Abstract

We provide an overview of Fano resonance and plasmon induced transparency (PIT) as well as on plasmons coupling in planar structures, and we discuss their application in sensing and enhanced spectroscopy. Metal-insulator-metal (MIM) structures, which are known to support symmetric and anti-symmetric surface plasmon polaritons (SPPs) arising from the coupling between two SPPs at the metal-insulator interfaces, exhibit anticrossing behavior of the dispersion relations arising from the coupling of the symmetric SPP and the metal/air SPP. Multilayer structures, formed by a metal film and a high-index dielectric waveguide (WG), separated by a low-index dielectric spacer layer, give narrow resonances of PIT and Fano line shapes. An optimized Fano structure shows a giant field intensity enhancement value of 106 in air at the surface of the high-index dielectric WG. The calculated field enhancement factor and the figure of merit for the sensitivity of the Fano structure in air can be 104 times as large as those of the conventional surface plasmon resonance and WG sensors.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Transformation from plasmon-induced transparence to -induced absorption through the control of coupling strength in metal-insulator-metal structure

Yoichiro Neo, Takahiro Matsumoto, Takeshi Watanabe, Makoto Tomita, and Hidenori Mimura
Opt. Express 24(23) 26201-26208 (2016)

Independently tunable double Fano resonances in asymmetric MIM waveguide structure

Jiwei Qi, Zongqiang Chen, Jing Chen, Yudong Li, Wu Qiang, Jingjun Xu, and Qian Sun
Opt. Express 22(12) 14688-14695 (2014)

References

  • View by:
  • |
  • |
  • |

  1. C. L. Garrido Alzar, M. A. G. Martinez, and P. Nussenzveig, “Classical analog of electromagnetically induced transparency,” Am. J. Phys. 70(1), 37 (2002).
    [Crossref]
  2. Y. S. Joe, A. M. Satanin, and C. S. Kim, “Classical analogy of Fano resonances,” Phys. Scr. 74(2), 259–266 (2006).
    [Crossref]
  3. B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
    [Crossref] [PubMed]
  4. A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82(3), 2257–2298 (2010).
    [Crossref]
  5. T. Zentgraf, S. Zhang, R. F. Oulton, and X. Zhang, “Ultranarrow coupling-induced transparency bands in hybrid plasmonic systems,” Phys. Rev. B Condens. Mater. Phys. 80(19), 195415 (2009).
    [Crossref]
  6. N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
    [Crossref] [PubMed]
  7. R. Taubert, M. Hentschel, J. Kästel, and H. Giessen, “Classical analog of electromagnetically induced absorption in plasmonics,” Nano Lett. 12(3), 1367–1371 (2012).
    [Crossref] [PubMed]
  8. A. Ishikawa, R. F. Oulton, T. Zentgraf, and X. Zhang, “Slow-light dispersion by transparent waveguide plasmon polaritons,” Phys. Rev. B Condens. Mater. Phys. 85(15), 155108 (2012).
    [Crossref]
  9. A. Christ, Y. Ekinci, H. H. Solak, N. A. Gippius, S. G. Tikhodeev, and O. J. F. Martin, “Controlling the Fano interference in a plasmonic lattice,” Phys. Rev. B 76(20), 201405 (2007).
    [Crossref]
  10. Y. Sonnefraud, N. Verellen, H. Sobhani, G. A. Vandenbosch, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Experimental realization of subradiant, superradiant, and fano resonances in ring/disk plasmonic nanocavities,” ACS Nano 4(3), 1664–1670 (2010).
    [Crossref] [PubMed]
  11. J. B. Lassiter, H. Sobhani, M. W. Knight, W. S. Mielczarek, P. Nordlander, and N. J. Halas, “Designing and deconstructing the Fano lineshape in plasmonic nanoclusters,” Nano Lett. 12(2), 1058–1062 (2012).
    [Crossref] [PubMed]
  12. B. Gallinet and O. J. Martin, “Influence of electromagnetic interactions on the line shape of plasmonic Fano resonances,” ACS Nano 5(11), 8999–9008 (2011).
    [Crossref] [PubMed]
  13. Y. Francescato, V. Giannini, and S. A. Maier, “Plasmonic systems unveiled by Fano resonances,” ACS Nano 6(2), 1830–1838 (2012).
    [Crossref] [PubMed]
  14. C. Forestiere, L. Dal Negro, and G. Miano, “Theory of coupled plasmon modes and Fano-like resonances in subwavelength metal structures,” Phys. Rev. B Condens. Mater. Phys. 88(15), 155411 (2013).
    [Crossref]
  15. N. Verellen, F. López-Tejeira, R. Paniagua-Domínguez, D. Vercruysse, D. Denkova, L. Lagae, P. Van Dorpe, V. V. Moshchalkov, and J. A. Sánchez-Gil, “Mode parity-controlled Fano- and Lorentz-like line shapes arising in plasmonic nanorods,” Nano Lett. 14(5), 2322–2329 (2014).
    [Crossref] [PubMed]
  16. S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
    [Crossref] [PubMed]
  17. N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101(25), 253903 (2008).
    [Crossref] [PubMed]
  18. K. Ooi, T. Okada, and K. Tanaka, “Mimicking electromagnetically induced transparency by spoof surface plasmons,” Phys. Rev. B Condens. Mater. Phys. 84(11), 115405 (2011).
    [Crossref]
  19. J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
    [Crossref] [PubMed]
  20. P. Tassin, L. Zhang, R. Zhao, A. Jain, T. Koschny, and C. M. Soukoulis, “Electromagnetically induced transparency and absorption in metamaterials: the radiating two-oscillator model and its experimental confirmation,” Phys. Rev. Lett. 109(18), 187401 (2012).
    [Crossref] [PubMed]
  21. E. J. Osley, C. G. Biris, P. G. Thompson, R. R. Jahromi, P. A. Warburton, and N. C. Panoiu, “Fano resonance resulting from a tunable interaction between molecular vibrational modes and a double continuum of a plasmonic metamolecule,” Phys. Rev. Lett. 110(8), 087402 (2013).
    [Crossref] [PubMed]
  22. V. M. Agranovich and D. L. Mills, Surface Polaritons: Electromagnetic Waves at Surfaces and Interfaces (North-Holland Pub. Co., 1982).
  23. A. D. Boardman, Electromagnetic Surface Modes (Wiley, 1982).
  24. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).
  25. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
    [Crossref] [PubMed]
  26. P. G. Kik and M. L. Brongersma, Surface Plasmon Nanophotonics, vol. 131 (Springer-Verlag, 2007).
  27. S. A. Maier, Plasmonics Fundamentals and Applications (Springer, 2007).
  28. S. Hayashi and T. Okamoto, “Plasmonics: visit the past to know the future,” J. Phys. D 45(43), 433001 (2012).
    [Crossref]
  29. E. N. Economou, “Surface plasmons in thin films,” Phys. Rev. 182(2), 539–554 (1969).
    [Crossref]
  30. L. Smith, M. Taylor, I. Hooper, and W. Barnes, “Field profiles of coupled surface plasmon-polaritons,” J. Mod. Opt. 55(18), 2929–2943 (2008).
    [Crossref]
  31. M. Fukui, V. C. Y. So, and R. Normandin, “Lifetimes of surface plasmons in thin silver films,” Phys. Status Solidi 91(1), K61–K64 (1979).
    [Crossref]
  32. D. Sarid, “Long-range surface-plasma waves on very thin metal films,” Phys. Rev. Lett. 47(26), 1927–1930 (1981).
    [Crossref]
  33. K. Matsubara, S. Kawata, and S. Minami, “Multilayer system for a high-precision surface plasmon resonance sensor,” Opt. Lett. 15(1), 75–77 (1990).
    [Crossref] [PubMed]
  34. J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108(2), 462–493 (2008).
    [Crossref] [PubMed]
  35. M. Zekriti, D. V. Nesterenko, and Z. Sekkat, “Long-range surface plasmons supported by a bilayer metallic structure for sensing applications,” Appl. Opt. 54(8), 2151–2157 (2015).
    [Crossref] [PubMed]
  36. K. Matsubara, S. Kawata, and S. Minami, “Optical chemical sensor based on surface plasmon measurement,” Appl. Opt. 27(6), 1160–1163 (1988).
    [Crossref] [PubMed]
  37. H. Kano and S. Kawata, “Surface-plasmon sensor for absorption-sensitivity enhancement,” Appl. Opt. 33(22), 5166–5170 (1994).
    [Crossref] [PubMed]
  38. W. L. Barnes, “Electromagnetic crystals for surface plasmon polaritons and the extraction of light from emissive devices,” J. Lightwave Technol. 17(11), 2170–2182 (1999).
    [Crossref]
  39. F. Villa, T. Lopez-Rios, and L. E. Regalado, “Electromagnetic modes in metal-insulator-metal structures,” Phys. Rev. B 63(16), 165103 (2001).
    [Crossref]
  40. J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73(3), 035407 (2006).
    [Crossref]
  41. S. Hayashi, A. Maekawa, S. C. Kim, and M. Fujii, “Mechanism of enhanced light emission from an emitting layer embedded in metal-insulator-metal structures,” Phys. Rev. B Condens. Mater. Phys. 82(3), 035441 (2010).
    [Crossref]
  42. S. Hayashi, Y. Ishigaki, and M. Fujii, “Plasmonic effects on strong exciton-photon coupling in metal-insulator- metal microcavities,” Phys. Rev. B Condens. Mater. Phys. 86(4), 045408 (2012).
    [Crossref]
  43. F. Kusunoki, T. Yotsuya, and J. Takahara, “Confinement and guiding of two-dimensional optical waves by low-refractive-index cores,” Opt. Express 14(12), 5651–5656 (2006).
    [Crossref] [PubMed]
  44. S. I. Bozhevolnyi, Plasmonic Nanoguides and Circuits (World Scientific Pub., 2009).
  45. H. J. Lezec, J. A. Dionne, and H. A. Atwater, “Negative refraction at visible frequencies,” Science 316(5823), 430–432 (2007).
    [Crossref] [PubMed]
  46. R. Ritchie, E. Arakawa, J. Cowan, and R. Hamm, “Surface-plasmon resonance effect in grating diffraction,” Phys. Rev. Lett. 21(22), 1530–1533 (1968).
    [Crossref]
  47. I. Pockrand, “Coupling of surface plasma oscillations in thin periodically corrugated silver films,” Opt. Commun. 13(3), 311–313 (1975).
    [Crossref]
  48. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
    [Crossref]
  49. I. R. Hooper and J. R. Sambles, “Coupled surface plasmon polaritons on thin metal slabs corrugated on both surfaces,” Phys. Rev. B 70(4), 045421 (2004).
    [Crossref]
  50. A. P. Hibbins, W. A. Murray, J. Tyler, S. Wedge, W. L. Barnes, and J. R. Sambles, “Resonant absorption of electromagnetic fields by surface plasmons buried in a multilayered plasmonic nanostructure,” Phys. Rev. B 74(7), 073408 (2006).
    [Crossref]
  51. T. A. Kelf, Y. Sugawara, J. J. Baumberg, M. Abdelsalam, and P. N. Bartlett, “Plasmonic band gaps and trapped plasmons on nanostructured metal surfaces,” Phys. Rev. Lett. 95(11), 116802 (2005).
    [Crossref] [PubMed]
  52. A. Christ, T. Zentgraf, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Controlling the interaction between localized and delocalized surface plasmon modes: experiment and numerical calculations,” Phys. Rev. B 74(15), 155435 (2006).
    [Crossref]
  53. D. E. Gómez, K. C. Vernon, P. Mulvaney, and T. J. Davis, “Surface plasmon mediated strong exciton-photon coupling in semiconductor nanocrystals,” Nano Lett. 10(1), 274–278 (2010).
    [Crossref] [PubMed]
  54. R. J. Moerland, H. T. Rekola, G. Sharma, A. P. Eskelinen, A. I. Vakevainen, and P. Torma, “Surface plasmon polariton-controlled tunable quantum-dot emission,” Appl. Phys. Lett. 100(22), 221111 (2012).
    [Crossref]
  55. P. Törmä and W. L. Barnes, “Strong coupling between surface plasmon polaritons and emitters: a review,” Rep. Prog. Phys. 78(1), 013901 (2015).
    [Crossref] [PubMed]
  56. J. Bellessa, C. Bonnand, J. C. Plenet, and J. Mugnier, “Strong coupling between surface plasmons and excitons in an organic semiconductor,” Phys. Rev. Lett. 93(3), 036404 (2004).
    [Crossref] [PubMed]
  57. J. Dintinger, S. Klein, F. Bustos, W. L. Barnes, and T. W. Ebbesen, “Strong coupling between surface plasmon-polaritons and organic molecules in subwavelength hole arrays,” Phys. Rev. B 71(3), 035424 (2005).
    [Crossref]
  58. T. K. Hakala, J. J. Toppari, A. Kuzyk, M. Pettersson, H. Tikkanen, H. Kunttu, and P. Törmä, “Vacuum Rabi splitting and strong-coupling dynamics for surface-plasmon polaritons and rhodamine 6G molecules,” Phys. Rev. Lett. 103(5), 053602 (2009).
    [Crossref] [PubMed]
  59. P. Prêtre, L. M. Wu, R. A. Hill, and A. Knoesen, “Characterization of electro-optic polymer films by use of decal-deposited reflection Fabry Perot microcavities,” J. Opt. Soc. Am. B 15(1), 379 (1998).
    [Crossref]
  60. K. Y. Kim, Y. K. Cho, H. S. Tae, and J. H. Lee, “Light transmission along dispersive plasmonic gap and its subwavelength guidance characteristics,” Opt. Express 14(1), 320–330 (2006).
    [Crossref] [PubMed]
  61. S. Refki, S. Hayashi, A. Rahmouni, D. Nesterenko, and Z. Sekkat, “Anticrossing behavior of surface plasmon polariton dispersions in metal-insulator-metal structures,” Plasmonics 11, 1–8 (2015).
  62. S. E. Harris, “Electromagnetically Induced Transparency,” Phys. Today 50(7), 36 (1997).
    [Crossref]
  63. M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77(2), 633–673 (2005).
    [Crossref]
  64. U. Fano, “Effects of Configuration Interaction on Intensities and Phase Shifts,” Phys. Rev. 124(6), 1866–1878 (1961).
    [Crossref]
  65. M. I. Stockman, “Nanoscience: Dark-hot resonances,” Nature 467(7315), 541–542 (2010).
    [Crossref] [PubMed]
  66. S. Hayashi, D. V. Nesterenko, and Z. Sekkat, “Fano resonance and plasmon-induced transparency in waveguide-coupled surface plasmon resonance sensors,” Appl. Phys. Express 8(2), 022201 (2015).
    [Crossref]
  67. S. Hayashi, D. V. Nesterenko, and Z. Sekkat, “Waveguide-coupled surface plasmon resonance sensor structures: Fano lineshape engineering for ultrahigh-resolution sensing,” J. Phys. D Appl. Phys. 48(32), 325303 (2015).
    [Crossref]
  68. S. Hayashi, D. V. Nesterenko, A. Rahmouni, and Z. Sekkat, “Observation of Fano line shapes arising from coupling between surface plasmon polariton and waveguide modes,” Appl. Phys. Lett. 108(5), 051101 (2016).
    [Crossref]
  69. F. Hao, Y. Sonnefraud, P. V. Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8(11), 3983–3988 (2008).
    [Crossref] [PubMed]
  70. F. López-Tejeira, R. Paniagua-Domínguez, and J. A. Sánchez-Gil, “High-performance nanosensors based on plasmonic Fano-like interference: probing refractive index with individual nanorice and nanobelts,” ACS Nano 6(10), 8989–8996 (2012).
    [Crossref] [PubMed]
  71. J. Liu, B. Xu, J. Zhang, and G. Song, “Double plasmon-induced transparency in hybrid waveguide-plasmon system and its application for localized plasmon resonance sensing with high figure of merit,” Plasmonics 8(2), 995–1001 (2013).
    [Crossref]
  72. N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
    [Crossref] [PubMed]
  73. A. A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. Khanikaev, J. H. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic Fano resonances,” Proc. Natl. Acad. Sci. U.S.A. 108(29), 11784–11789 (2011).
    [Crossref] [PubMed]
  74. K. Lodewijks, J. Ryken, W. Van Roy, G. Borghs, L. Lagae, and P. Van Dorpe, “Tuning the Fano resonance between localized and propagating surface plasmon resonances for refractive index sensing applications,” Plasmonics 8(3), 1379–1385 (2013).
    [Crossref]
  75. B. Zeng, Y. Gao, and F. J. Bartoli, “Rapid and highly sensitive detection using Fano resonances in ultrathin plasmonic nanogratings,” Appl. Phys. Lett. 105(16), 161106 (2014).
    [Crossref]
  76. D. V. Nesterenko, S. Hayashi, and Z. Sekkat, “Extremely narrow resonances, giant sensitivity and field enhancement in low-loss waveguide sensors,” J. Opt. 18(6), 065004 (2016).
    [Crossref]
  77. D. V. Nesterenko and Z. Sekkat, “Resolution estimation of the Au, Ag, Cu, and Al single- and double-layer surface plasmon sensors in the ultraviolet, visible, and infrared regions,” Plasmonics 8(4), 1585–1595 (2013).
    [Crossref]
  78. D. V. Nesterenko, Saif-ur-Rehman, and Z. Sekkat, “Surface plasmon sensing with different metals in single and double layer configurations,” Appl. Opt. 51(27), 6673–6682 (2012).
    [Crossref] [PubMed]
  79. D. V. Nesterenko, S. Hayashi, and Z. Sekkat, “Evanescent-field-coupled guided-mode sensor based on a waveguide grating,” Appl. Opt. 54(15), 4889–4894 (2015).
    [Crossref] [PubMed]
  80. H. Kano and S. Kawata, “Two-photon-excited fluorescence enhanced by a surface plasmon,” Opt. Lett. 21(22), 1848–1850 (1996).
    [Crossref] [PubMed]
  81. C. C. Katsidis and D. I. Siapkas, “General transfer-matrix method for optical multilayer systems with coherent, partially coherent, and incoherent interference,” Appl. Opt. 41(19), 3978–3987 (2002).
    [Crossref] [PubMed]
  82. M. N. Polyanskiy, “Refractive index database”, retrieved 09/09/2015, http://refractiveindex.info .
  83. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1985).

2016 (2)

S. Hayashi, D. V. Nesterenko, A. Rahmouni, and Z. Sekkat, “Observation of Fano line shapes arising from coupling between surface plasmon polariton and waveguide modes,” Appl. Phys. Lett. 108(5), 051101 (2016).
[Crossref]

D. V. Nesterenko, S. Hayashi, and Z. Sekkat, “Extremely narrow resonances, giant sensitivity and field enhancement in low-loss waveguide sensors,” J. Opt. 18(6), 065004 (2016).
[Crossref]

2015 (6)

S. Hayashi, D. V. Nesterenko, and Z. Sekkat, “Fano resonance and plasmon-induced transparency in waveguide-coupled surface plasmon resonance sensors,” Appl. Phys. Express 8(2), 022201 (2015).
[Crossref]

S. Hayashi, D. V. Nesterenko, and Z. Sekkat, “Waveguide-coupled surface plasmon resonance sensor structures: Fano lineshape engineering for ultrahigh-resolution sensing,” J. Phys. D Appl. Phys. 48(32), 325303 (2015).
[Crossref]

P. Törmä and W. L. Barnes, “Strong coupling between surface plasmon polaritons and emitters: a review,” Rep. Prog. Phys. 78(1), 013901 (2015).
[Crossref] [PubMed]

S. Refki, S. Hayashi, A. Rahmouni, D. Nesterenko, and Z. Sekkat, “Anticrossing behavior of surface plasmon polariton dispersions in metal-insulator-metal structures,” Plasmonics 11, 1–8 (2015).

M. Zekriti, D. V. Nesterenko, and Z. Sekkat, “Long-range surface plasmons supported by a bilayer metallic structure for sensing applications,” Appl. Opt. 54(8), 2151–2157 (2015).
[Crossref] [PubMed]

D. V. Nesterenko, S. Hayashi, and Z. Sekkat, “Evanescent-field-coupled guided-mode sensor based on a waveguide grating,” Appl. Opt. 54(15), 4889–4894 (2015).
[Crossref] [PubMed]

2014 (2)

B. Zeng, Y. Gao, and F. J. Bartoli, “Rapid and highly sensitive detection using Fano resonances in ultrathin plasmonic nanogratings,” Appl. Phys. Lett. 105(16), 161106 (2014).
[Crossref]

N. Verellen, F. López-Tejeira, R. Paniagua-Domínguez, D. Vercruysse, D. Denkova, L. Lagae, P. Van Dorpe, V. V. Moshchalkov, and J. A. Sánchez-Gil, “Mode parity-controlled Fano- and Lorentz-like line shapes arising in plasmonic nanorods,” Nano Lett. 14(5), 2322–2329 (2014).
[Crossref] [PubMed]

2013 (5)

C. Forestiere, L. Dal Negro, and G. Miano, “Theory of coupled plasmon modes and Fano-like resonances in subwavelength metal structures,” Phys. Rev. B Condens. Mater. Phys. 88(15), 155411 (2013).
[Crossref]

E. J. Osley, C. G. Biris, P. G. Thompson, R. R. Jahromi, P. A. Warburton, and N. C. Panoiu, “Fano resonance resulting from a tunable interaction between molecular vibrational modes and a double continuum of a plasmonic metamolecule,” Phys. Rev. Lett. 110(8), 087402 (2013).
[Crossref] [PubMed]

K. Lodewijks, J. Ryken, W. Van Roy, G. Borghs, L. Lagae, and P. Van Dorpe, “Tuning the Fano resonance between localized and propagating surface plasmon resonances for refractive index sensing applications,” Plasmonics 8(3), 1379–1385 (2013).
[Crossref]

D. V. Nesterenko and Z. Sekkat, “Resolution estimation of the Au, Ag, Cu, and Al single- and double-layer surface plasmon sensors in the ultraviolet, visible, and infrared regions,” Plasmonics 8(4), 1585–1595 (2013).
[Crossref]

J. Liu, B. Xu, J. Zhang, and G. Song, “Double plasmon-induced transparency in hybrid waveguide-plasmon system and its application for localized plasmon resonance sensing with high figure of merit,” Plasmonics 8(2), 995–1001 (2013).
[Crossref]

2012 (11)

F. López-Tejeira, R. Paniagua-Domínguez, and J. A. Sánchez-Gil, “High-performance nanosensors based on plasmonic Fano-like interference: probing refractive index with individual nanorice and nanobelts,” ACS Nano 6(10), 8989–8996 (2012).
[Crossref] [PubMed]

S. Hayashi, Y. Ishigaki, and M. Fujii, “Plasmonic effects on strong exciton-photon coupling in metal-insulator- metal microcavities,” Phys. Rev. B Condens. Mater. Phys. 86(4), 045408 (2012).
[Crossref]

R. J. Moerland, H. T. Rekola, G. Sharma, A. P. Eskelinen, A. I. Vakevainen, and P. Torma, “Surface plasmon polariton-controlled tunable quantum-dot emission,” Appl. Phys. Lett. 100(22), 221111 (2012).
[Crossref]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

P. Tassin, L. Zhang, R. Zhao, A. Jain, T. Koschny, and C. M. Soukoulis, “Electromagnetically induced transparency and absorption in metamaterials: the radiating two-oscillator model and its experimental confirmation,” Phys. Rev. Lett. 109(18), 187401 (2012).
[Crossref] [PubMed]

S. Hayashi and T. Okamoto, “Plasmonics: visit the past to know the future,” J. Phys. D 45(43), 433001 (2012).
[Crossref]

J. B. Lassiter, H. Sobhani, M. W. Knight, W. S. Mielczarek, P. Nordlander, and N. J. Halas, “Designing and deconstructing the Fano lineshape in plasmonic nanoclusters,” Nano Lett. 12(2), 1058–1062 (2012).
[Crossref] [PubMed]

Y. Francescato, V. Giannini, and S. A. Maier, “Plasmonic systems unveiled by Fano resonances,” ACS Nano 6(2), 1830–1838 (2012).
[Crossref] [PubMed]

R. Taubert, M. Hentschel, J. Kästel, and H. Giessen, “Classical analog of electromagnetically induced absorption in plasmonics,” Nano Lett. 12(3), 1367–1371 (2012).
[Crossref] [PubMed]

A. Ishikawa, R. F. Oulton, T. Zentgraf, and X. Zhang, “Slow-light dispersion by transparent waveguide plasmon polaritons,” Phys. Rev. B Condens. Mater. Phys. 85(15), 155108 (2012).
[Crossref]

D. V. Nesterenko, Saif-ur-Rehman, and Z. Sekkat, “Surface plasmon sensing with different metals in single and double layer configurations,” Appl. Opt. 51(27), 6673–6682 (2012).
[Crossref] [PubMed]

2011 (3)

B. Gallinet and O. J. Martin, “Influence of electromagnetic interactions on the line shape of plasmonic Fano resonances,” ACS Nano 5(11), 8999–9008 (2011).
[Crossref] [PubMed]

K. Ooi, T. Okada, and K. Tanaka, “Mimicking electromagnetically induced transparency by spoof surface plasmons,” Phys. Rev. B Condens. Mater. Phys. 84(11), 115405 (2011).
[Crossref]

A. A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. Khanikaev, J. H. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic Fano resonances,” Proc. Natl. Acad. Sci. U.S.A. 108(29), 11784–11789 (2011).
[Crossref] [PubMed]

2010 (7)

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

S. Hayashi, A. Maekawa, S. C. Kim, and M. Fujii, “Mechanism of enhanced light emission from an emitting layer embedded in metal-insulator-metal structures,” Phys. Rev. B Condens. Mater. Phys. 82(3), 035441 (2010).
[Crossref]

D. E. Gómez, K. C. Vernon, P. Mulvaney, and T. J. Davis, “Surface plasmon mediated strong exciton-photon coupling in semiconductor nanocrystals,” Nano Lett. 10(1), 274–278 (2010).
[Crossref] [PubMed]

M. I. Stockman, “Nanoscience: Dark-hot resonances,” Nature 467(7315), 541–542 (2010).
[Crossref] [PubMed]

Y. Sonnefraud, N. Verellen, H. Sobhani, G. A. Vandenbosch, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Experimental realization of subradiant, superradiant, and fano resonances in ring/disk plasmonic nanocavities,” ACS Nano 4(3), 1664–1670 (2010).
[Crossref] [PubMed]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82(3), 2257–2298 (2010).
[Crossref]

2009 (3)

T. Zentgraf, S. Zhang, R. F. Oulton, and X. Zhang, “Ultranarrow coupling-induced transparency bands in hybrid plasmonic systems,” Phys. Rev. B Condens. Mater. Phys. 80(19), 195415 (2009).
[Crossref]

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

T. K. Hakala, J. J. Toppari, A. Kuzyk, M. Pettersson, H. Tikkanen, H. Kunttu, and P. Törmä, “Vacuum Rabi splitting and strong-coupling dynamics for surface-plasmon polaritons and rhodamine 6G molecules,” Phys. Rev. Lett. 103(5), 053602 (2009).
[Crossref] [PubMed]

2008 (5)

F. Hao, Y. Sonnefraud, P. V. Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8(11), 3983–3988 (2008).
[Crossref] [PubMed]

J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108(2), 462–493 (2008).
[Crossref] [PubMed]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101(25), 253903 (2008).
[Crossref] [PubMed]

L. Smith, M. Taylor, I. Hooper, and W. Barnes, “Field profiles of coupled surface plasmon-polaritons,” J. Mod. Opt. 55(18), 2929–2943 (2008).
[Crossref]

2007 (2)

H. J. Lezec, J. A. Dionne, and H. A. Atwater, “Negative refraction at visible frequencies,” Science 316(5823), 430–432 (2007).
[Crossref] [PubMed]

A. Christ, Y. Ekinci, H. H. Solak, N. A. Gippius, S. G. Tikhodeev, and O. J. F. Martin, “Controlling the Fano interference in a plasmonic lattice,” Phys. Rev. B 76(20), 201405 (2007).
[Crossref]

2006 (6)

Y. S. Joe, A. M. Satanin, and C. S. Kim, “Classical analogy of Fano resonances,” Phys. Scr. 74(2), 259–266 (2006).
[Crossref]

A. P. Hibbins, W. A. Murray, J. Tyler, S. Wedge, W. L. Barnes, and J. R. Sambles, “Resonant absorption of electromagnetic fields by surface plasmons buried in a multilayered plasmonic nanostructure,” Phys. Rev. B 74(7), 073408 (2006).
[Crossref]

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73(3), 035407 (2006).
[Crossref]

A. Christ, T. Zentgraf, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Controlling the interaction between localized and delocalized surface plasmon modes: experiment and numerical calculations,” Phys. Rev. B 74(15), 155435 (2006).
[Crossref]

K. Y. Kim, Y. K. Cho, H. S. Tae, and J. H. Lee, “Light transmission along dispersive plasmonic gap and its subwavelength guidance characteristics,” Opt. Express 14(1), 320–330 (2006).
[Crossref] [PubMed]

F. Kusunoki, T. Yotsuya, and J. Takahara, “Confinement and guiding of two-dimensional optical waves by low-refractive-index cores,” Opt. Express 14(12), 5651–5656 (2006).
[Crossref] [PubMed]

2005 (3)

J. Dintinger, S. Klein, F. Bustos, W. L. Barnes, and T. W. Ebbesen, “Strong coupling between surface plasmon-polaritons and organic molecules in subwavelength hole arrays,” Phys. Rev. B 71(3), 035424 (2005).
[Crossref]

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77(2), 633–673 (2005).
[Crossref]

T. A. Kelf, Y. Sugawara, J. J. Baumberg, M. Abdelsalam, and P. N. Bartlett, “Plasmonic band gaps and trapped plasmons on nanostructured metal surfaces,” Phys. Rev. Lett. 95(11), 116802 (2005).
[Crossref] [PubMed]

2004 (2)

I. R. Hooper and J. R. Sambles, “Coupled surface plasmon polaritons on thin metal slabs corrugated on both surfaces,” Phys. Rev. B 70(4), 045421 (2004).
[Crossref]

J. Bellessa, C. Bonnand, J. C. Plenet, and J. Mugnier, “Strong coupling between surface plasmons and excitons in an organic semiconductor,” Phys. Rev. Lett. 93(3), 036404 (2004).
[Crossref] [PubMed]

2003 (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

2002 (2)

C. L. Garrido Alzar, M. A. G. Martinez, and P. Nussenzveig, “Classical analog of electromagnetically induced transparency,” Am. J. Phys. 70(1), 37 (2002).
[Crossref]

C. C. Katsidis and D. I. Siapkas, “General transfer-matrix method for optical multilayer systems with coherent, partially coherent, and incoherent interference,” Appl. Opt. 41(19), 3978–3987 (2002).
[Crossref] [PubMed]

2001 (1)

F. Villa, T. Lopez-Rios, and L. E. Regalado, “Electromagnetic modes in metal-insulator-metal structures,” Phys. Rev. B 63(16), 165103 (2001).
[Crossref]

1999 (1)

1998 (2)

P. Prêtre, L. M. Wu, R. A. Hill, and A. Knoesen, “Characterization of electro-optic polymer films by use of decal-deposited reflection Fabry Perot microcavities,” J. Opt. Soc. Am. B 15(1), 379 (1998).
[Crossref]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

1997 (1)

S. E. Harris, “Electromagnetically Induced Transparency,” Phys. Today 50(7), 36 (1997).
[Crossref]

1996 (1)

1994 (1)

1990 (1)

1988 (1)

1981 (1)

D. Sarid, “Long-range surface-plasma waves on very thin metal films,” Phys. Rev. Lett. 47(26), 1927–1930 (1981).
[Crossref]

1979 (1)

M. Fukui, V. C. Y. So, and R. Normandin, “Lifetimes of surface plasmons in thin silver films,” Phys. Status Solidi 91(1), K61–K64 (1979).
[Crossref]

1975 (1)

I. Pockrand, “Coupling of surface plasma oscillations in thin periodically corrugated silver films,” Opt. Commun. 13(3), 311–313 (1975).
[Crossref]

1969 (1)

E. N. Economou, “Surface plasmons in thin films,” Phys. Rev. 182(2), 539–554 (1969).
[Crossref]

1968 (1)

R. Ritchie, E. Arakawa, J. Cowan, and R. Hamm, “Surface-plasmon resonance effect in grating diffraction,” Phys. Rev. Lett. 21(22), 1530–1533 (1968).
[Crossref]

1961 (1)

U. Fano, “Effects of Configuration Interaction on Intensities and Phase Shifts,” Phys. Rev. 124(6), 1866–1878 (1961).
[Crossref]

Abdelsalam, M.

T. A. Kelf, Y. Sugawara, J. J. Baumberg, M. Abdelsalam, and P. N. Bartlett, “Plasmonic band gaps and trapped plasmons on nanostructured metal surfaces,” Phys. Rev. Lett. 95(11), 116802 (2005).
[Crossref] [PubMed]

Altug, H.

A. A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. Khanikaev, J. H. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic Fano resonances,” Proc. Natl. Acad. Sci. U.S.A. 108(29), 11784–11789 (2011).
[Crossref] [PubMed]

Arakawa, E.

R. Ritchie, E. Arakawa, J. Cowan, and R. Hamm, “Surface-plasmon resonance effect in grating diffraction,” Phys. Rev. Lett. 21(22), 1530–1533 (1968).
[Crossref]

Artar, A.

A. A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. Khanikaev, J. H. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic Fano resonances,” Proc. Natl. Acad. Sci. U.S.A. 108(29), 11784–11789 (2011).
[Crossref] [PubMed]

Atwater, H. A.

H. J. Lezec, J. A. Dionne, and H. A. Atwater, “Negative refraction at visible frequencies,” Science 316(5823), 430–432 (2007).
[Crossref] [PubMed]

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73(3), 035407 (2006).
[Crossref]

Azad, A. K.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

Barnes, W.

L. Smith, M. Taylor, I. Hooper, and W. Barnes, “Field profiles of coupled surface plasmon-polaritons,” J. Mod. Opt. 55(18), 2929–2943 (2008).
[Crossref]

Barnes, W. L.

P. Törmä and W. L. Barnes, “Strong coupling between surface plasmon polaritons and emitters: a review,” Rep. Prog. Phys. 78(1), 013901 (2015).
[Crossref] [PubMed]

A. P. Hibbins, W. A. Murray, J. Tyler, S. Wedge, W. L. Barnes, and J. R. Sambles, “Resonant absorption of electromagnetic fields by surface plasmons buried in a multilayered plasmonic nanostructure,” Phys. Rev. B 74(7), 073408 (2006).
[Crossref]

J. Dintinger, S. Klein, F. Bustos, W. L. Barnes, and T. W. Ebbesen, “Strong coupling between surface plasmon-polaritons and organic molecules in subwavelength hole arrays,” Phys. Rev. B 71(3), 035424 (2005).
[Crossref]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

W. L. Barnes, “Electromagnetic crystals for surface plasmon polaritons and the extraction of light from emissive devices,” J. Lightwave Technol. 17(11), 2170–2182 (1999).
[Crossref]

Bartlett, P. N.

T. A. Kelf, Y. Sugawara, J. J. Baumberg, M. Abdelsalam, and P. N. Bartlett, “Plasmonic band gaps and trapped plasmons on nanostructured metal surfaces,” Phys. Rev. Lett. 95(11), 116802 (2005).
[Crossref] [PubMed]

Bartoli, F. J.

B. Zeng, Y. Gao, and F. J. Bartoli, “Rapid and highly sensitive detection using Fano resonances in ultrathin plasmonic nanogratings,” Appl. Phys. Lett. 105(16), 161106 (2014).
[Crossref]

Baumberg, J. J.

T. A. Kelf, Y. Sugawara, J. J. Baumberg, M. Abdelsalam, and P. N. Bartlett, “Plasmonic band gaps and trapped plasmons on nanostructured metal surfaces,” Phys. Rev. Lett. 95(11), 116802 (2005).
[Crossref] [PubMed]

Bellessa, J.

J. Bellessa, C. Bonnand, J. C. Plenet, and J. Mugnier, “Strong coupling between surface plasmons and excitons in an organic semiconductor,” Phys. Rev. Lett. 93(3), 036404 (2004).
[Crossref] [PubMed]

Biris, C. G.

E. J. Osley, C. G. Biris, P. G. Thompson, R. R. Jahromi, P. A. Warburton, and N. C. Panoiu, “Fano resonance resulting from a tunable interaction between molecular vibrational modes and a double continuum of a plasmonic metamolecule,” Phys. Rev. Lett. 110(8), 087402 (2013).
[Crossref] [PubMed]

Bonnand, C.

J. Bellessa, C. Bonnand, J. C. Plenet, and J. Mugnier, “Strong coupling between surface plasmons and excitons in an organic semiconductor,” Phys. Rev. Lett. 93(3), 036404 (2004).
[Crossref] [PubMed]

Borghs, G.

K. Lodewijks, J. Ryken, W. Van Roy, G. Borghs, L. Lagae, and P. Van Dorpe, “Tuning the Fano resonance between localized and propagating surface plasmon resonances for refractive index sensing applications,” Plasmonics 8(3), 1379–1385 (2013).
[Crossref]

Bustos, F.

J. Dintinger, S. Klein, F. Bustos, W. L. Barnes, and T. W. Ebbesen, “Strong coupling between surface plasmon-polaritons and organic molecules in subwavelength hole arrays,” Phys. Rev. B 71(3), 035424 (2005).
[Crossref]

Cetin, A. E.

A. A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. Khanikaev, J. H. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic Fano resonances,” Proc. Natl. Acad. Sci. U.S.A. 108(29), 11784–11789 (2011).
[Crossref] [PubMed]

Chen, H. T.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

Cho, Y. K.

Chong, C. T.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Christ, A.

A. Christ, Y. Ekinci, H. H. Solak, N. A. Gippius, S. G. Tikhodeev, and O. J. F. Martin, “Controlling the Fano interference in a plasmonic lattice,” Phys. Rev. B 76(20), 201405 (2007).
[Crossref]

A. Christ, T. Zentgraf, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Controlling the interaction between localized and delocalized surface plasmon modes: experiment and numerical calculations,” Phys. Rev. B 74(15), 155435 (2006).
[Crossref]

Connor, J. H.

A. A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. Khanikaev, J. H. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic Fano resonances,” Proc. Natl. Acad. Sci. U.S.A. 108(29), 11784–11789 (2011).
[Crossref] [PubMed]

Cowan, J.

R. Ritchie, E. Arakawa, J. Cowan, and R. Hamm, “Surface-plasmon resonance effect in grating diffraction,” Phys. Rev. Lett. 21(22), 1530–1533 (1968).
[Crossref]

Dal Negro, L.

C. Forestiere, L. Dal Negro, and G. Miano, “Theory of coupled plasmon modes and Fano-like resonances in subwavelength metal structures,” Phys. Rev. B Condens. Mater. Phys. 88(15), 155411 (2013).
[Crossref]

Davis, T. J.

D. E. Gómez, K. C. Vernon, P. Mulvaney, and T. J. Davis, “Surface plasmon mediated strong exciton-photon coupling in semiconductor nanocrystals,” Nano Lett. 10(1), 274–278 (2010).
[Crossref] [PubMed]

Denkova, D.

N. Verellen, F. López-Tejeira, R. Paniagua-Domínguez, D. Vercruysse, D. Denkova, L. Lagae, P. Van Dorpe, V. V. Moshchalkov, and J. A. Sánchez-Gil, “Mode parity-controlled Fano- and Lorentz-like line shapes arising in plasmonic nanorods,” Nano Lett. 14(5), 2322–2329 (2014).
[Crossref] [PubMed]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Dintinger, J.

J. Dintinger, S. Klein, F. Bustos, W. L. Barnes, and T. W. Ebbesen, “Strong coupling between surface plasmon-polaritons and organic molecules in subwavelength hole arrays,” Phys. Rev. B 71(3), 035424 (2005).
[Crossref]

Dionne, J. A.

H. J. Lezec, J. A. Dionne, and H. A. Atwater, “Negative refraction at visible frequencies,” Science 316(5823), 430–432 (2007).
[Crossref] [PubMed]

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73(3), 035407 (2006).
[Crossref]

Dorpe, P. V.

F. Hao, Y. Sonnefraud, P. V. Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8(11), 3983–3988 (2008).
[Crossref] [PubMed]

Ebbesen, T. W.

J. Dintinger, S. Klein, F. Bustos, W. L. Barnes, and T. W. Ebbesen, “Strong coupling between surface plasmon-polaritons and organic molecules in subwavelength hole arrays,” Phys. Rev. B 71(3), 035424 (2005).
[Crossref]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Economou, E. N.

E. N. Economou, “Surface plasmons in thin films,” Phys. Rev. 182(2), 539–554 (1969).
[Crossref]

Eigenthaler, U.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

Ekinci, Y.

A. Christ, Y. Ekinci, H. H. Solak, N. A. Gippius, S. G. Tikhodeev, and O. J. F. Martin, “Controlling the Fano interference in a plasmonic lattice,” Phys. Rev. B 76(20), 201405 (2007).
[Crossref]

Eskelinen, A. P.

R. J. Moerland, H. T. Rekola, G. Sharma, A. P. Eskelinen, A. I. Vakevainen, and P. Torma, “Surface plasmon polariton-controlled tunable quantum-dot emission,” Appl. Phys. Lett. 100(22), 221111 (2012).
[Crossref]

Fano, U.

U. Fano, “Effects of Configuration Interaction on Intensities and Phase Shifts,” Phys. Rev. 124(6), 1866–1878 (1961).
[Crossref]

Fedotov, V. A.

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101(25), 253903 (2008).
[Crossref] [PubMed]

Flach, S.

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82(3), 2257–2298 (2010).
[Crossref]

Fleischhauer, M.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77(2), 633–673 (2005).
[Crossref]

Forestiere, C.

C. Forestiere, L. Dal Negro, and G. Miano, “Theory of coupled plasmon modes and Fano-like resonances in subwavelength metal structures,” Phys. Rev. B Condens. Mater. Phys. 88(15), 155411 (2013).
[Crossref]

Francescato, Y.

Y. Francescato, V. Giannini, and S. A. Maier, “Plasmonic systems unveiled by Fano resonances,” ACS Nano 6(2), 1830–1838 (2012).
[Crossref] [PubMed]

Fujii, M.

S. Hayashi, Y. Ishigaki, and M. Fujii, “Plasmonic effects on strong exciton-photon coupling in metal-insulator- metal microcavities,” Phys. Rev. B Condens. Mater. Phys. 86(4), 045408 (2012).
[Crossref]

S. Hayashi, A. Maekawa, S. C. Kim, and M. Fujii, “Mechanism of enhanced light emission from an emitting layer embedded in metal-insulator-metal structures,” Phys. Rev. B Condens. Mater. Phys. 82(3), 035441 (2010).
[Crossref]

Fukui, M.

M. Fukui, V. C. Y. So, and R. Normandin, “Lifetimes of surface plasmons in thin silver films,” Phys. Status Solidi 91(1), K61–K64 (1979).
[Crossref]

Gallinet, B.

B. Gallinet and O. J. Martin, “Influence of electromagnetic interactions on the line shape of plasmonic Fano resonances,” ACS Nano 5(11), 8999–9008 (2011).
[Crossref] [PubMed]

Gao, Y.

B. Zeng, Y. Gao, and F. J. Bartoli, “Rapid and highly sensitive detection using Fano resonances in ultrathin plasmonic nanogratings,” Appl. Phys. Lett. 105(16), 161106 (2014).
[Crossref]

Garrido Alzar, C. L.

C. L. Garrido Alzar, M. A. G. Martinez, and P. Nussenzveig, “Classical analog of electromagnetically induced transparency,” Am. J. Phys. 70(1), 37 (2002).
[Crossref]

Genov, D. A.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Giannini, V.

Y. Francescato, V. Giannini, and S. A. Maier, “Plasmonic systems unveiled by Fano resonances,” ACS Nano 6(2), 1830–1838 (2012).
[Crossref] [PubMed]

Giessen, H.

R. Taubert, M. Hentschel, J. Kästel, and H. Giessen, “Classical analog of electromagnetically induced absorption in plasmonics,” Nano Lett. 12(3), 1367–1371 (2012).
[Crossref] [PubMed]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

A. Christ, T. Zentgraf, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Controlling the interaction between localized and delocalized surface plasmon modes: experiment and numerical calculations,” Phys. Rev. B 74(15), 155435 (2006).
[Crossref]

Gippius, N. A.

A. Christ, Y. Ekinci, H. H. Solak, N. A. Gippius, S. G. Tikhodeev, and O. J. F. Martin, “Controlling the Fano interference in a plasmonic lattice,” Phys. Rev. B 76(20), 201405 (2007).
[Crossref]

A. Christ, T. Zentgraf, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Controlling the interaction between localized and delocalized surface plasmon modes: experiment and numerical calculations,” Phys. Rev. B 74(15), 155435 (2006).
[Crossref]

Gómez, D. E.

D. E. Gómez, K. C. Vernon, P. Mulvaney, and T. J. Davis, “Surface plasmon mediated strong exciton-photon coupling in semiconductor nanocrystals,” Nano Lett. 10(1), 274–278 (2010).
[Crossref] [PubMed]

Gu, J.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

Hakala, T. K.

T. K. Hakala, J. J. Toppari, A. Kuzyk, M. Pettersson, H. Tikkanen, H. Kunttu, and P. Törmä, “Vacuum Rabi splitting and strong-coupling dynamics for surface-plasmon polaritons and rhodamine 6G molecules,” Phys. Rev. Lett. 103(5), 053602 (2009).
[Crossref] [PubMed]

Halas, N. J.

J. B. Lassiter, H. Sobhani, M. W. Knight, W. S. Mielczarek, P. Nordlander, and N. J. Halas, “Designing and deconstructing the Fano lineshape in plasmonic nanoclusters,” Nano Lett. 12(2), 1058–1062 (2012).
[Crossref] [PubMed]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

F. Hao, Y. Sonnefraud, P. V. Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8(11), 3983–3988 (2008).
[Crossref] [PubMed]

Hamm, R.

R. Ritchie, E. Arakawa, J. Cowan, and R. Hamm, “Surface-plasmon resonance effect in grating diffraction,” Phys. Rev. Lett. 21(22), 1530–1533 (1968).
[Crossref]

Han, J.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

Hao, F.

F. Hao, Y. Sonnefraud, P. V. Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8(11), 3983–3988 (2008).
[Crossref] [PubMed]

Harris, S. E.

S. E. Harris, “Electromagnetically Induced Transparency,” Phys. Today 50(7), 36 (1997).
[Crossref]

Hayashi, S.

S. Hayashi, D. V. Nesterenko, A. Rahmouni, and Z. Sekkat, “Observation of Fano line shapes arising from coupling between surface plasmon polariton and waveguide modes,” Appl. Phys. Lett. 108(5), 051101 (2016).
[Crossref]

D. V. Nesterenko, S. Hayashi, and Z. Sekkat, “Extremely narrow resonances, giant sensitivity and field enhancement in low-loss waveguide sensors,” J. Opt. 18(6), 065004 (2016).
[Crossref]

S. Hayashi, D. V. Nesterenko, and Z. Sekkat, “Fano resonance and plasmon-induced transparency in waveguide-coupled surface plasmon resonance sensors,” Appl. Phys. Express 8(2), 022201 (2015).
[Crossref]

S. Hayashi, D. V. Nesterenko, and Z. Sekkat, “Waveguide-coupled surface plasmon resonance sensor structures: Fano lineshape engineering for ultrahigh-resolution sensing,” J. Phys. D Appl. Phys. 48(32), 325303 (2015).
[Crossref]

S. Refki, S. Hayashi, A. Rahmouni, D. Nesterenko, and Z. Sekkat, “Anticrossing behavior of surface plasmon polariton dispersions in metal-insulator-metal structures,” Plasmonics 11, 1–8 (2015).

D. V. Nesterenko, S. Hayashi, and Z. Sekkat, “Evanescent-field-coupled guided-mode sensor based on a waveguide grating,” Appl. Opt. 54(15), 4889–4894 (2015).
[Crossref] [PubMed]

S. Hayashi, Y. Ishigaki, and M. Fujii, “Plasmonic effects on strong exciton-photon coupling in metal-insulator- metal microcavities,” Phys. Rev. B Condens. Mater. Phys. 86(4), 045408 (2012).
[Crossref]

S. Hayashi and T. Okamoto, “Plasmonics: visit the past to know the future,” J. Phys. D 45(43), 433001 (2012).
[Crossref]

S. Hayashi, A. Maekawa, S. C. Kim, and M. Fujii, “Mechanism of enhanced light emission from an emitting layer embedded in metal-insulator-metal structures,” Phys. Rev. B Condens. Mater. Phys. 82(3), 035441 (2010).
[Crossref]

Hentschel, M.

R. Taubert, M. Hentschel, J. Kästel, and H. Giessen, “Classical analog of electromagnetically induced absorption in plasmonics,” Nano Lett. 12(3), 1367–1371 (2012).
[Crossref] [PubMed]

Hibbins, A. P.

A. P. Hibbins, W. A. Murray, J. Tyler, S. Wedge, W. L. Barnes, and J. R. Sambles, “Resonant absorption of electromagnetic fields by surface plasmons buried in a multilayered plasmonic nanostructure,” Phys. Rev. B 74(7), 073408 (2006).
[Crossref]

Hill, R. A.

Hirscher, M.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

Homola, J.

J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108(2), 462–493 (2008).
[Crossref] [PubMed]

Hooper, I.

L. Smith, M. Taylor, I. Hooper, and W. Barnes, “Field profiles of coupled surface plasmon-polaritons,” J. Mod. Opt. 55(18), 2929–2943 (2008).
[Crossref]

Hooper, I. R.

I. R. Hooper and J. R. Sambles, “Coupled surface plasmon polaritons on thin metal slabs corrugated on both surfaces,” Phys. Rev. B 70(4), 045421 (2004).
[Crossref]

Huang, M.

A. A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. Khanikaev, J. H. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic Fano resonances,” Proc. Natl. Acad. Sci. U.S.A. 108(29), 11784–11789 (2011).
[Crossref] [PubMed]

Imamoglu, A.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77(2), 633–673 (2005).
[Crossref]

Ishigaki, Y.

S. Hayashi, Y. Ishigaki, and M. Fujii, “Plasmonic effects on strong exciton-photon coupling in metal-insulator- metal microcavities,” Phys. Rev. B Condens. Mater. Phys. 86(4), 045408 (2012).
[Crossref]

Ishikawa, A.

A. Ishikawa, R. F. Oulton, T. Zentgraf, and X. Zhang, “Slow-light dispersion by transparent waveguide plasmon polaritons,” Phys. Rev. B Condens. Mater. Phys. 85(15), 155108 (2012).
[Crossref]

Jahromi, R. R.

E. J. Osley, C. G. Biris, P. G. Thompson, R. R. Jahromi, P. A. Warburton, and N. C. Panoiu, “Fano resonance resulting from a tunable interaction between molecular vibrational modes and a double continuum of a plasmonic metamolecule,” Phys. Rev. Lett. 110(8), 087402 (2013).
[Crossref] [PubMed]

Jain, A.

P. Tassin, L. Zhang, R. Zhao, A. Jain, T. Koschny, and C. M. Soukoulis, “Electromagnetically induced transparency and absorption in metamaterials: the radiating two-oscillator model and its experimental confirmation,” Phys. Rev. Lett. 109(18), 187401 (2012).
[Crossref] [PubMed]

Joe, Y. S.

Y. S. Joe, A. M. Satanin, and C. S. Kim, “Classical analogy of Fano resonances,” Phys. Scr. 74(2), 259–266 (2006).
[Crossref]

Kano, H.

Kästel, J.

R. Taubert, M. Hentschel, J. Kästel, and H. Giessen, “Classical analog of electromagnetically induced absorption in plasmonics,” Nano Lett. 12(3), 1367–1371 (2012).
[Crossref] [PubMed]

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

Katsidis, C. C.

Kawata, S.

Kelf, T. A.

T. A. Kelf, Y. Sugawara, J. J. Baumberg, M. Abdelsalam, and P. N. Bartlett, “Plasmonic band gaps and trapped plasmons on nanostructured metal surfaces,” Phys. Rev. Lett. 95(11), 116802 (2005).
[Crossref] [PubMed]

Khanikaev, A.

A. A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. Khanikaev, J. H. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic Fano resonances,” Proc. Natl. Acad. Sci. U.S.A. 108(29), 11784–11789 (2011).
[Crossref] [PubMed]

Kim, C. S.

Y. S. Joe, A. M. Satanin, and C. S. Kim, “Classical analogy of Fano resonances,” Phys. Scr. 74(2), 259–266 (2006).
[Crossref]

Kim, K. Y.

Kim, S. C.

S. Hayashi, A. Maekawa, S. C. Kim, and M. Fujii, “Mechanism of enhanced light emission from an emitting layer embedded in metal-insulator-metal structures,” Phys. Rev. B Condens. Mater. Phys. 82(3), 035441 (2010).
[Crossref]

Kivshar, Y. S.

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82(3), 2257–2298 (2010).
[Crossref]

Klein, S.

J. Dintinger, S. Klein, F. Bustos, W. L. Barnes, and T. W. Ebbesen, “Strong coupling between surface plasmon-polaritons and organic molecules in subwavelength hole arrays,” Phys. Rev. B 71(3), 035424 (2005).
[Crossref]

Knight, M. W.

J. B. Lassiter, H. Sobhani, M. W. Knight, W. S. Mielczarek, P. Nordlander, and N. J. Halas, “Designing and deconstructing the Fano lineshape in plasmonic nanoclusters,” Nano Lett. 12(2), 1058–1062 (2012).
[Crossref] [PubMed]

Knoesen, A.

Koschny, T.

P. Tassin, L. Zhang, R. Zhao, A. Jain, T. Koschny, and C. M. Soukoulis, “Electromagnetically induced transparency and absorption in metamaterials: the radiating two-oscillator model and its experimental confirmation,” Phys. Rev. Lett. 109(18), 187401 (2012).
[Crossref] [PubMed]

Kuhl, J.

A. Christ, T. Zentgraf, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Controlling the interaction between localized and delocalized surface plasmon modes: experiment and numerical calculations,” Phys. Rev. B 74(15), 155435 (2006).
[Crossref]

Kunttu, H.

T. K. Hakala, J. J. Toppari, A. Kuzyk, M. Pettersson, H. Tikkanen, H. Kunttu, and P. Törmä, “Vacuum Rabi splitting and strong-coupling dynamics for surface-plasmon polaritons and rhodamine 6G molecules,” Phys. Rev. Lett. 103(5), 053602 (2009).
[Crossref] [PubMed]

Kusunoki, F.

Kuzyk, A.

T. K. Hakala, J. J. Toppari, A. Kuzyk, M. Pettersson, H. Tikkanen, H. Kunttu, and P. Törmä, “Vacuum Rabi splitting and strong-coupling dynamics for surface-plasmon polaritons and rhodamine 6G molecules,” Phys. Rev. Lett. 103(5), 053602 (2009).
[Crossref] [PubMed]

Lagae, L.

N. Verellen, F. López-Tejeira, R. Paniagua-Domínguez, D. Vercruysse, D. Denkova, L. Lagae, P. Van Dorpe, V. V. Moshchalkov, and J. A. Sánchez-Gil, “Mode parity-controlled Fano- and Lorentz-like line shapes arising in plasmonic nanorods,” Nano Lett. 14(5), 2322–2329 (2014).
[Crossref] [PubMed]

K. Lodewijks, J. Ryken, W. Van Roy, G. Borghs, L. Lagae, and P. Van Dorpe, “Tuning the Fano resonance between localized and propagating surface plasmon resonances for refractive index sensing applications,” Plasmonics 8(3), 1379–1385 (2013).
[Crossref]

Langguth, L.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

Lassiter, J. B.

J. B. Lassiter, H. Sobhani, M. W. Knight, W. S. Mielczarek, P. Nordlander, and N. J. Halas, “Designing and deconstructing the Fano lineshape in plasmonic nanoclusters,” Nano Lett. 12(2), 1058–1062 (2012).
[Crossref] [PubMed]

Lee, J. H.

Lezec, H. J.

H. J. Lezec, J. A. Dionne, and H. A. Atwater, “Negative refraction at visible frequencies,” Science 316(5823), 430–432 (2007).
[Crossref] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Liu, J.

J. Liu, B. Xu, J. Zhang, and G. Song, “Double plasmon-induced transparency in hybrid waveguide-plasmon system and its application for localized plasmon resonance sensing with high figure of merit,” Plasmonics 8(2), 995–1001 (2013).
[Crossref]

Liu, M.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

Liu, N.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

Liu, X.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

Lodewijks, K.

K. Lodewijks, J. Ryken, W. Van Roy, G. Borghs, L. Lagae, and P. Van Dorpe, “Tuning the Fano resonance between localized and propagating surface plasmon resonances for refractive index sensing applications,” Plasmonics 8(3), 1379–1385 (2013).
[Crossref]

Lopez-Rios, T.

F. Villa, T. Lopez-Rios, and L. E. Regalado, “Electromagnetic modes in metal-insulator-metal structures,” Phys. Rev. B 63(16), 165103 (2001).
[Crossref]

López-Tejeira, F.

N. Verellen, F. López-Tejeira, R. Paniagua-Domínguez, D. Vercruysse, D. Denkova, L. Lagae, P. Van Dorpe, V. V. Moshchalkov, and J. A. Sánchez-Gil, “Mode parity-controlled Fano- and Lorentz-like line shapes arising in plasmonic nanorods,” Nano Lett. 14(5), 2322–2329 (2014).
[Crossref] [PubMed]

F. López-Tejeira, R. Paniagua-Domínguez, and J. A. Sánchez-Gil, “High-performance nanosensors based on plasmonic Fano-like interference: probing refractive index with individual nanorice and nanobelts,” ACS Nano 6(10), 8989–8996 (2012).
[Crossref] [PubMed]

Luk’yanchuk, B.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Ma, Y.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

Maekawa, A.

S. Hayashi, A. Maekawa, S. C. Kim, and M. Fujii, “Mechanism of enhanced light emission from an emitting layer embedded in metal-insulator-metal structures,” Phys. Rev. B Condens. Mater. Phys. 82(3), 035441 (2010).
[Crossref]

Maier, S. A.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

Y. Francescato, V. Giannini, and S. A. Maier, “Plasmonic systems unveiled by Fano resonances,” ACS Nano 6(2), 1830–1838 (2012).
[Crossref] [PubMed]

Y. Sonnefraud, N. Verellen, H. Sobhani, G. A. Vandenbosch, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Experimental realization of subradiant, superradiant, and fano resonances in ring/disk plasmonic nanocavities,” ACS Nano 4(3), 1664–1670 (2010).
[Crossref] [PubMed]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

F. Hao, Y. Sonnefraud, P. V. Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8(11), 3983–3988 (2008).
[Crossref] [PubMed]

Marangos, J. P.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77(2), 633–673 (2005).
[Crossref]

Martin, O. J.

B. Gallinet and O. J. Martin, “Influence of electromagnetic interactions on the line shape of plasmonic Fano resonances,” ACS Nano 5(11), 8999–9008 (2011).
[Crossref] [PubMed]

Martin, O. J. F.

A. Christ, Y. Ekinci, H. H. Solak, N. A. Gippius, S. G. Tikhodeev, and O. J. F. Martin, “Controlling the Fano interference in a plasmonic lattice,” Phys. Rev. B 76(20), 201405 (2007).
[Crossref]

Martinez, M. A. G.

C. L. Garrido Alzar, M. A. G. Martinez, and P. Nussenzveig, “Classical analog of electromagnetically induced transparency,” Am. J. Phys. 70(1), 37 (2002).
[Crossref]

Matsubara, K.

Mesch, M.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

Miano, G.

C. Forestiere, L. Dal Negro, and G. Miano, “Theory of coupled plasmon modes and Fano-like resonances in subwavelength metal structures,” Phys. Rev. B Condens. Mater. Phys. 88(15), 155411 (2013).
[Crossref]

Mielczarek, W. S.

J. B. Lassiter, H. Sobhani, M. W. Knight, W. S. Mielczarek, P. Nordlander, and N. J. Halas, “Designing and deconstructing the Fano lineshape in plasmonic nanoclusters,” Nano Lett. 12(2), 1058–1062 (2012).
[Crossref] [PubMed]

Minami, S.

Miroshnichenko, A. E.

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82(3), 2257–2298 (2010).
[Crossref]

Moerland, R. J.

R. J. Moerland, H. T. Rekola, G. Sharma, A. P. Eskelinen, A. I. Vakevainen, and P. Torma, “Surface plasmon polariton-controlled tunable quantum-dot emission,” Appl. Phys. Lett. 100(22), 221111 (2012).
[Crossref]

Moshchalkov, V. V.

N. Verellen, F. López-Tejeira, R. Paniagua-Domínguez, D. Vercruysse, D. Denkova, L. Lagae, P. Van Dorpe, V. V. Moshchalkov, and J. A. Sánchez-Gil, “Mode parity-controlled Fano- and Lorentz-like line shapes arising in plasmonic nanorods,” Nano Lett. 14(5), 2322–2329 (2014).
[Crossref] [PubMed]

Y. Sonnefraud, N. Verellen, H. Sobhani, G. A. Vandenbosch, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Experimental realization of subradiant, superradiant, and fano resonances in ring/disk plasmonic nanocavities,” ACS Nano 4(3), 1664–1670 (2010).
[Crossref] [PubMed]

Mousavi, S. H.

A. A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. Khanikaev, J. H. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic Fano resonances,” Proc. Natl. Acad. Sci. U.S.A. 108(29), 11784–11789 (2011).
[Crossref] [PubMed]

Mugnier, J.

J. Bellessa, C. Bonnand, J. C. Plenet, and J. Mugnier, “Strong coupling between surface plasmons and excitons in an organic semiconductor,” Phys. Rev. Lett. 93(3), 036404 (2004).
[Crossref] [PubMed]

Mulvaney, P.

D. E. Gómez, K. C. Vernon, P. Mulvaney, and T. J. Davis, “Surface plasmon mediated strong exciton-photon coupling in semiconductor nanocrystals,” Nano Lett. 10(1), 274–278 (2010).
[Crossref] [PubMed]

Murray, W. A.

A. P. Hibbins, W. A. Murray, J. Tyler, S. Wedge, W. L. Barnes, and J. R. Sambles, “Resonant absorption of electromagnetic fields by surface plasmons buried in a multilayered plasmonic nanostructure,” Phys. Rev. B 74(7), 073408 (2006).
[Crossref]

Nesterenko, D.

S. Refki, S. Hayashi, A. Rahmouni, D. Nesterenko, and Z. Sekkat, “Anticrossing behavior of surface plasmon polariton dispersions in metal-insulator-metal structures,” Plasmonics 11, 1–8 (2015).

Nesterenko, D. V.

S. Hayashi, D. V. Nesterenko, A. Rahmouni, and Z. Sekkat, “Observation of Fano line shapes arising from coupling between surface plasmon polariton and waveguide modes,” Appl. Phys. Lett. 108(5), 051101 (2016).
[Crossref]

D. V. Nesterenko, S. Hayashi, and Z. Sekkat, “Extremely narrow resonances, giant sensitivity and field enhancement in low-loss waveguide sensors,” J. Opt. 18(6), 065004 (2016).
[Crossref]

S. Hayashi, D. V. Nesterenko, and Z. Sekkat, “Waveguide-coupled surface plasmon resonance sensor structures: Fano lineshape engineering for ultrahigh-resolution sensing,” J. Phys. D Appl. Phys. 48(32), 325303 (2015).
[Crossref]

S. Hayashi, D. V. Nesterenko, and Z. Sekkat, “Fano resonance and plasmon-induced transparency in waveguide-coupled surface plasmon resonance sensors,” Appl. Phys. Express 8(2), 022201 (2015).
[Crossref]

M. Zekriti, D. V. Nesterenko, and Z. Sekkat, “Long-range surface plasmons supported by a bilayer metallic structure for sensing applications,” Appl. Opt. 54(8), 2151–2157 (2015).
[Crossref] [PubMed]

D. V. Nesterenko, S. Hayashi, and Z. Sekkat, “Evanescent-field-coupled guided-mode sensor based on a waveguide grating,” Appl. Opt. 54(15), 4889–4894 (2015).
[Crossref] [PubMed]

D. V. Nesterenko and Z. Sekkat, “Resolution estimation of the Au, Ag, Cu, and Al single- and double-layer surface plasmon sensors in the ultraviolet, visible, and infrared regions,” Plasmonics 8(4), 1585–1595 (2013).
[Crossref]

D. V. Nesterenko, Saif-ur-Rehman, and Z. Sekkat, “Surface plasmon sensing with different metals in single and double layer configurations,” Appl. Opt. 51(27), 6673–6682 (2012).
[Crossref] [PubMed]

Nordlander, P.

J. B. Lassiter, H. Sobhani, M. W. Knight, W. S. Mielczarek, P. Nordlander, and N. J. Halas, “Designing and deconstructing the Fano lineshape in plasmonic nanoclusters,” Nano Lett. 12(2), 1058–1062 (2012).
[Crossref] [PubMed]

Y. Sonnefraud, N. Verellen, H. Sobhani, G. A. Vandenbosch, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Experimental realization of subradiant, superradiant, and fano resonances in ring/disk plasmonic nanocavities,” ACS Nano 4(3), 1664–1670 (2010).
[Crossref] [PubMed]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

F. Hao, Y. Sonnefraud, P. V. Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8(11), 3983–3988 (2008).
[Crossref] [PubMed]

Normandin, R.

M. Fukui, V. C. Y. So, and R. Normandin, “Lifetimes of surface plasmons in thin silver films,” Phys. Status Solidi 91(1), K61–K64 (1979).
[Crossref]

Nussenzveig, P.

C. L. Garrido Alzar, M. A. G. Martinez, and P. Nussenzveig, “Classical analog of electromagnetically induced transparency,” Am. J. Phys. 70(1), 37 (2002).
[Crossref]

Okada, T.

K. Ooi, T. Okada, and K. Tanaka, “Mimicking electromagnetically induced transparency by spoof surface plasmons,” Phys. Rev. B Condens. Mater. Phys. 84(11), 115405 (2011).
[Crossref]

Okamoto, T.

S. Hayashi and T. Okamoto, “Plasmonics: visit the past to know the future,” J. Phys. D 45(43), 433001 (2012).
[Crossref]

Ooi, K.

K. Ooi, T. Okada, and K. Tanaka, “Mimicking electromagnetically induced transparency by spoof surface plasmons,” Phys. Rev. B Condens. Mater. Phys. 84(11), 115405 (2011).
[Crossref]

Osley, E. J.

E. J. Osley, C. G. Biris, P. G. Thompson, R. R. Jahromi, P. A. Warburton, and N. C. Panoiu, “Fano resonance resulting from a tunable interaction between molecular vibrational modes and a double continuum of a plasmonic metamolecule,” Phys. Rev. Lett. 110(8), 087402 (2013).
[Crossref] [PubMed]

Oulton, R. F.

A. Ishikawa, R. F. Oulton, T. Zentgraf, and X. Zhang, “Slow-light dispersion by transparent waveguide plasmon polaritons,” Phys. Rev. B Condens. Mater. Phys. 85(15), 155108 (2012).
[Crossref]

T. Zentgraf, S. Zhang, R. F. Oulton, and X. Zhang, “Ultranarrow coupling-induced transparency bands in hybrid plasmonic systems,” Phys. Rev. B Condens. Mater. Phys. 80(19), 195415 (2009).
[Crossref]

Paniagua-Domínguez, R.

N. Verellen, F. López-Tejeira, R. Paniagua-Domínguez, D. Vercruysse, D. Denkova, L. Lagae, P. Van Dorpe, V. V. Moshchalkov, and J. A. Sánchez-Gil, “Mode parity-controlled Fano- and Lorentz-like line shapes arising in plasmonic nanorods,” Nano Lett. 14(5), 2322–2329 (2014).
[Crossref] [PubMed]

F. López-Tejeira, R. Paniagua-Domínguez, and J. A. Sánchez-Gil, “High-performance nanosensors based on plasmonic Fano-like interference: probing refractive index with individual nanorice and nanobelts,” ACS Nano 6(10), 8989–8996 (2012).
[Crossref] [PubMed]

Panoiu, N. C.

E. J. Osley, C. G. Biris, P. G. Thompson, R. R. Jahromi, P. A. Warburton, and N. C. Panoiu, “Fano resonance resulting from a tunable interaction between molecular vibrational modes and a double continuum of a plasmonic metamolecule,” Phys. Rev. Lett. 110(8), 087402 (2013).
[Crossref] [PubMed]

Papasimakis, N.

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101(25), 253903 (2008).
[Crossref] [PubMed]

Pettersson, M.

T. K. Hakala, J. J. Toppari, A. Kuzyk, M. Pettersson, H. Tikkanen, H. Kunttu, and P. Törmä, “Vacuum Rabi splitting and strong-coupling dynamics for surface-plasmon polaritons and rhodamine 6G molecules,” Phys. Rev. Lett. 103(5), 053602 (2009).
[Crossref] [PubMed]

Pfau, T.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

Plenet, J. C.

J. Bellessa, C. Bonnand, J. C. Plenet, and J. Mugnier, “Strong coupling between surface plasmons and excitons in an organic semiconductor,” Phys. Rev. Lett. 93(3), 036404 (2004).
[Crossref] [PubMed]

Pockrand, I.

I. Pockrand, “Coupling of surface plasma oscillations in thin periodically corrugated silver films,” Opt. Commun. 13(3), 311–313 (1975).
[Crossref]

Polman, A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73(3), 035407 (2006).
[Crossref]

Prêtre, P.

Prosvirnin, S. L.

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101(25), 253903 (2008).
[Crossref] [PubMed]

Rahmouni, A.

S. Hayashi, D. V. Nesterenko, A. Rahmouni, and Z. Sekkat, “Observation of Fano line shapes arising from coupling between surface plasmon polariton and waveguide modes,” Appl. Phys. Lett. 108(5), 051101 (2016).
[Crossref]

S. Refki, S. Hayashi, A. Rahmouni, D. Nesterenko, and Z. Sekkat, “Anticrossing behavior of surface plasmon polariton dispersions in metal-insulator-metal structures,” Plasmonics 11, 1–8 (2015).

Refki, S.

S. Refki, S. Hayashi, A. Rahmouni, D. Nesterenko, and Z. Sekkat, “Anticrossing behavior of surface plasmon polariton dispersions in metal-insulator-metal structures,” Plasmonics 11, 1–8 (2015).

Regalado, L. E.

F. Villa, T. Lopez-Rios, and L. E. Regalado, “Electromagnetic modes in metal-insulator-metal structures,” Phys. Rev. B 63(16), 165103 (2001).
[Crossref]

Rekola, H. T.

R. J. Moerland, H. T. Rekola, G. Sharma, A. P. Eskelinen, A. I. Vakevainen, and P. Torma, “Surface plasmon polariton-controlled tunable quantum-dot emission,” Appl. Phys. Lett. 100(22), 221111 (2012).
[Crossref]

Ritchie, R.

R. Ritchie, E. Arakawa, J. Cowan, and R. Hamm, “Surface-plasmon resonance effect in grating diffraction,” Phys. Rev. Lett. 21(22), 1530–1533 (1968).
[Crossref]

Ryken, J.

K. Lodewijks, J. Ryken, W. Van Roy, G. Borghs, L. Lagae, and P. Van Dorpe, “Tuning the Fano resonance between localized and propagating surface plasmon resonances for refractive index sensing applications,” Plasmonics 8(3), 1379–1385 (2013).
[Crossref]

Saif-ur-Rehman,

Sambles, J. R.

A. P. Hibbins, W. A. Murray, J. Tyler, S. Wedge, W. L. Barnes, and J. R. Sambles, “Resonant absorption of electromagnetic fields by surface plasmons buried in a multilayered plasmonic nanostructure,” Phys. Rev. B 74(7), 073408 (2006).
[Crossref]

I. R. Hooper and J. R. Sambles, “Coupled surface plasmon polaritons on thin metal slabs corrugated on both surfaces,” Phys. Rev. B 70(4), 045421 (2004).
[Crossref]

Sánchez-Gil, J. A.

N. Verellen, F. López-Tejeira, R. Paniagua-Domínguez, D. Vercruysse, D. Denkova, L. Lagae, P. Van Dorpe, V. V. Moshchalkov, and J. A. Sánchez-Gil, “Mode parity-controlled Fano- and Lorentz-like line shapes arising in plasmonic nanorods,” Nano Lett. 14(5), 2322–2329 (2014).
[Crossref] [PubMed]

F. López-Tejeira, R. Paniagua-Domínguez, and J. A. Sánchez-Gil, “High-performance nanosensors based on plasmonic Fano-like interference: probing refractive index with individual nanorice and nanobelts,” ACS Nano 6(10), 8989–8996 (2012).
[Crossref] [PubMed]

Sarid, D.

D. Sarid, “Long-range surface-plasma waves on very thin metal films,” Phys. Rev. Lett. 47(26), 1927–1930 (1981).
[Crossref]

Satanin, A. M.

Y. S. Joe, A. M. Satanin, and C. S. Kim, “Classical analogy of Fano resonances,” Phys. Scr. 74(2), 259–266 (2006).
[Crossref]

Sekkat, Z.

S. Hayashi, D. V. Nesterenko, A. Rahmouni, and Z. Sekkat, “Observation of Fano line shapes arising from coupling between surface plasmon polariton and waveguide modes,” Appl. Phys. Lett. 108(5), 051101 (2016).
[Crossref]

D. V. Nesterenko, S. Hayashi, and Z. Sekkat, “Extremely narrow resonances, giant sensitivity and field enhancement in low-loss waveguide sensors,” J. Opt. 18(6), 065004 (2016).
[Crossref]

S. Refki, S. Hayashi, A. Rahmouni, D. Nesterenko, and Z. Sekkat, “Anticrossing behavior of surface plasmon polariton dispersions in metal-insulator-metal structures,” Plasmonics 11, 1–8 (2015).

S. Hayashi, D. V. Nesterenko, and Z. Sekkat, “Fano resonance and plasmon-induced transparency in waveguide-coupled surface plasmon resonance sensors,” Appl. Phys. Express 8(2), 022201 (2015).
[Crossref]

S. Hayashi, D. V. Nesterenko, and Z. Sekkat, “Waveguide-coupled surface plasmon resonance sensor structures: Fano lineshape engineering for ultrahigh-resolution sensing,” J. Phys. D Appl. Phys. 48(32), 325303 (2015).
[Crossref]

M. Zekriti, D. V. Nesterenko, and Z. Sekkat, “Long-range surface plasmons supported by a bilayer metallic structure for sensing applications,” Appl. Opt. 54(8), 2151–2157 (2015).
[Crossref] [PubMed]

D. V. Nesterenko, S. Hayashi, and Z. Sekkat, “Evanescent-field-coupled guided-mode sensor based on a waveguide grating,” Appl. Opt. 54(15), 4889–4894 (2015).
[Crossref] [PubMed]

D. V. Nesterenko and Z. Sekkat, “Resolution estimation of the Au, Ag, Cu, and Al single- and double-layer surface plasmon sensors in the ultraviolet, visible, and infrared regions,” Plasmonics 8(4), 1585–1595 (2013).
[Crossref]

D. V. Nesterenko, Saif-ur-Rehman, and Z. Sekkat, “Surface plasmon sensing with different metals in single and double layer configurations,” Appl. Opt. 51(27), 6673–6682 (2012).
[Crossref] [PubMed]

Sharma, G.

R. J. Moerland, H. T. Rekola, G. Sharma, A. P. Eskelinen, A. I. Vakevainen, and P. Torma, “Surface plasmon polariton-controlled tunable quantum-dot emission,” Appl. Phys. Lett. 100(22), 221111 (2012).
[Crossref]

Shvets, G.

A. A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. Khanikaev, J. H. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic Fano resonances,” Proc. Natl. Acad. Sci. U.S.A. 108(29), 11784–11789 (2011).
[Crossref] [PubMed]

Siapkas, D. I.

Singh, R.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

Smith, L.

L. Smith, M. Taylor, I. Hooper, and W. Barnes, “Field profiles of coupled surface plasmon-polaritons,” J. Mod. Opt. 55(18), 2929–2943 (2008).
[Crossref]

So, V. C. Y.

M. Fukui, V. C. Y. So, and R. Normandin, “Lifetimes of surface plasmons in thin silver films,” Phys. Status Solidi 91(1), K61–K64 (1979).
[Crossref]

Sobhani, H.

J. B. Lassiter, H. Sobhani, M. W. Knight, W. S. Mielczarek, P. Nordlander, and N. J. Halas, “Designing and deconstructing the Fano lineshape in plasmonic nanoclusters,” Nano Lett. 12(2), 1058–1062 (2012).
[Crossref] [PubMed]

Y. Sonnefraud, N. Verellen, H. Sobhani, G. A. Vandenbosch, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Experimental realization of subradiant, superradiant, and fano resonances in ring/disk plasmonic nanocavities,” ACS Nano 4(3), 1664–1670 (2010).
[Crossref] [PubMed]

Solak, H. H.

A. Christ, Y. Ekinci, H. H. Solak, N. A. Gippius, S. G. Tikhodeev, and O. J. F. Martin, “Controlling the Fano interference in a plasmonic lattice,” Phys. Rev. B 76(20), 201405 (2007).
[Crossref]

Song, G.

J. Liu, B. Xu, J. Zhang, and G. Song, “Double plasmon-induced transparency in hybrid waveguide-plasmon system and its application for localized plasmon resonance sensing with high figure of merit,” Plasmonics 8(2), 995–1001 (2013).
[Crossref]

Sonnefraud, Y.

Y. Sonnefraud, N. Verellen, H. Sobhani, G. A. Vandenbosch, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Experimental realization of subradiant, superradiant, and fano resonances in ring/disk plasmonic nanocavities,” ACS Nano 4(3), 1664–1670 (2010).
[Crossref] [PubMed]

F. Hao, Y. Sonnefraud, P. V. Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8(11), 3983–3988 (2008).
[Crossref] [PubMed]

Sönnichsen, C.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

Soukoulis, C. M.

P. Tassin, L. Zhang, R. Zhao, A. Jain, T. Koschny, and C. M. Soukoulis, “Electromagnetically induced transparency and absorption in metamaterials: the radiating two-oscillator model and its experimental confirmation,” Phys. Rev. Lett. 109(18), 187401 (2012).
[Crossref] [PubMed]

Stockman, M. I.

M. I. Stockman, “Nanoscience: Dark-hot resonances,” Nature 467(7315), 541–542 (2010).
[Crossref] [PubMed]

Sugawara, Y.

T. A. Kelf, Y. Sugawara, J. J. Baumberg, M. Abdelsalam, and P. N. Bartlett, “Plasmonic band gaps and trapped plasmons on nanostructured metal surfaces,” Phys. Rev. Lett. 95(11), 116802 (2005).
[Crossref] [PubMed]

Sweatlock, L. A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73(3), 035407 (2006).
[Crossref]

Tae, H. S.

Takahara, J.

Tanaka, K.

K. Ooi, T. Okada, and K. Tanaka, “Mimicking electromagnetically induced transparency by spoof surface plasmons,” Phys. Rev. B Condens. Mater. Phys. 84(11), 115405 (2011).
[Crossref]

Tassin, P.

P. Tassin, L. Zhang, R. Zhao, A. Jain, T. Koschny, and C. M. Soukoulis, “Electromagnetically induced transparency and absorption in metamaterials: the radiating two-oscillator model and its experimental confirmation,” Phys. Rev. Lett. 109(18), 187401 (2012).
[Crossref] [PubMed]

Taubert, R.

R. Taubert, M. Hentschel, J. Kästel, and H. Giessen, “Classical analog of electromagnetically induced absorption in plasmonics,” Nano Lett. 12(3), 1367–1371 (2012).
[Crossref] [PubMed]

Taylor, A. J.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

Taylor, M.

L. Smith, M. Taylor, I. Hooper, and W. Barnes, “Field profiles of coupled surface plasmon-polaritons,” J. Mod. Opt. 55(18), 2929–2943 (2008).
[Crossref]

Thio, T.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Thompson, P. G.

E. J. Osley, C. G. Biris, P. G. Thompson, R. R. Jahromi, P. A. Warburton, and N. C. Panoiu, “Fano resonance resulting from a tunable interaction between molecular vibrational modes and a double continuum of a plasmonic metamolecule,” Phys. Rev. Lett. 110(8), 087402 (2013).
[Crossref] [PubMed]

Tian, Z.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

Tikhodeev, S. G.

A. Christ, Y. Ekinci, H. H. Solak, N. A. Gippius, S. G. Tikhodeev, and O. J. F. Martin, “Controlling the Fano interference in a plasmonic lattice,” Phys. Rev. B 76(20), 201405 (2007).
[Crossref]

A. Christ, T. Zentgraf, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Controlling the interaction between localized and delocalized surface plasmon modes: experiment and numerical calculations,” Phys. Rev. B 74(15), 155435 (2006).
[Crossref]

Tikkanen, H.

T. K. Hakala, J. J. Toppari, A. Kuzyk, M. Pettersson, H. Tikkanen, H. Kunttu, and P. Törmä, “Vacuum Rabi splitting and strong-coupling dynamics for surface-plasmon polaritons and rhodamine 6G molecules,” Phys. Rev. Lett. 103(5), 053602 (2009).
[Crossref] [PubMed]

Toppari, J. J.

T. K. Hakala, J. J. Toppari, A. Kuzyk, M. Pettersson, H. Tikkanen, H. Kunttu, and P. Törmä, “Vacuum Rabi splitting and strong-coupling dynamics for surface-plasmon polaritons and rhodamine 6G molecules,” Phys. Rev. Lett. 103(5), 053602 (2009).
[Crossref] [PubMed]

Torma, P.

R. J. Moerland, H. T. Rekola, G. Sharma, A. P. Eskelinen, A. I. Vakevainen, and P. Torma, “Surface plasmon polariton-controlled tunable quantum-dot emission,” Appl. Phys. Lett. 100(22), 221111 (2012).
[Crossref]

Törmä, P.

P. Törmä and W. L. Barnes, “Strong coupling between surface plasmon polaritons and emitters: a review,” Rep. Prog. Phys. 78(1), 013901 (2015).
[Crossref] [PubMed]

T. K. Hakala, J. J. Toppari, A. Kuzyk, M. Pettersson, H. Tikkanen, H. Kunttu, and P. Törmä, “Vacuum Rabi splitting and strong-coupling dynamics for surface-plasmon polaritons and rhodamine 6G molecules,” Phys. Rev. Lett. 103(5), 053602 (2009).
[Crossref] [PubMed]

Tyler, J.

A. P. Hibbins, W. A. Murray, J. Tyler, S. Wedge, W. L. Barnes, and J. R. Sambles, “Resonant absorption of electromagnetic fields by surface plasmons buried in a multilayered plasmonic nanostructure,” Phys. Rev. B 74(7), 073408 (2006).
[Crossref]

Vakevainen, A. I.

R. J. Moerland, H. T. Rekola, G. Sharma, A. P. Eskelinen, A. I. Vakevainen, and P. Torma, “Surface plasmon polariton-controlled tunable quantum-dot emission,” Appl. Phys. Lett. 100(22), 221111 (2012).
[Crossref]

Van Dorpe, P.

N. Verellen, F. López-Tejeira, R. Paniagua-Domínguez, D. Vercruysse, D. Denkova, L. Lagae, P. Van Dorpe, V. V. Moshchalkov, and J. A. Sánchez-Gil, “Mode parity-controlled Fano- and Lorentz-like line shapes arising in plasmonic nanorods,” Nano Lett. 14(5), 2322–2329 (2014).
[Crossref] [PubMed]

K. Lodewijks, J. Ryken, W. Van Roy, G. Borghs, L. Lagae, and P. Van Dorpe, “Tuning the Fano resonance between localized and propagating surface plasmon resonances for refractive index sensing applications,” Plasmonics 8(3), 1379–1385 (2013).
[Crossref]

Y. Sonnefraud, N. Verellen, H. Sobhani, G. A. Vandenbosch, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Experimental realization of subradiant, superradiant, and fano resonances in ring/disk plasmonic nanocavities,” ACS Nano 4(3), 1664–1670 (2010).
[Crossref] [PubMed]

Van Roy, W.

K. Lodewijks, J. Ryken, W. Van Roy, G. Borghs, L. Lagae, and P. Van Dorpe, “Tuning the Fano resonance between localized and propagating surface plasmon resonances for refractive index sensing applications,” Plasmonics 8(3), 1379–1385 (2013).
[Crossref]

Vandenbosch, G. A.

Y. Sonnefraud, N. Verellen, H. Sobhani, G. A. Vandenbosch, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Experimental realization of subradiant, superradiant, and fano resonances in ring/disk plasmonic nanocavities,” ACS Nano 4(3), 1664–1670 (2010).
[Crossref] [PubMed]

Vercruysse, D.

N. Verellen, F. López-Tejeira, R. Paniagua-Domínguez, D. Vercruysse, D. Denkova, L. Lagae, P. Van Dorpe, V. V. Moshchalkov, and J. A. Sánchez-Gil, “Mode parity-controlled Fano- and Lorentz-like line shapes arising in plasmonic nanorods,” Nano Lett. 14(5), 2322–2329 (2014).
[Crossref] [PubMed]

Verellen, N.

N. Verellen, F. López-Tejeira, R. Paniagua-Domínguez, D. Vercruysse, D. Denkova, L. Lagae, P. Van Dorpe, V. V. Moshchalkov, and J. A. Sánchez-Gil, “Mode parity-controlled Fano- and Lorentz-like line shapes arising in plasmonic nanorods,” Nano Lett. 14(5), 2322–2329 (2014).
[Crossref] [PubMed]

Y. Sonnefraud, N. Verellen, H. Sobhani, G. A. Vandenbosch, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Experimental realization of subradiant, superradiant, and fano resonances in ring/disk plasmonic nanocavities,” ACS Nano 4(3), 1664–1670 (2010).
[Crossref] [PubMed]

Vernon, K. C.

D. E. Gómez, K. C. Vernon, P. Mulvaney, and T. J. Davis, “Surface plasmon mediated strong exciton-photon coupling in semiconductor nanocrystals,” Nano Lett. 10(1), 274–278 (2010).
[Crossref] [PubMed]

Villa, F.

F. Villa, T. Lopez-Rios, and L. E. Regalado, “Electromagnetic modes in metal-insulator-metal structures,” Phys. Rev. B 63(16), 165103 (2001).
[Crossref]

Wang, Y.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

Warburton, P. A.

E. J. Osley, C. G. Biris, P. G. Thompson, R. R. Jahromi, P. A. Warburton, and N. C. Panoiu, “Fano resonance resulting from a tunable interaction between molecular vibrational modes and a double continuum of a plasmonic metamolecule,” Phys. Rev. Lett. 110(8), 087402 (2013).
[Crossref] [PubMed]

Wedge, S.

A. P. Hibbins, W. A. Murray, J. Tyler, S. Wedge, W. L. Barnes, and J. R. Sambles, “Resonant absorption of electromagnetic fields by surface plasmons buried in a multilayered plasmonic nanostructure,” Phys. Rev. B 74(7), 073408 (2006).
[Crossref]

Weiss, T.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Wu, L. M.

Xu, B.

J. Liu, B. Xu, J. Zhang, and G. Song, “Double plasmon-induced transparency in hybrid waveguide-plasmon system and its application for localized plasmon resonance sensing with high figure of merit,” Plasmonics 8(2), 995–1001 (2013).
[Crossref]

Yanik, A. A.

A. A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. Khanikaev, J. H. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic Fano resonances,” Proc. Natl. Acad. Sci. U.S.A. 108(29), 11784–11789 (2011).
[Crossref] [PubMed]

Yotsuya, T.

Zekriti, M.

Zeng, B.

B. Zeng, Y. Gao, and F. J. Bartoli, “Rapid and highly sensitive detection using Fano resonances in ultrathin plasmonic nanogratings,” Appl. Phys. Lett. 105(16), 161106 (2014).
[Crossref]

Zentgraf, T.

A. Ishikawa, R. F. Oulton, T. Zentgraf, and X. Zhang, “Slow-light dispersion by transparent waveguide plasmon polaritons,” Phys. Rev. B Condens. Mater. Phys. 85(15), 155108 (2012).
[Crossref]

T. Zentgraf, S. Zhang, R. F. Oulton, and X. Zhang, “Ultranarrow coupling-induced transparency bands in hybrid plasmonic systems,” Phys. Rev. B Condens. Mater. Phys. 80(19), 195415 (2009).
[Crossref]

A. Christ, T. Zentgraf, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Controlling the interaction between localized and delocalized surface plasmon modes: experiment and numerical calculations,” Phys. Rev. B 74(15), 155435 (2006).
[Crossref]

Zhang, J.

J. Liu, B. Xu, J. Zhang, and G. Song, “Double plasmon-induced transparency in hybrid waveguide-plasmon system and its application for localized plasmon resonance sensing with high figure of merit,” Plasmonics 8(2), 995–1001 (2013).
[Crossref]

Zhang, L.

P. Tassin, L. Zhang, R. Zhao, A. Jain, T. Koschny, and C. M. Soukoulis, “Electromagnetically induced transparency and absorption in metamaterials: the radiating two-oscillator model and its experimental confirmation,” Phys. Rev. Lett. 109(18), 187401 (2012).
[Crossref] [PubMed]

Zhang, S.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

T. Zentgraf, S. Zhang, R. F. Oulton, and X. Zhang, “Ultranarrow coupling-induced transparency bands in hybrid plasmonic systems,” Phys. Rev. B Condens. Mater. Phys. 80(19), 195415 (2009).
[Crossref]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

Zhang, W.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

Zhang, X.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

A. Ishikawa, R. F. Oulton, T. Zentgraf, and X. Zhang, “Slow-light dispersion by transparent waveguide plasmon polaritons,” Phys. Rev. B Condens. Mater. Phys. 85(15), 155108 (2012).
[Crossref]

T. Zentgraf, S. Zhang, R. F. Oulton, and X. Zhang, “Ultranarrow coupling-induced transparency bands in hybrid plasmonic systems,” Phys. Rev. B Condens. Mater. Phys. 80(19), 195415 (2009).
[Crossref]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

Zhao, R.

P. Tassin, L. Zhang, R. Zhao, A. Jain, T. Koschny, and C. M. Soukoulis, “Electromagnetically induced transparency and absorption in metamaterials: the radiating two-oscillator model and its experimental confirmation,” Phys. Rev. Lett. 109(18), 187401 (2012).
[Crossref] [PubMed]

Zheludev, N. I.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101(25), 253903 (2008).
[Crossref] [PubMed]

ACS Nano (4)

Y. Sonnefraud, N. Verellen, H. Sobhani, G. A. Vandenbosch, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Experimental realization of subradiant, superradiant, and fano resonances in ring/disk plasmonic nanocavities,” ACS Nano 4(3), 1664–1670 (2010).
[Crossref] [PubMed]

B. Gallinet and O. J. Martin, “Influence of electromagnetic interactions on the line shape of plasmonic Fano resonances,” ACS Nano 5(11), 8999–9008 (2011).
[Crossref] [PubMed]

Y. Francescato, V. Giannini, and S. A. Maier, “Plasmonic systems unveiled by Fano resonances,” ACS Nano 6(2), 1830–1838 (2012).
[Crossref] [PubMed]

F. López-Tejeira, R. Paniagua-Domínguez, and J. A. Sánchez-Gil, “High-performance nanosensors based on plasmonic Fano-like interference: probing refractive index with individual nanorice and nanobelts,” ACS Nano 6(10), 8989–8996 (2012).
[Crossref] [PubMed]

Am. J. Phys. (1)

C. L. Garrido Alzar, M. A. G. Martinez, and P. Nussenzveig, “Classical analog of electromagnetically induced transparency,” Am. J. Phys. 70(1), 37 (2002).
[Crossref]

Appl. Opt. (6)

Appl. Phys. Express (1)

S. Hayashi, D. V. Nesterenko, and Z. Sekkat, “Fano resonance and plasmon-induced transparency in waveguide-coupled surface plasmon resonance sensors,” Appl. Phys. Express 8(2), 022201 (2015).
[Crossref]

Appl. Phys. Lett. (3)

S. Hayashi, D. V. Nesterenko, A. Rahmouni, and Z. Sekkat, “Observation of Fano line shapes arising from coupling between surface plasmon polariton and waveguide modes,” Appl. Phys. Lett. 108(5), 051101 (2016).
[Crossref]

R. J. Moerland, H. T. Rekola, G. Sharma, A. P. Eskelinen, A. I. Vakevainen, and P. Torma, “Surface plasmon polariton-controlled tunable quantum-dot emission,” Appl. Phys. Lett. 100(22), 221111 (2012).
[Crossref]

B. Zeng, Y. Gao, and F. J. Bartoli, “Rapid and highly sensitive detection using Fano resonances in ultrathin plasmonic nanogratings,” Appl. Phys. Lett. 105(16), 161106 (2014).
[Crossref]

Chem. Rev. (1)

J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108(2), 462–493 (2008).
[Crossref] [PubMed]

J. Lightwave Technol. (1)

J. Mod. Opt. (1)

L. Smith, M. Taylor, I. Hooper, and W. Barnes, “Field profiles of coupled surface plasmon-polaritons,” J. Mod. Opt. 55(18), 2929–2943 (2008).
[Crossref]

J. Opt. (1)

D. V. Nesterenko, S. Hayashi, and Z. Sekkat, “Extremely narrow resonances, giant sensitivity and field enhancement in low-loss waveguide sensors,” J. Opt. 18(6), 065004 (2016).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. D (1)

S. Hayashi and T. Okamoto, “Plasmonics: visit the past to know the future,” J. Phys. D 45(43), 433001 (2012).
[Crossref]

J. Phys. D Appl. Phys. (1)

S. Hayashi, D. V. Nesterenko, and Z. Sekkat, “Waveguide-coupled surface plasmon resonance sensor structures: Fano lineshape engineering for ultrahigh-resolution sensing,” J. Phys. D Appl. Phys. 48(32), 325303 (2015).
[Crossref]

Nano Lett. (6)

F. Hao, Y. Sonnefraud, P. V. Dorpe, S. A. Maier, N. J. Halas, and P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8(11), 3983–3988 (2008).
[Crossref] [PubMed]

D. E. Gómez, K. C. Vernon, P. Mulvaney, and T. J. Davis, “Surface plasmon mediated strong exciton-photon coupling in semiconductor nanocrystals,” Nano Lett. 10(1), 274–278 (2010).
[Crossref] [PubMed]

R. Taubert, M. Hentschel, J. Kästel, and H. Giessen, “Classical analog of electromagnetically induced absorption in plasmonics,” Nano Lett. 12(3), 1367–1371 (2012).
[Crossref] [PubMed]

J. B. Lassiter, H. Sobhani, M. W. Knight, W. S. Mielczarek, P. Nordlander, and N. J. Halas, “Designing and deconstructing the Fano lineshape in plasmonic nanoclusters,” Nano Lett. 12(2), 1058–1062 (2012).
[Crossref] [PubMed]

N. Verellen, F. López-Tejeira, R. Paniagua-Domínguez, D. Vercruysse, D. Denkova, L. Lagae, P. Van Dorpe, V. V. Moshchalkov, and J. A. Sánchez-Gil, “Mode parity-controlled Fano- and Lorentz-like line shapes arising in plasmonic nanorods,” Nano Lett. 14(5), 2322–2329 (2014).
[Crossref] [PubMed]

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

Nat. Commun. (1)

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H. T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

Nat. Mater. (2)

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9(9), 707–715 (2010).
[Crossref] [PubMed]

Nature (3)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

M. I. Stockman, “Nanoscience: Dark-hot resonances,” Nature 467(7315), 541–542 (2010).
[Crossref] [PubMed]

Opt. Commun. (1)

I. Pockrand, “Coupling of surface plasma oscillations in thin periodically corrugated silver films,” Opt. Commun. 13(3), 311–313 (1975).
[Crossref]

Opt. Express (2)

Opt. Lett. (2)

Phys. Rev. (2)

U. Fano, “Effects of Configuration Interaction on Intensities and Phase Shifts,” Phys. Rev. 124(6), 1866–1878 (1961).
[Crossref]

E. N. Economou, “Surface plasmons in thin films,” Phys. Rev. 182(2), 539–554 (1969).
[Crossref]

Phys. Rev. B (7)

F. Villa, T. Lopez-Rios, and L. E. Regalado, “Electromagnetic modes in metal-insulator-metal structures,” Phys. Rev. B 63(16), 165103 (2001).
[Crossref]

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73(3), 035407 (2006).
[Crossref]

A. Christ, Y. Ekinci, H. H. Solak, N. A. Gippius, S. G. Tikhodeev, and O. J. F. Martin, “Controlling the Fano interference in a plasmonic lattice,” Phys. Rev. B 76(20), 201405 (2007).
[Crossref]

J. Dintinger, S. Klein, F. Bustos, W. L. Barnes, and T. W. Ebbesen, “Strong coupling between surface plasmon-polaritons and organic molecules in subwavelength hole arrays,” Phys. Rev. B 71(3), 035424 (2005).
[Crossref]

A. Christ, T. Zentgraf, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Controlling the interaction between localized and delocalized surface plasmon modes: experiment and numerical calculations,” Phys. Rev. B 74(15), 155435 (2006).
[Crossref]

I. R. Hooper and J. R. Sambles, “Coupled surface plasmon polaritons on thin metal slabs corrugated on both surfaces,” Phys. Rev. B 70(4), 045421 (2004).
[Crossref]

A. P. Hibbins, W. A. Murray, J. Tyler, S. Wedge, W. L. Barnes, and J. R. Sambles, “Resonant absorption of electromagnetic fields by surface plasmons buried in a multilayered plasmonic nanostructure,” Phys. Rev. B 74(7), 073408 (2006).
[Crossref]

Phys. Rev. B Condens. Mater. Phys. (6)

K. Ooi, T. Okada, and K. Tanaka, “Mimicking electromagnetically induced transparency by spoof surface plasmons,” Phys. Rev. B Condens. Mater. Phys. 84(11), 115405 (2011).
[Crossref]

C. Forestiere, L. Dal Negro, and G. Miano, “Theory of coupled plasmon modes and Fano-like resonances in subwavelength metal structures,” Phys. Rev. B Condens. Mater. Phys. 88(15), 155411 (2013).
[Crossref]

T. Zentgraf, S. Zhang, R. F. Oulton, and X. Zhang, “Ultranarrow coupling-induced transparency bands in hybrid plasmonic systems,” Phys. Rev. B Condens. Mater. Phys. 80(19), 195415 (2009).
[Crossref]

A. Ishikawa, R. F. Oulton, T. Zentgraf, and X. Zhang, “Slow-light dispersion by transparent waveguide plasmon polaritons,” Phys. Rev. B Condens. Mater. Phys. 85(15), 155108 (2012).
[Crossref]

S. Hayashi, A. Maekawa, S. C. Kim, and M. Fujii, “Mechanism of enhanced light emission from an emitting layer embedded in metal-insulator-metal structures,” Phys. Rev. B Condens. Mater. Phys. 82(3), 035441 (2010).
[Crossref]

S. Hayashi, Y. Ishigaki, and M. Fujii, “Plasmonic effects on strong exciton-photon coupling in metal-insulator- metal microcavities,” Phys. Rev. B Condens. Mater. Phys. 86(4), 045408 (2012).
[Crossref]

Phys. Rev. Lett. (9)

P. Tassin, L. Zhang, R. Zhao, A. Jain, T. Koschny, and C. M. Soukoulis, “Electromagnetically induced transparency and absorption in metamaterials: the radiating two-oscillator model and its experimental confirmation,” Phys. Rev. Lett. 109(18), 187401 (2012).
[Crossref] [PubMed]

E. J. Osley, C. G. Biris, P. G. Thompson, R. R. Jahromi, P. A. Warburton, and N. C. Panoiu, “Fano resonance resulting from a tunable interaction between molecular vibrational modes and a double continuum of a plasmonic metamolecule,” Phys. Rev. Lett. 110(8), 087402 (2013).
[Crossref] [PubMed]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101(25), 253903 (2008).
[Crossref] [PubMed]

T. A. Kelf, Y. Sugawara, J. J. Baumberg, M. Abdelsalam, and P. N. Bartlett, “Plasmonic band gaps and trapped plasmons on nanostructured metal surfaces,” Phys. Rev. Lett. 95(11), 116802 (2005).
[Crossref] [PubMed]

R. Ritchie, E. Arakawa, J. Cowan, and R. Hamm, “Surface-plasmon resonance effect in grating diffraction,” Phys. Rev. Lett. 21(22), 1530–1533 (1968).
[Crossref]

D. Sarid, “Long-range surface-plasma waves on very thin metal films,” Phys. Rev. Lett. 47(26), 1927–1930 (1981).
[Crossref]

T. K. Hakala, J. J. Toppari, A. Kuzyk, M. Pettersson, H. Tikkanen, H. Kunttu, and P. Törmä, “Vacuum Rabi splitting and strong-coupling dynamics for surface-plasmon polaritons and rhodamine 6G molecules,” Phys. Rev. Lett. 103(5), 053602 (2009).
[Crossref] [PubMed]

J. Bellessa, C. Bonnand, J. C. Plenet, and J. Mugnier, “Strong coupling between surface plasmons and excitons in an organic semiconductor,” Phys. Rev. Lett. 93(3), 036404 (2004).
[Crossref] [PubMed]

Phys. Scr. (1)

Y. S. Joe, A. M. Satanin, and C. S. Kim, “Classical analogy of Fano resonances,” Phys. Scr. 74(2), 259–266 (2006).
[Crossref]

Phys. Status Solidi (1)

M. Fukui, V. C. Y. So, and R. Normandin, “Lifetimes of surface plasmons in thin silver films,” Phys. Status Solidi 91(1), K61–K64 (1979).
[Crossref]

Phys. Today (1)

S. E. Harris, “Electromagnetically Induced Transparency,” Phys. Today 50(7), 36 (1997).
[Crossref]

Plasmonics (4)

S. Refki, S. Hayashi, A. Rahmouni, D. Nesterenko, and Z. Sekkat, “Anticrossing behavior of surface plasmon polariton dispersions in metal-insulator-metal structures,” Plasmonics 11, 1–8 (2015).

J. Liu, B. Xu, J. Zhang, and G. Song, “Double plasmon-induced transparency in hybrid waveguide-plasmon system and its application for localized plasmon resonance sensing with high figure of merit,” Plasmonics 8(2), 995–1001 (2013).
[Crossref]

D. V. Nesterenko and Z. Sekkat, “Resolution estimation of the Au, Ag, Cu, and Al single- and double-layer surface plasmon sensors in the ultraviolet, visible, and infrared regions,” Plasmonics 8(4), 1585–1595 (2013).
[Crossref]

K. Lodewijks, J. Ryken, W. Van Roy, G. Borghs, L. Lagae, and P. Van Dorpe, “Tuning the Fano resonance between localized and propagating surface plasmon resonances for refractive index sensing applications,” Plasmonics 8(3), 1379–1385 (2013).
[Crossref]

Proc. Natl. Acad. Sci. U.S.A. (1)

A. A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. Khanikaev, J. H. Connor, G. Shvets, and H. Altug, “Seeing protein monolayers with naked eye through plasmonic Fano resonances,” Proc. Natl. Acad. Sci. U.S.A. 108(29), 11784–11789 (2011).
[Crossref] [PubMed]

Rep. Prog. Phys. (1)

P. Törmä and W. L. Barnes, “Strong coupling between surface plasmon polaritons and emitters: a review,” Rep. Prog. Phys. 78(1), 013901 (2015).
[Crossref] [PubMed]

Rev. Mod. Phys. (2)

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77(2), 633–673 (2005).
[Crossref]

A. E. Miroshnichenko, S. Flach, and Y. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82(3), 2257–2298 (2010).
[Crossref]

Science (1)

H. J. Lezec, J. A. Dionne, and H. A. Atwater, “Negative refraction at visible frequencies,” Science 316(5823), 430–432 (2007).
[Crossref] [PubMed]

Other (8)

S. I. Bozhevolnyi, Plasmonic Nanoguides and Circuits (World Scientific Pub., 2009).

V. M. Agranovich and D. L. Mills, Surface Polaritons: Electromagnetic Waves at Surfaces and Interfaces (North-Holland Pub. Co., 1982).

A. D. Boardman, Electromagnetic Surface Modes (Wiley, 1982).

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).

P. G. Kik and M. L. Brongersma, Surface Plasmon Nanophotonics, vol. 131 (Springer-Verlag, 2007).

S. A. Maier, Plasmonics Fundamentals and Applications (Springer, 2007).

M. N. Polyanskiy, “Refractive index database”, retrieved 09/09/2015, http://refractiveindex.info .

E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1985).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) MIM structure and supported SPP modes. (b) Metal/Spacer/WG structure supporting the coupling of SPP and PWG modes.

Fig. 2
Fig. 2

(a) Calculated dispersion curves of SPPs and TE0 supported by the MIM structure which is shown as an inset in the top left corner of the figure. In this figure the Ag layers are semi-infinite, and the light lines for air and PMMA are indicated by dashed lines. (b) Obsevation of anticrossing between the S-SPP and Ag/Air-SPP modes in the MIM structure which is indicated at the top of the figure. Scatters are experimental data and full lines are theoretical calculation of the dispersion curves of SPPs. Reproduced with permission from Ref. 61.

Fig. 3
Fig. 3

(a, b) Fano and (c) EIT-like line shapes in ATR spectrum for prism/Ag/Cytop/PMMA structure with PMMA waveguide of height (a, b) d = 920 nm and (c) d = 803 nm. Reproduced with permission from Ref. [68].

Fig. 4
Fig. 4

Maps of electric FE factor at resonance conditions for the experimental structures that support (a) SPP mode, (b) coupled S-SPP and SPP modes; (c) experimental; and (d) theoretical optimized structure that support coupled SPP and WG modes.

Metrics