Abstract

Here we propose a new method for trapping the resonant metallic particles with the 4π tight focusing (high numerical-aperture (NA)) system, which is illuminated by radial polarization light. Numerical simulations have indicated the maximum total optical force is 16.1pN while with nearly zero scattering force under axis trapping, which keeps the gradient force predominant. Furthermore, the distribution of total force is centrosymmetric and odd. We also gain stable 3D trap with an equilibrium point along z axis and r axis as in normal optical tweezers. What’s more, we obtain the nearly pure longitudinal field. The maximum transverse intensity is only 2.3 × 10−3 and the transverse spot size reaches 0.36λ, which is below Abbe’s diffraction limit.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Manipulation metallic nanoparticle at resonant wavelength using engineered azimuthally polarized optical field

Guanghao Rui, Xiaoyan Wang, Bing Gu, Qiwen Zhan, and Yiping Cui
Opt. Express 24(7) 7212-7223 (2016)

Manipulation of resonant metallic nanoparticle using 4Pi focusing system

Xiaoyan Wang, Guanghao Rui, Liping Gong, Bing Gu, and Yiping Cui
Opt. Express 24(21) 24143-24152 (2016)

Manipulation of metallic nanoparticle with evanescent vortex Bessel beam

Guanghao Rui, Xiaoyan Wang, and Yiping Cui
Opt. Express 23(20) 25707-25716 (2015)

References

  • View by:
  • |
  • |
  • |

  1. D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
    [Crossref] [PubMed]
  2. K. Svoboda and S. M. Block, “Optical trapping of metallic Rayleigh particles,” Opt. Lett. 19(13), 930–932 (1994).
    [Crossref] [PubMed]
  3. P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, “Expanding the optical trapping range of gold nanoparticles,” Nano Lett. 5(10), 1937–1942 (2005).
    [Crossref] [PubMed]
  4. L. Jauffred, A. C. Richardson, and L. B. Oddershede, “Three-Dimensional optical control of individual quantum dots,” Nano Lett. 8(10), 3376–3380 (2008).
    [Crossref] [PubMed]
  5. Y. F. Chen, X. Serey, R. Sarkar, P. Chen, and D. Erickson, “Controlled photonic manipulation of proteins and other nanomaterials,” Nano Lett. 12(3), 1633–1637 (2012).
    [Crossref] [PubMed]
  6. L. Ling, F. Zhou, L. Huang, H. Guo, Z. Li, and Z. Y. Li, “Perturbation between two traps in dual-trap optical tweezers,” J. Appl. Phys. 109(8), 083116 (2011).
    [Crossref]
  7. W. Cui, F. Song, D. Ju, G. Y. Chen, and F. Song, “Effect of the focal shaping generated from different double-mode cylindrical vector beams,” J. Opt. Soc. Am. A 32(8), 1576–1580 (2015).
    [Crossref] [PubMed]
  8. Y. Kozawa and S. Sato, “Optical trapping of micrometer-sized dielectric particles by cylindrical vector beams,” Opt. Express 18(10), 10828–10833 (2010).
    [Crossref] [PubMed]
  9. L. Huang, H. Guo, J. Li, L. Ling, B. Feng, and Z. Y. Li, “Optical trapping of gold nanoparticles by cylindrical vector beam,” Opt. Lett. 37(10), 1694–1696 (2012).
    [Crossref] [PubMed]
  10. Q. Zhan, “Trapping metallic Rayleigh particles with radial polarization,” Opt. Express 12(15), 3377–3382 (2004).
    [Crossref] [PubMed]
  11. I. Iglesias and J. J. Sáenz, “Scattering forces in the focal volume of high numerical aperture microscope objectives,” Opt. Commun. 284(10-11), 2430–2436 (2011).
    [Crossref]
  12. M. Dienerowitz, M. Mazilu, P. J. Reece, T. F. Krauss, and K. Dholakia, “Optical vortex trap for resonant confinement of metal nanoparticles,” Opt. Express 16(7), 4991–4999 (2008).
    [Crossref] [PubMed]
  13. R. Saija, P. Denti, F. Borghese, O. M. Maragò, and M. A. Iatì, “Optical trapping calculations for metal nanoparticles. Comparison with experimental data for Au and Ag spheres,” Opt. Express 17(12), 10231–10241 (2009).
    [Crossref] [PubMed]
  14. G. M. Lerman and U. Levy, “Effect of radial polarization and apodization on spot size under tight focusing conditions,” Opt. Express 16(7), 4567–4581 (2008).
    [Crossref] [PubMed]
  15. G. Rui and Q. Zhan, “Trapping of resonant metallic nanoparticles with engineered vectorial optical field,” Nanophotonics 3(6), 351–361 (2014).
    [Crossref]
  16. N. Bokor and N. Davidson, “Toward a spherical spot distribution with 4pi focusing of radially polarized light,” Opt. Lett. 29(17), 1968–1970 (2004).
    [Crossref] [PubMed]
  17. Z. Chen and D. Zhao, “4Pi focusing of spatially modulated radially polarized vortex beams,” Opt. Lett. 37(8), 1286–1288 (2012).
    [Crossref] [PubMed]
  18. S. W. Hell, S. Lindek, and E. H. K. Stelzer, “Enhancing the axial resolution in far-field light microscopy: two-photon 4Pi confocal fluorescence microscopy,” J. Mod. Opt. 41(4), 675–681 (1994).
    [Crossref]
  19. G.-Y. Chen, F. Song, and H.-T. Wang, “Sharper focal spot generated by 4π tight focusing of higher-order radially polarized beam,” Opt. Lett. 38, 3937–3940 (2013).
    [Crossref] [PubMed]
  20. S. Albaladejo, M. I. Marqués, M. Laroche, and J. J. Sáenz, “Scattering forces from the curl of the spin angular momentum of a light field,” Phys. Rev. Lett. 102(11), 113602 (2009).
    [Crossref] [PubMed]
  21. E. D. Palik, Handbook of optical constants of solids (Academic Press, New York, NY1998).
  22. L. Huang, H. Guo, J. Li, L. Ling, B. Feng, and Z. Y. Li, “Optical trapping of gold nanoparticles by cylindrical vector beam,” Opt. Lett. 37(10), 1694–1696 (2012).
    [Crossref] [PubMed]
  23. N. Huse, A. Schönle, and S. W. Hell, “Z-polarized confocal microscopy,” J. Biomed. Opt. 6(4), 480–484 (2001).
    [Crossref] [PubMed]
  24. L. Cicchitelli, H. Hora, and R. Postle, “Longitudinal field components for laser beams in vacuum,” Phys. Rev. A 41(7), 3727–3732 (1990).
    [Crossref] [PubMed]
  25. J. Rosenzweig, A. Murokh, and C. Pellegrini, “A proposed dielectric-loaded resonant laser accelerator,” Phys. Rev. Lett. 74(13), 2467–2470 (1995).
    [Crossref] [PubMed]
  26. J. R. Fontana and R. H. Pantell, “A high-energy, laser accelerator for electrons using the inverse Cherenkov effect,” J. Appl. Phys. 54(8), 4285–4288 (1983).
    [Crossref]
  27. M. Xiao, “Theoretical treatment for scattering scanning near-field optical microscopy,” J. Opt. Soc. Am. A 14(11), 2977–2984 (1997).
    [Crossref]

2015 (1)

2014 (1)

G. Rui and Q. Zhan, “Trapping of resonant metallic nanoparticles with engineered vectorial optical field,” Nanophotonics 3(6), 351–361 (2014).
[Crossref]

2013 (1)

2012 (4)

2011 (2)

L. Ling, F. Zhou, L. Huang, H. Guo, Z. Li, and Z. Y. Li, “Perturbation between two traps in dual-trap optical tweezers,” J. Appl. Phys. 109(8), 083116 (2011).
[Crossref]

I. Iglesias and J. J. Sáenz, “Scattering forces in the focal volume of high numerical aperture microscope objectives,” Opt. Commun. 284(10-11), 2430–2436 (2011).
[Crossref]

2010 (1)

2009 (2)

R. Saija, P. Denti, F. Borghese, O. M. Maragò, and M. A. Iatì, “Optical trapping calculations for metal nanoparticles. Comparison with experimental data for Au and Ag spheres,” Opt. Express 17(12), 10231–10241 (2009).
[Crossref] [PubMed]

S. Albaladejo, M. I. Marqués, M. Laroche, and J. J. Sáenz, “Scattering forces from the curl of the spin angular momentum of a light field,” Phys. Rev. Lett. 102(11), 113602 (2009).
[Crossref] [PubMed]

2008 (3)

2005 (1)

P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, “Expanding the optical trapping range of gold nanoparticles,” Nano Lett. 5(10), 1937–1942 (2005).
[Crossref] [PubMed]

2004 (2)

2003 (1)

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[Crossref] [PubMed]

2001 (1)

N. Huse, A. Schönle, and S. W. Hell, “Z-polarized confocal microscopy,” J. Biomed. Opt. 6(4), 480–484 (2001).
[Crossref] [PubMed]

1997 (1)

1995 (1)

J. Rosenzweig, A. Murokh, and C. Pellegrini, “A proposed dielectric-loaded resonant laser accelerator,” Phys. Rev. Lett. 74(13), 2467–2470 (1995).
[Crossref] [PubMed]

1994 (2)

S. W. Hell, S. Lindek, and E. H. K. Stelzer, “Enhancing the axial resolution in far-field light microscopy: two-photon 4Pi confocal fluorescence microscopy,” J. Mod. Opt. 41(4), 675–681 (1994).
[Crossref]

K. Svoboda and S. M. Block, “Optical trapping of metallic Rayleigh particles,” Opt. Lett. 19(13), 930–932 (1994).
[Crossref] [PubMed]

1990 (1)

L. Cicchitelli, H. Hora, and R. Postle, “Longitudinal field components for laser beams in vacuum,” Phys. Rev. A 41(7), 3727–3732 (1990).
[Crossref] [PubMed]

1983 (1)

J. R. Fontana and R. H. Pantell, “A high-energy, laser accelerator for electrons using the inverse Cherenkov effect,” J. Appl. Phys. 54(8), 4285–4288 (1983).
[Crossref]

Albaladejo, S.

S. Albaladejo, M. I. Marqués, M. Laroche, and J. J. Sáenz, “Scattering forces from the curl of the spin angular momentum of a light field,” Phys. Rev. Lett. 102(11), 113602 (2009).
[Crossref] [PubMed]

Bhatia, V. K.

P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, “Expanding the optical trapping range of gold nanoparticles,” Nano Lett. 5(10), 1937–1942 (2005).
[Crossref] [PubMed]

Block, S. M.

Bokor, N.

Borghese, F.

Chen, G. Y.

Chen, G.-Y.

Chen, P.

Y. F. Chen, X. Serey, R. Sarkar, P. Chen, and D. Erickson, “Controlled photonic manipulation of proteins and other nanomaterials,” Nano Lett. 12(3), 1633–1637 (2012).
[Crossref] [PubMed]

Chen, Y. F.

Y. F. Chen, X. Serey, R. Sarkar, P. Chen, and D. Erickson, “Controlled photonic manipulation of proteins and other nanomaterials,” Nano Lett. 12(3), 1633–1637 (2012).
[Crossref] [PubMed]

Chen, Z.

Cicchitelli, L.

L. Cicchitelli, H. Hora, and R. Postle, “Longitudinal field components for laser beams in vacuum,” Phys. Rev. A 41(7), 3727–3732 (1990).
[Crossref] [PubMed]

Cui, W.

Davidson, N.

Denti, P.

Dholakia, K.

Dienerowitz, M.

Erickson, D.

Y. F. Chen, X. Serey, R. Sarkar, P. Chen, and D. Erickson, “Controlled photonic manipulation of proteins and other nanomaterials,” Nano Lett. 12(3), 1633–1637 (2012).
[Crossref] [PubMed]

Feng, B.

Fontana, J. R.

J. R. Fontana and R. H. Pantell, “A high-energy, laser accelerator for electrons using the inverse Cherenkov effect,” J. Appl. Phys. 54(8), 4285–4288 (1983).
[Crossref]

Grier, D. G.

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[Crossref] [PubMed]

Guo, H.

Hansen, P. M.

P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, “Expanding the optical trapping range of gold nanoparticles,” Nano Lett. 5(10), 1937–1942 (2005).
[Crossref] [PubMed]

Harrit, N.

P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, “Expanding the optical trapping range of gold nanoparticles,” Nano Lett. 5(10), 1937–1942 (2005).
[Crossref] [PubMed]

Hell, S. W.

N. Huse, A. Schönle, and S. W. Hell, “Z-polarized confocal microscopy,” J. Biomed. Opt. 6(4), 480–484 (2001).
[Crossref] [PubMed]

S. W. Hell, S. Lindek, and E. H. K. Stelzer, “Enhancing the axial resolution in far-field light microscopy: two-photon 4Pi confocal fluorescence microscopy,” J. Mod. Opt. 41(4), 675–681 (1994).
[Crossref]

Hora, H.

L. Cicchitelli, H. Hora, and R. Postle, “Longitudinal field components for laser beams in vacuum,” Phys. Rev. A 41(7), 3727–3732 (1990).
[Crossref] [PubMed]

Huang, L.

Huse, N.

N. Huse, A. Schönle, and S. W. Hell, “Z-polarized confocal microscopy,” J. Biomed. Opt. 6(4), 480–484 (2001).
[Crossref] [PubMed]

Iatì, M. A.

Iglesias, I.

I. Iglesias and J. J. Sáenz, “Scattering forces in the focal volume of high numerical aperture microscope objectives,” Opt. Commun. 284(10-11), 2430–2436 (2011).
[Crossref]

Jauffred, L.

L. Jauffred, A. C. Richardson, and L. B. Oddershede, “Three-Dimensional optical control of individual quantum dots,” Nano Lett. 8(10), 3376–3380 (2008).
[Crossref] [PubMed]

Ju, D.

Kozawa, Y.

Krauss, T. F.

Laroche, M.

S. Albaladejo, M. I. Marqués, M. Laroche, and J. J. Sáenz, “Scattering forces from the curl of the spin angular momentum of a light field,” Phys. Rev. Lett. 102(11), 113602 (2009).
[Crossref] [PubMed]

Lerman, G. M.

Levy, U.

Li, J.

Li, Z.

L. Ling, F. Zhou, L. Huang, H. Guo, Z. Li, and Z. Y. Li, “Perturbation between two traps in dual-trap optical tweezers,” J. Appl. Phys. 109(8), 083116 (2011).
[Crossref]

Li, Z. Y.

Lindek, S.

S. W. Hell, S. Lindek, and E. H. K. Stelzer, “Enhancing the axial resolution in far-field light microscopy: two-photon 4Pi confocal fluorescence microscopy,” J. Mod. Opt. 41(4), 675–681 (1994).
[Crossref]

Ling, L.

Maragò, O. M.

Marqués, M. I.

S. Albaladejo, M. I. Marqués, M. Laroche, and J. J. Sáenz, “Scattering forces from the curl of the spin angular momentum of a light field,” Phys. Rev. Lett. 102(11), 113602 (2009).
[Crossref] [PubMed]

Mazilu, M.

Murokh, A.

J. Rosenzweig, A. Murokh, and C. Pellegrini, “A proposed dielectric-loaded resonant laser accelerator,” Phys. Rev. Lett. 74(13), 2467–2470 (1995).
[Crossref] [PubMed]

Oddershede, L.

P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, “Expanding the optical trapping range of gold nanoparticles,” Nano Lett. 5(10), 1937–1942 (2005).
[Crossref] [PubMed]

Oddershede, L. B.

L. Jauffred, A. C. Richardson, and L. B. Oddershede, “Three-Dimensional optical control of individual quantum dots,” Nano Lett. 8(10), 3376–3380 (2008).
[Crossref] [PubMed]

Pantell, R. H.

J. R. Fontana and R. H. Pantell, “A high-energy, laser accelerator for electrons using the inverse Cherenkov effect,” J. Appl. Phys. 54(8), 4285–4288 (1983).
[Crossref]

Pellegrini, C.

J. Rosenzweig, A. Murokh, and C. Pellegrini, “A proposed dielectric-loaded resonant laser accelerator,” Phys. Rev. Lett. 74(13), 2467–2470 (1995).
[Crossref] [PubMed]

Postle, R.

L. Cicchitelli, H. Hora, and R. Postle, “Longitudinal field components for laser beams in vacuum,” Phys. Rev. A 41(7), 3727–3732 (1990).
[Crossref] [PubMed]

Reece, P. J.

Richardson, A. C.

L. Jauffred, A. C. Richardson, and L. B. Oddershede, “Three-Dimensional optical control of individual quantum dots,” Nano Lett. 8(10), 3376–3380 (2008).
[Crossref] [PubMed]

Rosenzweig, J.

J. Rosenzweig, A. Murokh, and C. Pellegrini, “A proposed dielectric-loaded resonant laser accelerator,” Phys. Rev. Lett. 74(13), 2467–2470 (1995).
[Crossref] [PubMed]

Rui, G.

G. Rui and Q. Zhan, “Trapping of resonant metallic nanoparticles with engineered vectorial optical field,” Nanophotonics 3(6), 351–361 (2014).
[Crossref]

Sáenz, J. J.

I. Iglesias and J. J. Sáenz, “Scattering forces in the focal volume of high numerical aperture microscope objectives,” Opt. Commun. 284(10-11), 2430–2436 (2011).
[Crossref]

S. Albaladejo, M. I. Marqués, M. Laroche, and J. J. Sáenz, “Scattering forces from the curl of the spin angular momentum of a light field,” Phys. Rev. Lett. 102(11), 113602 (2009).
[Crossref] [PubMed]

Saija, R.

Sarkar, R.

Y. F. Chen, X. Serey, R. Sarkar, P. Chen, and D. Erickson, “Controlled photonic manipulation of proteins and other nanomaterials,” Nano Lett. 12(3), 1633–1637 (2012).
[Crossref] [PubMed]

Sato, S.

Schönle, A.

N. Huse, A. Schönle, and S. W. Hell, “Z-polarized confocal microscopy,” J. Biomed. Opt. 6(4), 480–484 (2001).
[Crossref] [PubMed]

Serey, X.

Y. F. Chen, X. Serey, R. Sarkar, P. Chen, and D. Erickson, “Controlled photonic manipulation of proteins and other nanomaterials,” Nano Lett. 12(3), 1633–1637 (2012).
[Crossref] [PubMed]

Song, F.

Stelzer, E. H. K.

S. W. Hell, S. Lindek, and E. H. K. Stelzer, “Enhancing the axial resolution in far-field light microscopy: two-photon 4Pi confocal fluorescence microscopy,” J. Mod. Opt. 41(4), 675–681 (1994).
[Crossref]

Svoboda, K.

Wang, H.-T.

Xiao, M.

Zhan, Q.

G. Rui and Q. Zhan, “Trapping of resonant metallic nanoparticles with engineered vectorial optical field,” Nanophotonics 3(6), 351–361 (2014).
[Crossref]

Q. Zhan, “Trapping metallic Rayleigh particles with radial polarization,” Opt. Express 12(15), 3377–3382 (2004).
[Crossref] [PubMed]

Zhao, D.

Zhou, F.

L. Ling, F. Zhou, L. Huang, H. Guo, Z. Li, and Z. Y. Li, “Perturbation between two traps in dual-trap optical tweezers,” J. Appl. Phys. 109(8), 083116 (2011).
[Crossref]

J. Appl. Phys. (2)

L. Ling, F. Zhou, L. Huang, H. Guo, Z. Li, and Z. Y. Li, “Perturbation between two traps in dual-trap optical tweezers,” J. Appl. Phys. 109(8), 083116 (2011).
[Crossref]

J. R. Fontana and R. H. Pantell, “A high-energy, laser accelerator for electrons using the inverse Cherenkov effect,” J. Appl. Phys. 54(8), 4285–4288 (1983).
[Crossref]

J. Biomed. Opt. (1)

N. Huse, A. Schönle, and S. W. Hell, “Z-polarized confocal microscopy,” J. Biomed. Opt. 6(4), 480–484 (2001).
[Crossref] [PubMed]

J. Mod. Opt. (1)

S. W. Hell, S. Lindek, and E. H. K. Stelzer, “Enhancing the axial resolution in far-field light microscopy: two-photon 4Pi confocal fluorescence microscopy,” J. Mod. Opt. 41(4), 675–681 (1994).
[Crossref]

J. Opt. Soc. Am. A (2)

Nano Lett. (3)

P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, “Expanding the optical trapping range of gold nanoparticles,” Nano Lett. 5(10), 1937–1942 (2005).
[Crossref] [PubMed]

L. Jauffred, A. C. Richardson, and L. B. Oddershede, “Three-Dimensional optical control of individual quantum dots,” Nano Lett. 8(10), 3376–3380 (2008).
[Crossref] [PubMed]

Y. F. Chen, X. Serey, R. Sarkar, P. Chen, and D. Erickson, “Controlled photonic manipulation of proteins and other nanomaterials,” Nano Lett. 12(3), 1633–1637 (2012).
[Crossref] [PubMed]

Nanophotonics (1)

G. Rui and Q. Zhan, “Trapping of resonant metallic nanoparticles with engineered vectorial optical field,” Nanophotonics 3(6), 351–361 (2014).
[Crossref]

Nature (1)

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[Crossref] [PubMed]

Opt. Commun. (1)

I. Iglesias and J. J. Sáenz, “Scattering forces in the focal volume of high numerical aperture microscope objectives,” Opt. Commun. 284(10-11), 2430–2436 (2011).
[Crossref]

Opt. Express (5)

Opt. Lett. (6)

Phys. Rev. A (1)

L. Cicchitelli, H. Hora, and R. Postle, “Longitudinal field components for laser beams in vacuum,” Phys. Rev. A 41(7), 3727–3732 (1990).
[Crossref] [PubMed]

Phys. Rev. Lett. (2)

J. Rosenzweig, A. Murokh, and C. Pellegrini, “A proposed dielectric-loaded resonant laser accelerator,” Phys. Rev. Lett. 74(13), 2467–2470 (1995).
[Crossref] [PubMed]

S. Albaladejo, M. I. Marqués, M. Laroche, and J. J. Sáenz, “Scattering forces from the curl of the spin angular momentum of a light field,” Phys. Rev. Lett. 102(11), 113602 (2009).
[Crossref] [PubMed]

Other (1)

E. D. Palik, Handbook of optical constants of solids (Academic Press, New York, NY1998).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 , Diagram of the 4π focusing system illuminated by two counter-propagating RP beams. The short arrows denote the direction of the instaneous polarization of the incident beams
Fig. 2
Fig. 2 , Calculated optical forces on 50 nm (radius) gold nanoparticle at the wavelength of 532 nm (a) axial gradient force, (b) axial scattering force, (c) total force, along the z-axis for 2π system;(d) axial gradient force, (e) axial scattering force, (f) total force, along the z-axis for 4π system.
Fig. 3
Fig. 3 , Calculated optical total forces on 50 nm (radius) gold nanoparticle at the wavelength of 532 nm (a) for 2π system;(b) for 4π system, along the r-axis
Fig. 4
Fig. 4 , Calculated intensity distributions at the wavelength of 532 nm in the r-z plane. (a) total, (b) transverse and (c) longitudinal intensity for 4π focusing system. (d) total intensity for 2π focusing system. Calculated intensity distributions (e) along the z-axis, (f) along the r-axis.
Fig. 5
Fig. 5 , Calculated optical total forces on 50 nm (radius) gold nanoparticle at the wavelength of 1047 nm (a) along the z-axis; (b) along the r-axis

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

E ^ (r,z)= E r e ^ r + E z e ^ z
E r ( r,ϕ,z )=A 0 α cosθ sin( 2θ )l( θ ) J 1 ( krsinθ )exp( ikzcosθ )dθ
E z ( r,ϕ,z )=2iA 0 α cosθ sin 2 θl( θ ) J 0 ( krsinθ )exp( ikzcosθ )dθ
H ϕ ( r,ϕ,z )=2A 0 α cosθ sin( θ )l( θ ) J 1 ( krsinθ )exp( ikzcosθ )dθ
l( θ )= 1 cos 2 θ
E(r,z)= E 1 (r,z)+ E 2 (r,z)
α= α 0 1i α 0 k 3 /(6π ε 0 )
F z = 1 4 Re( α ) ε 0 z | E | 2 + nσ 2c Re( E r H ϕ * )+ σε ε 0 2k ( 1 r Im( E r * E Z )+ r Im( E r * E Z ))

Metrics