Abstract

Current laser-interferometric gravitational wave detectors employ a self-homodyne readout scheme where a comparatively large light power (5–50 mW) is detected per photosensitive element. For best sensitivity to gravitational waves, signal levels as low as the quantum shot noise have to be measured as accurately as possible. The electronic noise of the detection circuit can produce a relevant limit to this accuracy, in particular when squeezed states of light are used to reduce the quantum noise. We present a new electronic circuit design reducing the electronic noise of the photodetection circuit in the audio band. In the application of this circuit at the gravitational-wave detector GEO 600 the shot-noise to electronic noise ratio was permanently improved by a factor of more than 4 above 1 kHz, while the dynamic range was improved by a factor of 7. The noise equivalent photocurrent of the implemented photodetector and circuit is about 5μA/Hz above 1 kHz with a maximum detectable photocurrent of 20 mA. With the new circuit, the observed squeezing level in GEO 600 increased by 0.2 dB. The new circuit also creates headroom for higher laser power and more squeezing to be observed in the future in GEO 600 and is applicable to other optics experiments.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Phase control of squeezed vacuum states of light in gravitational wave detectors

K. L. Dooley, E. Schreiber, H. Vahlbruch, C. Affeldt, J. R. Leong, H. Wittel, and H. Grote
Opt. Express 23(7) 8235-8245 (2015)

Ultra-low phase noise squeezed vacuum source for gravitational wave detectors

E. Oelker, G. Mansell, M. Tse, J. Miller, F. Matichard, L. Barsotti, P. Fritschel, D. E. McClelland, M. Evans, and N. Mavalvala
Optica 3(7) 682-685 (2016)

Optimum optical local-oscillator power levels for coherent detection with photodiodes

J. Fred Holmes and Badih J. Rask
Appl. Opt. 34(6) 927-933 (1995)

References

  • View by:
  • |
  • |
  • |

  1. B. P. Abbott, “Observation of Gravitational Waves from a Binary Black Hole Merger,” Phys. Rev. Lett. 116, 061102 (2016).
    [Crossref] [PubMed]
  2. J. Appel, D. Hoffman, E. Figueroa, and A. I. Lvovsky, “Electronic noise in optical homodyne tomography,” Phys. Rev. A 75, 035802 (2007).
    [Crossref]
  3. K. L. Dooley, J. R. Leong, T. Adams, C. Affeldt, A. Bisht, C. Bogan, J. Degallaix, C. Gräf, S. Hild, J. Hough, A. Khalaidovski, N. Lastzka, J. Lough, H. Lück, D. Macleod, L. Nuttall, M. Prijatelj, R. Schnabel, E. Schreiber, J. Slutsky, B. Sorazu, K. A. Strain, H. Vahlbruch, M. Wąs, B. Willke, H. Wittel, K. Danzmann, and H. Grote, “GEO 600 and the GEO-HF upgrade program: successes and challenges,” Classical and Quantum Gravity 33, 075009 (2016).
    [Crossref]
  4. H. Grote, K. Danzmann, K. L. Dooley, R. Schnabel, J. Slutsky, and H. Vahlbruch, “First Long-Term Application of Squeezed States of Light in a Gravitational-Wave Observatory,” Phys. Rev. Lett. 110, 181101 (2013).
    [Crossref] [PubMed]
  5. The LIGO Scientific Collaboration, “Advanced LIGO,” Classical and Quantum Gravity 32, 074001 (2015).
    [Crossref]
  6. J. B. Johnson, “Thermal Agitation of Electricity in Conductors,” Phys. Rev. 32, 97–109 (1928).
    [Crossref]
  7. P. Fritschel, M. Evans, and V. Frolov, “Balanced homodyne readout for quantum limited gravitational wave detectors,” Opt. Express 22, 4224 (2014).
    [Crossref] [PubMed]
  8. The LIGO Scientific Collaboration, “A gravitational wave observatory operating beyond the quantum shot-noise limit,” Nat. Phys. 7, 962–965 (2011).
    [Crossref]
  9. The LIGO Scientific Collaboration, “Enhancing the sensitivity of the LIGO gravitational wave detector by using squeezed states of light,” Nature Photonics 7, 613–619 (2013).
    [Crossref]
  10. M. B. Gray, D. A. Shaddock, C. C. Harb, and H. A. Bachor, “Photodetector designs for low-noise, broadband, and high-power applications,” Rev. Sci. Instruments 69, 3755–3762 (1998).
    [Crossref]
  11. K. L. Dooley, E. Schreiber, H. Vahlbruch, C. Affeldt, J. R. Leong, H. Wittel, and H. Grote, “Phase control of squeezed vacuum states of light in gravitational wave detectors,” Opt. Express 23, 8235–8245 (2015).
    [Crossref] [PubMed]
  12. D. V. Martynov, “The Sensitivity of the Advanced LIGO Detectors at the Beginning of Gravitational Wave Astronomy,” Phys. Rev. D 93, 112004 (2016).
    [Crossref]
  13. F. Seifert, “Resistor Current Noise Measurements,” https://dcc.ligo.org/public/0002/T0900200/001/current_noise.pdf (2009)
  14. G. Heinzel, “Electronic Noise in Interferometers,” in: Gravitational Wave Detection II, Proceedings of the 2nd TAMA International Workshop on Gravitational Wave Detection, TokyoOctober 19–22, Universal Academy PressTokyo, Japan (1999)

2016 (3)

B. P. Abbott, “Observation of Gravitational Waves from a Binary Black Hole Merger,” Phys. Rev. Lett. 116, 061102 (2016).
[Crossref] [PubMed]

K. L. Dooley, J. R. Leong, T. Adams, C. Affeldt, A. Bisht, C. Bogan, J. Degallaix, C. Gräf, S. Hild, J. Hough, A. Khalaidovski, N. Lastzka, J. Lough, H. Lück, D. Macleod, L. Nuttall, M. Prijatelj, R. Schnabel, E. Schreiber, J. Slutsky, B. Sorazu, K. A. Strain, H. Vahlbruch, M. Wąs, B. Willke, H. Wittel, K. Danzmann, and H. Grote, “GEO 600 and the GEO-HF upgrade program: successes and challenges,” Classical and Quantum Gravity 33, 075009 (2016).
[Crossref]

D. V. Martynov, “The Sensitivity of the Advanced LIGO Detectors at the Beginning of Gravitational Wave Astronomy,” Phys. Rev. D 93, 112004 (2016).
[Crossref]

2015 (2)

2014 (1)

2013 (2)

The LIGO Scientific Collaboration, “Enhancing the sensitivity of the LIGO gravitational wave detector by using squeezed states of light,” Nature Photonics 7, 613–619 (2013).
[Crossref]

H. Grote, K. Danzmann, K. L. Dooley, R. Schnabel, J. Slutsky, and H. Vahlbruch, “First Long-Term Application of Squeezed States of Light in a Gravitational-Wave Observatory,” Phys. Rev. Lett. 110, 181101 (2013).
[Crossref] [PubMed]

2011 (1)

The LIGO Scientific Collaboration, “A gravitational wave observatory operating beyond the quantum shot-noise limit,” Nat. Phys. 7, 962–965 (2011).
[Crossref]

2007 (1)

J. Appel, D. Hoffman, E. Figueroa, and A. I. Lvovsky, “Electronic noise in optical homodyne tomography,” Phys. Rev. A 75, 035802 (2007).
[Crossref]

1998 (1)

M. B. Gray, D. A. Shaddock, C. C. Harb, and H. A. Bachor, “Photodetector designs for low-noise, broadband, and high-power applications,” Rev. Sci. Instruments 69, 3755–3762 (1998).
[Crossref]

1928 (1)

J. B. Johnson, “Thermal Agitation of Electricity in Conductors,” Phys. Rev. 32, 97–109 (1928).
[Crossref]

Abbott, B. P.

B. P. Abbott, “Observation of Gravitational Waves from a Binary Black Hole Merger,” Phys. Rev. Lett. 116, 061102 (2016).
[Crossref] [PubMed]

Adams, T.

K. L. Dooley, J. R. Leong, T. Adams, C. Affeldt, A. Bisht, C. Bogan, J. Degallaix, C. Gräf, S. Hild, J. Hough, A. Khalaidovski, N. Lastzka, J. Lough, H. Lück, D. Macleod, L. Nuttall, M. Prijatelj, R. Schnabel, E. Schreiber, J. Slutsky, B. Sorazu, K. A. Strain, H. Vahlbruch, M. Wąs, B. Willke, H. Wittel, K. Danzmann, and H. Grote, “GEO 600 and the GEO-HF upgrade program: successes and challenges,” Classical and Quantum Gravity 33, 075009 (2016).
[Crossref]

Affeldt, C.

K. L. Dooley, J. R. Leong, T. Adams, C. Affeldt, A. Bisht, C. Bogan, J. Degallaix, C. Gräf, S. Hild, J. Hough, A. Khalaidovski, N. Lastzka, J. Lough, H. Lück, D. Macleod, L. Nuttall, M. Prijatelj, R. Schnabel, E. Schreiber, J. Slutsky, B. Sorazu, K. A. Strain, H. Vahlbruch, M. Wąs, B. Willke, H. Wittel, K. Danzmann, and H. Grote, “GEO 600 and the GEO-HF upgrade program: successes and challenges,” Classical and Quantum Gravity 33, 075009 (2016).
[Crossref]

K. L. Dooley, E. Schreiber, H. Vahlbruch, C. Affeldt, J. R. Leong, H. Wittel, and H. Grote, “Phase control of squeezed vacuum states of light in gravitational wave detectors,” Opt. Express 23, 8235–8245 (2015).
[Crossref] [PubMed]

Appel, J.

J. Appel, D. Hoffman, E. Figueroa, and A. I. Lvovsky, “Electronic noise in optical homodyne tomography,” Phys. Rev. A 75, 035802 (2007).
[Crossref]

Bachor, H. A.

M. B. Gray, D. A. Shaddock, C. C. Harb, and H. A. Bachor, “Photodetector designs for low-noise, broadband, and high-power applications,” Rev. Sci. Instruments 69, 3755–3762 (1998).
[Crossref]

Bisht, A.

K. L. Dooley, J. R. Leong, T. Adams, C. Affeldt, A. Bisht, C. Bogan, J. Degallaix, C. Gräf, S. Hild, J. Hough, A. Khalaidovski, N. Lastzka, J. Lough, H. Lück, D. Macleod, L. Nuttall, M. Prijatelj, R. Schnabel, E. Schreiber, J. Slutsky, B. Sorazu, K. A. Strain, H. Vahlbruch, M. Wąs, B. Willke, H. Wittel, K. Danzmann, and H. Grote, “GEO 600 and the GEO-HF upgrade program: successes and challenges,” Classical and Quantum Gravity 33, 075009 (2016).
[Crossref]

Bogan, C.

K. L. Dooley, J. R. Leong, T. Adams, C. Affeldt, A. Bisht, C. Bogan, J. Degallaix, C. Gräf, S. Hild, J. Hough, A. Khalaidovski, N. Lastzka, J. Lough, H. Lück, D. Macleod, L. Nuttall, M. Prijatelj, R. Schnabel, E. Schreiber, J. Slutsky, B. Sorazu, K. A. Strain, H. Vahlbruch, M. Wąs, B. Willke, H. Wittel, K. Danzmann, and H. Grote, “GEO 600 and the GEO-HF upgrade program: successes and challenges,” Classical and Quantum Gravity 33, 075009 (2016).
[Crossref]

Danzmann, K.

K. L. Dooley, J. R. Leong, T. Adams, C. Affeldt, A. Bisht, C. Bogan, J. Degallaix, C. Gräf, S. Hild, J. Hough, A. Khalaidovski, N. Lastzka, J. Lough, H. Lück, D. Macleod, L. Nuttall, M. Prijatelj, R. Schnabel, E. Schreiber, J. Slutsky, B. Sorazu, K. A. Strain, H. Vahlbruch, M. Wąs, B. Willke, H. Wittel, K. Danzmann, and H. Grote, “GEO 600 and the GEO-HF upgrade program: successes and challenges,” Classical and Quantum Gravity 33, 075009 (2016).
[Crossref]

H. Grote, K. Danzmann, K. L. Dooley, R. Schnabel, J. Slutsky, and H. Vahlbruch, “First Long-Term Application of Squeezed States of Light in a Gravitational-Wave Observatory,” Phys. Rev. Lett. 110, 181101 (2013).
[Crossref] [PubMed]

Degallaix, J.

K. L. Dooley, J. R. Leong, T. Adams, C. Affeldt, A. Bisht, C. Bogan, J. Degallaix, C. Gräf, S. Hild, J. Hough, A. Khalaidovski, N. Lastzka, J. Lough, H. Lück, D. Macleod, L. Nuttall, M. Prijatelj, R. Schnabel, E. Schreiber, J. Slutsky, B. Sorazu, K. A. Strain, H. Vahlbruch, M. Wąs, B. Willke, H. Wittel, K. Danzmann, and H. Grote, “GEO 600 and the GEO-HF upgrade program: successes and challenges,” Classical and Quantum Gravity 33, 075009 (2016).
[Crossref]

Dooley, K. L.

K. L. Dooley, J. R. Leong, T. Adams, C. Affeldt, A. Bisht, C. Bogan, J. Degallaix, C. Gräf, S. Hild, J. Hough, A. Khalaidovski, N. Lastzka, J. Lough, H. Lück, D. Macleod, L. Nuttall, M. Prijatelj, R. Schnabel, E. Schreiber, J. Slutsky, B. Sorazu, K. A. Strain, H. Vahlbruch, M. Wąs, B. Willke, H. Wittel, K. Danzmann, and H. Grote, “GEO 600 and the GEO-HF upgrade program: successes and challenges,” Classical and Quantum Gravity 33, 075009 (2016).
[Crossref]

K. L. Dooley, E. Schreiber, H. Vahlbruch, C. Affeldt, J. R. Leong, H. Wittel, and H. Grote, “Phase control of squeezed vacuum states of light in gravitational wave detectors,” Opt. Express 23, 8235–8245 (2015).
[Crossref] [PubMed]

H. Grote, K. Danzmann, K. L. Dooley, R. Schnabel, J. Slutsky, and H. Vahlbruch, “First Long-Term Application of Squeezed States of Light in a Gravitational-Wave Observatory,” Phys. Rev. Lett. 110, 181101 (2013).
[Crossref] [PubMed]

Evans, M.

Figueroa, E.

J. Appel, D. Hoffman, E. Figueroa, and A. I. Lvovsky, “Electronic noise in optical homodyne tomography,” Phys. Rev. A 75, 035802 (2007).
[Crossref]

Fritschel, P.

Frolov, V.

Gräf, C.

K. L. Dooley, J. R. Leong, T. Adams, C. Affeldt, A. Bisht, C. Bogan, J. Degallaix, C. Gräf, S. Hild, J. Hough, A. Khalaidovski, N. Lastzka, J. Lough, H. Lück, D. Macleod, L. Nuttall, M. Prijatelj, R. Schnabel, E. Schreiber, J. Slutsky, B. Sorazu, K. A. Strain, H. Vahlbruch, M. Wąs, B. Willke, H. Wittel, K. Danzmann, and H. Grote, “GEO 600 and the GEO-HF upgrade program: successes and challenges,” Classical and Quantum Gravity 33, 075009 (2016).
[Crossref]

Gray, M. B.

M. B. Gray, D. A. Shaddock, C. C. Harb, and H. A. Bachor, “Photodetector designs for low-noise, broadband, and high-power applications,” Rev. Sci. Instruments 69, 3755–3762 (1998).
[Crossref]

Grote, H.

K. L. Dooley, J. R. Leong, T. Adams, C. Affeldt, A. Bisht, C. Bogan, J. Degallaix, C. Gräf, S. Hild, J. Hough, A. Khalaidovski, N. Lastzka, J. Lough, H. Lück, D. Macleod, L. Nuttall, M. Prijatelj, R. Schnabel, E. Schreiber, J. Slutsky, B. Sorazu, K. A. Strain, H. Vahlbruch, M. Wąs, B. Willke, H. Wittel, K. Danzmann, and H. Grote, “GEO 600 and the GEO-HF upgrade program: successes and challenges,” Classical and Quantum Gravity 33, 075009 (2016).
[Crossref]

K. L. Dooley, E. Schreiber, H. Vahlbruch, C. Affeldt, J. R. Leong, H. Wittel, and H. Grote, “Phase control of squeezed vacuum states of light in gravitational wave detectors,” Opt. Express 23, 8235–8245 (2015).
[Crossref] [PubMed]

H. Grote, K. Danzmann, K. L. Dooley, R. Schnabel, J. Slutsky, and H. Vahlbruch, “First Long-Term Application of Squeezed States of Light in a Gravitational-Wave Observatory,” Phys. Rev. Lett. 110, 181101 (2013).
[Crossref] [PubMed]

Harb, C. C.

M. B. Gray, D. A. Shaddock, C. C. Harb, and H. A. Bachor, “Photodetector designs for low-noise, broadband, and high-power applications,” Rev. Sci. Instruments 69, 3755–3762 (1998).
[Crossref]

Heinzel, G.

G. Heinzel, “Electronic Noise in Interferometers,” in: Gravitational Wave Detection II, Proceedings of the 2nd TAMA International Workshop on Gravitational Wave Detection, TokyoOctober 19–22, Universal Academy PressTokyo, Japan (1999)

Hild, S.

K. L. Dooley, J. R. Leong, T. Adams, C. Affeldt, A. Bisht, C. Bogan, J. Degallaix, C. Gräf, S. Hild, J. Hough, A. Khalaidovski, N. Lastzka, J. Lough, H. Lück, D. Macleod, L. Nuttall, M. Prijatelj, R. Schnabel, E. Schreiber, J. Slutsky, B. Sorazu, K. A. Strain, H. Vahlbruch, M. Wąs, B. Willke, H. Wittel, K. Danzmann, and H. Grote, “GEO 600 and the GEO-HF upgrade program: successes and challenges,” Classical and Quantum Gravity 33, 075009 (2016).
[Crossref]

Hoffman, D.

J. Appel, D. Hoffman, E. Figueroa, and A. I. Lvovsky, “Electronic noise in optical homodyne tomography,” Phys. Rev. A 75, 035802 (2007).
[Crossref]

Hough, J.

K. L. Dooley, J. R. Leong, T. Adams, C. Affeldt, A. Bisht, C. Bogan, J. Degallaix, C. Gräf, S. Hild, J. Hough, A. Khalaidovski, N. Lastzka, J. Lough, H. Lück, D. Macleod, L. Nuttall, M. Prijatelj, R. Schnabel, E. Schreiber, J. Slutsky, B. Sorazu, K. A. Strain, H. Vahlbruch, M. Wąs, B. Willke, H. Wittel, K. Danzmann, and H. Grote, “GEO 600 and the GEO-HF upgrade program: successes and challenges,” Classical and Quantum Gravity 33, 075009 (2016).
[Crossref]

Johnson, J. B.

J. B. Johnson, “Thermal Agitation of Electricity in Conductors,” Phys. Rev. 32, 97–109 (1928).
[Crossref]

Khalaidovski, A.

K. L. Dooley, J. R. Leong, T. Adams, C. Affeldt, A. Bisht, C. Bogan, J. Degallaix, C. Gräf, S. Hild, J. Hough, A. Khalaidovski, N. Lastzka, J. Lough, H. Lück, D. Macleod, L. Nuttall, M. Prijatelj, R. Schnabel, E. Schreiber, J. Slutsky, B. Sorazu, K. A. Strain, H. Vahlbruch, M. Wąs, B. Willke, H. Wittel, K. Danzmann, and H. Grote, “GEO 600 and the GEO-HF upgrade program: successes and challenges,” Classical and Quantum Gravity 33, 075009 (2016).
[Crossref]

Lastzka, N.

K. L. Dooley, J. R. Leong, T. Adams, C. Affeldt, A. Bisht, C. Bogan, J. Degallaix, C. Gräf, S. Hild, J. Hough, A. Khalaidovski, N. Lastzka, J. Lough, H. Lück, D. Macleod, L. Nuttall, M. Prijatelj, R. Schnabel, E. Schreiber, J. Slutsky, B. Sorazu, K. A. Strain, H. Vahlbruch, M. Wąs, B. Willke, H. Wittel, K. Danzmann, and H. Grote, “GEO 600 and the GEO-HF upgrade program: successes and challenges,” Classical and Quantum Gravity 33, 075009 (2016).
[Crossref]

Leong, J. R.

K. L. Dooley, J. R. Leong, T. Adams, C. Affeldt, A. Bisht, C. Bogan, J. Degallaix, C. Gräf, S. Hild, J. Hough, A. Khalaidovski, N. Lastzka, J. Lough, H. Lück, D. Macleod, L. Nuttall, M. Prijatelj, R. Schnabel, E. Schreiber, J. Slutsky, B. Sorazu, K. A. Strain, H. Vahlbruch, M. Wąs, B. Willke, H. Wittel, K. Danzmann, and H. Grote, “GEO 600 and the GEO-HF upgrade program: successes and challenges,” Classical and Quantum Gravity 33, 075009 (2016).
[Crossref]

K. L. Dooley, E. Schreiber, H. Vahlbruch, C. Affeldt, J. R. Leong, H. Wittel, and H. Grote, “Phase control of squeezed vacuum states of light in gravitational wave detectors,” Opt. Express 23, 8235–8245 (2015).
[Crossref] [PubMed]

Lough, J.

K. L. Dooley, J. R. Leong, T. Adams, C. Affeldt, A. Bisht, C. Bogan, J. Degallaix, C. Gräf, S. Hild, J. Hough, A. Khalaidovski, N. Lastzka, J. Lough, H. Lück, D. Macleod, L. Nuttall, M. Prijatelj, R. Schnabel, E. Schreiber, J. Slutsky, B. Sorazu, K. A. Strain, H. Vahlbruch, M. Wąs, B. Willke, H. Wittel, K. Danzmann, and H. Grote, “GEO 600 and the GEO-HF upgrade program: successes and challenges,” Classical and Quantum Gravity 33, 075009 (2016).
[Crossref]

Lück, H.

K. L. Dooley, J. R. Leong, T. Adams, C. Affeldt, A. Bisht, C. Bogan, J. Degallaix, C. Gräf, S. Hild, J. Hough, A. Khalaidovski, N. Lastzka, J. Lough, H. Lück, D. Macleod, L. Nuttall, M. Prijatelj, R. Schnabel, E. Schreiber, J. Slutsky, B. Sorazu, K. A. Strain, H. Vahlbruch, M. Wąs, B. Willke, H. Wittel, K. Danzmann, and H. Grote, “GEO 600 and the GEO-HF upgrade program: successes and challenges,” Classical and Quantum Gravity 33, 075009 (2016).
[Crossref]

Lvovsky, A. I.

J. Appel, D. Hoffman, E. Figueroa, and A. I. Lvovsky, “Electronic noise in optical homodyne tomography,” Phys. Rev. A 75, 035802 (2007).
[Crossref]

Macleod, D.

K. L. Dooley, J. R. Leong, T. Adams, C. Affeldt, A. Bisht, C. Bogan, J. Degallaix, C. Gräf, S. Hild, J. Hough, A. Khalaidovski, N. Lastzka, J. Lough, H. Lück, D. Macleod, L. Nuttall, M. Prijatelj, R. Schnabel, E. Schreiber, J. Slutsky, B. Sorazu, K. A. Strain, H. Vahlbruch, M. Wąs, B. Willke, H. Wittel, K. Danzmann, and H. Grote, “GEO 600 and the GEO-HF upgrade program: successes and challenges,” Classical and Quantum Gravity 33, 075009 (2016).
[Crossref]

Martynov, D. V.

D. V. Martynov, “The Sensitivity of the Advanced LIGO Detectors at the Beginning of Gravitational Wave Astronomy,” Phys. Rev. D 93, 112004 (2016).
[Crossref]

Nuttall, L.

K. L. Dooley, J. R. Leong, T. Adams, C. Affeldt, A. Bisht, C. Bogan, J. Degallaix, C. Gräf, S. Hild, J. Hough, A. Khalaidovski, N. Lastzka, J. Lough, H. Lück, D. Macleod, L. Nuttall, M. Prijatelj, R. Schnabel, E. Schreiber, J. Slutsky, B. Sorazu, K. A. Strain, H. Vahlbruch, M. Wąs, B. Willke, H. Wittel, K. Danzmann, and H. Grote, “GEO 600 and the GEO-HF upgrade program: successes and challenges,” Classical and Quantum Gravity 33, 075009 (2016).
[Crossref]

Prijatelj, M.

K. L. Dooley, J. R. Leong, T. Adams, C. Affeldt, A. Bisht, C. Bogan, J. Degallaix, C. Gräf, S. Hild, J. Hough, A. Khalaidovski, N. Lastzka, J. Lough, H. Lück, D. Macleod, L. Nuttall, M. Prijatelj, R. Schnabel, E. Schreiber, J. Slutsky, B. Sorazu, K. A. Strain, H. Vahlbruch, M. Wąs, B. Willke, H. Wittel, K. Danzmann, and H. Grote, “GEO 600 and the GEO-HF upgrade program: successes and challenges,” Classical and Quantum Gravity 33, 075009 (2016).
[Crossref]

Schnabel, R.

K. L. Dooley, J. R. Leong, T. Adams, C. Affeldt, A. Bisht, C. Bogan, J. Degallaix, C. Gräf, S. Hild, J. Hough, A. Khalaidovski, N. Lastzka, J. Lough, H. Lück, D. Macleod, L. Nuttall, M. Prijatelj, R. Schnabel, E. Schreiber, J. Slutsky, B. Sorazu, K. A. Strain, H. Vahlbruch, M. Wąs, B. Willke, H. Wittel, K. Danzmann, and H. Grote, “GEO 600 and the GEO-HF upgrade program: successes and challenges,” Classical and Quantum Gravity 33, 075009 (2016).
[Crossref]

H. Grote, K. Danzmann, K. L. Dooley, R. Schnabel, J. Slutsky, and H. Vahlbruch, “First Long-Term Application of Squeezed States of Light in a Gravitational-Wave Observatory,” Phys. Rev. Lett. 110, 181101 (2013).
[Crossref] [PubMed]

Schreiber, E.

K. L. Dooley, J. R. Leong, T. Adams, C. Affeldt, A. Bisht, C. Bogan, J. Degallaix, C. Gräf, S. Hild, J. Hough, A. Khalaidovski, N. Lastzka, J. Lough, H. Lück, D. Macleod, L. Nuttall, M. Prijatelj, R. Schnabel, E. Schreiber, J. Slutsky, B. Sorazu, K. A. Strain, H. Vahlbruch, M. Wąs, B. Willke, H. Wittel, K. Danzmann, and H. Grote, “GEO 600 and the GEO-HF upgrade program: successes and challenges,” Classical and Quantum Gravity 33, 075009 (2016).
[Crossref]

K. L. Dooley, E. Schreiber, H. Vahlbruch, C. Affeldt, J. R. Leong, H. Wittel, and H. Grote, “Phase control of squeezed vacuum states of light in gravitational wave detectors,” Opt. Express 23, 8235–8245 (2015).
[Crossref] [PubMed]

Shaddock, D. A.

M. B. Gray, D. A. Shaddock, C. C. Harb, and H. A. Bachor, “Photodetector designs for low-noise, broadband, and high-power applications,” Rev. Sci. Instruments 69, 3755–3762 (1998).
[Crossref]

Slutsky, J.

K. L. Dooley, J. R. Leong, T. Adams, C. Affeldt, A. Bisht, C. Bogan, J. Degallaix, C. Gräf, S. Hild, J. Hough, A. Khalaidovski, N. Lastzka, J. Lough, H. Lück, D. Macleod, L. Nuttall, M. Prijatelj, R. Schnabel, E. Schreiber, J. Slutsky, B. Sorazu, K. A. Strain, H. Vahlbruch, M. Wąs, B. Willke, H. Wittel, K. Danzmann, and H. Grote, “GEO 600 and the GEO-HF upgrade program: successes and challenges,” Classical and Quantum Gravity 33, 075009 (2016).
[Crossref]

H. Grote, K. Danzmann, K. L. Dooley, R. Schnabel, J. Slutsky, and H. Vahlbruch, “First Long-Term Application of Squeezed States of Light in a Gravitational-Wave Observatory,” Phys. Rev. Lett. 110, 181101 (2013).
[Crossref] [PubMed]

Sorazu, B.

K. L. Dooley, J. R. Leong, T. Adams, C. Affeldt, A. Bisht, C. Bogan, J. Degallaix, C. Gräf, S. Hild, J. Hough, A. Khalaidovski, N. Lastzka, J. Lough, H. Lück, D. Macleod, L. Nuttall, M. Prijatelj, R. Schnabel, E. Schreiber, J. Slutsky, B. Sorazu, K. A. Strain, H. Vahlbruch, M. Wąs, B. Willke, H. Wittel, K. Danzmann, and H. Grote, “GEO 600 and the GEO-HF upgrade program: successes and challenges,” Classical and Quantum Gravity 33, 075009 (2016).
[Crossref]

Strain, K. A.

K. L. Dooley, J. R. Leong, T. Adams, C. Affeldt, A. Bisht, C. Bogan, J. Degallaix, C. Gräf, S. Hild, J. Hough, A. Khalaidovski, N. Lastzka, J. Lough, H. Lück, D. Macleod, L. Nuttall, M. Prijatelj, R. Schnabel, E. Schreiber, J. Slutsky, B. Sorazu, K. A. Strain, H. Vahlbruch, M. Wąs, B. Willke, H. Wittel, K. Danzmann, and H. Grote, “GEO 600 and the GEO-HF upgrade program: successes and challenges,” Classical and Quantum Gravity 33, 075009 (2016).
[Crossref]

Vahlbruch, H.

K. L. Dooley, J. R. Leong, T. Adams, C. Affeldt, A. Bisht, C. Bogan, J. Degallaix, C. Gräf, S. Hild, J. Hough, A. Khalaidovski, N. Lastzka, J. Lough, H. Lück, D. Macleod, L. Nuttall, M. Prijatelj, R. Schnabel, E. Schreiber, J. Slutsky, B. Sorazu, K. A. Strain, H. Vahlbruch, M. Wąs, B. Willke, H. Wittel, K. Danzmann, and H. Grote, “GEO 600 and the GEO-HF upgrade program: successes and challenges,” Classical and Quantum Gravity 33, 075009 (2016).
[Crossref]

K. L. Dooley, E. Schreiber, H. Vahlbruch, C. Affeldt, J. R. Leong, H. Wittel, and H. Grote, “Phase control of squeezed vacuum states of light in gravitational wave detectors,” Opt. Express 23, 8235–8245 (2015).
[Crossref] [PubMed]

H. Grote, K. Danzmann, K. L. Dooley, R. Schnabel, J. Slutsky, and H. Vahlbruch, “First Long-Term Application of Squeezed States of Light in a Gravitational-Wave Observatory,” Phys. Rev. Lett. 110, 181101 (2013).
[Crossref] [PubMed]

Was, M.

K. L. Dooley, J. R. Leong, T. Adams, C. Affeldt, A. Bisht, C. Bogan, J. Degallaix, C. Gräf, S. Hild, J. Hough, A. Khalaidovski, N. Lastzka, J. Lough, H. Lück, D. Macleod, L. Nuttall, M. Prijatelj, R. Schnabel, E. Schreiber, J. Slutsky, B. Sorazu, K. A. Strain, H. Vahlbruch, M. Wąs, B. Willke, H. Wittel, K. Danzmann, and H. Grote, “GEO 600 and the GEO-HF upgrade program: successes and challenges,” Classical and Quantum Gravity 33, 075009 (2016).
[Crossref]

Willke, B.

K. L. Dooley, J. R. Leong, T. Adams, C. Affeldt, A. Bisht, C. Bogan, J. Degallaix, C. Gräf, S. Hild, J. Hough, A. Khalaidovski, N. Lastzka, J. Lough, H. Lück, D. Macleod, L. Nuttall, M. Prijatelj, R. Schnabel, E. Schreiber, J. Slutsky, B. Sorazu, K. A. Strain, H. Vahlbruch, M. Wąs, B. Willke, H. Wittel, K. Danzmann, and H. Grote, “GEO 600 and the GEO-HF upgrade program: successes and challenges,” Classical and Quantum Gravity 33, 075009 (2016).
[Crossref]

Wittel, H.

K. L. Dooley, J. R. Leong, T. Adams, C. Affeldt, A. Bisht, C. Bogan, J. Degallaix, C. Gräf, S. Hild, J. Hough, A. Khalaidovski, N. Lastzka, J. Lough, H. Lück, D. Macleod, L. Nuttall, M. Prijatelj, R. Schnabel, E. Schreiber, J. Slutsky, B. Sorazu, K. A. Strain, H. Vahlbruch, M. Wąs, B. Willke, H. Wittel, K. Danzmann, and H. Grote, “GEO 600 and the GEO-HF upgrade program: successes and challenges,” Classical and Quantum Gravity 33, 075009 (2016).
[Crossref]

K. L. Dooley, E. Schreiber, H. Vahlbruch, C. Affeldt, J. R. Leong, H. Wittel, and H. Grote, “Phase control of squeezed vacuum states of light in gravitational wave detectors,” Opt. Express 23, 8235–8245 (2015).
[Crossref] [PubMed]

Classical and Quantum Gravity (2)

K. L. Dooley, J. R. Leong, T. Adams, C. Affeldt, A. Bisht, C. Bogan, J. Degallaix, C. Gräf, S. Hild, J. Hough, A. Khalaidovski, N. Lastzka, J. Lough, H. Lück, D. Macleod, L. Nuttall, M. Prijatelj, R. Schnabel, E. Schreiber, J. Slutsky, B. Sorazu, K. A. Strain, H. Vahlbruch, M. Wąs, B. Willke, H. Wittel, K. Danzmann, and H. Grote, “GEO 600 and the GEO-HF upgrade program: successes and challenges,” Classical and Quantum Gravity 33, 075009 (2016).
[Crossref]

The LIGO Scientific Collaboration, “Advanced LIGO,” Classical and Quantum Gravity 32, 074001 (2015).
[Crossref]

Nat. Phys. (1)

The LIGO Scientific Collaboration, “A gravitational wave observatory operating beyond the quantum shot-noise limit,” Nat. Phys. 7, 962–965 (2011).
[Crossref]

Nature Photonics (1)

The LIGO Scientific Collaboration, “Enhancing the sensitivity of the LIGO gravitational wave detector by using squeezed states of light,” Nature Photonics 7, 613–619 (2013).
[Crossref]

Opt. Express (2)

Phys. Rev. (1)

J. B. Johnson, “Thermal Agitation of Electricity in Conductors,” Phys. Rev. 32, 97–109 (1928).
[Crossref]

Phys. Rev. A (1)

J. Appel, D. Hoffman, E. Figueroa, and A. I. Lvovsky, “Electronic noise in optical homodyne tomography,” Phys. Rev. A 75, 035802 (2007).
[Crossref]

Phys. Rev. D (1)

D. V. Martynov, “The Sensitivity of the Advanced LIGO Detectors at the Beginning of Gravitational Wave Astronomy,” Phys. Rev. D 93, 112004 (2016).
[Crossref]

Phys. Rev. Lett. (2)

B. P. Abbott, “Observation of Gravitational Waves from a Binary Black Hole Merger,” Phys. Rev. Lett. 116, 061102 (2016).
[Crossref] [PubMed]

H. Grote, K. Danzmann, K. L. Dooley, R. Schnabel, J. Slutsky, and H. Vahlbruch, “First Long-Term Application of Squeezed States of Light in a Gravitational-Wave Observatory,” Phys. Rev. Lett. 110, 181101 (2013).
[Crossref] [PubMed]

Rev. Sci. Instruments (1)

M. B. Gray, D. A. Shaddock, C. C. Harb, and H. A. Bachor, “Photodetector designs for low-noise, broadband, and high-power applications,” Rev. Sci. Instruments 69, 3755–3762 (1998).
[Crossref]

Other (2)

F. Seifert, “Resistor Current Noise Measurements,” https://dcc.ligo.org/public/0002/T0900200/001/current_noise.pdf (2009)

G. Heinzel, “Electronic Noise in Interferometers,” in: Gravitational Wave Detection II, Proceedings of the 2nd TAMA International Workshop on Gravitational Wave Detection, TokyoOctober 19–22, Universal Academy PressTokyo, Japan (1999)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Loss of sensitive volume to gravitational waves and loss of spectral sensitivity as function of the ratio of shot noise to electronic noise, or any other competing noise source. For a noise source a factor 4 below shot noise, the sensitive volume is reduced by almost 10 %. For a noise source a factor 10 below shot noise, the reduction in volume is 1.5 %.

Fig. 2
Fig. 2

Photodetection scheme with a photodiode D and current to voltage converting resistor R. Figure (a) (left) shows the most simple scheme. Figure (b) (right) shows a scheme with the resistor R in the feedback of an operational amplifier (also called transimpedance configuration), which has typically a larger range than the most simple scheme at the cost of additional noise from the opamp. Range limitations in both schemes come from the voltage across resistor R: Solution (a) is range limited as the effective bias voltage across the PD (D) is reduced when the voltage across R increases. Solution (b) is range limited by the maximum (negative) output voltage or current of the operational amplifier.

Fig. 3
Fig. 3

Shot noise to thermal noise ratio as function of voltage detected across the (current to voltage) conversion resistor. Curves are computed according to Eq. (5) with T = 300 K. For the lower two curves an assumed squeezing of the observed shot noise at the denoted levels is assumed, thus reducing the SNR and making the influence of electronic noise larger.

Fig. 4
Fig. 4

Illustration of the alternative configurations using a frequency dependent impedance (an inductor in this case). Figure (a) (left) shows the simplest implementation. Figure (b) (right) shows a variant which allows for the independent tuning of corner frequencies of the response function at the cost of some additional noise from the operational amplifier.

Fig. 5
Fig. 5

Simulated noise at the output X3 of the tested circuit as shown in Fig. 9 in appendix 6.1. The total electronic noise and the most relevant noise sources are shown. Shot noise from 6 mA of photocurrent is shown for comparison. See text for details. The simulation was done with LISO.

Fig. 6
Fig. 6

Noise spectra for test conditions of two inductors. Offset current through the inductors and signal (sinusoidal modulation of the current) were applied as indicated. When a signal was applied to the coil with the SiFe core, excess noise was observed compared to the condition without signal, whereas no excess noise was observed for the mu-metal core. The excess noise was interpreted as Barkhausen noise.

Fig. 7
Fig. 7

Output voltage noise spectral densities for different conditions of the GEO 600 interferometer. The red trace shows interferometer noise (mostly shot noise at frequencies above 1 kHz) under normal operating conditions, but without squeezing. The green trace results from application of squeezed states, which is the default operating condition. Both traces were taken with a photocurrent of 6 mA. Also shown are the electronic noise levels of the PD readout circuits (with no light present on the PD) of the old and new photodiode electronics (blue and black, respectively). For all measurements, an attenuation of 3 dB is applied to the output X3 in Fig. 9 before recording the signal. The dashed curve shows the simulated noise of the new circuit, which is the same curve as the total noise in Fig. 5, but also scaled by 3 dB to be comparable to the measured noise.

Fig. 8
Fig. 8

Spectral ratios of squeezed noise divided by un-squeezed noise for the old and new photodetector designs. With the new design the spectral ratio is lowered by about 2.5 % at frequencies of several kHz, corresponding to an improvement of the observed squeezing level of about 0.2 dB. The irregular structure around 3 kHz is caused by a non-stationary noise feature at the time of the measurements and is not related to the PD circuits under test here.

Fig. 9
Fig. 9

Simplified actual circuit diagram for the implementation at GEO 600. The proposed new topology is shown on the left side of section C. Section B shows circuitry providing a radio frequency path for the photocurrent which is used to control the phase of the squeezed light application. Section A shows the implementation of a monitor output for the instantaneous photocurrent. While being slightly more complex, this is a clean and frequency independent way to monitor the photocurrent for auxiliary control purposes. The photodiode D1 is an Indium-Gallium-Arsenide type optimised for ultra-high quantum efficiency (typically 99 %). The diameter of D1 is 3 mm and its capacity is approx. 600 pF. Zener diodes D2 protects D1 from too high bias (in case of faults), whereas D3 serves as a shunt for self-induction of L3 in case of rapidly reducing photocurrent.

Fig. 10
Fig. 10

Left: Images of the two inductors under test, which use different core materials: Mu metal (left), and Silicon/Iron (right). Both inductors have dimensions of 60 × 60 × 55 mm. The layer thickness of the core material is approx. 0.5 mm. Both of these inductors have an inductance of L=2 H and an Ohmic resistance of 24˙. The maximum current (avoiding magnetic saturation) is about 20 mA. Right: Image of the Mu metal shield container used as housing for an inductor.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

I ˜ S = 2 e I
I ˜ T = 4 k B T R
SNR = I ˜ S I ˜ T .
SNR = e I R 2 k B T .
SNR = e U 2 k B T .

Metrics