Abstract

We experimentally demonstrate a tunable Fano resonance which originates from the optical interference between two different resonant cavities using silicon micro-ring resonator with feedback coupled waveguide fabricated on silicon-on-insulator (SOI) substrate. The resonance spectrum can be periodically tuned via changing the resonant wavelengths of two resonators through the thermo-optic effect. In addition to this, we can also change the transmission loss of the feedback coupled waveguide (FCW) to tune the resonance spectrum by the injection free carriers to FCW. We also build the theoretical model and we analyze the device performance by using the scattering matrix method. The simulation results are in a good agreement with the experimental results. The measurement maximum extinction ratio of the Fano resonance is as high as 30.8dB. Therefore, the proposed device is a most promising candidate for high on/off ratio optical switching/modulating, high-sensitivity biochemical sensing.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Compact tunable electromagnetically induced transparency and Fano resonance on silicon platform

Shuang Zheng, Zhengsen Ruan, Shengqian Gao, Yun Long, Shimao Li, Mingbo He, Nan Zhou, Jing Du, Li Shen, Xinlun Cai, and Jian Wang
Opt. Express 25(21) 25655-25662 (2017)

Optically tunable Fano resonance in a grating-based Fabry–Perot cavity-coupled microring resonator on a silicon chip

Weifeng Zhang, Wangzhe Li, and Jianping Yao
Opt. Lett. 41(11) 2474-2477 (2016)

Electrically reconfigurable silicon microring resonator-based filter with waveguide-coupled feedback

Linjie Zhou and Andrew W. Poon
Opt. Express 15(15) 9194-9204 (2007)

References

  • View by:
  • |
  • |
  • |

  1. U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124(6), 1866–1878 (1961).
    [Crossref]
  2. A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82(3), 2257–2298 (2010).
    [Crossref]
  3. J. H. Wu, J. Y. Gao, J. H. Xu, L. Silvestri, M. Artoni, G. C. La Rocca, and F. Bassani, “Ultrafast all optical switching via tunable Fano interference,” Phys. Rev. Lett. 95(5), 057401 (2005).
    [Crossref] [PubMed]
  4. S. Fan, “Sharp asymmetric line shapes in side-coupled waveguide-cavity systems,” Appl. Phys. Lett. 80(6), 908–910 (2002).
    [Crossref]
  5. L. Y. Mario, S. Darmawan, and M. K. Chin, “Asymmetric Fano resonance and bistability for high extinction ratio, large modulation depth, and low power switching,” Opt. Express 14(26), 12770–12781 (2006).
    [Crossref] [PubMed]
  6. F. Wang, X. Wang, H. Zhou, Q. Zhou, Y. Hao, X. Jiang, M. Wang, and J. Yang, “Fano-resonance-based Mach-Zehnder optical switch employing dual-bus coupled ring resonator as two-beam interferometer,” Opt. Express 17(9), 7708–7716 (2009).
    [Crossref] [PubMed]
  7. L. Zhou and A. W. Poon, “Electrically reconfigurable silicon microring resonator-based filter with waveguide-coupled feedback,” Opt. Express 15(15), 9194–9204 (2007).
    [Crossref] [PubMed]
  8. F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8(11), 3983–3988 (2008).
    [Crossref] [PubMed]
  9. C. Y. Chao and L. J. Guo, “Biochemical sensors based on polymer microrings with sharp asymmetrical resonance,” Appl. Phys. Lett. 83(8), 1527–1529 (2003).
    [Crossref]
  10. Y. F. Xiao, V. Gaddam, and L. Yang, “Coupled optical microcavities: an enhanced refractometric sensing configuration,” Opt. Express 16(17), 12538–12543 (2008).
    [Crossref] [PubMed]
  11. S. E. Harris, “Lasers without inversion: Interference of lifetime-broadened resonances,” Phys. Rev. Lett. 62(9), 1033–1036 (1989).
    [Crossref] [PubMed]
  12. M. Kroner, A. O. Govorov, S. Remi, B. Biedermann, S. Seidl, A. Badolato, P. M. Petroff, W. Zhang, R. Barbour, B. D. Gerardot, R. J. Warburton, and K. Karrai, “The nonlinear Fano effect,” Nature 451(7176), 311–314 (2008).
    [Crossref] [PubMed]
  13. K. Totsuka, N. Kobayashi, and M. Tomita, “Slow light in coupled-resonator-induced transparency,” Phys. Rev. Lett. 98(21), 213904 (2007).
    [Crossref] [PubMed]
  14. C. Wu, A. B. Khanikaev, and G. Shvets, “Broadband slow light metamaterial based on a double-continuum Fano resonance,” Phys. Rev. Lett. 106(10), 107403 (2011).
    [Crossref] [PubMed]
  15. W. Zhang, A. O. Govorov, and G. W. Bryant, “Semiconductor-metal nanoparticle molecules: hybrid excitons and the nonlinear fano effect,” Phys. Rev. Lett. 97(14), 146804 (2006).
    [Crossref] [PubMed]
  16. X. Yang, M. Yu, D. L. Kwong, and C. W. Wong, “All-optical analog to electromagnetically induced transparency in multiple coupled photonic crystal cavities,” Phys. Rev. Lett. 102(17), 173902 (2009).
    [Crossref] [PubMed]
  17. V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
    [Crossref] [PubMed]
  18. S. Gulde, A. Jebali, and N. Moll, “Optimization of ultrafast all-optical resonator switching,” Opt. Express 13(23), 9502–9515 (2005).
    [Crossref] [PubMed]
  19. Y. H. Wen, O. Kuzucu, T. Hou, M. Lipson, and A. L. Gaeta, “All-optical switching of a single resonance in silicon ring resonators,” Opt. Lett. 36(8), 1413–1415 (2011).
    [Crossref] [PubMed]
  20. B. A. Block, T. R. Younkin, P. S. Davids, M. R. Reshotko, P. Chang, B. M. Polishak, S. Huang, J. Luo, and A. K. Y. Jen, “Electro-optic polymer cladding ring resonator modulators,” Opt. Express 16(22), 18326–18333 (2008).
    [Crossref] [PubMed]
  21. T. Baba, S. Akiyama, M. Imai, N. Hirayama, H. Takahashi, Y. Noguchi, T. Horikawa, and T. Usuki, “50-Gb/s ring-resonator-based silicon modulator,” Opt. Express 21(10), 11869–11876 (2013).
    [Crossref] [PubMed]
  22. S. Xiao, M. H. Khan, H. Shen, and M. Qi, “Silicon-on-insulator microring add-drop filters with free spectral ranges over 30nm,” J. Lightwave Technol. 26(2), 228–236 (2008).
    [Crossref]
  23. M. Khorasaninejad, N. Clarke, M. P. Anantram, and S. S. Saini, “Optical bio-chemical sensors on SNOW ring resonators,” Opt. Express 19(18), 17575–17584 (2011).
    [Crossref] [PubMed]
  24. X. Zhao, J. M. Tsai, H. Cai, X. M. Ji, J. Zhou, M. H. Bao, Y. P. Huang, D. L. Kwong, and A. Q. Liu, “A nano-opto-mechanical pressure sensor via ring resonator,” Opt. Express 20(8), 8535–8542 (2012).
    [Crossref] [PubMed]
  25. G. Cocorullo, F. G. D. Corte, and I. Rendina, “Temperature dependence of the thermo-optic coefficient in crystalline silicon between room temperature and 550 K at the wavelength of 1523 nm,” Appl. Phys. Lett. 74(22), 3338–3340 (1999).
    [Crossref]
  26. L. Zhang, R. Ji, L. Jia, L. Yang, P. Zhou, Y. Tian, P. Chen, Y. Lu, Z. Jiang, Y. Liu, Q. Fang, and M. Yu, “Demonstration of directed XOR/XNOR logic gates using two cascaded microring resonators,” Opt. Lett. 35(10), 1620–1622 (2010).
    [Crossref] [PubMed]
  27. T. Hu, P. Yu, C. Qiu, H. Qiu, F. Wang, M. Yang, X. Jiang, H. Yu, and J. Yang, “Tunable Fano resonances based on two-beam interference in microring resonator,” Appl. Phys. Lett. 102(1), 011112 (2013).
    [Crossref]
  28. R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
    [Crossref]
  29. A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett. 36(1), 321–322 (2000).
    [Crossref]
  30. Q. Xu and M. Lipson, “All-optical logic based on silicon micro-ring resonators,” Opt. Express 15(3), 924–929 (2007).
    [Crossref] [PubMed]
  31. A. M. Prabhu, A. Tsay, Z. Han, and V. Van, “Ultracompact SOI microring add-drop filter with wide bandwidth and wide FSR,” IEEE Photonics Technol. Lett. 21(10), 651–653 (2009).
    [Crossref]
  32. W. Zhang, W. Li, and J. Yao, “Optically tunable Fano resonance in a grating-based Fabry-Perot cavity-coupled microring resonator on a silicon chip,” Opt. Lett. 41(11), 2474–2477 (2016).
    [Crossref] [PubMed]
  33. Y. Shuai, D. Zhao, Z. Tian, J. H. Seo, D. V. Plant, Z. Ma, S. Fan, and W. Zhou, “Double-layer Fano resonance photonic crystal filters,” Opt. Express 21(21), 24582–24589 (2013).
    [Crossref] [PubMed]
  34. C. Qiu, P. Yu, T. Hu, F. Wang, X. Jiang, and J. Yang, “Asymmetric Fano resonance in eye-like microring system,” Appl. Phys. Lett. 101(2), 021110 (2012).
    [Crossref]
  35. Y. Tian, Y. Zhao, W. Chen, A. Guo, D. Li, G. Zhao, Z. Liu, H. Xiao, G. Liu, and J. Yang, “Electro-optic directed XOR logic circuits based on parallel-cascaded micro-ring resonators,” Opt. Express 23(20), 26342–26355 (2015).
    [Crossref] [PubMed]

2016 (1)

2015 (1)

2013 (3)

2012 (2)

X. Zhao, J. M. Tsai, H. Cai, X. M. Ji, J. Zhou, M. H. Bao, Y. P. Huang, D. L. Kwong, and A. Q. Liu, “A nano-opto-mechanical pressure sensor via ring resonator,” Opt. Express 20(8), 8535–8542 (2012).
[Crossref] [PubMed]

C. Qiu, P. Yu, T. Hu, F. Wang, X. Jiang, and J. Yang, “Asymmetric Fano resonance in eye-like microring system,” Appl. Phys. Lett. 101(2), 021110 (2012).
[Crossref]

2011 (3)

2010 (2)

2009 (3)

A. M. Prabhu, A. Tsay, Z. Han, and V. Van, “Ultracompact SOI microring add-drop filter with wide bandwidth and wide FSR,” IEEE Photonics Technol. Lett. 21(10), 651–653 (2009).
[Crossref]

F. Wang, X. Wang, H. Zhou, Q. Zhou, Y. Hao, X. Jiang, M. Wang, and J. Yang, “Fano-resonance-based Mach-Zehnder optical switch employing dual-bus coupled ring resonator as two-beam interferometer,” Opt. Express 17(9), 7708–7716 (2009).
[Crossref] [PubMed]

X. Yang, M. Yu, D. L. Kwong, and C. W. Wong, “All-optical analog to electromagnetically induced transparency in multiple coupled photonic crystal cavities,” Phys. Rev. Lett. 102(17), 173902 (2009).
[Crossref] [PubMed]

2008 (5)

Y. F. Xiao, V. Gaddam, and L. Yang, “Coupled optical microcavities: an enhanced refractometric sensing configuration,” Opt. Express 16(17), 12538–12543 (2008).
[Crossref] [PubMed]

M. Kroner, A. O. Govorov, S. Remi, B. Biedermann, S. Seidl, A. Badolato, P. M. Petroff, W. Zhang, R. Barbour, B. D. Gerardot, R. J. Warburton, and K. Karrai, “The nonlinear Fano effect,” Nature 451(7176), 311–314 (2008).
[Crossref] [PubMed]

F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8(11), 3983–3988 (2008).
[Crossref] [PubMed]

B. A. Block, T. R. Younkin, P. S. Davids, M. R. Reshotko, P. Chang, B. M. Polishak, S. Huang, J. Luo, and A. K. Y. Jen, “Electro-optic polymer cladding ring resonator modulators,” Opt. Express 16(22), 18326–18333 (2008).
[Crossref] [PubMed]

S. Xiao, M. H. Khan, H. Shen, and M. Qi, “Silicon-on-insulator microring add-drop filters with free spectral ranges over 30nm,” J. Lightwave Technol. 26(2), 228–236 (2008).
[Crossref]

2007 (4)

Q. Xu and M. Lipson, “All-optical logic based on silicon micro-ring resonators,” Opt. Express 15(3), 924–929 (2007).
[Crossref] [PubMed]

L. Zhou and A. W. Poon, “Electrically reconfigurable silicon microring resonator-based filter with waveguide-coupled feedback,” Opt. Express 15(15), 9194–9204 (2007).
[Crossref] [PubMed]

K. Totsuka, N. Kobayashi, and M. Tomita, “Slow light in coupled-resonator-induced transparency,” Phys. Rev. Lett. 98(21), 213904 (2007).
[Crossref] [PubMed]

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[Crossref] [PubMed]

2006 (2)

W. Zhang, A. O. Govorov, and G. W. Bryant, “Semiconductor-metal nanoparticle molecules: hybrid excitons and the nonlinear fano effect,” Phys. Rev. Lett. 97(14), 146804 (2006).
[Crossref] [PubMed]

L. Y. Mario, S. Darmawan, and M. K. Chin, “Asymmetric Fano resonance and bistability for high extinction ratio, large modulation depth, and low power switching,” Opt. Express 14(26), 12770–12781 (2006).
[Crossref] [PubMed]

2005 (2)

J. H. Wu, J. Y. Gao, J. H. Xu, L. Silvestri, M. Artoni, G. C. La Rocca, and F. Bassani, “Ultrafast all optical switching via tunable Fano interference,” Phys. Rev. Lett. 95(5), 057401 (2005).
[Crossref] [PubMed]

S. Gulde, A. Jebali, and N. Moll, “Optimization of ultrafast all-optical resonator switching,” Opt. Express 13(23), 9502–9515 (2005).
[Crossref] [PubMed]

2003 (1)

C. Y. Chao and L. J. Guo, “Biochemical sensors based on polymer microrings with sharp asymmetrical resonance,” Appl. Phys. Lett. 83(8), 1527–1529 (2003).
[Crossref]

2002 (1)

S. Fan, “Sharp asymmetric line shapes in side-coupled waveguide-cavity systems,” Appl. Phys. Lett. 80(6), 908–910 (2002).
[Crossref]

2000 (1)

A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett. 36(1), 321–322 (2000).
[Crossref]

1999 (1)

G. Cocorullo, F. G. D. Corte, and I. Rendina, “Temperature dependence of the thermo-optic coefficient in crystalline silicon between room temperature and 550 K at the wavelength of 1523 nm,” Appl. Phys. Lett. 74(22), 3338–3340 (1999).
[Crossref]

1989 (1)

S. E. Harris, “Lasers without inversion: Interference of lifetime-broadened resonances,” Phys. Rev. Lett. 62(9), 1033–1036 (1989).
[Crossref] [PubMed]

1987 (1)

R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
[Crossref]

1961 (1)

U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124(6), 1866–1878 (1961).
[Crossref]

Akiyama, S.

Anantram, M. P.

Artoni, M.

J. H. Wu, J. Y. Gao, J. H. Xu, L. Silvestri, M. Artoni, G. C. La Rocca, and F. Bassani, “Ultrafast all optical switching via tunable Fano interference,” Phys. Rev. Lett. 95(5), 057401 (2005).
[Crossref] [PubMed]

Baba, T.

Badolato, A.

M. Kroner, A. O. Govorov, S. Remi, B. Biedermann, S. Seidl, A. Badolato, P. M. Petroff, W. Zhang, R. Barbour, B. D. Gerardot, R. J. Warburton, and K. Karrai, “The nonlinear Fano effect,” Nature 451(7176), 311–314 (2008).
[Crossref] [PubMed]

Bao, M. H.

Barbour, R.

M. Kroner, A. O. Govorov, S. Remi, B. Biedermann, S. Seidl, A. Badolato, P. M. Petroff, W. Zhang, R. Barbour, B. D. Gerardot, R. J. Warburton, and K. Karrai, “The nonlinear Fano effect,” Nature 451(7176), 311–314 (2008).
[Crossref] [PubMed]

Bassani, F.

J. H. Wu, J. Y. Gao, J. H. Xu, L. Silvestri, M. Artoni, G. C. La Rocca, and F. Bassani, “Ultrafast all optical switching via tunable Fano interference,” Phys. Rev. Lett. 95(5), 057401 (2005).
[Crossref] [PubMed]

Bennett, B. R.

R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
[Crossref]

Biedermann, B.

M. Kroner, A. O. Govorov, S. Remi, B. Biedermann, S. Seidl, A. Badolato, P. M. Petroff, W. Zhang, R. Barbour, B. D. Gerardot, R. J. Warburton, and K. Karrai, “The nonlinear Fano effect,” Nature 451(7176), 311–314 (2008).
[Crossref] [PubMed]

Block, B. A.

Bryant, G. W.

W. Zhang, A. O. Govorov, and G. W. Bryant, “Semiconductor-metal nanoparticle molecules: hybrid excitons and the nonlinear fano effect,” Phys. Rev. Lett. 97(14), 146804 (2006).
[Crossref] [PubMed]

Cai, H.

Chang, P.

Chao, C. Y.

C. Y. Chao and L. J. Guo, “Biochemical sensors based on polymer microrings with sharp asymmetrical resonance,” Appl. Phys. Lett. 83(8), 1527–1529 (2003).
[Crossref]

Chen, P.

Chen, W.

Chin, M. K.

Clarke, N.

Cocorullo, G.

G. Cocorullo, F. G. D. Corte, and I. Rendina, “Temperature dependence of the thermo-optic coefficient in crystalline silicon between room temperature and 550 K at the wavelength of 1523 nm,” Appl. Phys. Lett. 74(22), 3338–3340 (1999).
[Crossref]

Corte, F. G. D.

G. Cocorullo, F. G. D. Corte, and I. Rendina, “Temperature dependence of the thermo-optic coefficient in crystalline silicon between room temperature and 550 K at the wavelength of 1523 nm,” Appl. Phys. Lett. 74(22), 3338–3340 (1999).
[Crossref]

Darmawan, S.

Davids, P. S.

Fan, S.

Fang, Q.

Fano, U.

U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124(6), 1866–1878 (1961).
[Crossref]

Fedotov, V. A.

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[Crossref] [PubMed]

Flach, S.

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82(3), 2257–2298 (2010).
[Crossref]

Gaddam, V.

Gaeta, A. L.

Gao, J. Y.

J. H. Wu, J. Y. Gao, J. H. Xu, L. Silvestri, M. Artoni, G. C. La Rocca, and F. Bassani, “Ultrafast all optical switching via tunable Fano interference,” Phys. Rev. Lett. 95(5), 057401 (2005).
[Crossref] [PubMed]

Gerardot, B. D.

M. Kroner, A. O. Govorov, S. Remi, B. Biedermann, S. Seidl, A. Badolato, P. M. Petroff, W. Zhang, R. Barbour, B. D. Gerardot, R. J. Warburton, and K. Karrai, “The nonlinear Fano effect,” Nature 451(7176), 311–314 (2008).
[Crossref] [PubMed]

Govorov, A. O.

M. Kroner, A. O. Govorov, S. Remi, B. Biedermann, S. Seidl, A. Badolato, P. M. Petroff, W. Zhang, R. Barbour, B. D. Gerardot, R. J. Warburton, and K. Karrai, “The nonlinear Fano effect,” Nature 451(7176), 311–314 (2008).
[Crossref] [PubMed]

W. Zhang, A. O. Govorov, and G. W. Bryant, “Semiconductor-metal nanoparticle molecules: hybrid excitons and the nonlinear fano effect,” Phys. Rev. Lett. 97(14), 146804 (2006).
[Crossref] [PubMed]

Gulde, S.

Guo, A.

Guo, L. J.

C. Y. Chao and L. J. Guo, “Biochemical sensors based on polymer microrings with sharp asymmetrical resonance,” Appl. Phys. Lett. 83(8), 1527–1529 (2003).
[Crossref]

Halas, N. J.

F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8(11), 3983–3988 (2008).
[Crossref] [PubMed]

Han, Z.

A. M. Prabhu, A. Tsay, Z. Han, and V. Van, “Ultracompact SOI microring add-drop filter with wide bandwidth and wide FSR,” IEEE Photonics Technol. Lett. 21(10), 651–653 (2009).
[Crossref]

Hao, F.

F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8(11), 3983–3988 (2008).
[Crossref] [PubMed]

Hao, Y.

Harris, S. E.

S. E. Harris, “Lasers without inversion: Interference of lifetime-broadened resonances,” Phys. Rev. Lett. 62(9), 1033–1036 (1989).
[Crossref] [PubMed]

Hirayama, N.

Horikawa, T.

Hou, T.

Hu, T.

T. Hu, P. Yu, C. Qiu, H. Qiu, F. Wang, M. Yang, X. Jiang, H. Yu, and J. Yang, “Tunable Fano resonances based on two-beam interference in microring resonator,” Appl. Phys. Lett. 102(1), 011112 (2013).
[Crossref]

C. Qiu, P. Yu, T. Hu, F. Wang, X. Jiang, and J. Yang, “Asymmetric Fano resonance in eye-like microring system,” Appl. Phys. Lett. 101(2), 021110 (2012).
[Crossref]

Huang, S.

Huang, Y. P.

Imai, M.

Jebali, A.

Jen, A. K. Y.

Ji, R.

Ji, X. M.

Jia, L.

Jiang, X.

T. Hu, P. Yu, C. Qiu, H. Qiu, F. Wang, M. Yang, X. Jiang, H. Yu, and J. Yang, “Tunable Fano resonances based on two-beam interference in microring resonator,” Appl. Phys. Lett. 102(1), 011112 (2013).
[Crossref]

C. Qiu, P. Yu, T. Hu, F. Wang, X. Jiang, and J. Yang, “Asymmetric Fano resonance in eye-like microring system,” Appl. Phys. Lett. 101(2), 021110 (2012).
[Crossref]

F. Wang, X. Wang, H. Zhou, Q. Zhou, Y. Hao, X. Jiang, M. Wang, and J. Yang, “Fano-resonance-based Mach-Zehnder optical switch employing dual-bus coupled ring resonator as two-beam interferometer,” Opt. Express 17(9), 7708–7716 (2009).
[Crossref] [PubMed]

Jiang, Z.

Karrai, K.

M. Kroner, A. O. Govorov, S. Remi, B. Biedermann, S. Seidl, A. Badolato, P. M. Petroff, W. Zhang, R. Barbour, B. D. Gerardot, R. J. Warburton, and K. Karrai, “The nonlinear Fano effect,” Nature 451(7176), 311–314 (2008).
[Crossref] [PubMed]

Khan, M. H.

Khanikaev, A. B.

C. Wu, A. B. Khanikaev, and G. Shvets, “Broadband slow light metamaterial based on a double-continuum Fano resonance,” Phys. Rev. Lett. 106(10), 107403 (2011).
[Crossref] [PubMed]

Khorasaninejad, M.

Kivshar, Y. S.

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82(3), 2257–2298 (2010).
[Crossref]

Kobayashi, N.

K. Totsuka, N. Kobayashi, and M. Tomita, “Slow light in coupled-resonator-induced transparency,” Phys. Rev. Lett. 98(21), 213904 (2007).
[Crossref] [PubMed]

Kroner, M.

M. Kroner, A. O. Govorov, S. Remi, B. Biedermann, S. Seidl, A. Badolato, P. M. Petroff, W. Zhang, R. Barbour, B. D. Gerardot, R. J. Warburton, and K. Karrai, “The nonlinear Fano effect,” Nature 451(7176), 311–314 (2008).
[Crossref] [PubMed]

Kuzucu, O.

Kwong, D. L.

X. Zhao, J. M. Tsai, H. Cai, X. M. Ji, J. Zhou, M. H. Bao, Y. P. Huang, D. L. Kwong, and A. Q. Liu, “A nano-opto-mechanical pressure sensor via ring resonator,” Opt. Express 20(8), 8535–8542 (2012).
[Crossref] [PubMed]

X. Yang, M. Yu, D. L. Kwong, and C. W. Wong, “All-optical analog to electromagnetically induced transparency in multiple coupled photonic crystal cavities,” Phys. Rev. Lett. 102(17), 173902 (2009).
[Crossref] [PubMed]

La Rocca, G. C.

J. H. Wu, J. Y. Gao, J. H. Xu, L. Silvestri, M. Artoni, G. C. La Rocca, and F. Bassani, “Ultrafast all optical switching via tunable Fano interference,” Phys. Rev. Lett. 95(5), 057401 (2005).
[Crossref] [PubMed]

Li, D.

Li, W.

Lipson, M.

Liu, A. Q.

Liu, G.

Liu, Y.

Liu, Z.

Lu, Y.

Luo, J.

Ma, Z.

Maier, S. A.

F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8(11), 3983–3988 (2008).
[Crossref] [PubMed]

Mario, L. Y.

Miroshnichenko, A. E.

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82(3), 2257–2298 (2010).
[Crossref]

Moll, N.

Noguchi, Y.

Nordlander, P.

F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8(11), 3983–3988 (2008).
[Crossref] [PubMed]

Papasimakis, N.

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[Crossref] [PubMed]

Petroff, P. M.

M. Kroner, A. O. Govorov, S. Remi, B. Biedermann, S. Seidl, A. Badolato, P. M. Petroff, W. Zhang, R. Barbour, B. D. Gerardot, R. J. Warburton, and K. Karrai, “The nonlinear Fano effect,” Nature 451(7176), 311–314 (2008).
[Crossref] [PubMed]

Plant, D. V.

Polishak, B. M.

Poon, A. W.

Prabhu, A. M.

A. M. Prabhu, A. Tsay, Z. Han, and V. Van, “Ultracompact SOI microring add-drop filter with wide bandwidth and wide FSR,” IEEE Photonics Technol. Lett. 21(10), 651–653 (2009).
[Crossref]

Prosvirnin, S. L.

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[Crossref] [PubMed]

Qi, M.

Qiu, C.

T. Hu, P. Yu, C. Qiu, H. Qiu, F. Wang, M. Yang, X. Jiang, H. Yu, and J. Yang, “Tunable Fano resonances based on two-beam interference in microring resonator,” Appl. Phys. Lett. 102(1), 011112 (2013).
[Crossref]

C. Qiu, P. Yu, T. Hu, F. Wang, X. Jiang, and J. Yang, “Asymmetric Fano resonance in eye-like microring system,” Appl. Phys. Lett. 101(2), 021110 (2012).
[Crossref]

Qiu, H.

T. Hu, P. Yu, C. Qiu, H. Qiu, F. Wang, M. Yang, X. Jiang, H. Yu, and J. Yang, “Tunable Fano resonances based on two-beam interference in microring resonator,” Appl. Phys. Lett. 102(1), 011112 (2013).
[Crossref]

Remi, S.

M. Kroner, A. O. Govorov, S. Remi, B. Biedermann, S. Seidl, A. Badolato, P. M. Petroff, W. Zhang, R. Barbour, B. D. Gerardot, R. J. Warburton, and K. Karrai, “The nonlinear Fano effect,” Nature 451(7176), 311–314 (2008).
[Crossref] [PubMed]

Rendina, I.

G. Cocorullo, F. G. D. Corte, and I. Rendina, “Temperature dependence of the thermo-optic coefficient in crystalline silicon between room temperature and 550 K at the wavelength of 1523 nm,” Appl. Phys. Lett. 74(22), 3338–3340 (1999).
[Crossref]

Reshotko, M. R.

Rose, M.

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[Crossref] [PubMed]

Saini, S. S.

Seidl, S.

M. Kroner, A. O. Govorov, S. Remi, B. Biedermann, S. Seidl, A. Badolato, P. M. Petroff, W. Zhang, R. Barbour, B. D. Gerardot, R. J. Warburton, and K. Karrai, “The nonlinear Fano effect,” Nature 451(7176), 311–314 (2008).
[Crossref] [PubMed]

Seo, J. H.

Shen, H.

Shuai, Y.

Shvets, G.

C. Wu, A. B. Khanikaev, and G. Shvets, “Broadband slow light metamaterial based on a double-continuum Fano resonance,” Phys. Rev. Lett. 106(10), 107403 (2011).
[Crossref] [PubMed]

Silvestri, L.

J. H. Wu, J. Y. Gao, J. H. Xu, L. Silvestri, M. Artoni, G. C. La Rocca, and F. Bassani, “Ultrafast all optical switching via tunable Fano interference,” Phys. Rev. Lett. 95(5), 057401 (2005).
[Crossref] [PubMed]

Sonnefraud, Y.

F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8(11), 3983–3988 (2008).
[Crossref] [PubMed]

Soref, R. A.

R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
[Crossref]

Takahashi, H.

Tian, Y.

Tian, Z.

Tomita, M.

K. Totsuka, N. Kobayashi, and M. Tomita, “Slow light in coupled-resonator-induced transparency,” Phys. Rev. Lett. 98(21), 213904 (2007).
[Crossref] [PubMed]

Totsuka, K.

K. Totsuka, N. Kobayashi, and M. Tomita, “Slow light in coupled-resonator-induced transparency,” Phys. Rev. Lett. 98(21), 213904 (2007).
[Crossref] [PubMed]

Tsai, J. M.

Tsay, A.

A. M. Prabhu, A. Tsay, Z. Han, and V. Van, “Ultracompact SOI microring add-drop filter with wide bandwidth and wide FSR,” IEEE Photonics Technol. Lett. 21(10), 651–653 (2009).
[Crossref]

Usuki, T.

Van, V.

A. M. Prabhu, A. Tsay, Z. Han, and V. Van, “Ultracompact SOI microring add-drop filter with wide bandwidth and wide FSR,” IEEE Photonics Technol. Lett. 21(10), 651–653 (2009).
[Crossref]

Van Dorpe, P.

F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8(11), 3983–3988 (2008).
[Crossref] [PubMed]

Wang, F.

T. Hu, P. Yu, C. Qiu, H. Qiu, F. Wang, M. Yang, X. Jiang, H. Yu, and J. Yang, “Tunable Fano resonances based on two-beam interference in microring resonator,” Appl. Phys. Lett. 102(1), 011112 (2013).
[Crossref]

C. Qiu, P. Yu, T. Hu, F. Wang, X. Jiang, and J. Yang, “Asymmetric Fano resonance in eye-like microring system,” Appl. Phys. Lett. 101(2), 021110 (2012).
[Crossref]

F. Wang, X. Wang, H. Zhou, Q. Zhou, Y. Hao, X. Jiang, M. Wang, and J. Yang, “Fano-resonance-based Mach-Zehnder optical switch employing dual-bus coupled ring resonator as two-beam interferometer,” Opt. Express 17(9), 7708–7716 (2009).
[Crossref] [PubMed]

Wang, M.

Wang, X.

Warburton, R. J.

M. Kroner, A. O. Govorov, S. Remi, B. Biedermann, S. Seidl, A. Badolato, P. M. Petroff, W. Zhang, R. Barbour, B. D. Gerardot, R. J. Warburton, and K. Karrai, “The nonlinear Fano effect,” Nature 451(7176), 311–314 (2008).
[Crossref] [PubMed]

Wen, Y. H.

Wong, C. W.

X. Yang, M. Yu, D. L. Kwong, and C. W. Wong, “All-optical analog to electromagnetically induced transparency in multiple coupled photonic crystal cavities,” Phys. Rev. Lett. 102(17), 173902 (2009).
[Crossref] [PubMed]

Wu, C.

C. Wu, A. B. Khanikaev, and G. Shvets, “Broadband slow light metamaterial based on a double-continuum Fano resonance,” Phys. Rev. Lett. 106(10), 107403 (2011).
[Crossref] [PubMed]

Wu, J. H.

J. H. Wu, J. Y. Gao, J. H. Xu, L. Silvestri, M. Artoni, G. C. La Rocca, and F. Bassani, “Ultrafast all optical switching via tunable Fano interference,” Phys. Rev. Lett. 95(5), 057401 (2005).
[Crossref] [PubMed]

Xiao, H.

Xiao, S.

Xiao, Y. F.

Xu, J. H.

J. H. Wu, J. Y. Gao, J. H. Xu, L. Silvestri, M. Artoni, G. C. La Rocca, and F. Bassani, “Ultrafast all optical switching via tunable Fano interference,” Phys. Rev. Lett. 95(5), 057401 (2005).
[Crossref] [PubMed]

Xu, Q.

Yang, J.

Y. Tian, Y. Zhao, W. Chen, A. Guo, D. Li, G. Zhao, Z. Liu, H. Xiao, G. Liu, and J. Yang, “Electro-optic directed XOR logic circuits based on parallel-cascaded micro-ring resonators,” Opt. Express 23(20), 26342–26355 (2015).
[Crossref] [PubMed]

T. Hu, P. Yu, C. Qiu, H. Qiu, F. Wang, M. Yang, X. Jiang, H. Yu, and J. Yang, “Tunable Fano resonances based on two-beam interference in microring resonator,” Appl. Phys. Lett. 102(1), 011112 (2013).
[Crossref]

C. Qiu, P. Yu, T. Hu, F. Wang, X. Jiang, and J. Yang, “Asymmetric Fano resonance in eye-like microring system,” Appl. Phys. Lett. 101(2), 021110 (2012).
[Crossref]

F. Wang, X. Wang, H. Zhou, Q. Zhou, Y. Hao, X. Jiang, M. Wang, and J. Yang, “Fano-resonance-based Mach-Zehnder optical switch employing dual-bus coupled ring resonator as two-beam interferometer,” Opt. Express 17(9), 7708–7716 (2009).
[Crossref] [PubMed]

Yang, L.

Yang, M.

T. Hu, P. Yu, C. Qiu, H. Qiu, F. Wang, M. Yang, X. Jiang, H. Yu, and J. Yang, “Tunable Fano resonances based on two-beam interference in microring resonator,” Appl. Phys. Lett. 102(1), 011112 (2013).
[Crossref]

Yang, X.

X. Yang, M. Yu, D. L. Kwong, and C. W. Wong, “All-optical analog to electromagnetically induced transparency in multiple coupled photonic crystal cavities,” Phys. Rev. Lett. 102(17), 173902 (2009).
[Crossref] [PubMed]

Yao, J.

Yariv, A.

A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett. 36(1), 321–322 (2000).
[Crossref]

Younkin, T. R.

Yu, H.

T. Hu, P. Yu, C. Qiu, H. Qiu, F. Wang, M. Yang, X. Jiang, H. Yu, and J. Yang, “Tunable Fano resonances based on two-beam interference in microring resonator,” Appl. Phys. Lett. 102(1), 011112 (2013).
[Crossref]

Yu, M.

L. Zhang, R. Ji, L. Jia, L. Yang, P. Zhou, Y. Tian, P. Chen, Y. Lu, Z. Jiang, Y. Liu, Q. Fang, and M. Yu, “Demonstration of directed XOR/XNOR logic gates using two cascaded microring resonators,” Opt. Lett. 35(10), 1620–1622 (2010).
[Crossref] [PubMed]

X. Yang, M. Yu, D. L. Kwong, and C. W. Wong, “All-optical analog to electromagnetically induced transparency in multiple coupled photonic crystal cavities,” Phys. Rev. Lett. 102(17), 173902 (2009).
[Crossref] [PubMed]

Yu, P.

T. Hu, P. Yu, C. Qiu, H. Qiu, F. Wang, M. Yang, X. Jiang, H. Yu, and J. Yang, “Tunable Fano resonances based on two-beam interference in microring resonator,” Appl. Phys. Lett. 102(1), 011112 (2013).
[Crossref]

C. Qiu, P. Yu, T. Hu, F. Wang, X. Jiang, and J. Yang, “Asymmetric Fano resonance in eye-like microring system,” Appl. Phys. Lett. 101(2), 021110 (2012).
[Crossref]

Zhang, L.

Zhang, W.

W. Zhang, W. Li, and J. Yao, “Optically tunable Fano resonance in a grating-based Fabry-Perot cavity-coupled microring resonator on a silicon chip,” Opt. Lett. 41(11), 2474–2477 (2016).
[Crossref] [PubMed]

M. Kroner, A. O. Govorov, S. Remi, B. Biedermann, S. Seidl, A. Badolato, P. M. Petroff, W. Zhang, R. Barbour, B. D. Gerardot, R. J. Warburton, and K. Karrai, “The nonlinear Fano effect,” Nature 451(7176), 311–314 (2008).
[Crossref] [PubMed]

W. Zhang, A. O. Govorov, and G. W. Bryant, “Semiconductor-metal nanoparticle molecules: hybrid excitons and the nonlinear fano effect,” Phys. Rev. Lett. 97(14), 146804 (2006).
[Crossref] [PubMed]

Zhao, D.

Zhao, G.

Zhao, X.

Zhao, Y.

Zheludev, N. I.

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[Crossref] [PubMed]

Zhou, H.

Zhou, J.

Zhou, L.

Zhou, P.

Zhou, Q.

Zhou, W.

Appl. Phys. Lett. (5)

S. Fan, “Sharp asymmetric line shapes in side-coupled waveguide-cavity systems,” Appl. Phys. Lett. 80(6), 908–910 (2002).
[Crossref]

C. Y. Chao and L. J. Guo, “Biochemical sensors based on polymer microrings with sharp asymmetrical resonance,” Appl. Phys. Lett. 83(8), 1527–1529 (2003).
[Crossref]

G. Cocorullo, F. G. D. Corte, and I. Rendina, “Temperature dependence of the thermo-optic coefficient in crystalline silicon between room temperature and 550 K at the wavelength of 1523 nm,” Appl. Phys. Lett. 74(22), 3338–3340 (1999).
[Crossref]

T. Hu, P. Yu, C. Qiu, H. Qiu, F. Wang, M. Yang, X. Jiang, H. Yu, and J. Yang, “Tunable Fano resonances based on two-beam interference in microring resonator,” Appl. Phys. Lett. 102(1), 011112 (2013).
[Crossref]

C. Qiu, P. Yu, T. Hu, F. Wang, X. Jiang, and J. Yang, “Asymmetric Fano resonance in eye-like microring system,” Appl. Phys. Lett. 101(2), 021110 (2012).
[Crossref]

Electron. Lett. (1)

A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett. 36(1), 321–322 (2000).
[Crossref]

IEEE J. Quantum Electron. (1)

R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
[Crossref]

IEEE Photonics Technol. Lett. (1)

A. M. Prabhu, A. Tsay, Z. Han, and V. Van, “Ultracompact SOI microring add-drop filter with wide bandwidth and wide FSR,” IEEE Photonics Technol. Lett. 21(10), 651–653 (2009).
[Crossref]

J. Lightwave Technol. (1)

Nano Lett. (1)

F. Hao, Y. Sonnefraud, P. Van Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8(11), 3983–3988 (2008).
[Crossref] [PubMed]

Nature (1)

M. Kroner, A. O. Govorov, S. Remi, B. Biedermann, S. Seidl, A. Badolato, P. M. Petroff, W. Zhang, R. Barbour, B. D. Gerardot, R. J. Warburton, and K. Karrai, “The nonlinear Fano effect,” Nature 451(7176), 311–314 (2008).
[Crossref] [PubMed]

Opt. Express (12)

Y. F. Xiao, V. Gaddam, and L. Yang, “Coupled optical microcavities: an enhanced refractometric sensing configuration,” Opt. Express 16(17), 12538–12543 (2008).
[Crossref] [PubMed]

S. Gulde, A. Jebali, and N. Moll, “Optimization of ultrafast all-optical resonator switching,” Opt. Express 13(23), 9502–9515 (2005).
[Crossref] [PubMed]

L. Y. Mario, S. Darmawan, and M. K. Chin, “Asymmetric Fano resonance and bistability for high extinction ratio, large modulation depth, and low power switching,” Opt. Express 14(26), 12770–12781 (2006).
[Crossref] [PubMed]

F. Wang, X. Wang, H. Zhou, Q. Zhou, Y. Hao, X. Jiang, M. Wang, and J. Yang, “Fano-resonance-based Mach-Zehnder optical switch employing dual-bus coupled ring resonator as two-beam interferometer,” Opt. Express 17(9), 7708–7716 (2009).
[Crossref] [PubMed]

L. Zhou and A. W. Poon, “Electrically reconfigurable silicon microring resonator-based filter with waveguide-coupled feedback,” Opt. Express 15(15), 9194–9204 (2007).
[Crossref] [PubMed]

M. Khorasaninejad, N. Clarke, M. P. Anantram, and S. S. Saini, “Optical bio-chemical sensors on SNOW ring resonators,” Opt. Express 19(18), 17575–17584 (2011).
[Crossref] [PubMed]

X. Zhao, J. M. Tsai, H. Cai, X. M. Ji, J. Zhou, M. H. Bao, Y. P. Huang, D. L. Kwong, and A. Q. Liu, “A nano-opto-mechanical pressure sensor via ring resonator,” Opt. Express 20(8), 8535–8542 (2012).
[Crossref] [PubMed]

B. A. Block, T. R. Younkin, P. S. Davids, M. R. Reshotko, P. Chang, B. M. Polishak, S. Huang, J. Luo, and A. K. Y. Jen, “Electro-optic polymer cladding ring resonator modulators,” Opt. Express 16(22), 18326–18333 (2008).
[Crossref] [PubMed]

T. Baba, S. Akiyama, M. Imai, N. Hirayama, H. Takahashi, Y. Noguchi, T. Horikawa, and T. Usuki, “50-Gb/s ring-resonator-based silicon modulator,” Opt. Express 21(10), 11869–11876 (2013).
[Crossref] [PubMed]

Q. Xu and M. Lipson, “All-optical logic based on silicon micro-ring resonators,” Opt. Express 15(3), 924–929 (2007).
[Crossref] [PubMed]

Y. Tian, Y. Zhao, W. Chen, A. Guo, D. Li, G. Zhao, Z. Liu, H. Xiao, G. Liu, and J. Yang, “Electro-optic directed XOR logic circuits based on parallel-cascaded micro-ring resonators,” Opt. Express 23(20), 26342–26355 (2015).
[Crossref] [PubMed]

Y. Shuai, D. Zhao, Z. Tian, J. H. Seo, D. V. Plant, Z. Ma, S. Fan, and W. Zhou, “Double-layer Fano resonance photonic crystal filters,” Opt. Express 21(21), 24582–24589 (2013).
[Crossref] [PubMed]

Opt. Lett. (3)

Phys. Rev. (1)

U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124(6), 1866–1878 (1961).
[Crossref]

Phys. Rev. Lett. (7)

J. H. Wu, J. Y. Gao, J. H. Xu, L. Silvestri, M. Artoni, G. C. La Rocca, and F. Bassani, “Ultrafast all optical switching via tunable Fano interference,” Phys. Rev. Lett. 95(5), 057401 (2005).
[Crossref] [PubMed]

S. E. Harris, “Lasers without inversion: Interference of lifetime-broadened resonances,” Phys. Rev. Lett. 62(9), 1033–1036 (1989).
[Crossref] [PubMed]

K. Totsuka, N. Kobayashi, and M. Tomita, “Slow light in coupled-resonator-induced transparency,” Phys. Rev. Lett. 98(21), 213904 (2007).
[Crossref] [PubMed]

C. Wu, A. B. Khanikaev, and G. Shvets, “Broadband slow light metamaterial based on a double-continuum Fano resonance,” Phys. Rev. Lett. 106(10), 107403 (2011).
[Crossref] [PubMed]

W. Zhang, A. O. Govorov, and G. W. Bryant, “Semiconductor-metal nanoparticle molecules: hybrid excitons and the nonlinear fano effect,” Phys. Rev. Lett. 97(14), 146804 (2006).
[Crossref] [PubMed]

X. Yang, M. Yu, D. L. Kwong, and C. W. Wong, “All-optical analog to electromagnetically induced transparency in multiple coupled photonic crystal cavities,” Phys. Rev. Lett. 102(17), 173902 (2009).
[Crossref] [PubMed]

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry,” Phys. Rev. Lett. 99(14), 147401 (2007).
[Crossref] [PubMed]

Rev. Mod. Phys. (1)

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82(3), 2257–2298 (2010).
[Crossref]

Supplementary Material (3)

NameDescription
» Visualization 1: MOV (693 KB)      Thermal tuning the MRR
» Visualization 2: MOV (748 KB)      Thermal tuning the FCW
» Visualization 3: MOV (1581 KB)      Tuning the transmission loss of the FCW

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Schematic and (b) micrograph of the Fano resonance device. Inset: cross-section view schematic of the rib waveguide with top TiN microheater and lateral p-i-n diode. VR and VL are the DC bias voltages applied to the microheater top the MRR and FCW, respectively. V is the DC bias voltage applied to the lateral p-i-n diode.
Fig. 2
Fig. 2 Three paths of the mode propagating from point A to point B: (a) two paths indicated with red and blue dashed line correspond to the first two terms of the fraction of Eq. (2), respectively, and (b) the third paths indicated with red and blue dashed lines, which corresponding to the third term of Eq. (2) (there are two possible transmission paths for the third path indicated with red and blue dashed lines, in fact, the two transmission paths are equivalent).
Fig. 3
Fig. 3 Normalized Fano profiles for various values of the asymmetry parameter α L (amplitude transmission factors of the FCW), λ 0 is the MRR’s resonant wavelength.
Fig. 4
Fig. 4 (a) Measured static spectrum, and (b)-(h) measured (black line) and simulated (red dashed line) resonance spectra when different bias voltages applied to the MRR. The black and red labels indicate the experimental and simulated data, respectively. In addition, the animation for the case has been given in Visualization 1. (IL: insertion loss).
Fig. 5
Fig. 5 Measured (black line) and simulated (red dashed line) resonance spectra: (a)-(g) when different bias voltages applied to the FCW and (h) of increasing the transmission loss of the FCW. The black and red labels indicate the experimental and simulated data, respectively. In addition, the animations for two cases of applying the voltage VL and V have been prepared (see Visualization 2 and Visualization 3). (IL: insertion loss).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

( E o E 1 )=( t k e iπ/2 k e iπ/2 t )( α L e i ϕ 0 0 α 1/2 e i θ /2 )( t k e iπ/2 k e iπ/2 t )( 1 0 0 α 1/2 e i θ /2 )( E i E 1 ).
I o = | E o | 2 = | α 1/2 k 2 e i( θ /2+π) + α L t 2 e i ϕ + α L α e i( ϕ + θ +π) 1α t 2 e i θ α L α 1/2 k 2 e i( ϕ + θ /2+π) | 2 .

Metrics