Abstract

A compact high temperature sensor utilizing a multipath Michelson interferometer (MI) structure based on weak coupling multicore fiber (MCF) is proposed and experimentally demonstrated. The device is fabricated by program-controlled tapering the spliced region between single mode fiber (SMF) and a segment of MCF. After that, a spherical reflective structure is formed by arc-fusion splicing the end face of MCF. Theoretical analysis has been implemented for this specific multipath MI structure; beam propagation method based simulation and corresponding experiments were performed to investigate the effect of taper and spherical end face on system’s performance. Benefiting from the multipath interferences and heterogeneous structure between the center core and surrounding cores of the all-solid MCF, an enhanced temperature sensitivity of 165 pm/°C up to 900°C and a high-quality interference spectrum with 25 dB fringe visibility were achieved.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Few-mode multicore fiber enabled integrated Mach-Zehnder interferometers for temperature and strain discrimination

Xuan Zhan, Yinping Liu, Ming Tang, Lin Ma, Ruoxu Wang, Li Duan, Lin Gan, Chen Yang, Weijun Tong, Songnian Fu, Deming Liu, and Zuyuan He
Opt. Express 26(12) 15332-15342 (2018)

Directional torsion and temperature discrimination based on a multicore fiber with a helical structure

Hailiang Zhang, Zhifang Wu, Perry Ping Shum, Xuguang Shao, Ruoxu Wang, Xuan Quyen Dinh, Songnian Fu, Weijun Tong, and Ming Tang
Opt. Express 26(1) 544-551 (2018)

Interferometer based on strongly coupled multi-core optical fiber for accurate vibration sensing

Joel Villatoro, Enrique Antonio-Lopez, Joseba Zubia, Axel Schülzgen, and Rodrigo Amezcua-Correa
Opt. Express 25(21) 25734-25740 (2017)

References

  • View by:
  • |
  • |
  • |

  1. B. Zhang and M. Kahrizi, “High-temperature resistance fiber Bragg grating temperature sensor fabrication,” IEEE Sens. J. 7(4), 586–591 (2007).
    [Crossref]
  2. X. Qiao, Y. Wang, H. Yang, T. Guo, Q. Rong, L. Li, D. Su, K. S. Lim, and H. Ahmad, “Ultra-high temperature chirped fiber Bragg grating through thermal activation,” IEEE Photonics Technol. Lett. 27(12), 1305–1308 (2015).
    [Crossref]
  3. J. D. C. Jones, J. M. Lazaro, A. Quintela, P. B. Garcia-Allende, J. Mirapeix, C. Galindez, and J. M. Lopez-Higuera, “High temperature fiber sensor based on a thermo-mechanical written LPG,” Proc. SPIE 7503, 75033W (2009).
  4. W. Ding, Y. Jiang, R. Gao, and Y. Liu, “High-temperature fiber-optic Fabry-Perot interferometric sensors,” Rev. Sci. Instrum. 86(5), 055001 (2015).
    [Crossref] [PubMed]
  5. P. Zhang, M. Tang, F. Gao, B. Zhu, Z. Zhao, L. Duan, S. Fu, J. Ouyang, H. Wei, P. P. Shum, and D. Liu, “Simplified hollow-core fiber-based Fabry-Perot interferometer with modified vernier effect for highly sensitive high-temperature measurement,” IEEE Photonics J. 7(1), 7100210 (2015).
    [Crossref]
  6. T. Zhu, T. Ke, Y. Rao, and K. S. Chiang, “Fabry-Perot optical fiber tip sensor for high temperature measurement,” Opt. Commun. 283(19), 3683–3685 (2010).
    [Crossref]
  7. Z. Cao, Z. Zhang, X. Ji, T. Shui, R. Wang, C. Yin, S. Zhen, L. Lu, and B. Yu, “Strain-insensitive and high temperature fiber sensor based on a Mach-Zehnder modal interferometer,” Opt. Fiber Technol. 20(1), 24–27 (2014).
    [Crossref]
  8. L. V. Nguyen, D. Hwang, S. Moon, D. S. Moon, and Y. Chung, “High temperature fiber sensor with high sensitivity based on core diameter mismatch,” Opt. Express 16(15), 11369–11375 (2008).
    [Crossref] [PubMed]
  9. N. Zhao, H. Fu, M. Shao, X. Yan, H. Li, Q. Liu, H. Gao, Y. Liu, and X. Qiao, “High temperature probe sensor with high sensitivity based on Michelson interferometer,” Opt. Commun. 343, 131–134 (2015).
    [Crossref]
  10. J. Huang, X. Lan, Y. Song, Y. Li, L. Hua, and H. Xiao, “Microwave interrogated sapphire fiber Michelson interferometer for high temperature sensing,” IEEE Photonics Technol. Lett. 27(13), 1398–1401 (2015).
    [Crossref]
  11. J. Yang, Y. Zheng, L. H. Chen, C. C. Chan, X. Dong, P. P. Shum, and H. Su, “Miniature temperature sensor with germania-core optical fiber,” Opt. Express 23(14), 17687–17692 (2015).
    [Crossref] [PubMed]
  12. M. S. Yoon, S. B. Lee, and Y. G. Han, “In-line interferometer based on intermodal coupling of a multicore fiber,” Opt. Express 23(14), 18316–18322 (2015).
    [Crossref] [PubMed]
  13. P. Rugeland and W. Margulis, “Revisiting twin-core fiber sensors for high-temperature measurements,” Appl. Opt. 51(25), 6227–6232 (2012).
    [Crossref] [PubMed]
  14. are A. Van Newkirk, Z. Sanjabi Eznaveh, E. Antonio-Lopez, G. Salceda-Delgado, A. Schulzgen, and R. Amezcua-Correa, “High temperature sensor based on supermode interference in multicore fiber,” in CLEO: 2014, OSA Technical Digest (online) (Optical Society of America, 2014), paper SM2N.7.
  15. J. E. Antonio-Lopez, Z. S. Eznaveh, P. L. Kamwa, A. Schulzgen, and R. A. Correa, “Multicore fiber sensor for high-temperature applications up to 1000 degrees C,” Opt. Lett. 39(15), 4309–4312 (2014).
    [Crossref] [PubMed]
  16. T. Zhu, D. Wu, M. Liu, and D. W. Duan, “In-line fiber optic interferometric sensors in single-mode fibers,” Sensors (Basel) 12(8), 10430–10449 (2012).
    [Crossref] [PubMed]
  17. B. Li, Z. Feng, M. Tang, Z. Xu, S. Fu, Q. Wu, L. Deng, W. Tong, S. Liu, and P. P. Shum, “Experimental demonstration of large capacity WSDM optical access network with multicore fibers and advanced modulation formats,” Opt. Express 23(9), 10997–11006 (2015).
    [Crossref] [PubMed]
  18. Z. Zhao, M. Tang, S. Fu, S. Liu, H. Wei, Y. Cheng, W. Tong, P. P. Shum, and D. Liu, “All-solid multi-core fiber-based multipath Mach-Zehnder interferometer for temperature sensing,” Appl. Phys. B 112(4), 491–497 (2013).
    [Crossref]
  19. R. Wang, L. Duan, M. Tang, S. Fu, P. Zang, Z. Feng, B. Li, W. Tong, D. Liu, and P. P. Shum, “Long period grating in multicore fiber and its application,” in Asia Communications and Photonics Conference 2015, OSA Technical Digest (online) (Optical Society of America, 2015), AM1D. 5.
  20. L. Gan, R. Wang, D. Liu, L. Duan, S. Liu, S. Fu, B. Li, Z. Feng, H. Wei, W. Tong, P. P. Shum, and M. Tang, “Spatial-division multiplexed Mach-Zehnder interferometers in heterogeneous multicore fiber for multi-parameter measurement,” IEEE Photonics J. 8(1), 7800908 (2015).
  21. G. Weihs, M. Reck, H. Weinfurter, and A. Zeilinger, “All-fiber three-path Mach-Zehnder interferometer,” Opt. Lett. 21(4), 302–304 (1996).
    [Crossref] [PubMed]
  22. D. Wu, T. Zhu, K. S. Chiang, and M. Deng, “All single-mode fiber Mach–Zehnder interferometer based on two Peanut-Shape structures,” J. Lightwave Technol. 30(5), 805–810 (2012).
    [Crossref]

2015 (9)

X. Qiao, Y. Wang, H. Yang, T. Guo, Q. Rong, L. Li, D. Su, K. S. Lim, and H. Ahmad, “Ultra-high temperature chirped fiber Bragg grating through thermal activation,” IEEE Photonics Technol. Lett. 27(12), 1305–1308 (2015).
[Crossref]

W. Ding, Y. Jiang, R. Gao, and Y. Liu, “High-temperature fiber-optic Fabry-Perot interferometric sensors,” Rev. Sci. Instrum. 86(5), 055001 (2015).
[Crossref] [PubMed]

P. Zhang, M. Tang, F. Gao, B. Zhu, Z. Zhao, L. Duan, S. Fu, J. Ouyang, H. Wei, P. P. Shum, and D. Liu, “Simplified hollow-core fiber-based Fabry-Perot interferometer with modified vernier effect for highly sensitive high-temperature measurement,” IEEE Photonics J. 7(1), 7100210 (2015).
[Crossref]

N. Zhao, H. Fu, M. Shao, X. Yan, H. Li, Q. Liu, H. Gao, Y. Liu, and X. Qiao, “High temperature probe sensor with high sensitivity based on Michelson interferometer,” Opt. Commun. 343, 131–134 (2015).
[Crossref]

J. Huang, X. Lan, Y. Song, Y. Li, L. Hua, and H. Xiao, “Microwave interrogated sapphire fiber Michelson interferometer for high temperature sensing,” IEEE Photonics Technol. Lett. 27(13), 1398–1401 (2015).
[Crossref]

J. Yang, Y. Zheng, L. H. Chen, C. C. Chan, X. Dong, P. P. Shum, and H. Su, “Miniature temperature sensor with germania-core optical fiber,” Opt. Express 23(14), 17687–17692 (2015).
[Crossref] [PubMed]

M. S. Yoon, S. B. Lee, and Y. G. Han, “In-line interferometer based on intermodal coupling of a multicore fiber,” Opt. Express 23(14), 18316–18322 (2015).
[Crossref] [PubMed]

B. Li, Z. Feng, M. Tang, Z. Xu, S. Fu, Q. Wu, L. Deng, W. Tong, S. Liu, and P. P. Shum, “Experimental demonstration of large capacity WSDM optical access network with multicore fibers and advanced modulation formats,” Opt. Express 23(9), 10997–11006 (2015).
[Crossref] [PubMed]

L. Gan, R. Wang, D. Liu, L. Duan, S. Liu, S. Fu, B. Li, Z. Feng, H. Wei, W. Tong, P. P. Shum, and M. Tang, “Spatial-division multiplexed Mach-Zehnder interferometers in heterogeneous multicore fiber for multi-parameter measurement,” IEEE Photonics J. 8(1), 7800908 (2015).

2014 (2)

Z. Cao, Z. Zhang, X. Ji, T. Shui, R. Wang, C. Yin, S. Zhen, L. Lu, and B. Yu, “Strain-insensitive and high temperature fiber sensor based on a Mach-Zehnder modal interferometer,” Opt. Fiber Technol. 20(1), 24–27 (2014).
[Crossref]

J. E. Antonio-Lopez, Z. S. Eznaveh, P. L. Kamwa, A. Schulzgen, and R. A. Correa, “Multicore fiber sensor for high-temperature applications up to 1000 degrees C,” Opt. Lett. 39(15), 4309–4312 (2014).
[Crossref] [PubMed]

2013 (1)

Z. Zhao, M. Tang, S. Fu, S. Liu, H. Wei, Y. Cheng, W. Tong, P. P. Shum, and D. Liu, “All-solid multi-core fiber-based multipath Mach-Zehnder interferometer for temperature sensing,” Appl. Phys. B 112(4), 491–497 (2013).
[Crossref]

2012 (3)

2010 (1)

T. Zhu, T. Ke, Y. Rao, and K. S. Chiang, “Fabry-Perot optical fiber tip sensor for high temperature measurement,” Opt. Commun. 283(19), 3683–3685 (2010).
[Crossref]

2009 (1)

J. D. C. Jones, J. M. Lazaro, A. Quintela, P. B. Garcia-Allende, J. Mirapeix, C. Galindez, and J. M. Lopez-Higuera, “High temperature fiber sensor based on a thermo-mechanical written LPG,” Proc. SPIE 7503, 75033W (2009).

2008 (1)

2007 (1)

B. Zhang and M. Kahrizi, “High-temperature resistance fiber Bragg grating temperature sensor fabrication,” IEEE Sens. J. 7(4), 586–591 (2007).
[Crossref]

1996 (1)

Ahmad, H.

X. Qiao, Y. Wang, H. Yang, T. Guo, Q. Rong, L. Li, D. Su, K. S. Lim, and H. Ahmad, “Ultra-high temperature chirped fiber Bragg grating through thermal activation,” IEEE Photonics Technol. Lett. 27(12), 1305–1308 (2015).
[Crossref]

Antonio-Lopez, J. E.

Cao, Z.

Z. Cao, Z. Zhang, X. Ji, T. Shui, R. Wang, C. Yin, S. Zhen, L. Lu, and B. Yu, “Strain-insensitive and high temperature fiber sensor based on a Mach-Zehnder modal interferometer,” Opt. Fiber Technol. 20(1), 24–27 (2014).
[Crossref]

Chan, C. C.

Chen, L. H.

Cheng, Y.

Z. Zhao, M. Tang, S. Fu, S. Liu, H. Wei, Y. Cheng, W. Tong, P. P. Shum, and D. Liu, “All-solid multi-core fiber-based multipath Mach-Zehnder interferometer for temperature sensing,” Appl. Phys. B 112(4), 491–497 (2013).
[Crossref]

Chiang, K. S.

D. Wu, T. Zhu, K. S. Chiang, and M. Deng, “All single-mode fiber Mach–Zehnder interferometer based on two Peanut-Shape structures,” J. Lightwave Technol. 30(5), 805–810 (2012).
[Crossref]

T. Zhu, T. Ke, Y. Rao, and K. S. Chiang, “Fabry-Perot optical fiber tip sensor for high temperature measurement,” Opt. Commun. 283(19), 3683–3685 (2010).
[Crossref]

Chung, Y.

Correa, R. A.

Deng, L.

Deng, M.

Ding, W.

W. Ding, Y. Jiang, R. Gao, and Y. Liu, “High-temperature fiber-optic Fabry-Perot interferometric sensors,” Rev. Sci. Instrum. 86(5), 055001 (2015).
[Crossref] [PubMed]

Dong, X.

Duan, D. W.

T. Zhu, D. Wu, M. Liu, and D. W. Duan, “In-line fiber optic interferometric sensors in single-mode fibers,” Sensors (Basel) 12(8), 10430–10449 (2012).
[Crossref] [PubMed]

Duan, L.

L. Gan, R. Wang, D. Liu, L. Duan, S. Liu, S. Fu, B. Li, Z. Feng, H. Wei, W. Tong, P. P. Shum, and M. Tang, “Spatial-division multiplexed Mach-Zehnder interferometers in heterogeneous multicore fiber for multi-parameter measurement,” IEEE Photonics J. 8(1), 7800908 (2015).

P. Zhang, M. Tang, F. Gao, B. Zhu, Z. Zhao, L. Duan, S. Fu, J. Ouyang, H. Wei, P. P. Shum, and D. Liu, “Simplified hollow-core fiber-based Fabry-Perot interferometer with modified vernier effect for highly sensitive high-temperature measurement,” IEEE Photonics J. 7(1), 7100210 (2015).
[Crossref]

Eznaveh, Z. S.

Feng, Z.

B. Li, Z. Feng, M. Tang, Z. Xu, S. Fu, Q. Wu, L. Deng, W. Tong, S. Liu, and P. P. Shum, “Experimental demonstration of large capacity WSDM optical access network with multicore fibers and advanced modulation formats,” Opt. Express 23(9), 10997–11006 (2015).
[Crossref] [PubMed]

L. Gan, R. Wang, D. Liu, L. Duan, S. Liu, S. Fu, B. Li, Z. Feng, H. Wei, W. Tong, P. P. Shum, and M. Tang, “Spatial-division multiplexed Mach-Zehnder interferometers in heterogeneous multicore fiber for multi-parameter measurement,” IEEE Photonics J. 8(1), 7800908 (2015).

Fu, H.

N. Zhao, H. Fu, M. Shao, X. Yan, H. Li, Q. Liu, H. Gao, Y. Liu, and X. Qiao, “High temperature probe sensor with high sensitivity based on Michelson interferometer,” Opt. Commun. 343, 131–134 (2015).
[Crossref]

Fu, S.

P. Zhang, M. Tang, F. Gao, B. Zhu, Z. Zhao, L. Duan, S. Fu, J. Ouyang, H. Wei, P. P. Shum, and D. Liu, “Simplified hollow-core fiber-based Fabry-Perot interferometer with modified vernier effect for highly sensitive high-temperature measurement,” IEEE Photonics J. 7(1), 7100210 (2015).
[Crossref]

L. Gan, R. Wang, D. Liu, L. Duan, S. Liu, S. Fu, B. Li, Z. Feng, H. Wei, W. Tong, P. P. Shum, and M. Tang, “Spatial-division multiplexed Mach-Zehnder interferometers in heterogeneous multicore fiber for multi-parameter measurement,” IEEE Photonics J. 8(1), 7800908 (2015).

B. Li, Z. Feng, M. Tang, Z. Xu, S. Fu, Q. Wu, L. Deng, W. Tong, S. Liu, and P. P. Shum, “Experimental demonstration of large capacity WSDM optical access network with multicore fibers and advanced modulation formats,” Opt. Express 23(9), 10997–11006 (2015).
[Crossref] [PubMed]

Z. Zhao, M. Tang, S. Fu, S. Liu, H. Wei, Y. Cheng, W. Tong, P. P. Shum, and D. Liu, “All-solid multi-core fiber-based multipath Mach-Zehnder interferometer for temperature sensing,” Appl. Phys. B 112(4), 491–497 (2013).
[Crossref]

Galindez, C.

J. D. C. Jones, J. M. Lazaro, A. Quintela, P. B. Garcia-Allende, J. Mirapeix, C. Galindez, and J. M. Lopez-Higuera, “High temperature fiber sensor based on a thermo-mechanical written LPG,” Proc. SPIE 7503, 75033W (2009).

Gan, L.

L. Gan, R. Wang, D. Liu, L. Duan, S. Liu, S. Fu, B. Li, Z. Feng, H. Wei, W. Tong, P. P. Shum, and M. Tang, “Spatial-division multiplexed Mach-Zehnder interferometers in heterogeneous multicore fiber for multi-parameter measurement,” IEEE Photonics J. 8(1), 7800908 (2015).

Gao, F.

P. Zhang, M. Tang, F. Gao, B. Zhu, Z. Zhao, L. Duan, S. Fu, J. Ouyang, H. Wei, P. P. Shum, and D. Liu, “Simplified hollow-core fiber-based Fabry-Perot interferometer with modified vernier effect for highly sensitive high-temperature measurement,” IEEE Photonics J. 7(1), 7100210 (2015).
[Crossref]

Gao, H.

N. Zhao, H. Fu, M. Shao, X. Yan, H. Li, Q. Liu, H. Gao, Y. Liu, and X. Qiao, “High temperature probe sensor with high sensitivity based on Michelson interferometer,” Opt. Commun. 343, 131–134 (2015).
[Crossref]

Gao, R.

W. Ding, Y. Jiang, R. Gao, and Y. Liu, “High-temperature fiber-optic Fabry-Perot interferometric sensors,” Rev. Sci. Instrum. 86(5), 055001 (2015).
[Crossref] [PubMed]

Garcia-Allende, P. B.

J. D. C. Jones, J. M. Lazaro, A. Quintela, P. B. Garcia-Allende, J. Mirapeix, C. Galindez, and J. M. Lopez-Higuera, “High temperature fiber sensor based on a thermo-mechanical written LPG,” Proc. SPIE 7503, 75033W (2009).

Guo, T.

X. Qiao, Y. Wang, H. Yang, T. Guo, Q. Rong, L. Li, D. Su, K. S. Lim, and H. Ahmad, “Ultra-high temperature chirped fiber Bragg grating through thermal activation,” IEEE Photonics Technol. Lett. 27(12), 1305–1308 (2015).
[Crossref]

Han, Y. G.

Hua, L.

J. Huang, X. Lan, Y. Song, Y. Li, L. Hua, and H. Xiao, “Microwave interrogated sapphire fiber Michelson interferometer for high temperature sensing,” IEEE Photonics Technol. Lett. 27(13), 1398–1401 (2015).
[Crossref]

Huang, J.

J. Huang, X. Lan, Y. Song, Y. Li, L. Hua, and H. Xiao, “Microwave interrogated sapphire fiber Michelson interferometer for high temperature sensing,” IEEE Photonics Technol. Lett. 27(13), 1398–1401 (2015).
[Crossref]

Hwang, D.

Ji, X.

Z. Cao, Z. Zhang, X. Ji, T. Shui, R. Wang, C. Yin, S. Zhen, L. Lu, and B. Yu, “Strain-insensitive and high temperature fiber sensor based on a Mach-Zehnder modal interferometer,” Opt. Fiber Technol. 20(1), 24–27 (2014).
[Crossref]

Jiang, Y.

W. Ding, Y. Jiang, R. Gao, and Y. Liu, “High-temperature fiber-optic Fabry-Perot interferometric sensors,” Rev. Sci. Instrum. 86(5), 055001 (2015).
[Crossref] [PubMed]

Jones, J. D. C.

J. D. C. Jones, J. M. Lazaro, A. Quintela, P. B. Garcia-Allende, J. Mirapeix, C. Galindez, and J. M. Lopez-Higuera, “High temperature fiber sensor based on a thermo-mechanical written LPG,” Proc. SPIE 7503, 75033W (2009).

Kahrizi, M.

B. Zhang and M. Kahrizi, “High-temperature resistance fiber Bragg grating temperature sensor fabrication,” IEEE Sens. J. 7(4), 586–591 (2007).
[Crossref]

Kamwa, P. L.

Ke, T.

T. Zhu, T. Ke, Y. Rao, and K. S. Chiang, “Fabry-Perot optical fiber tip sensor for high temperature measurement,” Opt. Commun. 283(19), 3683–3685 (2010).
[Crossref]

Lan, X.

J. Huang, X. Lan, Y. Song, Y. Li, L. Hua, and H. Xiao, “Microwave interrogated sapphire fiber Michelson interferometer for high temperature sensing,” IEEE Photonics Technol. Lett. 27(13), 1398–1401 (2015).
[Crossref]

Lazaro, J. M.

J. D. C. Jones, J. M. Lazaro, A. Quintela, P. B. Garcia-Allende, J. Mirapeix, C. Galindez, and J. M. Lopez-Higuera, “High temperature fiber sensor based on a thermo-mechanical written LPG,” Proc. SPIE 7503, 75033W (2009).

Lee, S. B.

Li, B.

B. Li, Z. Feng, M. Tang, Z. Xu, S. Fu, Q. Wu, L. Deng, W. Tong, S. Liu, and P. P. Shum, “Experimental demonstration of large capacity WSDM optical access network with multicore fibers and advanced modulation formats,” Opt. Express 23(9), 10997–11006 (2015).
[Crossref] [PubMed]

L. Gan, R. Wang, D. Liu, L. Duan, S. Liu, S. Fu, B. Li, Z. Feng, H. Wei, W. Tong, P. P. Shum, and M. Tang, “Spatial-division multiplexed Mach-Zehnder interferometers in heterogeneous multicore fiber for multi-parameter measurement,” IEEE Photonics J. 8(1), 7800908 (2015).

Li, H.

N. Zhao, H. Fu, M. Shao, X. Yan, H. Li, Q. Liu, H. Gao, Y. Liu, and X. Qiao, “High temperature probe sensor with high sensitivity based on Michelson interferometer,” Opt. Commun. 343, 131–134 (2015).
[Crossref]

Li, L.

X. Qiao, Y. Wang, H. Yang, T. Guo, Q. Rong, L. Li, D. Su, K. S. Lim, and H. Ahmad, “Ultra-high temperature chirped fiber Bragg grating through thermal activation,” IEEE Photonics Technol. Lett. 27(12), 1305–1308 (2015).
[Crossref]

Li, Y.

J. Huang, X. Lan, Y. Song, Y. Li, L. Hua, and H. Xiao, “Microwave interrogated sapphire fiber Michelson interferometer for high temperature sensing,” IEEE Photonics Technol. Lett. 27(13), 1398–1401 (2015).
[Crossref]

Lim, K. S.

X. Qiao, Y. Wang, H. Yang, T. Guo, Q. Rong, L. Li, D. Su, K. S. Lim, and H. Ahmad, “Ultra-high temperature chirped fiber Bragg grating through thermal activation,” IEEE Photonics Technol. Lett. 27(12), 1305–1308 (2015).
[Crossref]

Liu, D.

P. Zhang, M. Tang, F. Gao, B. Zhu, Z. Zhao, L. Duan, S. Fu, J. Ouyang, H. Wei, P. P. Shum, and D. Liu, “Simplified hollow-core fiber-based Fabry-Perot interferometer with modified vernier effect for highly sensitive high-temperature measurement,” IEEE Photonics J. 7(1), 7100210 (2015).
[Crossref]

L. Gan, R. Wang, D. Liu, L. Duan, S. Liu, S. Fu, B. Li, Z. Feng, H. Wei, W. Tong, P. P. Shum, and M. Tang, “Spatial-division multiplexed Mach-Zehnder interferometers in heterogeneous multicore fiber for multi-parameter measurement,” IEEE Photonics J. 8(1), 7800908 (2015).

Z. Zhao, M. Tang, S. Fu, S. Liu, H. Wei, Y. Cheng, W. Tong, P. P. Shum, and D. Liu, “All-solid multi-core fiber-based multipath Mach-Zehnder interferometer for temperature sensing,” Appl. Phys. B 112(4), 491–497 (2013).
[Crossref]

Liu, M.

T. Zhu, D. Wu, M. Liu, and D. W. Duan, “In-line fiber optic interferometric sensors in single-mode fibers,” Sensors (Basel) 12(8), 10430–10449 (2012).
[Crossref] [PubMed]

Liu, Q.

N. Zhao, H. Fu, M. Shao, X. Yan, H. Li, Q. Liu, H. Gao, Y. Liu, and X. Qiao, “High temperature probe sensor with high sensitivity based on Michelson interferometer,” Opt. Commun. 343, 131–134 (2015).
[Crossref]

Liu, S.

L. Gan, R. Wang, D. Liu, L. Duan, S. Liu, S. Fu, B. Li, Z. Feng, H. Wei, W. Tong, P. P. Shum, and M. Tang, “Spatial-division multiplexed Mach-Zehnder interferometers in heterogeneous multicore fiber for multi-parameter measurement,” IEEE Photonics J. 8(1), 7800908 (2015).

B. Li, Z. Feng, M. Tang, Z. Xu, S. Fu, Q. Wu, L. Deng, W. Tong, S. Liu, and P. P. Shum, “Experimental demonstration of large capacity WSDM optical access network with multicore fibers and advanced modulation formats,” Opt. Express 23(9), 10997–11006 (2015).
[Crossref] [PubMed]

Z. Zhao, M. Tang, S. Fu, S. Liu, H. Wei, Y. Cheng, W. Tong, P. P. Shum, and D. Liu, “All-solid multi-core fiber-based multipath Mach-Zehnder interferometer for temperature sensing,” Appl. Phys. B 112(4), 491–497 (2013).
[Crossref]

Liu, Y.

N. Zhao, H. Fu, M. Shao, X. Yan, H. Li, Q. Liu, H. Gao, Y. Liu, and X. Qiao, “High temperature probe sensor with high sensitivity based on Michelson interferometer,” Opt. Commun. 343, 131–134 (2015).
[Crossref]

W. Ding, Y. Jiang, R. Gao, and Y. Liu, “High-temperature fiber-optic Fabry-Perot interferometric sensors,” Rev. Sci. Instrum. 86(5), 055001 (2015).
[Crossref] [PubMed]

Lopez-Higuera, J. M.

J. D. C. Jones, J. M. Lazaro, A. Quintela, P. B. Garcia-Allende, J. Mirapeix, C. Galindez, and J. M. Lopez-Higuera, “High temperature fiber sensor based on a thermo-mechanical written LPG,” Proc. SPIE 7503, 75033W (2009).

Lu, L.

Z. Cao, Z. Zhang, X. Ji, T. Shui, R. Wang, C. Yin, S. Zhen, L. Lu, and B. Yu, “Strain-insensitive and high temperature fiber sensor based on a Mach-Zehnder modal interferometer,” Opt. Fiber Technol. 20(1), 24–27 (2014).
[Crossref]

Margulis, W.

Mirapeix, J.

J. D. C. Jones, J. M. Lazaro, A. Quintela, P. B. Garcia-Allende, J. Mirapeix, C. Galindez, and J. M. Lopez-Higuera, “High temperature fiber sensor based on a thermo-mechanical written LPG,” Proc. SPIE 7503, 75033W (2009).

Moon, D. S.

Moon, S.

Nguyen, L. V.

Ouyang, J.

P. Zhang, M. Tang, F. Gao, B. Zhu, Z. Zhao, L. Duan, S. Fu, J. Ouyang, H. Wei, P. P. Shum, and D. Liu, “Simplified hollow-core fiber-based Fabry-Perot interferometer with modified vernier effect for highly sensitive high-temperature measurement,” IEEE Photonics J. 7(1), 7100210 (2015).
[Crossref]

Qiao, X.

X. Qiao, Y. Wang, H. Yang, T. Guo, Q. Rong, L. Li, D. Su, K. S. Lim, and H. Ahmad, “Ultra-high temperature chirped fiber Bragg grating through thermal activation,” IEEE Photonics Technol. Lett. 27(12), 1305–1308 (2015).
[Crossref]

N. Zhao, H. Fu, M. Shao, X. Yan, H. Li, Q. Liu, H. Gao, Y. Liu, and X. Qiao, “High temperature probe sensor with high sensitivity based on Michelson interferometer,” Opt. Commun. 343, 131–134 (2015).
[Crossref]

Quintela, A.

J. D. C. Jones, J. M. Lazaro, A. Quintela, P. B. Garcia-Allende, J. Mirapeix, C. Galindez, and J. M. Lopez-Higuera, “High temperature fiber sensor based on a thermo-mechanical written LPG,” Proc. SPIE 7503, 75033W (2009).

Rao, Y.

T. Zhu, T. Ke, Y. Rao, and K. S. Chiang, “Fabry-Perot optical fiber tip sensor for high temperature measurement,” Opt. Commun. 283(19), 3683–3685 (2010).
[Crossref]

Reck, M.

Rong, Q.

X. Qiao, Y. Wang, H. Yang, T. Guo, Q. Rong, L. Li, D. Su, K. S. Lim, and H. Ahmad, “Ultra-high temperature chirped fiber Bragg grating through thermal activation,” IEEE Photonics Technol. Lett. 27(12), 1305–1308 (2015).
[Crossref]

Rugeland, P.

Schulzgen, A.

Shao, M.

N. Zhao, H. Fu, M. Shao, X. Yan, H. Li, Q. Liu, H. Gao, Y. Liu, and X. Qiao, “High temperature probe sensor with high sensitivity based on Michelson interferometer,” Opt. Commun. 343, 131–134 (2015).
[Crossref]

Shui, T.

Z. Cao, Z. Zhang, X. Ji, T. Shui, R. Wang, C. Yin, S. Zhen, L. Lu, and B. Yu, “Strain-insensitive and high temperature fiber sensor based on a Mach-Zehnder modal interferometer,” Opt. Fiber Technol. 20(1), 24–27 (2014).
[Crossref]

Shum, P. P.

P. Zhang, M. Tang, F. Gao, B. Zhu, Z. Zhao, L. Duan, S. Fu, J. Ouyang, H. Wei, P. P. Shum, and D. Liu, “Simplified hollow-core fiber-based Fabry-Perot interferometer with modified vernier effect for highly sensitive high-temperature measurement,” IEEE Photonics J. 7(1), 7100210 (2015).
[Crossref]

L. Gan, R. Wang, D. Liu, L. Duan, S. Liu, S. Fu, B. Li, Z. Feng, H. Wei, W. Tong, P. P. Shum, and M. Tang, “Spatial-division multiplexed Mach-Zehnder interferometers in heterogeneous multicore fiber for multi-parameter measurement,” IEEE Photonics J. 8(1), 7800908 (2015).

J. Yang, Y. Zheng, L. H. Chen, C. C. Chan, X. Dong, P. P. Shum, and H. Su, “Miniature temperature sensor with germania-core optical fiber,” Opt. Express 23(14), 17687–17692 (2015).
[Crossref] [PubMed]

B. Li, Z. Feng, M. Tang, Z. Xu, S. Fu, Q. Wu, L. Deng, W. Tong, S. Liu, and P. P. Shum, “Experimental demonstration of large capacity WSDM optical access network with multicore fibers and advanced modulation formats,” Opt. Express 23(9), 10997–11006 (2015).
[Crossref] [PubMed]

Z. Zhao, M. Tang, S. Fu, S. Liu, H. Wei, Y. Cheng, W. Tong, P. P. Shum, and D. Liu, “All-solid multi-core fiber-based multipath Mach-Zehnder interferometer for temperature sensing,” Appl. Phys. B 112(4), 491–497 (2013).
[Crossref]

Song, Y.

J. Huang, X. Lan, Y. Song, Y. Li, L. Hua, and H. Xiao, “Microwave interrogated sapphire fiber Michelson interferometer for high temperature sensing,” IEEE Photonics Technol. Lett. 27(13), 1398–1401 (2015).
[Crossref]

Su, D.

X. Qiao, Y. Wang, H. Yang, T. Guo, Q. Rong, L. Li, D. Su, K. S. Lim, and H. Ahmad, “Ultra-high temperature chirped fiber Bragg grating through thermal activation,” IEEE Photonics Technol. Lett. 27(12), 1305–1308 (2015).
[Crossref]

Su, H.

Tang, M.

L. Gan, R. Wang, D. Liu, L. Duan, S. Liu, S. Fu, B. Li, Z. Feng, H. Wei, W. Tong, P. P. Shum, and M. Tang, “Spatial-division multiplexed Mach-Zehnder interferometers in heterogeneous multicore fiber for multi-parameter measurement,” IEEE Photonics J. 8(1), 7800908 (2015).

B. Li, Z. Feng, M. Tang, Z. Xu, S. Fu, Q. Wu, L. Deng, W. Tong, S. Liu, and P. P. Shum, “Experimental demonstration of large capacity WSDM optical access network with multicore fibers and advanced modulation formats,” Opt. Express 23(9), 10997–11006 (2015).
[Crossref] [PubMed]

P. Zhang, M. Tang, F. Gao, B. Zhu, Z. Zhao, L. Duan, S. Fu, J. Ouyang, H. Wei, P. P. Shum, and D. Liu, “Simplified hollow-core fiber-based Fabry-Perot interferometer with modified vernier effect for highly sensitive high-temperature measurement,” IEEE Photonics J. 7(1), 7100210 (2015).
[Crossref]

Z. Zhao, M. Tang, S. Fu, S. Liu, H. Wei, Y. Cheng, W. Tong, P. P. Shum, and D. Liu, “All-solid multi-core fiber-based multipath Mach-Zehnder interferometer for temperature sensing,” Appl. Phys. B 112(4), 491–497 (2013).
[Crossref]

Tong, W.

L. Gan, R. Wang, D. Liu, L. Duan, S. Liu, S. Fu, B. Li, Z. Feng, H. Wei, W. Tong, P. P. Shum, and M. Tang, “Spatial-division multiplexed Mach-Zehnder interferometers in heterogeneous multicore fiber for multi-parameter measurement,” IEEE Photonics J. 8(1), 7800908 (2015).

B. Li, Z. Feng, M. Tang, Z. Xu, S. Fu, Q. Wu, L. Deng, W. Tong, S. Liu, and P. P. Shum, “Experimental demonstration of large capacity WSDM optical access network with multicore fibers and advanced modulation formats,” Opt. Express 23(9), 10997–11006 (2015).
[Crossref] [PubMed]

Z. Zhao, M. Tang, S. Fu, S. Liu, H. Wei, Y. Cheng, W. Tong, P. P. Shum, and D. Liu, “All-solid multi-core fiber-based multipath Mach-Zehnder interferometer for temperature sensing,” Appl. Phys. B 112(4), 491–497 (2013).
[Crossref]

Wang, R.

L. Gan, R. Wang, D. Liu, L. Duan, S. Liu, S. Fu, B. Li, Z. Feng, H. Wei, W. Tong, P. P. Shum, and M. Tang, “Spatial-division multiplexed Mach-Zehnder interferometers in heterogeneous multicore fiber for multi-parameter measurement,” IEEE Photonics J. 8(1), 7800908 (2015).

Z. Cao, Z. Zhang, X. Ji, T. Shui, R. Wang, C. Yin, S. Zhen, L. Lu, and B. Yu, “Strain-insensitive and high temperature fiber sensor based on a Mach-Zehnder modal interferometer,” Opt. Fiber Technol. 20(1), 24–27 (2014).
[Crossref]

Wang, Y.

X. Qiao, Y. Wang, H. Yang, T. Guo, Q. Rong, L. Li, D. Su, K. S. Lim, and H. Ahmad, “Ultra-high temperature chirped fiber Bragg grating through thermal activation,” IEEE Photonics Technol. Lett. 27(12), 1305–1308 (2015).
[Crossref]

Wei, H.

P. Zhang, M. Tang, F. Gao, B. Zhu, Z. Zhao, L. Duan, S. Fu, J. Ouyang, H. Wei, P. P. Shum, and D. Liu, “Simplified hollow-core fiber-based Fabry-Perot interferometer with modified vernier effect for highly sensitive high-temperature measurement,” IEEE Photonics J. 7(1), 7100210 (2015).
[Crossref]

L. Gan, R. Wang, D. Liu, L. Duan, S. Liu, S. Fu, B. Li, Z. Feng, H. Wei, W. Tong, P. P. Shum, and M. Tang, “Spatial-division multiplexed Mach-Zehnder interferometers in heterogeneous multicore fiber for multi-parameter measurement,” IEEE Photonics J. 8(1), 7800908 (2015).

Z. Zhao, M. Tang, S. Fu, S. Liu, H. Wei, Y. Cheng, W. Tong, P. P. Shum, and D. Liu, “All-solid multi-core fiber-based multipath Mach-Zehnder interferometer for temperature sensing,” Appl. Phys. B 112(4), 491–497 (2013).
[Crossref]

Weihs, G.

Weinfurter, H.

Wu, D.

T. Zhu, D. Wu, M. Liu, and D. W. Duan, “In-line fiber optic interferometric sensors in single-mode fibers,” Sensors (Basel) 12(8), 10430–10449 (2012).
[Crossref] [PubMed]

D. Wu, T. Zhu, K. S. Chiang, and M. Deng, “All single-mode fiber Mach–Zehnder interferometer based on two Peanut-Shape structures,” J. Lightwave Technol. 30(5), 805–810 (2012).
[Crossref]

Wu, Q.

Xiao, H.

J. Huang, X. Lan, Y. Song, Y. Li, L. Hua, and H. Xiao, “Microwave interrogated sapphire fiber Michelson interferometer for high temperature sensing,” IEEE Photonics Technol. Lett. 27(13), 1398–1401 (2015).
[Crossref]

Xu, Z.

Yan, X.

N. Zhao, H. Fu, M. Shao, X. Yan, H. Li, Q. Liu, H. Gao, Y. Liu, and X. Qiao, “High temperature probe sensor with high sensitivity based on Michelson interferometer,” Opt. Commun. 343, 131–134 (2015).
[Crossref]

Yang, H.

X. Qiao, Y. Wang, H. Yang, T. Guo, Q. Rong, L. Li, D. Su, K. S. Lim, and H. Ahmad, “Ultra-high temperature chirped fiber Bragg grating through thermal activation,” IEEE Photonics Technol. Lett. 27(12), 1305–1308 (2015).
[Crossref]

Yang, J.

Yin, C.

Z. Cao, Z. Zhang, X. Ji, T. Shui, R. Wang, C. Yin, S. Zhen, L. Lu, and B. Yu, “Strain-insensitive and high temperature fiber sensor based on a Mach-Zehnder modal interferometer,” Opt. Fiber Technol. 20(1), 24–27 (2014).
[Crossref]

Yoon, M. S.

Yu, B.

Z. Cao, Z. Zhang, X. Ji, T. Shui, R. Wang, C. Yin, S. Zhen, L. Lu, and B. Yu, “Strain-insensitive and high temperature fiber sensor based on a Mach-Zehnder modal interferometer,” Opt. Fiber Technol. 20(1), 24–27 (2014).
[Crossref]

Zeilinger, A.

Zhang, B.

B. Zhang and M. Kahrizi, “High-temperature resistance fiber Bragg grating temperature sensor fabrication,” IEEE Sens. J. 7(4), 586–591 (2007).
[Crossref]

Zhang, P.

P. Zhang, M. Tang, F. Gao, B. Zhu, Z. Zhao, L. Duan, S. Fu, J. Ouyang, H. Wei, P. P. Shum, and D. Liu, “Simplified hollow-core fiber-based Fabry-Perot interferometer with modified vernier effect for highly sensitive high-temperature measurement,” IEEE Photonics J. 7(1), 7100210 (2015).
[Crossref]

Zhang, Z.

Z. Cao, Z. Zhang, X. Ji, T. Shui, R. Wang, C. Yin, S. Zhen, L. Lu, and B. Yu, “Strain-insensitive and high temperature fiber sensor based on a Mach-Zehnder modal interferometer,” Opt. Fiber Technol. 20(1), 24–27 (2014).
[Crossref]

Zhao, N.

N. Zhao, H. Fu, M. Shao, X. Yan, H. Li, Q. Liu, H. Gao, Y. Liu, and X. Qiao, “High temperature probe sensor with high sensitivity based on Michelson interferometer,” Opt. Commun. 343, 131–134 (2015).
[Crossref]

Zhao, Z.

P. Zhang, M. Tang, F. Gao, B. Zhu, Z. Zhao, L. Duan, S. Fu, J. Ouyang, H. Wei, P. P. Shum, and D. Liu, “Simplified hollow-core fiber-based Fabry-Perot interferometer with modified vernier effect for highly sensitive high-temperature measurement,” IEEE Photonics J. 7(1), 7100210 (2015).
[Crossref]

Z. Zhao, M. Tang, S. Fu, S. Liu, H. Wei, Y. Cheng, W. Tong, P. P. Shum, and D. Liu, “All-solid multi-core fiber-based multipath Mach-Zehnder interferometer for temperature sensing,” Appl. Phys. B 112(4), 491–497 (2013).
[Crossref]

Zhen, S.

Z. Cao, Z. Zhang, X. Ji, T. Shui, R. Wang, C. Yin, S. Zhen, L. Lu, and B. Yu, “Strain-insensitive and high temperature fiber sensor based on a Mach-Zehnder modal interferometer,” Opt. Fiber Technol. 20(1), 24–27 (2014).
[Crossref]

Zheng, Y.

Zhu, B.

P. Zhang, M. Tang, F. Gao, B. Zhu, Z. Zhao, L. Duan, S. Fu, J. Ouyang, H. Wei, P. P. Shum, and D. Liu, “Simplified hollow-core fiber-based Fabry-Perot interferometer with modified vernier effect for highly sensitive high-temperature measurement,” IEEE Photonics J. 7(1), 7100210 (2015).
[Crossref]

Zhu, T.

T. Zhu, D. Wu, M. Liu, and D. W. Duan, “In-line fiber optic interferometric sensors in single-mode fibers,” Sensors (Basel) 12(8), 10430–10449 (2012).
[Crossref] [PubMed]

D. Wu, T. Zhu, K. S. Chiang, and M. Deng, “All single-mode fiber Mach–Zehnder interferometer based on two Peanut-Shape structures,” J. Lightwave Technol. 30(5), 805–810 (2012).
[Crossref]

T. Zhu, T. Ke, Y. Rao, and K. S. Chiang, “Fabry-Perot optical fiber tip sensor for high temperature measurement,” Opt. Commun. 283(19), 3683–3685 (2010).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B (1)

Z. Zhao, M. Tang, S. Fu, S. Liu, H. Wei, Y. Cheng, W. Tong, P. P. Shum, and D. Liu, “All-solid multi-core fiber-based multipath Mach-Zehnder interferometer for temperature sensing,” Appl. Phys. B 112(4), 491–497 (2013).
[Crossref]

IEEE Photonics J. (2)

P. Zhang, M. Tang, F. Gao, B. Zhu, Z. Zhao, L. Duan, S. Fu, J. Ouyang, H. Wei, P. P. Shum, and D. Liu, “Simplified hollow-core fiber-based Fabry-Perot interferometer with modified vernier effect for highly sensitive high-temperature measurement,” IEEE Photonics J. 7(1), 7100210 (2015).
[Crossref]

L. Gan, R. Wang, D. Liu, L. Duan, S. Liu, S. Fu, B. Li, Z. Feng, H. Wei, W. Tong, P. P. Shum, and M. Tang, “Spatial-division multiplexed Mach-Zehnder interferometers in heterogeneous multicore fiber for multi-parameter measurement,” IEEE Photonics J. 8(1), 7800908 (2015).

IEEE Photonics Technol. Lett. (2)

X. Qiao, Y. Wang, H. Yang, T. Guo, Q. Rong, L. Li, D. Su, K. S. Lim, and H. Ahmad, “Ultra-high temperature chirped fiber Bragg grating through thermal activation,” IEEE Photonics Technol. Lett. 27(12), 1305–1308 (2015).
[Crossref]

J. Huang, X. Lan, Y. Song, Y. Li, L. Hua, and H. Xiao, “Microwave interrogated sapphire fiber Michelson interferometer for high temperature sensing,” IEEE Photonics Technol. Lett. 27(13), 1398–1401 (2015).
[Crossref]

IEEE Sens. J. (1)

B. Zhang and M. Kahrizi, “High-temperature resistance fiber Bragg grating temperature sensor fabrication,” IEEE Sens. J. 7(4), 586–591 (2007).
[Crossref]

J. Lightwave Technol. (1)

Opt. Commun. (2)

T. Zhu, T. Ke, Y. Rao, and K. S. Chiang, “Fabry-Perot optical fiber tip sensor for high temperature measurement,” Opt. Commun. 283(19), 3683–3685 (2010).
[Crossref]

N. Zhao, H. Fu, M. Shao, X. Yan, H. Li, Q. Liu, H. Gao, Y. Liu, and X. Qiao, “High temperature probe sensor with high sensitivity based on Michelson interferometer,” Opt. Commun. 343, 131–134 (2015).
[Crossref]

Opt. Express (4)

Opt. Fiber Technol. (1)

Z. Cao, Z. Zhang, X. Ji, T. Shui, R. Wang, C. Yin, S. Zhen, L. Lu, and B. Yu, “Strain-insensitive and high temperature fiber sensor based on a Mach-Zehnder modal interferometer,” Opt. Fiber Technol. 20(1), 24–27 (2014).
[Crossref]

Opt. Lett. (2)

Proc. SPIE (1)

J. D. C. Jones, J. M. Lazaro, A. Quintela, P. B. Garcia-Allende, J. Mirapeix, C. Galindez, and J. M. Lopez-Higuera, “High temperature fiber sensor based on a thermo-mechanical written LPG,” Proc. SPIE 7503, 75033W (2009).

Rev. Sci. Instrum. (1)

W. Ding, Y. Jiang, R. Gao, and Y. Liu, “High-temperature fiber-optic Fabry-Perot interferometric sensors,” Rev. Sci. Instrum. 86(5), 055001 (2015).
[Crossref] [PubMed]

Sensors (Basel) (1)

T. Zhu, D. Wu, M. Liu, and D. W. Duan, “In-line fiber optic interferometric sensors in single-mode fibers,” Sensors (Basel) 12(8), 10430–10449 (2012).
[Crossref] [PubMed]

Other (2)

are A. Van Newkirk, Z. Sanjabi Eznaveh, E. Antonio-Lopez, G. Salceda-Delgado, A. Schulzgen, and R. Amezcua-Correa, “High temperature sensor based on supermode interference in multicore fiber,” in CLEO: 2014, OSA Technical Digest (online) (Optical Society of America, 2014), paper SM2N.7.

R. Wang, L. Duan, M. Tang, S. Fu, P. Zang, Z. Feng, B. Li, W. Tong, D. Liu, and P. P. Shum, “Long period grating in multicore fiber and its application,” in Asia Communications and Photonics Conference 2015, OSA Technical Digest (online) (Optical Society of America, 2015), AM1D. 5.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) The cross section image of the MCF. (b) Schematic diagram and operation principle of the Michelson-type multipath interferometer. (c) MCF-MI structure under microscope. (d) Spherical end face of MCF under microscope.
Fig. 2
Fig. 2 Light distributions at MCF end face and simulated electric field intensity distribution with different processing methods of fusion point. (a) Splicing only. (b) Splicing and tapering. (c). FFT-spatial frequency spectrum of the reflectivity spectrum with different processing methods at MCF end face. Inset: The blue curve and red curve show the results of spatial frequency spectra with and without spherical end face, respectively.
Fig. 3
Fig. 3 (a) Typical reflectance spectrum of MCF- MI device, the length of MCF is 10mm. (b) FFT-spatial frequency spectrum of the reflectance spectrums with different MCF length.
Fig. 4
Fig. 4 Experimental setup for the MCF-MI for temperature sensing.
Fig. 5
Fig. 5 (a) Measured interference pattern for the proposed device for different MCF lengths. (b) Spectral response to temperature for the MCF based Michelson interferometer.
Fig. 6
Fig. 6 (a) Dip wavelength shift with temperature increasing and its linear fit. (b) Repeatability: the dip wavelength at different temperatures during the first and second heating cycles.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

Δ n eff =ζ λ 0 2 /2L,
E 0 = ( n=1 N E n0 cos δ n ) 2 + ( n=1 N E n0 sin δ n ) 2 ,
δ=arctan( n=1 N E n0 sin δ n / n=1 N E n0 cos δ n ),
I= I c +36 I s +12 I c I s cosΔΦ,
ΔΦ= δ c δ s ,
δ=arctan( E c sin δ c +6 E s sin δ s E c cos δ c +6 E s cos δ s ),
ΔΦ=[ 4πL( n eff,c n eff,s ) ]/λ,
λ T =4[ ( n eff,c T n eff,s T )L+( n eff,c n eff,s ) L T ]/( 2m+1 ),
λ T =( Δ n eff T /Δ n eff + L T /L )λ,
Δ λ FSR λ 0 2 /2Δ n eff L,

Metrics