Abstract

Photoacoustic spectrum analysis (PASA) has been demonstrated as a new method for quantitative tissue imaging and characterization. The ability of PASA in evaluating micro-size tissue features was limited by the bandwidth of detectors for photoacoustic (PA) signal acquisition. We improve upon such a limit, and report on developments of PASA facilitated by an optical ultrasonic detector based on micro-ring resonator. The detector’s broad and flat frequency response significantly improves the performance of PASA and extents its characterization capability from the tissue level to cellular level. The performance of the system in characterizing cellular level (a few microns) stochastic objects was first shown via a study on size-controlled optically absorbing phantoms. As a further demonstration of PASA’s potential clinical application, it was employed to characterize the morphological changes of red blood cells (RBCs) from a biconcave shape to a spherical shape as a result of aging. This work demonstrates that PASA equipped with the micro-ring ultrasonic detectors is an effective technique in characterizing cellular-level micro-features of biological samples.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Characterization of bone microstructure using photoacoustic spectrum analysis

Ting Feng, Joseph E. Perosky, Kenneth M. Kozloff, Guan Xu, Qian Cheng, Sidan Du, Jie Yuan, Cheri X. Deng, and Xueding Wang
Opt. Express 23(19) 25217-25224 (2015)

Quantifying Gleason scores with photoacoustic spectral analysis: feasibility study with human tissues

Guan Xu, Mandy C. Davis, Javed Siddiqui, Scott A. Tomlins, Shengsong Huang, Lakshmi P. Kunju, John T. Wei, and Xueding Wang
Biomed. Opt. Express 6(12) 4781-4789 (2015)

Isometric multimodal photoacoustic microscopy based on optically transparent micro-ring ultrasonic detection

Biqin Dong, Hao Li, Zhen Zhang, Kevin Zhang, Siyu Chen, Cheng Sun, and Hao F. Zhang
Optica 2(2) 169-176 (2015)

References

  • View by:
  • |
  • |
  • |

  1. R. E. Kumon, C. X. Deng, and X. Wang, “Frequency-domain analysis of photoacoustic imaging data from prostate adenocarcinoma tumors in a murine model,” Ultrasound Med. Biol. 37(5), 834–839 (2011).
    [Crossref] [PubMed]
  2. Y. Yang, S. Wang, C. Tao, X. Wang, and X. Liu, “Photoacoustic tomography of tissue subwavelength microstructure with a narrowband and low frequency system,” Appl. Phys. Lett. 101(3), 034105 (2012).
    [Crossref]
  3. S. Wang, C. Tao, X. Wang, and X. Liu, “Quantitative detection of stochastic microstructure in turbid media by photoacoustic spectral matching,” Appl. Phys. Lett. 102(11), 114102 (2013).
    [Crossref]
  4. G. Xu, I. A. Dar, C. Tao, X. Liu, C. X. Deng, and X. Wang, “Photoacoustic spectrum analysis for microstructure characterization in biological tissue: A feasibility study,” Appl. Phys. Lett. 101(22), 221102 (2012).
    [Crossref] [PubMed]
  5. E. M. Strohm, I. Gorelikov, N. Matsuura, and M. C. Kolios, “Modeling photoacoustic spectral features of micron-sized particles,” Phys. Med. Biol. 59(19), 5795–5810 (2014).
    [Crossref] [PubMed]
  6. R. E. Kumon, C. X. Deng, and X. Wang, “Frequency-domain analysis of photoacoustic imaging data from prostate adenocarcinoma tumors in a murine model,” Ultrasound Med. Biol. 37(5), 834–839 (2011).
    [Crossref] [PubMed]
  7. G. Xu, Z. X. Meng, J. D. Lin, C. X. Deng, P. L. Carson, J. B. Fowlkes, C. Tao, X. Liu, and X. Wang, “High resolution physio-chemical tissue analysis: towards non-invasive in vivo biopsy,” Sci. Rep. 6, 16937 (2016).
    [Crossref] [PubMed]
  8. M. P. Patterson, C. B. Riley, M. C. Kolios, and W. M. Whelan, “Optoacoustic signal amplitude and frequency spectrum analysis laser heated bovine liver ex vivo,” in 2011 IEEE International Ultrasonics Symposium (IUS) (IEEE, 2011), pp. 300–303.
    [Crossref]
  9. R. K. Saha and M. C. Kolios, “A simulation study on photoacoustic signals from red blood cells,” J. Acoust. Soc. Am. 129(5), 2935–2943 (2011).
    [Crossref] [PubMed]
  10. G. J. Diebold, T. Sun, and M. I. Khan, “Photoacoustic monopole radiation in one, two, and three dimensions,” Phys. Rev. Lett. 67(24), 3384–3387 (1991).
    [Crossref] [PubMed]
  11. S. Wang, C. Tao, Y. Yang, X. Wang, and X. Liu, “Theoretical and experimental study of spectral characteristics of the photoacoustic signal from stochastically distributed particles,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 62(7), 1245–1255 (2015).
    [Crossref] [PubMed]
  12. M. P. Patterson, C. B. Riley, M. C. Kolios, and W. M. Whelan, “Optoacoustic characterization of prostate cancer in an in vivo transgenic murine model,” J. Biomed. Opt. 19(5), 056008 (2014).
    [Crossref] [PubMed]
  13. G. Xu, M. C. Davis, J. Siddiqui, S. A. Tomlins, S. Huang, L. P. Kunju, J. T. Wei, and X. Wang, “Quantifying Gleason scores with photoacoustic spectral analysis: feasibility study with human tissues,” Biomed. Opt. Express 6(12), 4781–4789 (2015).
    [Crossref] [PubMed]
  14. G. Xu, Z.-X. Meng, J. D. Lin, J. Yuan, P. L. Carson, B. Joshi, and X. Wang, “The functional pitch of an organ: quantification of tissue texture with photoacoustic spectrum analysis,” Radiology 271(1), 248–254 (2014).
    [Crossref] [PubMed]
  15. E. M. Strohm, E. S. Berndl, and M. C. Kolios, “Probing red blood cell morphology using high-frequency photoacoustics,” Biophys. J. 105(1), 59–67 (2013).
    [Crossref] [PubMed]
  16. E. M. Strohm, E. S. Berndl, and M. C. Kolios, “High frequency label-free photoacoustic microscopy of single cells,” Photoacoustics 1(3-4), 49–53 (2013).
    [Crossref] [PubMed]
  17. E. M. Strohm, M. J. Moore, and M. C. Kolios, “Single cell photoacoustic microscopy: a review,” IEEE J. Sel. Top. Quantum Electron. 22(3), 1–15 (2016).
    [Crossref]
  18. J. W. Hunt, M. Arditi, and F. S. Foster, “Ultrasound transducers for pulse-echo medical imaging,” IEEE Trans. Biomed. Eng. 30(8), 453–481 (1983).
    [Crossref] [PubMed]
  19. R. E. Davidsen and S. W. Smith, “Two-dimensional arrays for medical ultrasound using multilayer flexible circuit interconnection,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 45(2), 338–348 (1998).
    [Crossref] [PubMed]
  20. F. S. Foster, K. A. Harasiewicz, and M. D. Sherar, “A history of medical and biological imaging with polyvinylidene fluoride (PVDF) transducers,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47(6), 1363–1371 (2000).
    [Crossref] [PubMed]
  21. C. Zhang, S.-L. Chen, T. Ling, and L. Guo, “Review of imprinted polymer microring as ultrasound detector: fabrication, characterization and applications,” IEEE Sens. J. 15, 3241–3248 (2015).
    [Crossref]
  22. C. Zhang, T. Ling, S.-L. Chen, and L. J. Guo, “Ultrabroad bandwidth and highly sensitive optical ultrasonic detector for photoacoustic imaging,” ACS Photonics 1(11), 1093–1098 (2014).
    [Crossref]
  23. E. Evans and Y.-C. Fung, “Improved measurements of the erythrocyte geometry,” Microvasc. Res. 4(4), 335–347 (1972).
    [Crossref] [PubMed]
  24. C. Zhang, S.-L. Chen, T. Ling, and L. J. Guo, “Imprinted Polymer Microrings as High-Performance Ultrasound Detectors in Photoacoustic Imaging,” J. Lightwave Technol. 33(20), 4318–4328 (2015).
    [Crossref]
  25. T. Ling, S.-L. Chen, and L. J. Guo, “Fabrication and characterization of high Q polymer micro-ring resonator and its application as a sensitive ultrasonic detector,” Opt. Express 19(2), 861–869 (2011).
    [Crossref] [PubMed]
  26. B. E. Saleh, M. C. Teich, and B. E. Saleh, Fundamentals of Photonics (Wiley New York, 1991), Chap. 20.
  27. Z. Xie, S.-L. Chen, T. Ling, L. J. Guo, P. L. Carson, and X. Wang, “Pure optical photoacoustic microscopy,” Opt. Express 19(10), 9027–9034 (2011).
    [Crossref] [PubMed]
  28. B.-Y. Hsieh, S.-L. Chen, T. Ling, L. J. Guo, and P.-C. Li, “All-optical scanhead for ultrasound and photoacoustic dual-modality imaging,” Opt. Express 20(2), 1588–1596 (2012).
    [Crossref] [PubMed]
  29. S.-L. Chen, Y.-C. Chang, C. Zhang, J. G. Ok, T. Ling, M. T. Mihnev, T. B. Norris, and L. J. Guo, “Efficient real-time detection of terahertz pulse radiation based on photoacoustic conversion by carbon nanotube nanocomposite,” Nat. Photonics 8(7), 537–542 (2014).
    [Crossref]
  30. A. H. Gandjbakhche, P. Mills, and P. Snabre, “Light-scattering technique for the study of orientation and deformation of red blood cells in a concentrated suspension,” Appl. Opt. 33(6), 1070–1078 (1994).
    [Crossref] [PubMed]
  31. E. M. Strohm, E. Hysi, and M. C. Kolios, “Photoacoustic measurements of single red blood cells,” in 2012 IEEE International Ultrasonics Symposium (IUS) (IEEE, 2012), pp. 1406–1409.
    [Crossref]
  32. M. Nakao, T. Nakao, and S. Yamazoe, “Adenosine triphosphate and maintenance of shape of the human red cells,” Nature 187(4741), 945–946 (1960).
    [Crossref] [PubMed]
  33. C. Zhang, H. Subbaraman, Q. Li, Z. Pan, J. G. Ok, T. Ling, C.-J. Chung, X. Zhang, X. Lin, R. T. Chen, and L. J. Guo, “Printed photonic elements: nanoimprinting and beyond,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(23), 5133–5153 (2016).
    [Crossref]
  34. M. Musielak, “Red blood cell-deformability measurement: review of techniques,” Clin. Hemorheol. Microcirc. 42(1), 47–64 (2009).
    [PubMed]
  35. Y. Park, C. A. Best, K. Badizadegan, R. R. Dasari, M. S. Feld, T. Kuriabova, M. L. Henle, A. J. Levine, and G. Popescu, “Measurement of red blood cell mechanics during morphological changes,” Proc. Natl. Acad. Sci. U.S.A. 107(15), 6731–6736 (2010).
    [Crossref] [PubMed]
  36. M. M. Brandão, A. Fontes, M. L. Barjas-Castro, L. C. Barbosa, F. F. Costa, C. L. Cesar, and S. T. Saad, “Optical tweezers for measuring red blood cell elasticity: application to the study of drug response in sickle cell disease,” Eur. J. Haematol. 70(4), 207–211 (2003).
    [Crossref] [PubMed]

2016 (3)

G. Xu, Z. X. Meng, J. D. Lin, C. X. Deng, P. L. Carson, J. B. Fowlkes, C. Tao, X. Liu, and X. Wang, “High resolution physio-chemical tissue analysis: towards non-invasive in vivo biopsy,” Sci. Rep. 6, 16937 (2016).
[Crossref] [PubMed]

E. M. Strohm, M. J. Moore, and M. C. Kolios, “Single cell photoacoustic microscopy: a review,” IEEE J. Sel. Top. Quantum Electron. 22(3), 1–15 (2016).
[Crossref]

C. Zhang, H. Subbaraman, Q. Li, Z. Pan, J. G. Ok, T. Ling, C.-J. Chung, X. Zhang, X. Lin, R. T. Chen, and L. J. Guo, “Printed photonic elements: nanoimprinting and beyond,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(23), 5133–5153 (2016).
[Crossref]

2015 (4)

C. Zhang, S.-L. Chen, T. Ling, and L. Guo, “Review of imprinted polymer microring as ultrasound detector: fabrication, characterization and applications,” IEEE Sens. J. 15, 3241–3248 (2015).
[Crossref]

C. Zhang, S.-L. Chen, T. Ling, and L. J. Guo, “Imprinted Polymer Microrings as High-Performance Ultrasound Detectors in Photoacoustic Imaging,” J. Lightwave Technol. 33(20), 4318–4328 (2015).
[Crossref]

G. Xu, M. C. Davis, J. Siddiqui, S. A. Tomlins, S. Huang, L. P. Kunju, J. T. Wei, and X. Wang, “Quantifying Gleason scores with photoacoustic spectral analysis: feasibility study with human tissues,” Biomed. Opt. Express 6(12), 4781–4789 (2015).
[Crossref] [PubMed]

S. Wang, C. Tao, Y. Yang, X. Wang, and X. Liu, “Theoretical and experimental study of spectral characteristics of the photoacoustic signal from stochastically distributed particles,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 62(7), 1245–1255 (2015).
[Crossref] [PubMed]

2014 (5)

M. P. Patterson, C. B. Riley, M. C. Kolios, and W. M. Whelan, “Optoacoustic characterization of prostate cancer in an in vivo transgenic murine model,” J. Biomed. Opt. 19(5), 056008 (2014).
[Crossref] [PubMed]

G. Xu, Z.-X. Meng, J. D. Lin, J. Yuan, P. L. Carson, B. Joshi, and X. Wang, “The functional pitch of an organ: quantification of tissue texture with photoacoustic spectrum analysis,” Radiology 271(1), 248–254 (2014).
[Crossref] [PubMed]

E. M. Strohm, I. Gorelikov, N. Matsuura, and M. C. Kolios, “Modeling photoacoustic spectral features of micron-sized particles,” Phys. Med. Biol. 59(19), 5795–5810 (2014).
[Crossref] [PubMed]

C. Zhang, T. Ling, S.-L. Chen, and L. J. Guo, “Ultrabroad bandwidth and highly sensitive optical ultrasonic detector for photoacoustic imaging,” ACS Photonics 1(11), 1093–1098 (2014).
[Crossref]

S.-L. Chen, Y.-C. Chang, C. Zhang, J. G. Ok, T. Ling, M. T. Mihnev, T. B. Norris, and L. J. Guo, “Efficient real-time detection of terahertz pulse radiation based on photoacoustic conversion by carbon nanotube nanocomposite,” Nat. Photonics 8(7), 537–542 (2014).
[Crossref]

2013 (3)

S. Wang, C. Tao, X. Wang, and X. Liu, “Quantitative detection of stochastic microstructure in turbid media by photoacoustic spectral matching,” Appl. Phys. Lett. 102(11), 114102 (2013).
[Crossref]

E. M. Strohm, E. S. Berndl, and M. C. Kolios, “Probing red blood cell morphology using high-frequency photoacoustics,” Biophys. J. 105(1), 59–67 (2013).
[Crossref] [PubMed]

E. M. Strohm, E. S. Berndl, and M. C. Kolios, “High frequency label-free photoacoustic microscopy of single cells,” Photoacoustics 1(3-4), 49–53 (2013).
[Crossref] [PubMed]

2012 (3)

G. Xu, I. A. Dar, C. Tao, X. Liu, C. X. Deng, and X. Wang, “Photoacoustic spectrum analysis for microstructure characterization in biological tissue: A feasibility study,” Appl. Phys. Lett. 101(22), 221102 (2012).
[Crossref] [PubMed]

Y. Yang, S. Wang, C. Tao, X. Wang, and X. Liu, “Photoacoustic tomography of tissue subwavelength microstructure with a narrowband and low frequency system,” Appl. Phys. Lett. 101(3), 034105 (2012).
[Crossref]

B.-Y. Hsieh, S.-L. Chen, T. Ling, L. J. Guo, and P.-C. Li, “All-optical scanhead for ultrasound and photoacoustic dual-modality imaging,” Opt. Express 20(2), 1588–1596 (2012).
[Crossref] [PubMed]

2011 (5)

T. Ling, S.-L. Chen, and L. J. Guo, “Fabrication and characterization of high Q polymer micro-ring resonator and its application as a sensitive ultrasonic detector,” Opt. Express 19(2), 861–869 (2011).
[Crossref] [PubMed]

Z. Xie, S.-L. Chen, T. Ling, L. J. Guo, P. L. Carson, and X. Wang, “Pure optical photoacoustic microscopy,” Opt. Express 19(10), 9027–9034 (2011).
[Crossref] [PubMed]

R. E. Kumon, C. X. Deng, and X. Wang, “Frequency-domain analysis of photoacoustic imaging data from prostate adenocarcinoma tumors in a murine model,” Ultrasound Med. Biol. 37(5), 834–839 (2011).
[Crossref] [PubMed]

R. E. Kumon, C. X. Deng, and X. Wang, “Frequency-domain analysis of photoacoustic imaging data from prostate adenocarcinoma tumors in a murine model,” Ultrasound Med. Biol. 37(5), 834–839 (2011).
[Crossref] [PubMed]

R. K. Saha and M. C. Kolios, “A simulation study on photoacoustic signals from red blood cells,” J. Acoust. Soc. Am. 129(5), 2935–2943 (2011).
[Crossref] [PubMed]

2010 (1)

Y. Park, C. A. Best, K. Badizadegan, R. R. Dasari, M. S. Feld, T. Kuriabova, M. L. Henle, A. J. Levine, and G. Popescu, “Measurement of red blood cell mechanics during morphological changes,” Proc. Natl. Acad. Sci. U.S.A. 107(15), 6731–6736 (2010).
[Crossref] [PubMed]

2009 (1)

M. Musielak, “Red blood cell-deformability measurement: review of techniques,” Clin. Hemorheol. Microcirc. 42(1), 47–64 (2009).
[PubMed]

2003 (1)

M. M. Brandão, A. Fontes, M. L. Barjas-Castro, L. C. Barbosa, F. F. Costa, C. L. Cesar, and S. T. Saad, “Optical tweezers for measuring red blood cell elasticity: application to the study of drug response in sickle cell disease,” Eur. J. Haematol. 70(4), 207–211 (2003).
[Crossref] [PubMed]

2000 (1)

F. S. Foster, K. A. Harasiewicz, and M. D. Sherar, “A history of medical and biological imaging with polyvinylidene fluoride (PVDF) transducers,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47(6), 1363–1371 (2000).
[Crossref] [PubMed]

1998 (1)

R. E. Davidsen and S. W. Smith, “Two-dimensional arrays for medical ultrasound using multilayer flexible circuit interconnection,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 45(2), 338–348 (1998).
[Crossref] [PubMed]

1994 (1)

1991 (1)

G. J. Diebold, T. Sun, and M. I. Khan, “Photoacoustic monopole radiation in one, two, and three dimensions,” Phys. Rev. Lett. 67(24), 3384–3387 (1991).
[Crossref] [PubMed]

1983 (1)

J. W. Hunt, M. Arditi, and F. S. Foster, “Ultrasound transducers for pulse-echo medical imaging,” IEEE Trans. Biomed. Eng. 30(8), 453–481 (1983).
[Crossref] [PubMed]

1972 (1)

E. Evans and Y.-C. Fung, “Improved measurements of the erythrocyte geometry,” Microvasc. Res. 4(4), 335–347 (1972).
[Crossref] [PubMed]

1960 (1)

M. Nakao, T. Nakao, and S. Yamazoe, “Adenosine triphosphate and maintenance of shape of the human red cells,” Nature 187(4741), 945–946 (1960).
[Crossref] [PubMed]

Arditi, M.

J. W. Hunt, M. Arditi, and F. S. Foster, “Ultrasound transducers for pulse-echo medical imaging,” IEEE Trans. Biomed. Eng. 30(8), 453–481 (1983).
[Crossref] [PubMed]

Badizadegan, K.

Y. Park, C. A. Best, K. Badizadegan, R. R. Dasari, M. S. Feld, T. Kuriabova, M. L. Henle, A. J. Levine, and G. Popescu, “Measurement of red blood cell mechanics during morphological changes,” Proc. Natl. Acad. Sci. U.S.A. 107(15), 6731–6736 (2010).
[Crossref] [PubMed]

Barbosa, L. C.

M. M. Brandão, A. Fontes, M. L. Barjas-Castro, L. C. Barbosa, F. F. Costa, C. L. Cesar, and S. T. Saad, “Optical tweezers for measuring red blood cell elasticity: application to the study of drug response in sickle cell disease,” Eur. J. Haematol. 70(4), 207–211 (2003).
[Crossref] [PubMed]

Barjas-Castro, M. L.

M. M. Brandão, A. Fontes, M. L. Barjas-Castro, L. C. Barbosa, F. F. Costa, C. L. Cesar, and S. T. Saad, “Optical tweezers for measuring red blood cell elasticity: application to the study of drug response in sickle cell disease,” Eur. J. Haematol. 70(4), 207–211 (2003).
[Crossref] [PubMed]

Berndl, E. S.

E. M. Strohm, E. S. Berndl, and M. C. Kolios, “High frequency label-free photoacoustic microscopy of single cells,” Photoacoustics 1(3-4), 49–53 (2013).
[Crossref] [PubMed]

E. M. Strohm, E. S. Berndl, and M. C. Kolios, “Probing red blood cell morphology using high-frequency photoacoustics,” Biophys. J. 105(1), 59–67 (2013).
[Crossref] [PubMed]

Best, C. A.

Y. Park, C. A. Best, K. Badizadegan, R. R. Dasari, M. S. Feld, T. Kuriabova, M. L. Henle, A. J. Levine, and G. Popescu, “Measurement of red blood cell mechanics during morphological changes,” Proc. Natl. Acad. Sci. U.S.A. 107(15), 6731–6736 (2010).
[Crossref] [PubMed]

Brandão, M. M.

M. M. Brandão, A. Fontes, M. L. Barjas-Castro, L. C. Barbosa, F. F. Costa, C. L. Cesar, and S. T. Saad, “Optical tweezers for measuring red blood cell elasticity: application to the study of drug response in sickle cell disease,” Eur. J. Haematol. 70(4), 207–211 (2003).
[Crossref] [PubMed]

Carson, P. L.

G. Xu, Z. X. Meng, J. D. Lin, C. X. Deng, P. L. Carson, J. B. Fowlkes, C. Tao, X. Liu, and X. Wang, “High resolution physio-chemical tissue analysis: towards non-invasive in vivo biopsy,” Sci. Rep. 6, 16937 (2016).
[Crossref] [PubMed]

G. Xu, Z.-X. Meng, J. D. Lin, J. Yuan, P. L. Carson, B. Joshi, and X. Wang, “The functional pitch of an organ: quantification of tissue texture with photoacoustic spectrum analysis,” Radiology 271(1), 248–254 (2014).
[Crossref] [PubMed]

Z. Xie, S.-L. Chen, T. Ling, L. J. Guo, P. L. Carson, and X. Wang, “Pure optical photoacoustic microscopy,” Opt. Express 19(10), 9027–9034 (2011).
[Crossref] [PubMed]

Cesar, C. L.

M. M. Brandão, A. Fontes, M. L. Barjas-Castro, L. C. Barbosa, F. F. Costa, C. L. Cesar, and S. T. Saad, “Optical tweezers for measuring red blood cell elasticity: application to the study of drug response in sickle cell disease,” Eur. J. Haematol. 70(4), 207–211 (2003).
[Crossref] [PubMed]

Chang, Y.-C.

S.-L. Chen, Y.-C. Chang, C. Zhang, J. G. Ok, T. Ling, M. T. Mihnev, T. B. Norris, and L. J. Guo, “Efficient real-time detection of terahertz pulse radiation based on photoacoustic conversion by carbon nanotube nanocomposite,” Nat. Photonics 8(7), 537–542 (2014).
[Crossref]

Chen, R. T.

C. Zhang, H. Subbaraman, Q. Li, Z. Pan, J. G. Ok, T. Ling, C.-J. Chung, X. Zhang, X. Lin, R. T. Chen, and L. J. Guo, “Printed photonic elements: nanoimprinting and beyond,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(23), 5133–5153 (2016).
[Crossref]

Chen, S.-L.

C. Zhang, S.-L. Chen, T. Ling, and L. Guo, “Review of imprinted polymer microring as ultrasound detector: fabrication, characterization and applications,” IEEE Sens. J. 15, 3241–3248 (2015).
[Crossref]

C. Zhang, S.-L. Chen, T. Ling, and L. J. Guo, “Imprinted Polymer Microrings as High-Performance Ultrasound Detectors in Photoacoustic Imaging,” J. Lightwave Technol. 33(20), 4318–4328 (2015).
[Crossref]

C. Zhang, T. Ling, S.-L. Chen, and L. J. Guo, “Ultrabroad bandwidth and highly sensitive optical ultrasonic detector for photoacoustic imaging,” ACS Photonics 1(11), 1093–1098 (2014).
[Crossref]

S.-L. Chen, Y.-C. Chang, C. Zhang, J. G. Ok, T. Ling, M. T. Mihnev, T. B. Norris, and L. J. Guo, “Efficient real-time detection of terahertz pulse radiation based on photoacoustic conversion by carbon nanotube nanocomposite,” Nat. Photonics 8(7), 537–542 (2014).
[Crossref]

B.-Y. Hsieh, S.-L. Chen, T. Ling, L. J. Guo, and P.-C. Li, “All-optical scanhead for ultrasound and photoacoustic dual-modality imaging,” Opt. Express 20(2), 1588–1596 (2012).
[Crossref] [PubMed]

Z. Xie, S.-L. Chen, T. Ling, L. J. Guo, P. L. Carson, and X. Wang, “Pure optical photoacoustic microscopy,” Opt. Express 19(10), 9027–9034 (2011).
[Crossref] [PubMed]

T. Ling, S.-L. Chen, and L. J. Guo, “Fabrication and characterization of high Q polymer micro-ring resonator and its application as a sensitive ultrasonic detector,” Opt. Express 19(2), 861–869 (2011).
[Crossref] [PubMed]

Chung, C.-J.

C. Zhang, H. Subbaraman, Q. Li, Z. Pan, J. G. Ok, T. Ling, C.-J. Chung, X. Zhang, X. Lin, R. T. Chen, and L. J. Guo, “Printed photonic elements: nanoimprinting and beyond,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(23), 5133–5153 (2016).
[Crossref]

Costa, F. F.

M. M. Brandão, A. Fontes, M. L. Barjas-Castro, L. C. Barbosa, F. F. Costa, C. L. Cesar, and S. T. Saad, “Optical tweezers for measuring red blood cell elasticity: application to the study of drug response in sickle cell disease,” Eur. J. Haematol. 70(4), 207–211 (2003).
[Crossref] [PubMed]

Dar, I. A.

G. Xu, I. A. Dar, C. Tao, X. Liu, C. X. Deng, and X. Wang, “Photoacoustic spectrum analysis for microstructure characterization in biological tissue: A feasibility study,” Appl. Phys. Lett. 101(22), 221102 (2012).
[Crossref] [PubMed]

Dasari, R. R.

Y. Park, C. A. Best, K. Badizadegan, R. R. Dasari, M. S. Feld, T. Kuriabova, M. L. Henle, A. J. Levine, and G. Popescu, “Measurement of red blood cell mechanics during morphological changes,” Proc. Natl. Acad. Sci. U.S.A. 107(15), 6731–6736 (2010).
[Crossref] [PubMed]

Davidsen, R. E.

R. E. Davidsen and S. W. Smith, “Two-dimensional arrays for medical ultrasound using multilayer flexible circuit interconnection,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 45(2), 338–348 (1998).
[Crossref] [PubMed]

Davis, M. C.

Deng, C. X.

G. Xu, Z. X. Meng, J. D. Lin, C. X. Deng, P. L. Carson, J. B. Fowlkes, C. Tao, X. Liu, and X. Wang, “High resolution physio-chemical tissue analysis: towards non-invasive in vivo biopsy,” Sci. Rep. 6, 16937 (2016).
[Crossref] [PubMed]

G. Xu, I. A. Dar, C. Tao, X. Liu, C. X. Deng, and X. Wang, “Photoacoustic spectrum analysis for microstructure characterization in biological tissue: A feasibility study,” Appl. Phys. Lett. 101(22), 221102 (2012).
[Crossref] [PubMed]

R. E. Kumon, C. X. Deng, and X. Wang, “Frequency-domain analysis of photoacoustic imaging data from prostate adenocarcinoma tumors in a murine model,” Ultrasound Med. Biol. 37(5), 834–839 (2011).
[Crossref] [PubMed]

R. E. Kumon, C. X. Deng, and X. Wang, “Frequency-domain analysis of photoacoustic imaging data from prostate adenocarcinoma tumors in a murine model,” Ultrasound Med. Biol. 37(5), 834–839 (2011).
[Crossref] [PubMed]

Diebold, G. J.

G. J. Diebold, T. Sun, and M. I. Khan, “Photoacoustic monopole radiation in one, two, and three dimensions,” Phys. Rev. Lett. 67(24), 3384–3387 (1991).
[Crossref] [PubMed]

Evans, E.

E. Evans and Y.-C. Fung, “Improved measurements of the erythrocyte geometry,” Microvasc. Res. 4(4), 335–347 (1972).
[Crossref] [PubMed]

Feld, M. S.

Y. Park, C. A. Best, K. Badizadegan, R. R. Dasari, M. S. Feld, T. Kuriabova, M. L. Henle, A. J. Levine, and G. Popescu, “Measurement of red blood cell mechanics during morphological changes,” Proc. Natl. Acad. Sci. U.S.A. 107(15), 6731–6736 (2010).
[Crossref] [PubMed]

Fontes, A.

M. M. Brandão, A. Fontes, M. L. Barjas-Castro, L. C. Barbosa, F. F. Costa, C. L. Cesar, and S. T. Saad, “Optical tweezers for measuring red blood cell elasticity: application to the study of drug response in sickle cell disease,” Eur. J. Haematol. 70(4), 207–211 (2003).
[Crossref] [PubMed]

Foster, F. S.

F. S. Foster, K. A. Harasiewicz, and M. D. Sherar, “A history of medical and biological imaging with polyvinylidene fluoride (PVDF) transducers,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47(6), 1363–1371 (2000).
[Crossref] [PubMed]

J. W. Hunt, M. Arditi, and F. S. Foster, “Ultrasound transducers for pulse-echo medical imaging,” IEEE Trans. Biomed. Eng. 30(8), 453–481 (1983).
[Crossref] [PubMed]

Fowlkes, J. B.

G. Xu, Z. X. Meng, J. D. Lin, C. X. Deng, P. L. Carson, J. B. Fowlkes, C. Tao, X. Liu, and X. Wang, “High resolution physio-chemical tissue analysis: towards non-invasive in vivo biopsy,” Sci. Rep. 6, 16937 (2016).
[Crossref] [PubMed]

Fung, Y.-C.

E. Evans and Y.-C. Fung, “Improved measurements of the erythrocyte geometry,” Microvasc. Res. 4(4), 335–347 (1972).
[Crossref] [PubMed]

Gandjbakhche, A. H.

Gorelikov, I.

E. M. Strohm, I. Gorelikov, N. Matsuura, and M. C. Kolios, “Modeling photoacoustic spectral features of micron-sized particles,” Phys. Med. Biol. 59(19), 5795–5810 (2014).
[Crossref] [PubMed]

Guo, L.

C. Zhang, S.-L. Chen, T. Ling, and L. Guo, “Review of imprinted polymer microring as ultrasound detector: fabrication, characterization and applications,” IEEE Sens. J. 15, 3241–3248 (2015).
[Crossref]

Guo, L. J.

C. Zhang, H. Subbaraman, Q. Li, Z. Pan, J. G. Ok, T. Ling, C.-J. Chung, X. Zhang, X. Lin, R. T. Chen, and L. J. Guo, “Printed photonic elements: nanoimprinting and beyond,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(23), 5133–5153 (2016).
[Crossref]

C. Zhang, S.-L. Chen, T. Ling, and L. J. Guo, “Imprinted Polymer Microrings as High-Performance Ultrasound Detectors in Photoacoustic Imaging,” J. Lightwave Technol. 33(20), 4318–4328 (2015).
[Crossref]

C. Zhang, T. Ling, S.-L. Chen, and L. J. Guo, “Ultrabroad bandwidth and highly sensitive optical ultrasonic detector for photoacoustic imaging,” ACS Photonics 1(11), 1093–1098 (2014).
[Crossref]

S.-L. Chen, Y.-C. Chang, C. Zhang, J. G. Ok, T. Ling, M. T. Mihnev, T. B. Norris, and L. J. Guo, “Efficient real-time detection of terahertz pulse radiation based on photoacoustic conversion by carbon nanotube nanocomposite,” Nat. Photonics 8(7), 537–542 (2014).
[Crossref]

B.-Y. Hsieh, S.-L. Chen, T. Ling, L. J. Guo, and P.-C. Li, “All-optical scanhead for ultrasound and photoacoustic dual-modality imaging,” Opt. Express 20(2), 1588–1596 (2012).
[Crossref] [PubMed]

T. Ling, S.-L. Chen, and L. J. Guo, “Fabrication and characterization of high Q polymer micro-ring resonator and its application as a sensitive ultrasonic detector,” Opt. Express 19(2), 861–869 (2011).
[Crossref] [PubMed]

Z. Xie, S.-L. Chen, T. Ling, L. J. Guo, P. L. Carson, and X. Wang, “Pure optical photoacoustic microscopy,” Opt. Express 19(10), 9027–9034 (2011).
[Crossref] [PubMed]

Harasiewicz, K. A.

F. S. Foster, K. A. Harasiewicz, and M. D. Sherar, “A history of medical and biological imaging with polyvinylidene fluoride (PVDF) transducers,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47(6), 1363–1371 (2000).
[Crossref] [PubMed]

Henle, M. L.

Y. Park, C. A. Best, K. Badizadegan, R. R. Dasari, M. S. Feld, T. Kuriabova, M. L. Henle, A. J. Levine, and G. Popescu, “Measurement of red blood cell mechanics during morphological changes,” Proc. Natl. Acad. Sci. U.S.A. 107(15), 6731–6736 (2010).
[Crossref] [PubMed]

Hsieh, B.-Y.

Huang, S.

Hunt, J. W.

J. W. Hunt, M. Arditi, and F. S. Foster, “Ultrasound transducers for pulse-echo medical imaging,” IEEE Trans. Biomed. Eng. 30(8), 453–481 (1983).
[Crossref] [PubMed]

Hysi, E.

E. M. Strohm, E. Hysi, and M. C. Kolios, “Photoacoustic measurements of single red blood cells,” in 2012 IEEE International Ultrasonics Symposium (IUS) (IEEE, 2012), pp. 1406–1409.
[Crossref]

Joshi, B.

G. Xu, Z.-X. Meng, J. D. Lin, J. Yuan, P. L. Carson, B. Joshi, and X. Wang, “The functional pitch of an organ: quantification of tissue texture with photoacoustic spectrum analysis,” Radiology 271(1), 248–254 (2014).
[Crossref] [PubMed]

Khan, M. I.

G. J. Diebold, T. Sun, and M. I. Khan, “Photoacoustic monopole radiation in one, two, and three dimensions,” Phys. Rev. Lett. 67(24), 3384–3387 (1991).
[Crossref] [PubMed]

Kolios, M. C.

E. M. Strohm, M. J. Moore, and M. C. Kolios, “Single cell photoacoustic microscopy: a review,” IEEE J. Sel. Top. Quantum Electron. 22(3), 1–15 (2016).
[Crossref]

M. P. Patterson, C. B. Riley, M. C. Kolios, and W. M. Whelan, “Optoacoustic characterization of prostate cancer in an in vivo transgenic murine model,” J. Biomed. Opt. 19(5), 056008 (2014).
[Crossref] [PubMed]

E. M. Strohm, I. Gorelikov, N. Matsuura, and M. C. Kolios, “Modeling photoacoustic spectral features of micron-sized particles,” Phys. Med. Biol. 59(19), 5795–5810 (2014).
[Crossref] [PubMed]

E. M. Strohm, E. S. Berndl, and M. C. Kolios, “High frequency label-free photoacoustic microscopy of single cells,” Photoacoustics 1(3-4), 49–53 (2013).
[Crossref] [PubMed]

E. M. Strohm, E. S. Berndl, and M. C. Kolios, “Probing red blood cell morphology using high-frequency photoacoustics,” Biophys. J. 105(1), 59–67 (2013).
[Crossref] [PubMed]

R. K. Saha and M. C. Kolios, “A simulation study on photoacoustic signals from red blood cells,” J. Acoust. Soc. Am. 129(5), 2935–2943 (2011).
[Crossref] [PubMed]

M. P. Patterson, C. B. Riley, M. C. Kolios, and W. M. Whelan, “Optoacoustic signal amplitude and frequency spectrum analysis laser heated bovine liver ex vivo,” in 2011 IEEE International Ultrasonics Symposium (IUS) (IEEE, 2011), pp. 300–303.
[Crossref]

E. M. Strohm, E. Hysi, and M. C. Kolios, “Photoacoustic measurements of single red blood cells,” in 2012 IEEE International Ultrasonics Symposium (IUS) (IEEE, 2012), pp. 1406–1409.
[Crossref]

Kumon, R. E.

R. E. Kumon, C. X. Deng, and X. Wang, “Frequency-domain analysis of photoacoustic imaging data from prostate adenocarcinoma tumors in a murine model,” Ultrasound Med. Biol. 37(5), 834–839 (2011).
[Crossref] [PubMed]

R. E. Kumon, C. X. Deng, and X. Wang, “Frequency-domain analysis of photoacoustic imaging data from prostate adenocarcinoma tumors in a murine model,” Ultrasound Med. Biol. 37(5), 834–839 (2011).
[Crossref] [PubMed]

Kunju, L. P.

Kuriabova, T.

Y. Park, C. A. Best, K. Badizadegan, R. R. Dasari, M. S. Feld, T. Kuriabova, M. L. Henle, A. J. Levine, and G. Popescu, “Measurement of red blood cell mechanics during morphological changes,” Proc. Natl. Acad. Sci. U.S.A. 107(15), 6731–6736 (2010).
[Crossref] [PubMed]

Levine, A. J.

Y. Park, C. A. Best, K. Badizadegan, R. R. Dasari, M. S. Feld, T. Kuriabova, M. L. Henle, A. J. Levine, and G. Popescu, “Measurement of red blood cell mechanics during morphological changes,” Proc. Natl. Acad. Sci. U.S.A. 107(15), 6731–6736 (2010).
[Crossref] [PubMed]

Li, P.-C.

Li, Q.

C. Zhang, H. Subbaraman, Q. Li, Z. Pan, J. G. Ok, T. Ling, C.-J. Chung, X. Zhang, X. Lin, R. T. Chen, and L. J. Guo, “Printed photonic elements: nanoimprinting and beyond,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(23), 5133–5153 (2016).
[Crossref]

Lin, J. D.

G. Xu, Z. X. Meng, J. D. Lin, C. X. Deng, P. L. Carson, J. B. Fowlkes, C. Tao, X. Liu, and X. Wang, “High resolution physio-chemical tissue analysis: towards non-invasive in vivo biopsy,” Sci. Rep. 6, 16937 (2016).
[Crossref] [PubMed]

G. Xu, Z.-X. Meng, J. D. Lin, J. Yuan, P. L. Carson, B. Joshi, and X. Wang, “The functional pitch of an organ: quantification of tissue texture with photoacoustic spectrum analysis,” Radiology 271(1), 248–254 (2014).
[Crossref] [PubMed]

Lin, X.

C. Zhang, H. Subbaraman, Q. Li, Z. Pan, J. G. Ok, T. Ling, C.-J. Chung, X. Zhang, X. Lin, R. T. Chen, and L. J. Guo, “Printed photonic elements: nanoimprinting and beyond,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(23), 5133–5153 (2016).
[Crossref]

Ling, T.

C. Zhang, H. Subbaraman, Q. Li, Z. Pan, J. G. Ok, T. Ling, C.-J. Chung, X. Zhang, X. Lin, R. T. Chen, and L. J. Guo, “Printed photonic elements: nanoimprinting and beyond,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(23), 5133–5153 (2016).
[Crossref]

C. Zhang, S.-L. Chen, T. Ling, and L. Guo, “Review of imprinted polymer microring as ultrasound detector: fabrication, characterization and applications,” IEEE Sens. J. 15, 3241–3248 (2015).
[Crossref]

C. Zhang, S.-L. Chen, T. Ling, and L. J. Guo, “Imprinted Polymer Microrings as High-Performance Ultrasound Detectors in Photoacoustic Imaging,” J. Lightwave Technol. 33(20), 4318–4328 (2015).
[Crossref]

C. Zhang, T. Ling, S.-L. Chen, and L. J. Guo, “Ultrabroad bandwidth and highly sensitive optical ultrasonic detector for photoacoustic imaging,” ACS Photonics 1(11), 1093–1098 (2014).
[Crossref]

S.-L. Chen, Y.-C. Chang, C. Zhang, J. G. Ok, T. Ling, M. T. Mihnev, T. B. Norris, and L. J. Guo, “Efficient real-time detection of terahertz pulse radiation based on photoacoustic conversion by carbon nanotube nanocomposite,” Nat. Photonics 8(7), 537–542 (2014).
[Crossref]

B.-Y. Hsieh, S.-L. Chen, T. Ling, L. J. Guo, and P.-C. Li, “All-optical scanhead for ultrasound and photoacoustic dual-modality imaging,” Opt. Express 20(2), 1588–1596 (2012).
[Crossref] [PubMed]

Z. Xie, S.-L. Chen, T. Ling, L. J. Guo, P. L. Carson, and X. Wang, “Pure optical photoacoustic microscopy,” Opt. Express 19(10), 9027–9034 (2011).
[Crossref] [PubMed]

T. Ling, S.-L. Chen, and L. J. Guo, “Fabrication and characterization of high Q polymer micro-ring resonator and its application as a sensitive ultrasonic detector,” Opt. Express 19(2), 861–869 (2011).
[Crossref] [PubMed]

Liu, X.

G. Xu, Z. X. Meng, J. D. Lin, C. X. Deng, P. L. Carson, J. B. Fowlkes, C. Tao, X. Liu, and X. Wang, “High resolution physio-chemical tissue analysis: towards non-invasive in vivo biopsy,” Sci. Rep. 6, 16937 (2016).
[Crossref] [PubMed]

S. Wang, C. Tao, Y. Yang, X. Wang, and X. Liu, “Theoretical and experimental study of spectral characteristics of the photoacoustic signal from stochastically distributed particles,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 62(7), 1245–1255 (2015).
[Crossref] [PubMed]

S. Wang, C. Tao, X. Wang, and X. Liu, “Quantitative detection of stochastic microstructure in turbid media by photoacoustic spectral matching,” Appl. Phys. Lett. 102(11), 114102 (2013).
[Crossref]

Y. Yang, S. Wang, C. Tao, X. Wang, and X. Liu, “Photoacoustic tomography of tissue subwavelength microstructure with a narrowband and low frequency system,” Appl. Phys. Lett. 101(3), 034105 (2012).
[Crossref]

G. Xu, I. A. Dar, C. Tao, X. Liu, C. X. Deng, and X. Wang, “Photoacoustic spectrum analysis for microstructure characterization in biological tissue: A feasibility study,” Appl. Phys. Lett. 101(22), 221102 (2012).
[Crossref] [PubMed]

Matsuura, N.

E. M. Strohm, I. Gorelikov, N. Matsuura, and M. C. Kolios, “Modeling photoacoustic spectral features of micron-sized particles,” Phys. Med. Biol. 59(19), 5795–5810 (2014).
[Crossref] [PubMed]

Meng, Z. X.

G. Xu, Z. X. Meng, J. D. Lin, C. X. Deng, P. L. Carson, J. B. Fowlkes, C. Tao, X. Liu, and X. Wang, “High resolution physio-chemical tissue analysis: towards non-invasive in vivo biopsy,” Sci. Rep. 6, 16937 (2016).
[Crossref] [PubMed]

Meng, Z.-X.

G. Xu, Z.-X. Meng, J. D. Lin, J. Yuan, P. L. Carson, B. Joshi, and X. Wang, “The functional pitch of an organ: quantification of tissue texture with photoacoustic spectrum analysis,” Radiology 271(1), 248–254 (2014).
[Crossref] [PubMed]

Mihnev, M. T.

S.-L. Chen, Y.-C. Chang, C. Zhang, J. G. Ok, T. Ling, M. T. Mihnev, T. B. Norris, and L. J. Guo, “Efficient real-time detection of terahertz pulse radiation based on photoacoustic conversion by carbon nanotube nanocomposite,” Nat. Photonics 8(7), 537–542 (2014).
[Crossref]

Mills, P.

Moore, M. J.

E. M. Strohm, M. J. Moore, and M. C. Kolios, “Single cell photoacoustic microscopy: a review,” IEEE J. Sel. Top. Quantum Electron. 22(3), 1–15 (2016).
[Crossref]

Musielak, M.

M. Musielak, “Red blood cell-deformability measurement: review of techniques,” Clin. Hemorheol. Microcirc. 42(1), 47–64 (2009).
[PubMed]

Nakao, M.

M. Nakao, T. Nakao, and S. Yamazoe, “Adenosine triphosphate and maintenance of shape of the human red cells,” Nature 187(4741), 945–946 (1960).
[Crossref] [PubMed]

Nakao, T.

M. Nakao, T. Nakao, and S. Yamazoe, “Adenosine triphosphate and maintenance of shape of the human red cells,” Nature 187(4741), 945–946 (1960).
[Crossref] [PubMed]

Norris, T. B.

S.-L. Chen, Y.-C. Chang, C. Zhang, J. G. Ok, T. Ling, M. T. Mihnev, T. B. Norris, and L. J. Guo, “Efficient real-time detection of terahertz pulse radiation based on photoacoustic conversion by carbon nanotube nanocomposite,” Nat. Photonics 8(7), 537–542 (2014).
[Crossref]

Ok, J. G.

C. Zhang, H. Subbaraman, Q. Li, Z. Pan, J. G. Ok, T. Ling, C.-J. Chung, X. Zhang, X. Lin, R. T. Chen, and L. J. Guo, “Printed photonic elements: nanoimprinting and beyond,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(23), 5133–5153 (2016).
[Crossref]

S.-L. Chen, Y.-C. Chang, C. Zhang, J. G. Ok, T. Ling, M. T. Mihnev, T. B. Norris, and L. J. Guo, “Efficient real-time detection of terahertz pulse radiation based on photoacoustic conversion by carbon nanotube nanocomposite,” Nat. Photonics 8(7), 537–542 (2014).
[Crossref]

Pan, Z.

C. Zhang, H. Subbaraman, Q. Li, Z. Pan, J. G. Ok, T. Ling, C.-J. Chung, X. Zhang, X. Lin, R. T. Chen, and L. J. Guo, “Printed photonic elements: nanoimprinting and beyond,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(23), 5133–5153 (2016).
[Crossref]

Park, Y.

Y. Park, C. A. Best, K. Badizadegan, R. R. Dasari, M. S. Feld, T. Kuriabova, M. L. Henle, A. J. Levine, and G. Popescu, “Measurement of red blood cell mechanics during morphological changes,” Proc. Natl. Acad. Sci. U.S.A. 107(15), 6731–6736 (2010).
[Crossref] [PubMed]

Patterson, M. P.

M. P. Patterson, C. B. Riley, M. C. Kolios, and W. M. Whelan, “Optoacoustic characterization of prostate cancer in an in vivo transgenic murine model,” J. Biomed. Opt. 19(5), 056008 (2014).
[Crossref] [PubMed]

M. P. Patterson, C. B. Riley, M. C. Kolios, and W. M. Whelan, “Optoacoustic signal amplitude and frequency spectrum analysis laser heated bovine liver ex vivo,” in 2011 IEEE International Ultrasonics Symposium (IUS) (IEEE, 2011), pp. 300–303.
[Crossref]

Popescu, G.

Y. Park, C. A. Best, K. Badizadegan, R. R. Dasari, M. S. Feld, T. Kuriabova, M. L. Henle, A. J. Levine, and G. Popescu, “Measurement of red blood cell mechanics during morphological changes,” Proc. Natl. Acad. Sci. U.S.A. 107(15), 6731–6736 (2010).
[Crossref] [PubMed]

Riley, C. B.

M. P. Patterson, C. B. Riley, M. C. Kolios, and W. M. Whelan, “Optoacoustic characterization of prostate cancer in an in vivo transgenic murine model,” J. Biomed. Opt. 19(5), 056008 (2014).
[Crossref] [PubMed]

M. P. Patterson, C. B. Riley, M. C. Kolios, and W. M. Whelan, “Optoacoustic signal amplitude and frequency spectrum analysis laser heated bovine liver ex vivo,” in 2011 IEEE International Ultrasonics Symposium (IUS) (IEEE, 2011), pp. 300–303.
[Crossref]

Saad, S. T.

M. M. Brandão, A. Fontes, M. L. Barjas-Castro, L. C. Barbosa, F. F. Costa, C. L. Cesar, and S. T. Saad, “Optical tweezers for measuring red blood cell elasticity: application to the study of drug response in sickle cell disease,” Eur. J. Haematol. 70(4), 207–211 (2003).
[Crossref] [PubMed]

Saha, R. K.

R. K. Saha and M. C. Kolios, “A simulation study on photoacoustic signals from red blood cells,” J. Acoust. Soc. Am. 129(5), 2935–2943 (2011).
[Crossref] [PubMed]

Sherar, M. D.

F. S. Foster, K. A. Harasiewicz, and M. D. Sherar, “A history of medical and biological imaging with polyvinylidene fluoride (PVDF) transducers,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47(6), 1363–1371 (2000).
[Crossref] [PubMed]

Siddiqui, J.

Smith, S. W.

R. E. Davidsen and S. W. Smith, “Two-dimensional arrays for medical ultrasound using multilayer flexible circuit interconnection,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 45(2), 338–348 (1998).
[Crossref] [PubMed]

Snabre, P.

Strohm, E. M.

E. M. Strohm, M. J. Moore, and M. C. Kolios, “Single cell photoacoustic microscopy: a review,” IEEE J. Sel. Top. Quantum Electron. 22(3), 1–15 (2016).
[Crossref]

E. M. Strohm, I. Gorelikov, N. Matsuura, and M. C. Kolios, “Modeling photoacoustic spectral features of micron-sized particles,” Phys. Med. Biol. 59(19), 5795–5810 (2014).
[Crossref] [PubMed]

E. M. Strohm, E. S. Berndl, and M. C. Kolios, “Probing red blood cell morphology using high-frequency photoacoustics,” Biophys. J. 105(1), 59–67 (2013).
[Crossref] [PubMed]

E. M. Strohm, E. S. Berndl, and M. C. Kolios, “High frequency label-free photoacoustic microscopy of single cells,” Photoacoustics 1(3-4), 49–53 (2013).
[Crossref] [PubMed]

E. M. Strohm, E. Hysi, and M. C. Kolios, “Photoacoustic measurements of single red blood cells,” in 2012 IEEE International Ultrasonics Symposium (IUS) (IEEE, 2012), pp. 1406–1409.
[Crossref]

Subbaraman, H.

C. Zhang, H. Subbaraman, Q. Li, Z. Pan, J. G. Ok, T. Ling, C.-J. Chung, X. Zhang, X. Lin, R. T. Chen, and L. J. Guo, “Printed photonic elements: nanoimprinting and beyond,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(23), 5133–5153 (2016).
[Crossref]

Sun, T.

G. J. Diebold, T. Sun, and M. I. Khan, “Photoacoustic monopole radiation in one, two, and three dimensions,” Phys. Rev. Lett. 67(24), 3384–3387 (1991).
[Crossref] [PubMed]

Tao, C.

G. Xu, Z. X. Meng, J. D. Lin, C. X. Deng, P. L. Carson, J. B. Fowlkes, C. Tao, X. Liu, and X. Wang, “High resolution physio-chemical tissue analysis: towards non-invasive in vivo biopsy,” Sci. Rep. 6, 16937 (2016).
[Crossref] [PubMed]

S. Wang, C. Tao, Y. Yang, X. Wang, and X. Liu, “Theoretical and experimental study of spectral characteristics of the photoacoustic signal from stochastically distributed particles,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 62(7), 1245–1255 (2015).
[Crossref] [PubMed]

S. Wang, C. Tao, X. Wang, and X. Liu, “Quantitative detection of stochastic microstructure in turbid media by photoacoustic spectral matching,” Appl. Phys. Lett. 102(11), 114102 (2013).
[Crossref]

G. Xu, I. A. Dar, C. Tao, X. Liu, C. X. Deng, and X. Wang, “Photoacoustic spectrum analysis for microstructure characterization in biological tissue: A feasibility study,” Appl. Phys. Lett. 101(22), 221102 (2012).
[Crossref] [PubMed]

Y. Yang, S. Wang, C. Tao, X. Wang, and X. Liu, “Photoacoustic tomography of tissue subwavelength microstructure with a narrowband and low frequency system,” Appl. Phys. Lett. 101(3), 034105 (2012).
[Crossref]

Tomlins, S. A.

Wang, S.

S. Wang, C. Tao, Y. Yang, X. Wang, and X. Liu, “Theoretical and experimental study of spectral characteristics of the photoacoustic signal from stochastically distributed particles,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 62(7), 1245–1255 (2015).
[Crossref] [PubMed]

S. Wang, C. Tao, X. Wang, and X. Liu, “Quantitative detection of stochastic microstructure in turbid media by photoacoustic spectral matching,” Appl. Phys. Lett. 102(11), 114102 (2013).
[Crossref]

Y. Yang, S. Wang, C. Tao, X. Wang, and X. Liu, “Photoacoustic tomography of tissue subwavelength microstructure with a narrowband and low frequency system,” Appl. Phys. Lett. 101(3), 034105 (2012).
[Crossref]

Wang, X.

G. Xu, Z. X. Meng, J. D. Lin, C. X. Deng, P. L. Carson, J. B. Fowlkes, C. Tao, X. Liu, and X. Wang, “High resolution physio-chemical tissue analysis: towards non-invasive in vivo biopsy,” Sci. Rep. 6, 16937 (2016).
[Crossref] [PubMed]

S. Wang, C. Tao, Y. Yang, X. Wang, and X. Liu, “Theoretical and experimental study of spectral characteristics of the photoacoustic signal from stochastically distributed particles,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 62(7), 1245–1255 (2015).
[Crossref] [PubMed]

G. Xu, M. C. Davis, J. Siddiqui, S. A. Tomlins, S. Huang, L. P. Kunju, J. T. Wei, and X. Wang, “Quantifying Gleason scores with photoacoustic spectral analysis: feasibility study with human tissues,” Biomed. Opt. Express 6(12), 4781–4789 (2015).
[Crossref] [PubMed]

G. Xu, Z.-X. Meng, J. D. Lin, J. Yuan, P. L. Carson, B. Joshi, and X. Wang, “The functional pitch of an organ: quantification of tissue texture with photoacoustic spectrum analysis,” Radiology 271(1), 248–254 (2014).
[Crossref] [PubMed]

S. Wang, C. Tao, X. Wang, and X. Liu, “Quantitative detection of stochastic microstructure in turbid media by photoacoustic spectral matching,” Appl. Phys. Lett. 102(11), 114102 (2013).
[Crossref]

G. Xu, I. A. Dar, C. Tao, X. Liu, C. X. Deng, and X. Wang, “Photoacoustic spectrum analysis for microstructure characterization in biological tissue: A feasibility study,” Appl. Phys. Lett. 101(22), 221102 (2012).
[Crossref] [PubMed]

Y. Yang, S. Wang, C. Tao, X. Wang, and X. Liu, “Photoacoustic tomography of tissue subwavelength microstructure with a narrowband and low frequency system,” Appl. Phys. Lett. 101(3), 034105 (2012).
[Crossref]

R. E. Kumon, C. X. Deng, and X. Wang, “Frequency-domain analysis of photoacoustic imaging data from prostate adenocarcinoma tumors in a murine model,” Ultrasound Med. Biol. 37(5), 834–839 (2011).
[Crossref] [PubMed]

R. E. Kumon, C. X. Deng, and X. Wang, “Frequency-domain analysis of photoacoustic imaging data from prostate adenocarcinoma tumors in a murine model,” Ultrasound Med. Biol. 37(5), 834–839 (2011).
[Crossref] [PubMed]

Z. Xie, S.-L. Chen, T. Ling, L. J. Guo, P. L. Carson, and X. Wang, “Pure optical photoacoustic microscopy,” Opt. Express 19(10), 9027–9034 (2011).
[Crossref] [PubMed]

Wei, J. T.

Whelan, W. M.

M. P. Patterson, C. B. Riley, M. C. Kolios, and W. M. Whelan, “Optoacoustic characterization of prostate cancer in an in vivo transgenic murine model,” J. Biomed. Opt. 19(5), 056008 (2014).
[Crossref] [PubMed]

M. P. Patterson, C. B. Riley, M. C. Kolios, and W. M. Whelan, “Optoacoustic signal amplitude and frequency spectrum analysis laser heated bovine liver ex vivo,” in 2011 IEEE International Ultrasonics Symposium (IUS) (IEEE, 2011), pp. 300–303.
[Crossref]

Xie, Z.

Xu, G.

G. Xu, Z. X. Meng, J. D. Lin, C. X. Deng, P. L. Carson, J. B. Fowlkes, C. Tao, X. Liu, and X. Wang, “High resolution physio-chemical tissue analysis: towards non-invasive in vivo biopsy,” Sci. Rep. 6, 16937 (2016).
[Crossref] [PubMed]

G. Xu, M. C. Davis, J. Siddiqui, S. A. Tomlins, S. Huang, L. P. Kunju, J. T. Wei, and X. Wang, “Quantifying Gleason scores with photoacoustic spectral analysis: feasibility study with human tissues,” Biomed. Opt. Express 6(12), 4781–4789 (2015).
[Crossref] [PubMed]

G. Xu, Z.-X. Meng, J. D. Lin, J. Yuan, P. L. Carson, B. Joshi, and X. Wang, “The functional pitch of an organ: quantification of tissue texture with photoacoustic spectrum analysis,” Radiology 271(1), 248–254 (2014).
[Crossref] [PubMed]

G. Xu, I. A. Dar, C. Tao, X. Liu, C. X. Deng, and X. Wang, “Photoacoustic spectrum analysis for microstructure characterization in biological tissue: A feasibility study,” Appl. Phys. Lett. 101(22), 221102 (2012).
[Crossref] [PubMed]

Yamazoe, S.

M. Nakao, T. Nakao, and S. Yamazoe, “Adenosine triphosphate and maintenance of shape of the human red cells,” Nature 187(4741), 945–946 (1960).
[Crossref] [PubMed]

Yang, Y.

S. Wang, C. Tao, Y. Yang, X. Wang, and X. Liu, “Theoretical and experimental study of spectral characteristics of the photoacoustic signal from stochastically distributed particles,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 62(7), 1245–1255 (2015).
[Crossref] [PubMed]

Y. Yang, S. Wang, C. Tao, X. Wang, and X. Liu, “Photoacoustic tomography of tissue subwavelength microstructure with a narrowband and low frequency system,” Appl. Phys. Lett. 101(3), 034105 (2012).
[Crossref]

Yuan, J.

G. Xu, Z.-X. Meng, J. D. Lin, J. Yuan, P. L. Carson, B. Joshi, and X. Wang, “The functional pitch of an organ: quantification of tissue texture with photoacoustic spectrum analysis,” Radiology 271(1), 248–254 (2014).
[Crossref] [PubMed]

Zhang, C.

C. Zhang, H. Subbaraman, Q. Li, Z. Pan, J. G. Ok, T. Ling, C.-J. Chung, X. Zhang, X. Lin, R. T. Chen, and L. J. Guo, “Printed photonic elements: nanoimprinting and beyond,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(23), 5133–5153 (2016).
[Crossref]

C. Zhang, S.-L. Chen, T. Ling, and L. Guo, “Review of imprinted polymer microring as ultrasound detector: fabrication, characterization and applications,” IEEE Sens. J. 15, 3241–3248 (2015).
[Crossref]

C. Zhang, S.-L. Chen, T. Ling, and L. J. Guo, “Imprinted Polymer Microrings as High-Performance Ultrasound Detectors in Photoacoustic Imaging,” J. Lightwave Technol. 33(20), 4318–4328 (2015).
[Crossref]

C. Zhang, T. Ling, S.-L. Chen, and L. J. Guo, “Ultrabroad bandwidth and highly sensitive optical ultrasonic detector for photoacoustic imaging,” ACS Photonics 1(11), 1093–1098 (2014).
[Crossref]

S.-L. Chen, Y.-C. Chang, C. Zhang, J. G. Ok, T. Ling, M. T. Mihnev, T. B. Norris, and L. J. Guo, “Efficient real-time detection of terahertz pulse radiation based on photoacoustic conversion by carbon nanotube nanocomposite,” Nat. Photonics 8(7), 537–542 (2014).
[Crossref]

Zhang, X.

C. Zhang, H. Subbaraman, Q. Li, Z. Pan, J. G. Ok, T. Ling, C.-J. Chung, X. Zhang, X. Lin, R. T. Chen, and L. J. Guo, “Printed photonic elements: nanoimprinting and beyond,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(23), 5133–5153 (2016).
[Crossref]

ACS Photonics (1)

C. Zhang, T. Ling, S.-L. Chen, and L. J. Guo, “Ultrabroad bandwidth and highly sensitive optical ultrasonic detector for photoacoustic imaging,” ACS Photonics 1(11), 1093–1098 (2014).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

Y. Yang, S. Wang, C. Tao, X. Wang, and X. Liu, “Photoacoustic tomography of tissue subwavelength microstructure with a narrowband and low frequency system,” Appl. Phys. Lett. 101(3), 034105 (2012).
[Crossref]

S. Wang, C. Tao, X. Wang, and X. Liu, “Quantitative detection of stochastic microstructure in turbid media by photoacoustic spectral matching,” Appl. Phys. Lett. 102(11), 114102 (2013).
[Crossref]

G. Xu, I. A. Dar, C. Tao, X. Liu, C. X. Deng, and X. Wang, “Photoacoustic spectrum analysis for microstructure characterization in biological tissue: A feasibility study,” Appl. Phys. Lett. 101(22), 221102 (2012).
[Crossref] [PubMed]

Biomed. Opt. Express (1)

Biophys. J. (1)

E. M. Strohm, E. S. Berndl, and M. C. Kolios, “Probing red blood cell morphology using high-frequency photoacoustics,” Biophys. J. 105(1), 59–67 (2013).
[Crossref] [PubMed]

Clin. Hemorheol. Microcirc. (1)

M. Musielak, “Red blood cell-deformability measurement: review of techniques,” Clin. Hemorheol. Microcirc. 42(1), 47–64 (2009).
[PubMed]

Eur. J. Haematol. (1)

M. M. Brandão, A. Fontes, M. L. Barjas-Castro, L. C. Barbosa, F. F. Costa, C. L. Cesar, and S. T. Saad, “Optical tweezers for measuring red blood cell elasticity: application to the study of drug response in sickle cell disease,” Eur. J. Haematol. 70(4), 207–211 (2003).
[Crossref] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (1)

E. M. Strohm, M. J. Moore, and M. C. Kolios, “Single cell photoacoustic microscopy: a review,” IEEE J. Sel. Top. Quantum Electron. 22(3), 1–15 (2016).
[Crossref]

IEEE Sens. J. (1)

C. Zhang, S.-L. Chen, T. Ling, and L. Guo, “Review of imprinted polymer microring as ultrasound detector: fabrication, characterization and applications,” IEEE Sens. J. 15, 3241–3248 (2015).
[Crossref]

IEEE Trans. Biomed. Eng. (1)

J. W. Hunt, M. Arditi, and F. S. Foster, “Ultrasound transducers for pulse-echo medical imaging,” IEEE Trans. Biomed. Eng. 30(8), 453–481 (1983).
[Crossref] [PubMed]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control (3)

R. E. Davidsen and S. W. Smith, “Two-dimensional arrays for medical ultrasound using multilayer flexible circuit interconnection,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 45(2), 338–348 (1998).
[Crossref] [PubMed]

F. S. Foster, K. A. Harasiewicz, and M. D. Sherar, “A history of medical and biological imaging with polyvinylidene fluoride (PVDF) transducers,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47(6), 1363–1371 (2000).
[Crossref] [PubMed]

S. Wang, C. Tao, Y. Yang, X. Wang, and X. Liu, “Theoretical and experimental study of spectral characteristics of the photoacoustic signal from stochastically distributed particles,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 62(7), 1245–1255 (2015).
[Crossref] [PubMed]

J. Acoust. Soc. Am. (1)

R. K. Saha and M. C. Kolios, “A simulation study on photoacoustic signals from red blood cells,” J. Acoust. Soc. Am. 129(5), 2935–2943 (2011).
[Crossref] [PubMed]

J. Biomed. Opt. (1)

M. P. Patterson, C. B. Riley, M. C. Kolios, and W. M. Whelan, “Optoacoustic characterization of prostate cancer in an in vivo transgenic murine model,” J. Biomed. Opt. 19(5), 056008 (2014).
[Crossref] [PubMed]

J. Lightwave Technol. (1)

J. Mater. Chem. C Mater. Opt. Electron. Devices (1)

C. Zhang, H. Subbaraman, Q. Li, Z. Pan, J. G. Ok, T. Ling, C.-J. Chung, X. Zhang, X. Lin, R. T. Chen, and L. J. Guo, “Printed photonic elements: nanoimprinting and beyond,” J. Mater. Chem. C Mater. Opt. Electron. Devices 4(23), 5133–5153 (2016).
[Crossref]

Microvasc. Res. (1)

E. Evans and Y.-C. Fung, “Improved measurements of the erythrocyte geometry,” Microvasc. Res. 4(4), 335–347 (1972).
[Crossref] [PubMed]

Nat. Photonics (1)

S.-L. Chen, Y.-C. Chang, C. Zhang, J. G. Ok, T. Ling, M. T. Mihnev, T. B. Norris, and L. J. Guo, “Efficient real-time detection of terahertz pulse radiation based on photoacoustic conversion by carbon nanotube nanocomposite,” Nat. Photonics 8(7), 537–542 (2014).
[Crossref]

Nature (1)

M. Nakao, T. Nakao, and S. Yamazoe, “Adenosine triphosphate and maintenance of shape of the human red cells,” Nature 187(4741), 945–946 (1960).
[Crossref] [PubMed]

Opt. Express (3)

Photoacoustics (1)

E. M. Strohm, E. S. Berndl, and M. C. Kolios, “High frequency label-free photoacoustic microscopy of single cells,” Photoacoustics 1(3-4), 49–53 (2013).
[Crossref] [PubMed]

Phys. Med. Biol. (1)

E. M. Strohm, I. Gorelikov, N. Matsuura, and M. C. Kolios, “Modeling photoacoustic spectral features of micron-sized particles,” Phys. Med. Biol. 59(19), 5795–5810 (2014).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

G. J. Diebold, T. Sun, and M. I. Khan, “Photoacoustic monopole radiation in one, two, and three dimensions,” Phys. Rev. Lett. 67(24), 3384–3387 (1991).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

Y. Park, C. A. Best, K. Badizadegan, R. R. Dasari, M. S. Feld, T. Kuriabova, M. L. Henle, A. J. Levine, and G. Popescu, “Measurement of red blood cell mechanics during morphological changes,” Proc. Natl. Acad. Sci. U.S.A. 107(15), 6731–6736 (2010).
[Crossref] [PubMed]

Radiology (1)

G. Xu, Z.-X. Meng, J. D. Lin, J. Yuan, P. L. Carson, B. Joshi, and X. Wang, “The functional pitch of an organ: quantification of tissue texture with photoacoustic spectrum analysis,” Radiology 271(1), 248–254 (2014).
[Crossref] [PubMed]

Sci. Rep. (1)

G. Xu, Z. X. Meng, J. D. Lin, C. X. Deng, P. L. Carson, J. B. Fowlkes, C. Tao, X. Liu, and X. Wang, “High resolution physio-chemical tissue analysis: towards non-invasive in vivo biopsy,” Sci. Rep. 6, 16937 (2016).
[Crossref] [PubMed]

Ultrasound Med. Biol. (2)

R. E. Kumon, C. X. Deng, and X. Wang, “Frequency-domain analysis of photoacoustic imaging data from prostate adenocarcinoma tumors in a murine model,” Ultrasound Med. Biol. 37(5), 834–839 (2011).
[Crossref] [PubMed]

R. E. Kumon, C. X. Deng, and X. Wang, “Frequency-domain analysis of photoacoustic imaging data from prostate adenocarcinoma tumors in a murine model,” Ultrasound Med. Biol. 37(5), 834–839 (2011).
[Crossref] [PubMed]

Other (3)

B. E. Saleh, M. C. Teich, and B. E. Saleh, Fundamentals of Photonics (Wiley New York, 1991), Chap. 20.

E. M. Strohm, E. Hysi, and M. C. Kolios, “Photoacoustic measurements of single red blood cells,” in 2012 IEEE International Ultrasonics Symposium (IUS) (IEEE, 2012), pp. 1406–1409.
[Crossref]

M. P. Patterson, C. B. Riley, M. C. Kolios, and W. M. Whelan, “Optoacoustic signal amplitude and frequency spectrum analysis laser heated bovine liver ex vivo,” in 2011 IEEE International Ultrasonics Symposium (IUS) (IEEE, 2011), pp. 300–303.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Schematic of the PASA system equipped with a micro-ring detector beneath the sample. For comparison of performance, a calibrated needle hydrophone was positioned above the sample. (b) The power spectral density (PSD) of the PA signal received by a micro-ring produced by illuminating 5-ns laser pulses on a 200-nm thick Cr film. This PSD demonstrates a −10 dB bandwidth of 123 MHz.

Fig. 2
Fig. 2

PA signal power spectrum of individual microspheres. (a)-(c) Time domain PA signals from the microspheres with different sizes (i.e., 20 μm, 45 μm and 100 μm). (d)- (f) Normalized PSD curve from each individual microsphere measured by the PASA system equipped with the micro-ring (solid line). Simulated PSD curves from the individual microspheres with sizes same as the ones in the experiment (dashed line).

Fig. 3
Fig. 3

PASA of phantoms containing different sizes of microspheres (including 3 μm, 6 μm, 10 μm, 20 μm, and 45 μm). Each size group contains 4 phantoms. (a) An example PA signal from a 20 μm microspheres measured by the micro-ring. (b) Normalized and averaged PSD curve for each group as measured by the micro-ring. The fitting line was made for each PSD in the range of 2-123MHz (R2 = 0.85, 0.84, 0.80, 0.89 and 0.74, respectively, for 3 μm, 6 μm, 10 μm, 20 μm, and 45 μm). (c) The qualified PA spectral parameter slope for each group as measured by the micro-ring. (d) An example PA signal from a 20 μm microspheres measured by the hydrophone. (e) Normalized and averaged PSD curve for each group as measured by the hydrophone. (f) The qualified PA spectral parameter slope for each group as measured by the hydrophone.

Fig. 4
Fig. 4

PASA of ex vivo human blood specimens. (a) The geometries and dimensions of biconcave (fresh) and spheroid (aged) RBCs used for simulation. (b) PA spectral parameter slopes for the two groups of blood samples (i.e. fresh blood and aged blood), as quantified in the simulation (N = 100). The fitting line was made for each PSD in the range of 2-123 MHz. (c) Microscopy images of the fresh and the aged blood specimens used in the experiment, showing the morphological changes in RBCs as a result of storage. (d) PA signal and (e) PSD curves from the samples containing fresh RBCs and aged RBCs, as measured in experiment. The fitting line was made for each PSD in the range of 2-123MHz (R2 = 0.81, 0.90, respectively, for fresh and aged RBCs). (f) Spectral parameter slope qualified for the two groups of samples (fresh vs. aged) measured in the experiment (N = 4). The two groups can be differentiated with a p<0.05.

Metrics