Lim, and J. C. Lee, “Tunable omnidirectional reflection bands and defect modes of a one-dimensional photonic band gap structure with liquid crystals,” Appl. Phys. Lett. 79(1), 15–17 (2001).
    [Crossref]
  22. R. Ozaki, T. Matsui, M. Ozaki, and K. Yoshino, “Optical property of electro-tunable defect mode in 1d periodic structure with light crystal defect layer,” Electron. Commun. 2  87(5), 24–31 (2004).
  23. R. Ozaki, M. Ozaki, and K. Yoshino, “Defect mode in one-dimensional photonic crystal with in-plane switchable nematic liquid crystal defect layer,” Jpn. J. Appl. Phys. 43, 1477–1479 (2004).
    [Crossref]
  24. F. J. Morin, “Oxides which show a metal-to-insulator transition at the Neel temperature,” Phys. Rev. Lett. 3(1), 34–36 (1959).
    [Crossref]
  25. H. W. Verleur, A. S. Barker, and C. N. Berglund, “Optical properties of VO2 between 0.25 and 5 eV,” Phys. Rev. 172(3), 788–798 (1968).
    [Crossref]
  26. M. Imada, A. Fujimori, and Y. Tokura, “Metal-insulator transitions,” Rev. Mod. Phys. 70(4), 1039–1263 (1998).
    [Crossref]
  27. J. Wu, Q. Gu, B. S. Guiton, N. P. de Leon, L. Ouyang, and H. Park, “Strain-induced self organization of metal-insulator domains in single-crystalline VO2 nanobeams,” Nano Lett. 6(10), 2313–2317 (2006).
    [Crossref] [PubMed]
  28. A. Perucchi, L. Baldassarre, P. Postorino, and S. Lupi, “Optical properties across the insulator to metal transitions in vanadium oxide compounds,” J. Phys. Condens. Matter 21(32), 323202 (2009).
    [Crossref] [PubMed]
  29. J. Cao, E. Ertekin, V. Srinivasan, W. Fan, S. Huang, H. Zheng, J. W. L. Yim, D. R. Khanal, D. F. Ogletree, J. C. Grossman, and J. Wu, “Strain engineering and one-dimensional organization of metal-insulator domains in single-crystal vanadium dioxide beams,” Nat. Nanotechnol. 4(11), 732–737 (2009).
    [Crossref] [PubMed]
  30. H.-T. Kim, B.-J. Kim, S. Choi, B.-G. Chae, Y. W. Lee, T. Driscoll, M. M. Qazilbash, and D. N. Basov, “Electrical oscillations induced by the metal-insulator transition in VO2,” J. Appl. Phys. 107(2), 023702 (2010).
    [Crossref]
  31. A. Cavalleri, T. Dekorsy, H. H. W. Chong, J. C. Kieffer, and R. W. Schoenlein, “Evidence for a structurally-driven insulator-to-metal transition in VO2: A view from the ultrafast timescale,” Phys. Rev. B 70(16), 161102 (2004).
    [Crossref]
  32. J. B. Kana Kana, J. M. Ndjaka, G. Vignaud, A. Gibaud, and M. Maaza, “Thermally tunable optical constants of vanadium dioxide thin films measured by spectroscopic ellipsometry,” Opt. Commun. 284(3), 807–812 (2011).
    [Crossref]
  33. G. I. Petrov, V. V. Yakovlev, and J. Squier, “Raman microscopy analysis of phase transformation mechanisms in vanadium dioxide,” Appl. Phys. Lett. 81(6), 1023–1025 (2002).
    [Crossref]
  34. C. Cheng, K. Liu, B. Xiang, J. Suh, and J. Wu, “Ultra-long, free-standing, single-crystalline vanadium dioxide micro/nanowires grown by simple thermal evaporation,” Appl. Phys. Lett. 100(10), 103111 (2012).
    [Crossref]
  35. T. Driscoll, H.-T. Kim, B.-G. Chae, B.-J. Kim, Y.-W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, and D. N. Basov, “Memory metamaterials,” Science 325(5947), 1518–1521 (2009).
    [Crossref] [PubMed]
  36. M. J. Dicken, K. Aydin, I. M. Pryce, L. A. Sweatlock, E. M. Boyd, S. Walavalkar, J. Ma, and H. A. Atwater, “Frequency tunable near-infrared metamaterials based on VO2 phase transition,” Opt. Express 17(20), 18330–18339 (2009).
    [Crossref] [PubMed]
  37. M. D. Goldflam, T. Driscoll, B. Chapler, O. Khatib, N. Marie Jokerst, S. Palit, D. R. Smith, B.-J. Kim, G. Seo, H.-T. Kim, M. D. Ventra, and D. N. Basov, “Reconfigurable gradient index using VO2 memory metamaterials,” Appl. Phys. Lett. 99(4), 044103 (2011).
    [Crossref]
  38. A. Cavalleri, C. Tóth, C. W. Siders, J. A. Squier, F. Ráksi, P. Forget, and J. C. Kieffer, “Femtosecond structural dynamics in VO2 during an ultrafast solid-solid phase transition,” Phys. Rev. Lett. 87(23), 237401 (2001).
    [Crossref] [PubMed]
  39. A. Crunteanu, J. Givernaud, J. Leroy, D. Mardivirin, C. Champeaux, J.-C. Orlianges, A. Catherinot, and P. Blondy, “Voltage- and current-activated metal–insulator transition in VO2-based electrical switches: a lifetime operation analysis,” Sci. Technol. Adv. Mater. 11(6), 065002 (2010).
    [Crossref]
  40. Y. Zhou, X. Chen, C. Ko, Z. Yang, C. Mouli, and S. Ramanathan, “Voltage-triggered ultrafast phase transition in vanadium dioxide switches,” IEEE Electron Device Lett. 34(2), 220–222 (2013).
    [Crossref]
  41. S. Lysenko, A. Rúa, V. Vikhnin, F. Fernández, and H. Liu, “Insulator-to-metal phase transition and recovery processes in VO2 thin films after femtosecond laser excitation,” Phys. Rev. B 76(3), 035104 (2007).
    [Crossref]

2014 (1)

J. López, L. E. González, M. F. Quiñonez, N. Porras-Montenegro, G. Zambrano, and M. E. Gómez, “Band structure of a 2d photonic crystal based on ferrofluids of Co0.8Zn0.2Fe2O4 nanoparticles under perpendicular applied magnetic fields,” J. Phys. Conf. Ser. 480(1), 012033 (2014).
[Crossref]

2013 (1)

Y. Zhou, X. Chen, C. Ko, Z. Yang, C. Mouli, and S. Ramanathan, “Voltage-triggered ultrafast phase transition in vanadium dioxide switches,” IEEE Electron Device Lett. 34(2), 220–222 (2013).
[Crossref]

2012 (2)

C. Cheng, K. Liu, B. Xiang, J. Suh, and J. Wu, “Ultra-long, free-standing, single-crystalline vanadium dioxide micro/nanowires grown by simple thermal evaporation,” Appl. Phys. Lett. 100(10), 103111 (2012).
[Crossref]

Q. Wu and Y. Okabe, “High-sensitivity ultrasonic phase-shifted fiber Bragg grating balanced sensing system,” Opt. Express 20(27), 28353–28362 (2012).
[Crossref] [PubMed]

2011 (3)

M. D. Goldflam, T. Driscoll, B. Chapler, O. Khatib, N. Marie Jokerst, S. Palit, D. R. Smith, B.-J. Kim, G. Seo, H.-T. Kim, M. D. Ventra, and D. N. Basov, “Reconfigurable gradient index using VO2 memory metamaterials,” Appl. Phys. Lett. 99(4), 044103 (2011).
[Crossref]

H. C. Hung, C. J. Wu, and S. J. Chang, “A mid-infrared tunable filter in a semiconductor-dielectric photonic crystal containing doped semiconductor defect,” Solid State Commun. 151(22), 1677–1680 (2011).
[Crossref]

J. B. Kana Kana, J. M. Ndjaka, G. Vignaud, A. Gibaud, and M. Maaza, “Thermally tunable optical constants of vanadium dioxide thin films measured by spectroscopic ellipsometry,” Opt. Commun. 284(3), 807–812 (2011).
[Crossref]

2010 (4)

H.-T. Kim, B.-J. Kim, S. Choi, B.-G. Chae, Y. W. Lee, T. Driscoll, M. M. Qazilbash, and D. N. Basov, “Electrical oscillations induced by the metal-insulator transition in VO2,” J. Appl. Phys. 107(2), 023702 (2010).
[Crossref]

C. J. Wu, J. J. Liao, and T. W. Chang, “Tunable multilayer Fabry-Perot resonator using electro-optical defect layer,” J. Electromagnet. Wave. 24(4), 531–542 (2010).

A. Crunteanu, J. Givernaud, J. Leroy, D. Mardivirin, C. Champeaux, J.-C. Orlianges, A. Catherinot, and P. Blondy, “Voltage- and current-activated metal–insulator transition in VO2-based electrical switches: a lifetime operation analysis,” Sci. Technol. Adv. Mater. 11(6), 065002 (2010).
[Crossref]

X. Chen, Y. Painchaud, K. Ogusu, and H. Li, “Phase shifts induced by the piezoelectric transducers attached to a linearly chirped fiber Bragg grating,” J. Lightwave Technol. 28(14), 2017–2022 (2010).
[Crossref]

2009 (5)

M. J. Dicken, K. Aydin, I. M. Pryce, L. A. Sweatlock, E. M. Boyd, S. Walavalkar, J. Ma, and H. A. Atwater, “Frequency tunable near-infrared metamaterials based on VO2 phase transition,” Opt. Express 17(20), 18330–18339 (2009).
[Crossref] [PubMed]

T. Driscoll, H.-T. Kim, B.-G. Chae, B.-J. Kim, Y.-W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, and D. N. Basov, “Memory metamaterials,” Science 325(5947), 1518–1521 (2009).
[Crossref] [PubMed]

Q. Zhu and Y. Zhang, “Defect modes and wavelength tuning of one-dimensional photonic crystal with lithium niobate,” Optik (Stuttg.) 120(4), 195–198 (2009).
[Crossref]

A. Perucchi, L. Baldassarre, P. Postorino, and S. Lupi, “Optical properties across the insulator to metal transitions in vanadium oxide compounds,” J. Phys. Condens. Matter 21(32), 323202 (2009).
[Crossref] [PubMed]

J. Cao, E. Ertekin, V. Srinivasan, W. Fan, S. Huang, H. Zheng, J. W. L. Yim, D. R. Khanal, D. F. Ogletree, J. C. Grossman, and J. Wu, “Strain engineering and one-dimensional organization of metal-insulator domains in single-crystal vanadium dioxide beams,” Nat. Nanotechnol. 4(11), 732–737 (2009).
[Crossref] [PubMed]

2008 (1)

G. Calo, A. D’Orazio, M. De Sario, L. Mescia, V. Petruzzelli, and F. Prudenzano, “Tunability of photonic band gap notch filters,” IEEE Trans. NanoTechnol. 7(3), 273–284 (2008).
[Crossref]

2007 (2)

S. Lysenko, A. Rúa, V. Vikhnin, F. Fernández, and H. Liu, “Insulator-to-metal phase transition and recovery processes in VO2 thin films after femtosecond laser excitation,” Phys. Rev. B 76(3), 035104 (2007).
[Crossref]

H. C. Kim, K. Ikeda, and Y. Fainman, “Tunable transmission resonant filter and modulator with vertical gratings,” J. Lightwave Technol. 25(5), 1147–1151 (2007).
[Crossref]

2006 (2)

J. Wu, Q. Gu, B. S. Guiton, N. P. de Leon, L. Ouyang, and H. Park, “Strain-induced self organization of metal-insulator domains in single-crystalline VO2 nanobeams,” Nano Lett. 6(10), 2313–2317 (2006).
[Crossref] [PubMed]

J. Yoon, W. Lee, J. M. Caruge, M. Bawendi, E. L. Thomas, S. Kooi, and P. N. Prasad, “Defect-mode mirrorless lasing in dye-doped organic/inorganic hybrid one-dimensional photonic crystal,” Appl. Phys. Lett. 88(9), 091102 (2006).
[Crossref]

2004 (4)

A. Cavalleri, T. Dekorsy, H. H. W. Chong, J. C. Kieffer, and R. W. Schoenlein, “Evidence for a structurally-driven insulator-to-metal transition in VO2: A view from the ultrafast timescale,” Phys. Rev. B 70(16), 161102 (2004).
[Crossref]

R. Ozaki, T. Matsui, M. Ozaki, and K. Yoshino, “Optical property of electro-tunable defect mode in 1d periodic structure with light crystal defect layer,” Electron. Commun. 2  87(5), 24–31 (2004).

R. Ozaki, M. Ozaki, and K. Yoshino, “Defect mode in one-dimensional photonic crystal with in-plane switchable nematic liquid crystal defect layer,” Jpn. J. Appl. Phys. 43, 1477–1479 (2004).
[Crossref]

S. Y. Li, N. Q. Ngo, S. C. Tjin, P. Shum, and J. Zhang, “Thermally tunable narrow-bandpass filter based on a linearly chirped fiber Bragg grating,” Opt. Lett. 29(1), 29–31 (2004).
[Crossref] [PubMed]

2002 (1)

G. I. Petrov, V. V. Yakovlev, and J. Squier, “Raman microscopy analysis of phase transformation mechanisms in vanadium dioxide,” Appl. Phys. Lett. 81(6), 1023–1025 (2002).
[Crossref]

2001 (3)

Y. K. Ha, Y. C. Yang, J. E. Kim, H. Y. Park, C. S. Kee, H. Lim, and J. C. Lee, “Tunable omnidirectional reflection bands and defect modes of a one-dimensional photonic band gap structure with liquid crystals,” Appl. Phys. Lett. 79(1), 15–17 (2001).
[Crossref]

A. Cavalleri, C. Tóth, C. W. Siders, J. A. Squier, F. Ráksi, P. Forget, and J. C. Kieffer, “Femtosecond structural dynamics in VO2 during an ultrafast solid-solid phase transition,” Phys. Rev. Lett. 87(23), 237401 (2001).
[Crossref] [PubMed]

C. J. S. Matos, P. Torres, L. C. G. Valente, W. Margulis, and R. Stubbe, “Fiber Bragg grating (FBG) characterization and shaping by local pressure,” J. Lightwave Technol. 19(8), 1206–1211 (2001).
[Crossref]

2000 (1)

P. Halevi and F. Ramos-Mendieta, “Tunable photonic crystals with semiconducting constituents,” Phys. Rev. Lett. 85(9), 1875–1878 (2000).
[Crossref] [PubMed]

1999 (1)

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-Gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[Crossref] [PubMed]

1998 (1)

M. Imada, A. Fujimori, and Y. Tokura, “Metal-insulator transitions,” Rev. Mod. Phys. 70(4), 1039–1263 (1998).
[Crossref]

1997 (1)

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15(8), 1277–1294 (1997).
[Crossref]

1995 (1)

R. Zengerle and O. Leminger, “Phase-shifted Bragg-grating filters with improved transmission characteristics,” J. Lightwave Technol. 13(12), 2354–2358 (1995).
[Crossref]

1994 (1)

G. P. Agrawal and S. Radic, “Phase-shifted fiber Bragg gratings and their application for wavelength demultiplexing,” IEEE Photonics Technol. Lett. 6(8), 995–997 (1994).
[Crossref]

1993 (2)

1987 (1)

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
[Crossref] [PubMed]

1968 (1)

H. W. Verleur, A. S. Barker, and C. N. Berglund, “Optical properties of VO2 between 0.25 and 5 eV,” Phys. Rev. 172(3), 788–798 (1968).
[Crossref]

1959 (1)

F. J. Morin, “Oxides which show a metal-to-insulator transition at the Neel temperature,” Phys. Rev. Lett. 3(1), 34–36 (1959).
[Crossref]

Agrawal, G. P.

G. P. Agrawal and S. Radic, “Phase-shifted fiber Bragg gratings and their application for wavelength demultiplexing,” IEEE Photonics Technol. Lett. 6(8), 995–997 (1994).
[Crossref]

Atwater, H. A.

Aydin, K.

Baldassarre, L.

A. Perucchi, L. Baldassarre, P. Postorino, and S. Lupi, “Optical properties across the insulator to metal transitions in vanadium oxide compounds,” J. Phys. Condens. Matter 21(32), 323202 (2009).
[Crossref] [PubMed]

Barker, A. S.

H. W. Verleur, A. S. Barker, and C. N. Berglund, “Optical properties of VO2 between 0.25 and 5 eV,” Phys. Rev. 172(3), 788–798 (1968).
[Crossref]

Basov, D. N.

M. D. Goldflam, T. Driscoll, B. Chapler, O. Khatib, N. Marie Jokerst, S. Palit, D. R. Smith, B.-J. Kim, G. Seo, H.-T. Kim, M. D. Ventra, and D. N. Basov, “Reconfigurable gradient index using VO2 memory metamaterials,” Appl. Phys. Lett. 99(4), 044103 (2011).
[Crossref]

H.-T. Kim, B.-J. Kim, S. Choi, B.-G. Chae, Y. W. Lee, T. Driscoll, M. M. Qazilbash, and D. N. Basov, “Electrical oscillations induced by the metal-insulator transition in VO2,” J. Appl. Phys. 107(2), 023702 (2010).
[Crossref]

T. Driscoll, H.-T. Kim, B.-G. Chae, B.-J. Kim, Y.-W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, and D. N. Basov, “Memory metamaterials,” Science 325(5947), 1518–1521 (2009).
[Crossref] [PubMed]

Bawendi, M.

J. Yoon, W. Lee, J. M. Caruge, M. Bawendi, E. L. Thomas, S. Kooi, and P. N. Prasad, “Defect-mode mirrorless lasing in dye-doped organic/inorganic hybrid one-dimensional photonic crystal,” Appl. Phys. Lett. 88(9), 091102 (2006).
[Crossref]

Berglund, C. N.

H. W. Verleur, A. S. Barker, and C. N. Berglund, “Optical properties of VO2 between 0.25 and 5 eV,” Phys. Rev. 172(3), 788–798 (1968).
[Crossref]

Blondy, P.

A. Crunteanu, J. Givernaud, J. Leroy, D. Mardivirin, C. Champeaux, J.-C. Orlianges, A. Catherinot, and P. Blondy, “Voltage- and current-activated metal–insulator transition in VO2-based electrical switches: a lifetime operation analysis,” Sci. Technol. Adv. Mater. 11(6), 065002 (2010).
[Crossref]

Boyd, E. M.

Calo, G.

G. Calo, A. D’Orazio, M. De Sario, L. Mescia, V. Petruzzelli, and F. Prudenzano, “Tunability of photonic band gap notch filters,” IEEE Trans. NanoTechnol. 7(3), 273–284 (2008).
[Crossref]

Cao, J.

J. Cao, E. Ertekin, V. Srinivasan, W. Fan, S. Huang, H. Zheng, J. W. L. Yim, D. R. Khanal, D. F. Ogletree, J. C. Grossman, and J. Wu, “Strain engineering and one-dimensional organization of metal-insulator domains in single-crystal vanadium dioxide beams,” Nat. Nanotechnol. 4(11), 732–737 (2009).
[Crossref] [PubMed]

Caruge, J. M.

J. Yoon, W. Lee, J. M. Caruge, M. Bawendi, E. L. Thomas, S. Kooi, and P. N. Prasad, “Defect-mode mirrorless lasing in dye-doped organic/inorganic hybrid one-dimensional photonic crystal,” Appl. Phys. Lett. 88(9), 091102 (2006).
[Crossref]

Catherinot, A.

A. Crunteanu, J. Givernaud, J. Leroy, D. Mardivirin, C. Champeaux, J.-C. Orlianges, A. Catherinot, and P. Blondy, “Voltage- and current-activated metal–insulator transition in VO2-based electrical switches: a lifetime operation analysis,” Sci. Technol. Adv. Mater. 11(6), 065002 (2010).
[Crossref]

Cavalleri, A.

A. Cavalleri, T. Dekorsy, H. H. W. Chong, J. C. Kieffer, and R. W. Schoenlein, “Evidence for a structurally-driven insulator-to-metal transition in VO2: A view from the ultrafast timescale,” Phys. Rev. B 70(16), 161102 (2004).
[Crossref]

A. Cavalleri, C. Tóth, C. W. Siders, J. A. Squier, F. Ráksi, P. Forget, and J. C. Kieffer, “Femtosecond structural dynamics in VO2 during an ultrafast solid-solid phase transition,” Phys. Rev. Lett. 87(23), 237401 (2001).
[Crossref] [PubMed]

Chae, B.-G.

H.-T. Kim, B.-J. Kim, S. Choi, B.-G. Chae, Y. W. Lee, T. Driscoll, M. M. Qazilbash, and D. N. Basov, “Electrical oscillations induced by the metal-insulator transition in VO2,” J. Appl. Phys. 107(2), 023702 (2010).
[Crossref]

T. Driscoll, H.-T. Kim, B.-G. Chae, B.-J. Kim, Y.-W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, and D. N. Basov, “Memory metamaterials,” Science 325(5947), 1518–1521 (2009).
[Crossref] [PubMed]

Champeaux, C.

A. Crunteanu, J. Givernaud, J. Leroy, D. Mardivirin, C. Champeaux, J.-C. Orlianges, A. Catherinot, and P. Blondy, “Voltage- and current-activated metal–insulator transition in VO2-based electrical switches: a lifetime operation analysis,” Sci. Technol. Adv. Mater. 11(6), 065002 (2010).
[Crossref]

Chang, S. J.

H. C. Hung, C. J. Wu, and S. J. Chang, “A mid-infrared tunable filter in a semiconductor-dielectric photonic crystal containing doped semiconductor defect,” Solid State Commun. 151(22), 1677–1680 (2011).
[Crossref]

Chang, T. W.

C. J. Wu, J. J. Liao, and T. W. Chang, “Tunable multilayer Fabry-Perot resonator using electro-optical defect layer,” J. Electromagnet. Wave. 24(4), 531–542 (2010).

Chapler, B.

M. D. Goldflam, T. Driscoll, B. Chapler, O. Khatib, N. Marie Jokerst, S. Palit, D. R. Smith, B.-J. Kim, G. Seo, H.-T. Kim, M. D. Ventra, and D. N. Basov, “Reconfigurable gradient index using VO2 memory metamaterials,” Appl. Phys. Lett. 99(4), 044103 (2011).
[Crossref]

Chen, X.

Y. Zhou, X. Chen, C. Ko, Z. Yang, C. Mouli, and S. Ramanathan, “Voltage-triggered ultrafast phase transition in vanadium dioxide switches,” IEEE Electron Device Lett. 34(2), 220–222 (2013).
[Crossref]

X. Chen, Y. Painchaud, K. Ogusu, and H. Li, “Phase shifts induced by the piezoelectric transducers attached to a linearly chirped fiber Bragg grating,” J. Lightwave Technol. 28(14), 2017–2022 (2010).
[Crossref]

Cheng, C.

C. Cheng, K. Liu, B. Xiang, J. Suh, and J. Wu, “Ultra-long, free-standing, single-crystalline vanadium dioxide micro/nanowires grown by simple thermal evaporation,” Appl. Phys. Lett. 100(10), 103111 (2012).
[Crossref]

Choi, S.

H.-T. Kim, B.-J. Kim, S. Choi, B.-G. Chae, Y. W. Lee, T. Driscoll, M. M. Qazilbash, and D. N. Basov, “Electrical oscillations induced by the metal-insulator transition in VO2,” J. Appl. Phys. 107(2), 023702 (2010).
[Crossref]

Chong, H. H. W.

A. Cavalleri, T. Dekorsy, H. H. W. Chong, J. C. Kieffer, and R. W. Schoenlein, “Evidence for a structurally-driven insulator-to-metal transition in VO2: A view from the ultrafast timescale,” Phys. Rev. B 70(16), 161102 (2004).
[Crossref]

Crunteanu, A.

A. Crunteanu, J. Givernaud, J. Leroy, D. Mardivirin, C. Champeaux, J.-C. Orlianges, A. Catherinot, and P. Blondy, “Voltage- and current-activated metal–insulator transition in VO2-based electrical switches: a lifetime operation analysis,” Sci. Technol. Adv. Mater. 11(6), 065002 (2010).
[Crossref]

D’Orazio, A.

G. Calo, A. D’Orazio, M. De Sario, L. Mescia, V. Petruzzelli, and F. Prudenzano, “Tunability of photonic band gap notch filters,” IEEE Trans. NanoTechnol. 7(3), 273–284 (2008).
[Crossref]

Dalichaouch, R.

Dapkus, P. D.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-Gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[Crossref] [PubMed]

de Leon, N. P.

J. Wu, Q. Gu, B. S. Guiton, N. P. de Leon, L. Ouyang, and H. Park, “Strain-induced self organization of metal-insulator domains in single-crystalline VO2 nanobeams,” Nano Lett. 6(10), 2313–2317 (2006).
[Crossref] [PubMed]

De Sario, M.

G. Calo, A. D’Orazio, M. De Sario, L. Mescia, V. Petruzzelli, and F. Prudenzano, “Tunability of photonic band gap notch filters,” IEEE Trans. NanoTechnol. 7(3), 273–284 (2008).
[Crossref]

Dekorsy, T.

A. Cavalleri, T. Dekorsy, H. H. W. Chong, J. C. Kieffer, and R. W. Schoenlein, “Evidence for a structurally-driven insulator-to-metal transition in VO2: A view from the ultrafast timescale,” Phys. Rev. B 70(16), 161102 (2004).
[Crossref]

Di Ventra, M.

T. Driscoll, H.-T. Kim, B.-G. Chae, B.-J. Kim, Y.-W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, and D. N. Basov, “Memory metamaterials,” Science 325(5947), 1518–1521 (2009).
[Crossref] [PubMed]

Dicken, M. J.

Driscoll, T.

M. D. Goldflam, T. Driscoll, B. Chapler, O. Khatib, N. Marie Jokerst, S. Palit, D. R. Smith, B.-J. Kim, G. Seo, H.-T. Kim, M. D. Ventra, and D. N. Basov, “Reconfigurable gradient index using VO2 memory metamaterials,” Appl. Phys. Lett. 99(4), 044103 (2011).
[Crossref]

H.-T. Kim, B.-J. Kim, S. Choi, B.-G. Chae, Y. W. Lee, T. Driscoll, M. M. Qazilbash, and D. N. Basov, “Electrical oscillations induced by the metal-insulator transition in VO2,” J. Appl. Phys. 107(2), 023702 (2010).
[Crossref]

T. Driscoll, H.-T. Kim, B.-G. Chae, B.-J. Kim, Y.-W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, and D. N. Basov, “Memory metamaterials,” Science 325(5947), 1518–1521 (2009).
[Crossref] [PubMed]

Erdogan, T.

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15(8), 1277–1294 (1997).
[Crossref]

Ertekin, E.

J. Cao, E. Ertekin, V. Srinivasan, W. Fan, S. Huang, H. Zheng, J. W. L. Yim, D. R. Khanal, D. F. Ogletree, J. C. Grossman, and J. Wu, “Strain engineering and one-dimensional organization of metal-insulator domains in single-crystal vanadium dioxide beams,” Nat. Nanotechnol. 4(11), 732–737 (2009).
[Crossref] [PubMed]

Fainman, Y.

Fan, W.

J. Cao, E. Ertekin, V. Srinivasan, W. Fan, S. Huang, H. Zheng, J. W. L. Yim, D. R. Khanal, D. F. Ogletree, J. C. Grossman, and J. Wu, “Strain engineering and one-dimensional organization of metal-insulator domains in single-crystal vanadium dioxide beams,” Nat. Nanotechnol. 4(11), 732–737 (2009).
[Crossref] [PubMed]

Fernández, F.

S. Lysenko, A. Rúa, V. Vikhnin, F. Fernández, and H. Liu, “Insulator-to-metal phase transition and recovery processes in VO2 thin films after femtosecond laser excitation,” Phys. Rev. B 76(3), 035104 (2007).
[Crossref]

Forget, P.

A. Cavalleri, C. Tóth, C. W. Siders, J. A. Squier, F. Ráksi, P. Forget, and J. C. Kieffer, “Femtosecond structural dynamics in VO2 during an ultrafast solid-solid phase transition,” Phys. Rev. Lett. 87(23), 237401 (2001).
[Crossref] [PubMed]

Fujimori, A.

M. Imada, A. Fujimori, and Y. Tokura, “Metal-insulator transitions,” Rev. Mod. Phys. 70(4), 1039–1263 (1998).
[Crossref]

Gibaud, A.

J. B. Kana Kana, J. M. Ndjaka, G. Vignaud, A. Gibaud, and M. Maaza, “Thermally tunable optical constants of vanadium dioxide thin films measured by spectroscopic ellipsometry,” Opt. Commun. 284(3), 807–812 (2011).
[Crossref]

Givernaud, J.

A. Crunteanu, J. Givernaud, J. Leroy, D. Mardivirin, C. Champeaux, J.-C. Orlianges, A. Catherinot, and P. Blondy, “Voltage- and current-activated metal–insulator transition in VO2-based electrical switches: a lifetime operation analysis,” Sci. Technol. Adv. Mater. 11(6), 065002 (2010).
[Crossref]

Goldflam, M. D.

M. D. Goldflam, T. Driscoll, B. Chapler, O. Khatib, N. Marie Jokerst, S. Palit, D. R. Smith, B.-J. Kim, G. Seo, H.-T. Kim, M. D. Ventra, and D. N. Basov, “Reconfigurable gradient index using VO2 memory metamaterials,” Appl. Phys. Lett. 99(4), 044103 (2011).
[Crossref]

Gómez, M. E.

J. López, L. E. González, M. F. Quiñonez, N. Porras-Montenegro, G. Zambrano, and M. E. Gómez, “Band structure of a 2d photonic crystal based on ferrofluids of Co0.8Zn0.2Fe2O4 nanoparticles under perpendicular applied magnetic fields,” J. Phys. Conf. Ser. 480(1), 012033 (2014).
[Crossref]

González, L. E.

J. López, L. E. González, M. F. Quiñonez, N. Porras-Montenegro, G. Zambrano, and M. E. Gómez, “Band structure of a 2d photonic crystal based on ferrofluids of Co0.8Zn0.2Fe2O4 nanoparticles under perpendicular applied magnetic fields,” J. Phys. Conf. Ser. 480(1), 012033 (2014).
[Crossref]

Grossman, J. C.

J. Cao, E. Ertekin, V. Srinivasan, W. Fan, S. Huang, H. Zheng, J. W. L. Yim, D. R. Khanal, D. F. Ogletree, J. C. Grossman, and J. Wu, “Strain engineering and one-dimensional organization of metal-insulator domains in single-crystal vanadium dioxide beams,” Nat. Nanotechnol. 4(11), 732–737 (2009).
[Crossref] [PubMed]

Gu, Q.

J. Wu, Q. Gu, B. S. Guiton, N. P. de Leon, L. Ouyang, and H. Park, “Strain-induced self organization of metal-insulator domains in single-crystalline VO2 nanobeams,” Nano Lett. 6(10), 2313–2317 (2006).
[Crossref] [PubMed]

Guiton, B. S.

J. Wu, Q. Gu, B. S. Guiton, N. P. de Leon, L. Ouyang, and H. Park, “Strain-induced self organization of metal-insulator domains in single-crystalline VO2 nanobeams,” Nano Lett. 6(10), 2313–2317 (2006).
[Crossref] [PubMed]

Ha, Y. K.

Y. K. Ha, Y. C. Yang, J. E. Kim, H. Y. Park, C. S. Kee, H. Lim, and J. C. Lee, “Tunable omnidirectional reflection bands and defect modes of a one-dimensional photonic band gap structure with liquid crystals,” Appl. Phys. Lett. 79(1), 15–17 (2001).
[Crossref]

Halevi, P.

P. Halevi and F. Ramos-Mendieta, “Tunable photonic crystals with semiconducting constituents,” Phys. Rev. Lett. 85(9), 1875–1878 (2000).
[Crossref] [PubMed]

Huang, S.

J. Cao, E. Ertekin, V. Srinivasan, W. Fan, S. Huang, H. Zheng, J. W. L. Yim, D. R. Khanal, D. F. Ogletree, J. C. Grossman, and J. Wu, “Strain engineering and one-dimensional organization of metal-insulator domains in single-crystal vanadium dioxide beams,” Nat. Nanotechnol. 4(11), 732–737 (2009).
[Crossref] [PubMed]

Hung, H. C.

H. C. Hung, C. J. Wu, and S. J. Chang, “A mid-infrared tunable filter in a semiconductor-dielectric photonic crystal containing doped semiconductor defect,” Solid State Commun. 151(22), 1677–1680 (2011).
[Crossref]

Ikeda, K.

Imada, M.

M. Imada, A. Fujimori, and Y. Tokura, “Metal-insulator transitions,” Rev. Mod. Phys. 70(4), 1039–1263 (1998).
[Crossref]

Jokerst, N. M.

T. Driscoll, H.-T. Kim, B.-G. Chae, B.-J. Kim, Y.-W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, and D. N. Basov, “Memory metamaterials,” Science 325(5947), 1518–1521 (2009).
[Crossref] [PubMed]

Kana Kana, J. B.

J. B. Kana Kana, J. M. Ndjaka, G. Vignaud, A. Gibaud, and M. Maaza, “Thermally tunable optical constants of vanadium dioxide thin films measured by spectroscopic ellipsometry,” Opt. Commun. 284(3), 807–812 (2011).
[Crossref]

Kee, C. S.

Y. K. Ha, Y. C. Yang, J. E. Kim, H. Y. Park, C. S. Kee, H. Lim, and J. C. Lee, “Tunable omnidirectional reflection bands and defect modes of a one-dimensional photonic band gap structure with liquid crystals,” Appl. Phys. Lett. 79(1), 15–17 (2001).
[Crossref]

Khanal, D. R.

J. Cao, E. Ertekin, V. Srinivasan, W. Fan, S. Huang, H. Zheng, J. W. L. Yim, D. R. Khanal, D. F. Ogletree, J. C. Grossman, and J. Wu, “Strain engineering and one-dimensional organization of metal-insulator domains in single-crystal vanadium dioxide beams,” Nat. Nanotechnol. 4(11), 732–737 (2009).
[Crossref] [PubMed]

Khatib, O.

M. D. Goldflam, T. Driscoll, B. Chapler, O. Khatib, N. Marie Jokerst, S. Palit, D. R. Smith, B.-J. Kim, G. Seo, H.-T. Kim, M. D. Ventra, and D. N. Basov, “Reconfigurable gradient index using VO2 memory metamaterials,” Appl. Phys. Lett. 99(4), 044103 (2011).
[Crossref]

Kieffer, J. C.

A. Cavalleri, T. Dekorsy, H. H. W. Chong, J. C. Kieffer, and R. W. Schoenlein, “Evidence for a structurally-driven insulator-to-metal transition in VO2: A view from the ultrafast timescale,” Phys. Rev. B 70(16), 161102 (2004).
[Crossref]

A. Cavalleri, C. Tóth, C. W. Siders, J. A. Squier, F. Ráksi, P. Forget, and J. C. Kieffer, “Femtosecond structural dynamics in VO2 during an ultrafast solid-solid phase transition,” Phys. Rev. Lett. 87(23), 237401 (2001).
[Crossref] [PubMed]

Kim, B.-J.

M. D. Goldflam, T. Driscoll, B. Chapler, O. Khatib, N. Marie Jokerst, S. Palit, D. R. Smith, B.-J. Kim, G. Seo, H.-T. Kim, M. D. Ventra, and D. N. Basov, “Reconfigurable gradient index using VO2 memory metamaterials,” Appl. Phys. Lett. 99(4), 044103 (2011).
[Crossref]

H.-T. Kim, B.-J. Kim, S. Choi, B.-G. Chae, Y. W. Lee, T. Driscoll, M. M. Qazilbash, and D. N. Basov, “Electrical oscillations induced by the metal-insulator transition in VO2,” J. Appl. Phys. 107(2), 023702 (2010).
[Crossref]

T. Driscoll, H.-T. Kim, B.-G. Chae, B.-J. Kim, Y.-W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, and D. N. Basov, “Memory metamaterials,” Science 325(5947), 1518–1521 (2009).
[Crossref] [PubMed]

Kim, H. C.

Kim, H.-T.

M. D. Goldflam, T. Driscoll, B. Chapler, O. Khatib, N. Marie Jokerst, S. Palit, D. R. Smith, B.-J. Kim, G. Seo, H.-T. Kim, M. D. Ventra, and D. N. Basov, “Reconfigurable gradient index using VO2 memory metamaterials,” Appl. Phys. Lett. 99(4), 044103 (2011).
[Crossref]

H.-T. Kim, B.-J. Kim, S. Choi, B.-G. Chae, Y. W. Lee, T. Driscoll, M. M. Qazilbash, and D. N. Basov, “Electrical oscillations induced by the metal-insulator transition in VO2,” J. Appl. Phys. 107(2), 023702 (2010).
[Crossref]

T. Driscoll, H.-T. Kim, B.-G. Chae, B.-J. Kim, Y.-W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, and D. N. Basov, “Memory metamaterials,” Science 325(5947), 1518–1521 (2009).
[Crossref] [PubMed]

Kim, I.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-Gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[Crossref] [PubMed]

Kim, J. E.

Y. K. Ha, Y. C. Yang, J. E. Kim, H. Y. Park, C. S. Kee, H. Lim, and J. C. Lee, “Tunable omnidirectional reflection bands and defect modes of a one-dimensional photonic band gap structure with liquid crystals,” Appl. Phys. Lett. 79(1), 15–17 (2001).
[Crossref]

Ko, C.

Y. Zhou, X. Chen, C. Ko, Z. Yang, C. Mouli, and S. Ramanathan, “Voltage-triggered ultrafast phase transition in vanadium dioxide switches,” IEEE Electron Device Lett. 34(2), 220–222 (2013).
[Crossref]

Kooi, S.

J. Yoon, W. Lee, J. M. Caruge, M. Bawendi, E. L. Thomas, S. Kooi, and P. N. Prasad, “Defect-mode mirrorless lasing in dye-doped organic/inorganic hybrid one-dimensional photonic crystal,” Appl. Phys. Lett. 88(9), 091102 (2006).
[Crossref]

Kroll, N.

Lee, J. C.

Y. K. Ha, Y. C. Yang, J. E. Kim, H. Y. Park, C. S. Kee, H. Lim, and J. C. Lee, “Tunable omnidirectional reflection bands and defect modes of a one-dimensional photonic band gap structure with liquid crystals,” Appl. Phys. Lett. 79(1), 15–17 (2001).
[Crossref]

Lee, R. K.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-Gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[Crossref] [PubMed]

Lee, W.

J. Yoon, W. Lee, J. M. Caruge, M. Bawendi, E. L. Thomas, S. Kooi, and P. N. Prasad, “Defect-mode mirrorless lasing in dye-doped organic/inorganic hybrid one-dimensional photonic crystal,” Appl. Phys. Lett. 88(9), 091102 (2006).
[Crossref]

Lee, Y. W.

H.-T. Kim, B.-J. Kim, S. Choi, B.-G. Chae, Y. W. Lee, T. Driscoll, M. M. Qazilbash, and D. N. Basov, “Electrical oscillations induced by the metal-insulator transition in VO2,” J. Appl. Phys. 107(2), 023702 (2010).
[Crossref]

Lee, Y.-W.

T. Driscoll, H.-T. Kim, B.-G. Chae, B.-J. Kim, Y.-W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, and D. N. Basov, “Memory metamaterials,” Science 325(5947), 1518–1521 (2009).
[Crossref] [PubMed]

Leminger, O.

R. Zengerle and O. Leminger, “Phase-shifted Bragg-grating filters with improved transmission characteristics,” J. Lightwave Technol. 13(12), 2354–2358 (1995).
[Crossref]

Leroy, J.

A. Crunteanu, J. Givernaud, J. Leroy, D. Mardivirin, C. Champeaux, J.-C. Orlianges, A. Catherinot, and P. Blondy, “Voltage- and current-activated metal–insulator transition in VO2-based electrical switches: a lifetime operation analysis,” Sci. Technol. Adv. Mater. 11(6), 065002 (2010).
[Crossref]

Li, H.

Li, S. Y.

Liao, J. J.

C. J. Wu, J. J. Liao, and T. W. Chang, “Tunable multilayer Fabry-Perot resonator using electro-optical defect layer,” J. Electromagnet. Wave. 24(4), 531–542 (2010).

Lim, H.

Y. K. Ha, Y. C. Yang, J. E. Kim, H. Y. Park, C. S. Kee, H. Lim, and J. C. Lee, “Tunable omnidirectional reflection bands and defect modes of a one-dimensional photonic band gap structure with liquid crystals,” Appl. Phys. Lett. 79(1), 15–17 (2001).
[Crossref]

Liu, H.

S. Lysenko, A. Rúa, V. Vikhnin, F. Fernández, and H. Liu, “Insulator-to-metal phase transition and recovery processes in VO2 thin films after femtosecond laser excitation,” Phys. Rev. B 76(3), 035104 (2007).
[Crossref]

Liu, K.

C. Cheng, K. Liu, B. Xiang, J. Suh, and J. Wu, “Ultra-long, free-standing, single-crystalline vanadium dioxide micro/nanowires grown by simple thermal evaporation,” Appl. Phys. Lett. 100(10), 103111 (2012).
[Crossref]

López, J.

J. López, L. E. González, M. F. Quiñonez, N. Porras-Montenegro, G. Zambrano, and M. E. Gómez, “Band structure of a 2d photonic crystal based on ferrofluids of Co0.8Zn0.2Fe2O4 nanoparticles under perpendicular applied magnetic fields,” J. Phys. Conf. Ser. 480(1), 012033 (2014).
[Crossref]

Lupi, S.

A. Perucchi, L. Baldassarre, P. Postorino, and S. Lupi, “Optical properties across the insulator to metal transitions in vanadium oxide compounds,” J. Phys. Condens. Matter 21(32), 323202 (2009).
[Crossref] [PubMed]

Lysenko, S.

S. Lysenko, A. Rúa, V. Vikhnin, F. Fernández, and H. Liu, “Insulator-to-metal phase transition and recovery processes in VO2 thin films after femtosecond laser excitation,” Phys. Rev. B 76(3), 035104 (2007).
[Crossref]

Ma, J.

Maaza, M.

J. B. Kana Kana, J. M. Ndjaka, G. Vignaud, A. Gibaud, and M. Maaza, “Thermally tunable optical constants of vanadium dioxide thin films measured by spectroscopic ellipsometry,” Opt. Commun. 284(3), 807–812 (2011).
[Crossref]

Mardivirin, D.

A. Crunteanu, J. Givernaud, J. Leroy, D. Mardivirin, C. Champeaux, J.-C. Orlianges, A. Catherinot, and P. Blondy, “Voltage- and current-activated metal–insulator transition in VO2-based electrical switches: a lifetime operation analysis,” Sci. Technol. Adv. Mater. 11(6), 065002 (2010).
[Crossref]

Margulis, W.

Marie Jokerst, N.

M. D. Goldflam, T. Driscoll, B. Chapler, O. Khatib, N. Marie Jokerst, S. Palit, D. R. Smith, B.-J. Kim, G. Seo, H.-T. Kim, M. D. Ventra, and D. N. Basov, “Reconfigurable gradient index using VO2 memory metamaterials,” Appl. Phys. Lett. 99(4), 044103 (2011).
[Crossref]

Matos, C. J. S.

Matsui, T.

R. Ozaki, T. Matsui, M. Ozaki, and K. Yoshino, “Optical property of electro-tunable defect mode in 1d periodic structure with light crystal defect layer,” Electron. Commun. 2  87(5), 24–31 (2004).

McCall, S. L.

Mescia, L.

G. Calo, A. D’Orazio, M. De Sario, L. Mescia, V. Petruzzelli, and F. Prudenzano, “Tunability of photonic band gap notch filters,” IEEE Trans. NanoTechnol. 7(3), 273–284 (2008).
[Crossref]

Morin, F. J.

F. J. Morin, “Oxides which show a metal-to-insulator transition at the Neel temperature,” Phys. Rev. Lett. 3(1), 34–36 (1959).
[Crossref]

Mouli, C.

Y. Zhou, X. Chen, C. Ko, Z. Yang, C. Mouli, and S. Ramanathan, “Voltage-triggered ultrafast phase transition in vanadium dioxide switches,” IEEE Electron Device Lett. 34(2), 220–222 (2013).
[Crossref]

Ndjaka, J. M.

J. B. Kana Kana, J. M. Ndjaka, G. Vignaud, A. Gibaud, and M. Maaza, “Thermally tunable optical constants of vanadium dioxide thin films measured by spectroscopic ellipsometry,” Opt. Commun. 284(3), 807–812 (2011).
[Crossref]

Ngo, N. Q.

O’Brien, J. D.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-Gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[Crossref] [PubMed]

Ogletree, D. F.

J. Cao, E. Ertekin, V. Srinivasan, W. Fan, S. Huang, H. Zheng, J. W. L. Yim, D. R. Khanal, D. F. Ogletree, J. C. Grossman, and J. Wu, “Strain engineering and one-dimensional organization of metal-insulator domains in single-crystal vanadium dioxide beams,” Nat. Nanotechnol. 4(11), 732–737 (2009).
[Crossref] [PubMed]

Ogusu, K.

Okabe, Y.

Orlianges, J.-C.

A. Crunteanu, J. Givernaud, J. Leroy, D. Mardivirin, C. Champeaux, J.-C. Orlianges, A. Catherinot, and P. Blondy, “Voltage- and current-activated metal–insulator transition in VO2-based electrical switches: a lifetime operation analysis,” Sci. Technol. Adv. Mater. 11(6), 065002 (2010).
[Crossref]

Ouyang, L.

J. Wu, Q. Gu, B. S. Guiton, N. P. de Leon, L. Ouyang, and H. Park, “Strain-induced self organization of metal-insulator domains in single-crystalline VO2 nanobeams,” Nano Lett. 6(10), 2313–2317 (2006).
[Crossref] [PubMed]

Ozaki, M.

R. Ozaki, M. Ozaki, and K. Yoshino, “Defect mode in one-dimensional photonic crystal with in-plane switchable nematic liquid crystal defect layer,” Jpn. J. Appl. Phys. 43, 1477–1479 (2004).
[Crossref]

R. Ozaki, T. Matsui, M. Ozaki, and K. Yoshino, “Optical property of electro-tunable defect mode in 1d periodic structure with light crystal defect layer,” Electron. Commun. 2  87(5), 24–31 (2004).

Ozaki, R.

R. Ozaki, T. Matsui, M. Ozaki, and K. Yoshino, “Optical property of electro-tunable defect mode in 1d periodic structure with light crystal defect layer,” Electron. Commun. 2  87(5), 24–31 (2004).

R. Ozaki, M. Ozaki, and K. Yoshino, “Defect mode in one-dimensional photonic crystal with in-plane switchable nematic liquid crystal defect layer,” Jpn. J. Appl. Phys. 43, 1477–1479 (2004).
[Crossref]

Painchaud, Y.

Painter, O.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-Gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[Crossref] [PubMed]

Palit, S.

M. D. Goldflam, T. Driscoll, B. Chapler, O. Khatib, N. Marie Jokerst, S. Palit, D. R. Smith, B.-J. Kim, G. Seo, H.-T. Kim, M. D. Ventra, and D. N. Basov, “Reconfigurable gradient index using VO2 memory metamaterials,” Appl. Phys. Lett. 99(4), 044103 (2011).
[Crossref]

T. Driscoll, H.-T. Kim, B.-G. Chae, B.-J. Kim, Y.-W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, and D. N. Basov, “Memory metamaterials,” Science 325(5947), 1518–1521 (2009).
[Crossref] [PubMed]

Park, H.

J. Wu, Q. Gu, B. S. Guiton, N. P. de Leon, L. Ouyang, and H. Park, “Strain-induced self organization of metal-insulator domains in single-crystalline VO2 nanobeams,” Nano Lett. 6(10), 2313–2317 (2006).
[Crossref] [PubMed]

Park, H. Y.

Y. K. Ha, Y. C. Yang, J. E. Kim, H. Y. Park, C. S. Kee, H. Lim, and J. C. Lee, “Tunable omnidirectional reflection bands and defect modes of a one-dimensional photonic band gap structure with liquid crystals,” Appl. Phys. Lett. 79(1), 15–17 (2001).
[Crossref]

Perucchi, A.

A. Perucchi, L. Baldassarre, P. Postorino, and S. Lupi, “Optical properties across the insulator to metal transitions in vanadium oxide compounds,” J. Phys. Condens. Matter 21(32), 323202 (2009).
[Crossref] [PubMed]

Petrov, G. I.

G. I. Petrov, V. V. Yakovlev, and J. Squier, “Raman microscopy analysis of phase transformation mechanisms in vanadium dioxide,” Appl. Phys. Lett. 81(6), 1023–1025 (2002).
[Crossref]

Petruzzelli, V.

G. Calo, A. D’Orazio, M. De Sario, L. Mescia, V. Petruzzelli, and F. Prudenzano, “Tunability of photonic band gap notch filters,” IEEE Trans. NanoTechnol. 7(3), 273–284 (2008).
[Crossref]

Platzman, P. M.

Porras-Montenegro, N.

J. López, L. E. González, M. F. Quiñonez, N. Porras-Montenegro, G. Zambrano, and M. E. Gómez, “Band structure of a 2d photonic crystal based on ferrofluids of Co0.8Zn0.2Fe2O4 nanoparticles under perpendicular applied magnetic fields,” J. Phys. Conf. Ser. 480(1), 012033 (2014).
[Crossref]

Postorino, P.

A. Perucchi, L. Baldassarre, P. Postorino, and S. Lupi, “Optical properties across the insulator to metal transitions in vanadium oxide compounds,” J. Phys. Condens. Matter 21(32), 323202 (2009).
[Crossref] [PubMed]

Prasad, P. N.

J. Yoon, W. Lee, J. M. Caruge, M. Bawendi, E. L. Thomas, S. Kooi, and P. N. Prasad, “Defect-mode mirrorless lasing in dye-doped organic/inorganic hybrid one-dimensional photonic crystal,” Appl. Phys. Lett. 88(9), 091102 (2006).
[Crossref]

Prudenzano, F.

G. Calo, A. D’Orazio, M. De Sario, L. Mescia, V. Petruzzelli, and F. Prudenzano, “Tunability of photonic band gap notch filters,” IEEE Trans. NanoTechnol. 7(3), 273–284 (2008).
[Crossref]

Pryce, I. M.

Qazilbash, M. M.

H.-T. Kim, B.-J. Kim, S. Choi, B.-G. Chae, Y. W. Lee, T. Driscoll, M. M. Qazilbash, and D. N. Basov, “Electrical oscillations induced by the metal-insulator transition in VO2,” J. Appl. Phys. 107(2), 023702 (2010).
[Crossref]

Quiñonez, M. F.

J. López, L. E. González, M. F. Quiñonez, N. Porras-Montenegro, G. Zambrano, and M. E. Gómez, “Band structure of a 2d photonic crystal based on ferrofluids of Co0.8Zn0.2Fe2O4 nanoparticles under perpendicular applied magnetic fields,” J. Phys. Conf. Ser. 480(1), 012033 (2014).
[Crossref]

Radic, S.

G. P. Agrawal and S. Radic, “Phase-shifted fiber Bragg gratings and their application for wavelength demultiplexing,” IEEE Photonics Technol. Lett. 6(8), 995–997 (1994).
[Crossref]

Ráksi, F.

A. Cavalleri, C. Tóth, C. W. Siders, J. A. Squier, F. Ráksi, P. Forget, and J. C. Kieffer, “Femtosecond structural dynamics in VO2 during an ultrafast solid-solid phase transition,” Phys. Rev. Lett. 87(23), 237401 (2001).
[Crossref] [PubMed]

Ramanathan, S.

Y. Zhou, X. Chen, C. Ko, Z. Yang, C. Mouli, and S. Ramanathan, “Voltage-triggered ultrafast phase transition in vanadium dioxide switches,” IEEE Electron Device Lett. 34(2), 220–222 (2013).
[Crossref]

Ramos-Mendieta, F.

P. Halevi and F. Ramos-Mendieta, “Tunable photonic crystals with semiconducting constituents,” Phys. Rev. Lett. 85(9), 1875–1878 (2000).
[Crossref] [PubMed]

Rúa, A.

S. Lysenko, A. Rúa, V. Vikhnin, F. Fernández, and H. Liu, “Insulator-to-metal phase transition and recovery processes in VO2 thin films after femtosecond laser excitation,” Phys. Rev. B 76(3), 035104 (2007).
[Crossref]

Scherer, A.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-Gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[Crossref] [PubMed]

Schoenlein, R. W.

A. Cavalleri, T. Dekorsy, H. H. W. Chong, J. C. Kieffer, and R. W. Schoenlein, “Evidence for a structurally-driven insulator-to-metal transition in VO2: A view from the ultrafast timescale,” Phys. Rev. B 70(16), 161102 (2004).
[Crossref]

Schultz, S.

Seo, G.

M. D. Goldflam, T. Driscoll, B. Chapler, O. Khatib, N. Marie Jokerst, S. Palit, D. R. Smith, B.-J. Kim, G. Seo, H.-T. Kim, M. D. Ventra, and D. N. Basov, “Reconfigurable gradient index using VO2 memory metamaterials,” Appl. Phys. Lett. 99(4), 044103 (2011).
[Crossref]

Shum, P.

Siders, C. W.

A. Cavalleri, C. Tóth, C. W. Siders, J. A. Squier, F. Ráksi, P. Forget, and J. C. Kieffer, “Femtosecond structural dynamics in VO2 during an ultrafast solid-solid phase transition,” Phys. Rev. Lett. 87(23), 237401 (2001).
[Crossref] [PubMed]

Smith, D. R.

M. D. Goldflam, T. Driscoll, B. Chapler, O. Khatib, N. Marie Jokerst, S. Palit, D. R. Smith, B.-J. Kim, G. Seo, H.-T. Kim, M. D. Ventra, and D. N. Basov, “Reconfigurable gradient index using VO2 memory metamaterials,” Appl. Phys. Lett. 99(4), 044103 (2011).
[Crossref]

T. Driscoll, H.-T. Kim, B.-G. Chae, B.-J. Kim, Y.-W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, and D. N. Basov, “Memory metamaterials,” Science 325(5947), 1518–1521 (2009).
[Crossref] [PubMed]

D. R. Smith, S. L. McCall, P. M. Platzman, R. Dalichaouch, N. Kroll, and S. Schultz, “Photonic band structure and defects in one and two dimensions,” J. Opt. Soc. Am. B 10(2), 314–321 (1993).
[Crossref]

Squier, J.

G. I. Petrov, V. V. Yakovlev, and J. Squier, “Raman microscopy analysis of phase transformation mechanisms in vanadium dioxide,” Appl. Phys. Lett. 81(6), 1023–1025 (2002).
[Crossref]

Squier, J. A.

A. Cavalleri, C. Tóth, C. W. Siders, J. A. Squier, F. Ráksi, P. Forget, and J. C. Kieffer, “Femtosecond structural dynamics in VO2 during an ultrafast solid-solid phase transition,” Phys. Rev. Lett. 87(23), 237401 (2001).
[Crossref] [PubMed]

Srinivasan, V.

J. Cao, E. Ertekin, V. Srinivasan, W. Fan, S. Huang, H. Zheng, J. W. L. Yim, D. R. Khanal, D. F. Ogletree, J. C. Grossman, and J. Wu, “Strain engineering and one-dimensional organization of metal-insulator domains in single-crystal vanadium dioxide beams,” Nat. Nanotechnol. 4(11), 732–737 (2009).
[Crossref] [PubMed]

Stubbe, R.

Suh, J.

C. Cheng, K. Liu, B. Xiang, J. Suh, and J. Wu, “Ultra-long, free-standing, single-crystalline vanadium dioxide micro/nanowires grown by simple thermal evaporation,” Appl. Phys. Lett. 100(10), 103111 (2012).
[Crossref]

Sweatlock, L. A.

Thomas, E. L.

J. Yoon, W. Lee, J. M. Caruge, M. Bawendi, E. L. Thomas, S. Kooi, and P. N. Prasad, “Defect-mode mirrorless lasing in dye-doped organic/inorganic hybrid one-dimensional photonic crystal,” Appl. Phys. Lett. 88(9), 091102 (2006).
[Crossref]

Tjin, S. C.

Tokura, Y.

M. Imada, A. Fujimori, and Y. Tokura, “Metal-insulator transitions,” Rev. Mod. Phys. 70(4), 1039–1263 (1998).
[Crossref]

Torres, P.

Tóth, C.

A. Cavalleri, C. Tóth, C. W. Siders, J. A. Squier, F. Ráksi, P. Forget, and J. C. Kieffer, “Femtosecond structural dynamics in VO2 during an ultrafast solid-solid phase transition,” Phys. Rev. Lett. 87(23), 237401 (2001).
[Crossref] [PubMed]

Valente, L. C. G.

Ventra, M. D.

M. D. Goldflam, T. Driscoll, B. Chapler, O. Khatib, N. Marie Jokerst, S. Palit, D. R. Smith, B.-J. Kim, G. Seo, H.-T. Kim, M. D. Ventra, and D. N. Basov, “Reconfigurable gradient index using VO2 memory metamaterials,” Appl. Phys. Lett. 99(4), 044103 (2011).
[Crossref]

Verleur, H. W.

H. W. Verleur, A. S. Barker, and C. N. Berglund, “Optical properties of VO2 between 0.25 and 5 eV,” Phys. Rev. 172(3), 788–798 (1968).
[Crossref]

Vignaud, G.

J. B. Kana Kana, J. M. Ndjaka, G. Vignaud, A. Gibaud, and M. Maaza, “Thermally tunable optical constants of vanadium dioxide thin films measured by spectroscopic ellipsometry,” Opt. Commun. 284(3), 807–812 (2011).
[Crossref]

Vikhnin, V.

S. Lysenko, A. Rúa, V. Vikhnin, F. Fernández, and H. Liu, “Insulator-to-metal phase transition and recovery processes in VO2 thin films after femtosecond laser excitation,” Phys. Rev. B 76(3), 035104 (2007).
[Crossref]

Walavalkar, S.

Wu, C. J.

H. C. Hung, C. J. Wu, and S. J. Chang, “A mid-infrared tunable filter in a semiconductor-dielectric photonic crystal containing doped semiconductor defect,” Solid State Commun. 151(22), 1677–1680 (2011).
[Crossref]

C. J. Wu, J. J. Liao, and T. W. Chang, “Tunable multilayer Fabry-Perot resonator using electro-optical defect layer,” J. Electromagnet. Wave. 24(4), 531–542 (2010).

Wu, J.

C. Cheng, K. Liu, B. Xiang, J. Suh, and J. Wu, “Ultra-long, free-standing, single-crystalline vanadium dioxide micro/nanowires grown by simple thermal evaporation,” Appl. Phys. Lett. 100(10), 103111 (2012).
[Crossref]

J. Cao, E. Ertekin, V. Srinivasan, W. Fan, S. Huang, H. Zheng, J. W. L. Yim, D. R. Khanal, D. F. Ogletree, J. C. Grossman, and J. Wu, “Strain engineering and one-dimensional organization of metal-insulator domains in single-crystal vanadium dioxide beams,” Nat. Nanotechnol. 4(11), 732–737 (2009).
[Crossref] [PubMed]

J. Wu, Q. Gu, B. S. Guiton, N. P. de Leon, L. Ouyang, and H. Park, “Strain-induced self organization of metal-insulator domains in single-crystalline VO2 nanobeams,” Nano Lett. 6(10), 2313–2317 (2006).
[Crossref] [PubMed]

Wu, Q.

Xiang, B.

C. Cheng, K. Liu, B. Xiang, J. Suh, and J. Wu, “Ultra-long, free-standing, single-crystalline vanadium dioxide micro/nanowires grown by simple thermal evaporation,” Appl. Phys. Lett. 100(10), 103111 (2012).
[Crossref]

Yablonovitch, E.

E. Yablonovitch, “Photonic band-gap structures,” J. Opt. Soc. Am. B 10(2), 283–295 (1993).
[Crossref]

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
[Crossref] [PubMed]

Yakovlev, V. V.

G. I. Petrov, V. V. Yakovlev, and J. Squier, “Raman microscopy analysis of phase transformation mechanisms in vanadium dioxide,” Appl. Phys. Lett. 81(6), 1023–1025 (2002).
[Crossref]

Yang, Y. C.

Y. K. Ha, Y. C. Yang, J. E. Kim, H. Y. Park, C. S. Kee, H. Lim, and J. C. Lee, “Tunable omnidirectional reflection bands and defect modes of a one-dimensional photonic band gap structure with liquid crystals,” Appl. Phys. Lett. 79(1), 15–17 (2001).
[Crossref]

Yang, Z.

Y. Zhou, X. Chen, C. Ko, Z. Yang, C. Mouli, and S. Ramanathan, “Voltage-triggered ultrafast phase transition in vanadium dioxide switches,” IEEE Electron Device Lett. 34(2), 220–222 (2013).
[Crossref]

Yariv, A.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-Gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[Crossref] [PubMed]

Yim, J. W. L.

J. Cao, E. Ertekin, V. Srinivasan, W. Fan, S. Huang, H. Zheng, J. W. L. Yim, D. R. Khanal, D. F. Ogletree, J. C. Grossman, and J. Wu, “Strain engineering and one-dimensional organization of metal-insulator domains in single-crystal vanadium dioxide beams,” Nat. Nanotechnol. 4(11), 732–737 (2009).
[Crossref] [PubMed]

Yoon, J.

J. Yoon, W. Lee, J. M. Caruge, M. Bawendi, E. L. Thomas, S. Kooi, and P. N. Prasad, “Defect-mode mirrorless lasing in dye-doped organic/inorganic hybrid one-dimensional photonic crystal,” Appl. Phys. Lett. 88(9), 091102 (2006).
[Crossref]

Yoshino, K.

R. Ozaki, M. Ozaki, and K. Yoshino, “Defect mode in one-dimensional photonic crystal with in-plane switchable nematic liquid crystal defect layer,” Jpn. J. Appl. Phys. 43, 1477–1479 (2004).
[Crossref]

R. Ozaki, T. Matsui, M. Ozaki, and K. Yoshino, “Optical property of electro-tunable defect mode in 1d periodic structure with light crystal defect layer,” Electron. Commun. 2  87(5), 24–31 (2004).

Zambrano, G.

J. López, L. E. González, M. F. Quiñonez, N. Porras-Montenegro, G. Zambrano, and M. E. Gómez, “Band structure of a 2d photonic crystal based on ferrofluids of Co0.8Zn0.2Fe2O4 nanoparticles under perpendicular applied magnetic fields,” J. Phys. Conf. Ser. 480(1), 012033 (2014).
[Crossref]

Zengerle, R.

R. Zengerle and O. Leminger, “Phase-shifted Bragg-grating filters with improved transmission characteristics,” J. Lightwave Technol. 13(12), 2354–2358 (1995).
[Crossref]

Zhang, J.

Zhang, Y.

Q. Zhu and Y. Zhang, “Defect modes and wavelength tuning of one-dimensional photonic crystal with lithium niobate,” Optik (Stuttg.) 120(4), 195–198 (2009).
[Crossref]

Zheng, H.

J. Cao, E. Ertekin, V. Srinivasan, W. Fan, S. Huang, H. Zheng, J. W. L. Yim, D. R. Khanal, D. F. Ogletree, J. C. Grossman, and J. Wu, “Strain engineering and one-dimensional organization of metal-insulator domains in single-crystal vanadium dioxide beams,” Nat. Nanotechnol. 4(11), 732–737 (2009).
[Crossref] [PubMed]

Zhou, Y.

Y. Zhou, X. Chen, C. Ko, Z. Yang, C. Mouli, and S. Ramanathan, “Voltage-triggered ultrafast phase transition in vanadium dioxide switches,” IEEE Electron Device Lett. 34(2), 220–222 (2013).
[Crossref]

Zhu, Q.

Q. Zhu and Y. Zhang, “Defect modes and wavelength tuning of one-dimensional photonic crystal with lithium niobate,” Optik (Stuttg.) 120(4), 195–198 (2009).
[Crossref]

Appl. Phys. Lett. (5)

Y. K. Ha, Y. C. Yang, J. E. Kim, H. Y. Park, C. S. Kee, H. Lim, and J. C. Lee, “Tunable omnidirectional reflection bands and defect modes of a one-dimensional photonic band gap structure with liquid crystals,” Appl. Phys. Lett. 79(1), 15–17 (2001).
[Crossref]

G. I. Petrov, V. V. Yakovlev, and J. Squier, “Raman microscopy analysis of phase transformation mechanisms in vanadium dioxide,” Appl. Phys. Lett. 81(6), 1023–1025 (2002).
[Crossref]

C. Cheng, K. Liu, B. Xiang, J. Suh, and J. Wu, “Ultra-long, free-standing, single-crystalline vanadium dioxide micro/nanowires grown by simple thermal evaporation,” Appl. Phys. Lett. 100(10), 103111 (2012).
[Crossref]

J. Yoon, W. Lee, J. M. Caruge, M. Bawendi, E. L. Thomas, S. Kooi, and P. N. Prasad, “Defect-mode mirrorless lasing in dye-doped organic/inorganic hybrid one-dimensional photonic crystal,” Appl. Phys. Lett. 88(9), 091102 (2006).
[Crossref]

M. D. Goldflam, T. Driscoll, B. Chapler, O. Khatib, N. Marie Jokerst, S. Palit, D. R. Smith, B.-J. Kim, G. Seo, H.-T. Kim, M. D. Ventra, and D. N. Basov, “Reconfigurable gradient index using VO2 memory metamaterials,” Appl. Phys. Lett. 99(4), 044103 (2011).
[Crossref]

Electron. Commun. (1)

R. Ozaki, T. Matsui, M. Ozaki, and K. Yoshino, “Optical property of electro-tunable defect mode in 1d periodic structure with light crystal defect layer,” Electron. Commun. 2  87(5), 24–31 (2004).

IEEE Electron Device Lett. (1)

Y. Zhou, X. Chen, C. Ko, Z. Yang, C. Mouli, and S. Ramanathan, “Voltage-triggered ultrafast phase transition in vanadium dioxide switches,” IEEE Electron Device Lett. 34(2), 220–222 (2013).
[Crossref]

IEEE Photonics Technol. Lett. (1)

G. P. Agrawal and S. Radic, “Phase-shifted fiber Bragg gratings and their application for wavelength demultiplexing,” IEEE Photonics Technol. Lett. 6(8), 995–997 (1994).
[Crossref]

IEEE Trans. NanoTechnol. (1)

G. Calo, A. D’Orazio, M. De Sario, L. Mescia, V. Petruzzelli, and F. Prudenzano, “Tunability of photonic band gap notch filters,” IEEE Trans. NanoTechnol. 7(3), 273–284 (2008).
[Crossref]

J. Appl. Phys. (1)

H.-T. Kim, B.-J. Kim, S. Choi, B.-G. Chae, Y. W. Lee, T. Driscoll, M. M. Qazilbash, and D. N. Basov, “Electrical oscillations induced by the metal-insulator transition in VO2,” J. Appl. Phys. 107(2), 023702 (2010).
[Crossref]

J. Electromagnet. Wave. (1)

C. J. Wu, J. J. Liao, and T. W. Chang, “Tunable multilayer Fabry-Perot resonator using electro-optical defect layer,” J. Electromagnet. Wave. 24(4), 531–542 (2010).

J. Lightwave Technol. (5)

J. Opt. Soc. Am. B (2)

J. Phys. Condens. Matter (1)

A. Perucchi, L. Baldassarre, P. Postorino, and S. Lupi, “Optical properties across the insulator to metal transitions in vanadium oxide compounds,” J. Phys. Condens. Matter 21(32), 323202 (2009).
[Crossref] [PubMed]

J. Phys. Conf. Ser. (1)

J. López, L. E. González, M. F. Quiñonez, N. Porras-Montenegro, G. Zambrano, and M. E. Gómez, “Band structure of a 2d photonic crystal based on ferrofluids of Co0.8Zn0.2Fe2O4 nanoparticles under perpendicular applied magnetic fields,” J. Phys. Conf. Ser. 480(1), 012033 (2014).
[Crossref]

Jpn. J. Appl. Phys. (1)

R. Ozaki, M. Ozaki, and K. Yoshino, “Defect mode in one-dimensional photonic crystal with in-plane switchable nematic liquid crystal defect layer,” Jpn. J. Appl. Phys. 43, 1477–1479 (2004).
[Crossref]

Nano Lett. (1)

J. Wu, Q. Gu, B. S. Guiton, N. P. de Leon, L. Ouyang, and H. Park, “Strain-induced self organization of metal-insulator domains in single-crystalline VO2 nanobeams,” Nano Lett. 6(10), 2313–2317 (2006).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

J. Cao, E. Ertekin, V. Srinivasan, W. Fan, S. Huang, H. Zheng, J. W. L. Yim, D. R. Khanal, D. F. Ogletree, J. C. Grossman, and J. Wu, “Strain engineering and one-dimensional organization of metal-insulator domains in single-crystal vanadium dioxide beams,” Nat. Nanotechnol. 4(11), 732–737 (2009).
[Crossref] [PubMed]

Opt. Commun. (1)

J. B. Kana Kana, J. M. Ndjaka, G. Vignaud, A. Gibaud, and M. Maaza, “Thermally tunable optical constants of vanadium dioxide thin films measured by spectroscopic ellipsometry,” Opt. Commun. 284(3), 807–812 (2011).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Optik (Stuttg.) (1)

Q. Zhu and Y. Zhang, “Defect modes and wavelength tuning of one-dimensional photonic crystal with lithium niobate,” Optik (Stuttg.) 120(4), 195–198 (2009).
[Crossref]

Phys. Rev. (1)

H. W. Verleur, A. S. Barker, and C. N. Berglund, “Optical properties of VO2 between 0.25 and 5 eV,” Phys. Rev. 172(3), 788–798 (1968).
[Crossref]

Phys. Rev. B (2)

A. Cavalleri, T. Dekorsy, H. H. W. Chong, J. C. Kieffer, and R. W. Schoenlein, “Evidence for a structurally-driven insulator-to-metal transition in VO2: A view from the ultrafast timescale,” Phys. Rev. B 70(16), 161102 (2004).
[Crossref]

S. Lysenko, A. Rúa, V. Vikhnin, F. Fernández, and H. Liu, “Insulator-to-metal phase transition and recovery processes in VO2 thin films after femtosecond laser excitation,” Phys. Rev. B 76(3), 035104 (2007).
[Crossref]

Phys. Rev. Lett. (4)

A. Cavalleri, C. Tóth, C. W. Siders, J. A. Squier, F. Ráksi, P. Forget, and J. C. Kieffer, “Femtosecond structural dynamics in VO2 during an ultrafast solid-solid phase transition,” Phys. Rev. Lett. 87(23), 237401 (2001).
[Crossref] [PubMed]

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
[Crossref] [PubMed]

P. Halevi and F. Ramos-Mendieta, “Tunable photonic crystals with semiconducting constituents,” Phys. Rev. Lett. 85(9), 1875–1878 (2000).
[Crossref] [PubMed]

F. J. Morin, “Oxides which show a metal-to-insulator transition at the Neel temperature,” Phys. Rev. Lett. 3(1), 34–36 (1959).
[Crossref]

Rev. Mod. Phys. (1)

M. Imada, A. Fujimori, and Y. Tokura, “Metal-insulator transitions,” Rev. Mod. Phys. 70(4), 1039–1263 (1998).
[Crossref]

Sci. Technol. Adv. Mater. (1)

A. Crunteanu, J. Givernaud, J. Leroy, D. Mardivirin, C. Champeaux, J.-C. Orlianges, A. Catherinot, and P. Blondy, “Voltage- and current-activated metal–insulator transition in VO2-based electrical switches: a lifetime operation analysis,” Sci. Technol. Adv. Mater. 11(6), 065002 (2010).
[Crossref]

Science (2)

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-Gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[Crossref] [PubMed]

T. Driscoll, H.-T. Kim, B.-G. Chae, B.-J. Kim, Y.-W. Lee, N. M. Jokerst, S. Palit, D. R. Smith, M. Di Ventra, and D. N. Basov, “Memory metamaterials,” Science 325(5947), 1518–1521 (2009).
[Crossref] [PubMed]

Solid State Commun. (1)

H. C. Hung, C. J. Wu, and S. J. Chang, “A mid-infrared tunable filter in a semiconductor-dielectric photonic crystal containing doped semiconductor defect,” Solid State Commun. 151(22), 1677–1680 (2011).
[Crossref]

Other (1)

S. J. Orfanidis, “Electromagnetic waves and antennas.” (2002), http://www.ece.rutgers.edu/~orfanidi/ewa .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic diagram with cross-section view and photo (inset) of a typical tunable Bragg filter sample. The figure is not drawn to the scale.

Fig. 2
Fig. 2

(a) The Raman spectrum of the Bragg filter sample A at 25 °C (red) and the Raman spectrum of a single layer VO2 on SiO2/Si substrate (black). The Raman peak of silicon substrate is indicated by an arrow; the reflection spectra of sample A during (b) heating and (c) cooling processes. Red arrows indicate shifts of reflection dips during heating and cooling respectively. The reflection spectra under 25 °C and 83 °C for Bragg filter samples (d) B and (e) C. Dots lines indicate the reflection dips of defect modes.

Fig. 3
Fig. 3

(a) A hysteresis curve of the center wavelengths of defect modes (reflection dips); (b) Heights of 612 cm−1 Raman shift of the Bragg filter sample retrieved from Raman spectra (red) and reversed reflectance at 795 nm (blue) as a function of temperature.

Fig. 4
Fig. 4

(a) Simulated and experimental reflection spectra of sample A. Dashed lines indicate positions of corresponding defect modes. (b) Simulated and experimental reflection spectra of sample A plotted in dB showing insertion losses.

Tables (1)

Tables Icon

Table 1 Layers’ thicknesses of different Bragg filter samples

Metrics