Abstract

Many optical applications depend on amplitude modulating optical beams using devices such as acousto-optical modulators (AOMs) or optical choppers. Methods to add amplitude modulation (AM) often inadvertently impart phase modulation (PM) onto the light as well. While this PM is of no consequence to many phase-insensitive applications, phase-sensitive processes can be affected. Here we study the effects of input phase and amplitude modulation on the output of a quantum-noise limited phase-sensitive optical amplifier (PSA) realized in hot 85Rb vapor. We investigate the dependence of PM on AOM alignment and demonstrate a novel approach to quantifying PM by using the PSA as a diagnostic tool. We then use this method to measure the alignment-dependent PM of an optical chopper which arises due to diffraction effects as the chopper blade passes through the optical beam.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Gain characteristics of a frequency nondegenerate phase-sensitive fiber-optic parametric amplifier with phase self-stabilized input

Renyong Tang, Jacob Lasri, Preetpaul S. Devgan, Vladimir Grigoryan, Prem Kumar, and Michael Vasilyev
Opt. Express 13(26) 10483-10493 (2005)

Improved measurement of two-mode quantum correlations using a phase-sensitive amplifier

Tian Li, Brian E. Anderson, Travis Horrom, Bonnie L. Schmittberger, Kevin M. Jones, and Paul D. Lett
Opt. Express 25(18) 21301-21311 (2017)

Injection locking-based pump recovery for phase-sensitive amplified links

Samuel L. I. Olsson, Bill Corcoran, Carl Lundström, Ekawit Tipsuwannakul, Stylianos Sygletos, Andrew D. Ellis, Zhi Tong, Magnus Karlsson, and Peter A. Andrekson
Opt. Express 21(12) 14512-14529 (2013)

References

  • View by:
  • |
  • |
  • |

  1. J.-M. Liu, Photonic Devices (Cambridge University, 2005).
    [Crossref]
  2. E. A. Whittaker, M. Gehrtz, and G. C. Bjorklund, “Residual amplitude modulation in laser electro-optic phase modulation,” J. Opt. Soc. Am. B 2(8), 1320–1326 (1985).
    [Crossref]
  3. B. J. Cusack, B. S. Sheard, D. A. Shaddock, M. B. Gray, P. K. Lam, and S. E. Whitcomb, “Electro-optic modulator capable of generating simultaneous amplitude and phase modulations,” Appl. Opt. 43(26), 5079–5091 (2004).
    [Crossref] [PubMed]
  4. D. M. Henderson and R. L. Abrams, “A comparison of acoustooptic and electrooptic modulators at 10.6 microns,” Opt. Commun. 2(5), 223–226 (1970).
    [Crossref]
  5. E. Li, J. Yao, D. Yu, J. Xi, and J. Chicharo, “Optical phase shifting with acousto-optic devices,” Opt. Lett. 30(2), 189–191 (2005).
    [Crossref] [PubMed]
  6. N. Corzo, A. M. Marino, K. M. Jones, and P. D. Lett, “Multi-spatial-mode single-beam quadrature squeezed states of light from four-wave mixing in hot rubidium vapor,” Opt. Express 19(22), 21358–21369 (2011).
    [Crossref] [PubMed]
  7. N. V. Corzo, A. M. Marino, K. M. Jones, and P. D. Lett, “Noiseless optical amplifier operating on hundreds of spatial modes,” Phys. Rev. Lett. 109, 043602 (2012).
    [Crossref] [PubMed]
  8. H. A. Bachor and T. C. Ralph, A Guide to Experiments in Quantum Optics, Second Revised and Enlarged Edition (Wiley-VCH, 2004).
    [Crossref]
  9. W. Yam, E. Davis, S. Ackley, M. Evans, and N. Mavalvala, “Continuously tunable modulation scheme for precision control of optical cavities with variable detuning,” Opt. Lett. 40(15), 3675–3678 (2015).
    [Crossref] [PubMed]
  10. M. PichÃl’, C. Par, and P.-A. Blanger, “Conversion of phase modulation to amplitude modulation using a phase conjugate mirror,” Opt. Commun. 65(2), 146–150 (1988).
    [Crossref]
  11. X. S. Yao, “Phase-to-amplitude modulation conversion using Brillouin selective sideband amplification,” IEEE Photon. Tech. Lett. 10(2), 264–266 (1998).
    [Crossref]
  12. K. Croussore, I. Kim, C. Kim, Y. Han, and G. F. Li, “Phase-and-amplitude regeneration of differential phase-shift keyed signals using a phase-sensitive amplifier,” Opt. Express 14(6), 2085–2094 (2006).
    [Crossref] [PubMed]
  13. A. Kumpera, R. Malik, A. Lorences-Riesgo, and P.A. Andrekson, “Parametric coherent receiver,” Opt. Express 23(10), 12952–12964 (2015).
    [Crossref] [PubMed]
  14. G. Grynberg, A. Aspect, and C. Fabre, Introduction to Quantum Optics: From the Semi-classical Approach to Quantized Light (Cambridge University, 2010).
    [Crossref]

2015 (2)

2012 (1)

N. V. Corzo, A. M. Marino, K. M. Jones, and P. D. Lett, “Noiseless optical amplifier operating on hundreds of spatial modes,” Phys. Rev. Lett. 109, 043602 (2012).
[Crossref] [PubMed]

2011 (1)

2006 (1)

2005 (1)

2004 (1)

1998 (1)

X. S. Yao, “Phase-to-amplitude modulation conversion using Brillouin selective sideband amplification,” IEEE Photon. Tech. Lett. 10(2), 264–266 (1998).
[Crossref]

1988 (1)

M. PichÃl’, C. Par, and P.-A. Blanger, “Conversion of phase modulation to amplitude modulation using a phase conjugate mirror,” Opt. Commun. 65(2), 146–150 (1988).
[Crossref]

1985 (1)

1970 (1)

D. M. Henderson and R. L. Abrams, “A comparison of acoustooptic and electrooptic modulators at 10.6 microns,” Opt. Commun. 2(5), 223–226 (1970).
[Crossref]

Abrams, R. L.

D. M. Henderson and R. L. Abrams, “A comparison of acoustooptic and electrooptic modulators at 10.6 microns,” Opt. Commun. 2(5), 223–226 (1970).
[Crossref]

Ackley, S.

Andrekson, P.A.

Aspect, A.

G. Grynberg, A. Aspect, and C. Fabre, Introduction to Quantum Optics: From the Semi-classical Approach to Quantized Light (Cambridge University, 2010).
[Crossref]

Bachor, H. A.

H. A. Bachor and T. C. Ralph, A Guide to Experiments in Quantum Optics, Second Revised and Enlarged Edition (Wiley-VCH, 2004).
[Crossref]

Bjorklund, G. C.

Blanger, P.-A.

M. PichÃl’, C. Par, and P.-A. Blanger, “Conversion of phase modulation to amplitude modulation using a phase conjugate mirror,” Opt. Commun. 65(2), 146–150 (1988).
[Crossref]

Chicharo, J.

Corzo, N.

Corzo, N. V.

N. V. Corzo, A. M. Marino, K. M. Jones, and P. D. Lett, “Noiseless optical amplifier operating on hundreds of spatial modes,” Phys. Rev. Lett. 109, 043602 (2012).
[Crossref] [PubMed]

Croussore, K.

Cusack, B. J.

Davis, E.

Evans, M.

Fabre, C.

G. Grynberg, A. Aspect, and C. Fabre, Introduction to Quantum Optics: From the Semi-classical Approach to Quantized Light (Cambridge University, 2010).
[Crossref]

Gehrtz, M.

Gray, M. B.

Grynberg, G.

G. Grynberg, A. Aspect, and C. Fabre, Introduction to Quantum Optics: From the Semi-classical Approach to Quantized Light (Cambridge University, 2010).
[Crossref]

Han, Y.

Henderson, D. M.

D. M. Henderson and R. L. Abrams, “A comparison of acoustooptic and electrooptic modulators at 10.6 microns,” Opt. Commun. 2(5), 223–226 (1970).
[Crossref]

Jones, K. M.

N. V. Corzo, A. M. Marino, K. M. Jones, and P. D. Lett, “Noiseless optical amplifier operating on hundreds of spatial modes,” Phys. Rev. Lett. 109, 043602 (2012).
[Crossref] [PubMed]

N. Corzo, A. M. Marino, K. M. Jones, and P. D. Lett, “Multi-spatial-mode single-beam quadrature squeezed states of light from four-wave mixing in hot rubidium vapor,” Opt. Express 19(22), 21358–21369 (2011).
[Crossref] [PubMed]

Kim, C.

Kim, I.

Kumpera, A.

Lam, P. K.

Lett, P. D.

N. V. Corzo, A. M. Marino, K. M. Jones, and P. D. Lett, “Noiseless optical amplifier operating on hundreds of spatial modes,” Phys. Rev. Lett. 109, 043602 (2012).
[Crossref] [PubMed]

N. Corzo, A. M. Marino, K. M. Jones, and P. D. Lett, “Multi-spatial-mode single-beam quadrature squeezed states of light from four-wave mixing in hot rubidium vapor,” Opt. Express 19(22), 21358–21369 (2011).
[Crossref] [PubMed]

Li, E.

Li, G. F.

Liu, J.-M.

J.-M. Liu, Photonic Devices (Cambridge University, 2005).
[Crossref]

Lorences-Riesgo, A.

Malik, R.

Marino, A. M.

N. V. Corzo, A. M. Marino, K. M. Jones, and P. D. Lett, “Noiseless optical amplifier operating on hundreds of spatial modes,” Phys. Rev. Lett. 109, 043602 (2012).
[Crossref] [PubMed]

N. Corzo, A. M. Marino, K. M. Jones, and P. D. Lett, “Multi-spatial-mode single-beam quadrature squeezed states of light from four-wave mixing in hot rubidium vapor,” Opt. Express 19(22), 21358–21369 (2011).
[Crossref] [PubMed]

Mavalvala, N.

Par, C.

M. PichÃl’, C. Par, and P.-A. Blanger, “Conversion of phase modulation to amplitude modulation using a phase conjugate mirror,” Opt. Commun. 65(2), 146–150 (1988).
[Crossref]

PichÃl’, M.

M. PichÃl’, C. Par, and P.-A. Blanger, “Conversion of phase modulation to amplitude modulation using a phase conjugate mirror,” Opt. Commun. 65(2), 146–150 (1988).
[Crossref]

Ralph, T. C.

H. A. Bachor and T. C. Ralph, A Guide to Experiments in Quantum Optics, Second Revised and Enlarged Edition (Wiley-VCH, 2004).
[Crossref]

Shaddock, D. A.

Sheard, B. S.

Whitcomb, S. E.

Whittaker, E. A.

Xi, J.

Yam, W.

Yao, J.

Yao, X. S.

X. S. Yao, “Phase-to-amplitude modulation conversion using Brillouin selective sideband amplification,” IEEE Photon. Tech. Lett. 10(2), 264–266 (1998).
[Crossref]

Yu, D.

Appl. Opt. (1)

IEEE Photon. Tech. Lett. (1)

X. S. Yao, “Phase-to-amplitude modulation conversion using Brillouin selective sideband amplification,” IEEE Photon. Tech. Lett. 10(2), 264–266 (1998).
[Crossref]

J. Opt. Soc. Am. B (1)

Opt. Commun. (2)

D. M. Henderson and R. L. Abrams, “A comparison of acoustooptic and electrooptic modulators at 10.6 microns,” Opt. Commun. 2(5), 223–226 (1970).
[Crossref]

M. PichÃl’, C. Par, and P.-A. Blanger, “Conversion of phase modulation to amplitude modulation using a phase conjugate mirror,” Opt. Commun. 65(2), 146–150 (1988).
[Crossref]

Opt. Express (3)

Opt. Lett. (2)

Phys. Rev. Lett. (1)

N. V. Corzo, A. M. Marino, K. M. Jones, and P. D. Lett, “Noiseless optical amplifier operating on hundreds of spatial modes,” Phys. Rev. Lett. 109, 043602 (2012).
[Crossref] [PubMed]

Other (3)

H. A. Bachor and T. C. Ralph, A Guide to Experiments in Quantum Optics, Second Revised and Enlarged Edition (Wiley-VCH, 2004).
[Crossref]

G. Grynberg, A. Aspect, and C. Fabre, Introduction to Quantum Optics: From the Semi-classical Approach to Quantized Light (Cambridge University, 2010).
[Crossref]

J.-M. Liu, Photonic Devices (Cambridge University, 2005).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Experimental setup. AOM: acousto-optic modulator, TA: semiconductor tapered amplifier, BS: non-polarizing beam splitter, PBS: polarizing beam splitter. (b) level structure of the D1 transition of 85Rb and the optical frequencies arranged in the double-Λ configuration. Here ν1 and ν2 are the pumps and νp is the probe. The width of the excited state in the level diagram represents the Doppler broadened line, Δ is the one-photon detuning, δ is the two-photon detuning, and νHF is the hyperfine splitting.
Fig. 2
Fig. 2 PSA results: AC gain versus DC gain for an optical signal modulated with an acousto-optic modulator and amplified in an optical phase-sensitive amplifier. The different plots are for different mixtures of AM and PM due to the AOM alignment. Each plot is parametric with respect to the phase of the PSA. The solid curves are theoretical fits with (a) P/A = 0.00, (b) P/A = 0.11, (c) P/A = 0.50, (d) P/A = 1.65.
Fig. 3
Fig. 3 Homodyne results: AC amplitude versus DC level for an optical signal modulated with an acousto-optic modulator and measured with a balanced homodyne detector. The different plots are for different mixtures of AM and PM due to the AOM alignment. Each plot is parametric with respect to the phase of the LO. The solid curves are theoretical fits with (a) P/A = 0.03, (b) P/A = 0.14, (c) P/A = 0.50, (d) P/A = 1.85.
Fig. 4
Fig. 4 Comparison of the ratio of phase to amplitude modulation measured by homodyne detection and measurements of PSA AC and DC amplification. The solid line is y = x and the dashed line is a best linear fit, y = 0.91x − 0.02, to the data.
Fig. 5
Fig. 5 PM measurements for two different chopper alignments using the PSA scheme. (a) and (c) show raw data from a tilted chopper alignment and optimal chopper alignment, respectively. The dashed lines are direct intensity detection without a PSA and the other curves are various phases of the PSA. Inset theory curves are shown as examples to demonstrate curve shapes for the fit parameters and do not necessarily match the PSA phases of the individual data curves shown. (b) and (d) show AC gain vs. DC gain, as defined in the text, for the tilted chopper alignment, and optimal chopper alignment, respectively. The solid curves in (b) and (d) are theoretical fits where P = 0.7 and P = 0.15, respectively.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

E o u t = E i n cosh r + E i n * sinh r ,
E i n = [ 1 A 2 ( 1 cos Ω t ) + i P 2 cos Ω t ] e i ϕ .
i o u t = 2 A L O ( A 2 ) sin ( ϕ L O ϕ ) + 2 A L O [ P cos ( ϕ L O ϕ ) A sin ( ϕ L O ϕ ) ] cos Ω t .
I i n = 1 2 [ 1 + e r f ( t μ 2 σ ) ] ,
E i n = e i ϕ 1 2 [ 1 + i P e ( t μ 2 σ ) 2 ] [ 1 + e r f ( t μ 2 σ ) ] .

Metrics