T. Sun, Y. Guo, T. Wang, J. Huo, and L. Zhang, “Dual-wavelength single longitudinal mode fiber laser for microwave generation,” Opt. Laser Technol. 67, 143–145 (2015).
[Crossref]
T. Feng, F. Yan, S. Liu, Y. Bai, W. Peng, and S. Tan, “Switchable and tunable dual-wavelength single-longitudinal-mode erbium-doped fiber laser with special subring-cavity and superimposed fiber Bragg gratings,” Laser Phys. Lett. 11(12), 125106 (2014).
[Crossref]
S. Mo, X. Huang, S. Xu, C. Li, C. Yang, Z. Feng, W. Zhang, D. Chen, and Z. Yang, “600-Hz linewidth short-linear-cavity fiber laser,” Opt. Lett. 39(20), 5818–5821 (2014).
[Crossref]
[PubMed]
H. Al-Taiy, N. Wenzel, S. Preußler, J. Klinger, and T. Schneider, “Ultra-narrow linewidth, stable and tunable laser source for optical communication systems and spectroscopy,” Opt. Lett. 39(20), 5826–5829 (2014).
[Crossref]
[PubMed]
X. He, S. Xu, C. Li, C. Yang, Q. Yang, S. Mo, D. Chen, and Z. Yang, “1.95 μm kHz-linewidth single-frequency fiber laser using self-developed heavily Tm3+-doped germanate glass fiber,” Opt. Express 21(18), 20800–20805 (2013).
[Crossref]
[PubMed]
Y. Zhao, J. Chang, Q. Wang, J. Ni, Z. Song, H. Qi, C. Wang, P. Wang, L. Gao, Z. Sun, G. Lv, T. Liu, and G. Peng, “Research on a novel composite structure Er3+-doped DBR fiber laser with a π-phase shifted FBG,” Opt. Express 21(19), 22515–22522 (2013).
[Crossref]
[PubMed]
S. Feng, C. Qi, Q. Li, W. Peng, S. Gao, and S. Jian, “Photonic generation of microwave signal by beating a dual-wavelength single longitudinal mode erbium-doped fiber ring laser based on the polarization maintaining fiber bragg grating,” Microw. Opt. Technol. Lett. 55(2), 347–351 (2013).
[Crossref]
S. Tan, F. Yan, Q. Li, W. Peng, S. Liu, T. Feng, and F. Chang, “A stable single-longitudinal-mode dual-wavelength erbium-doped fiber ring laser with superimposed FBG and an in-line two-taper MZI filter,” Laser Phys. 23(7), 075112 (2013).
[Crossref]
S. Feng, Q. Mao, Y. Tian, Y. Ma, W. Li, and L. Wei, “Widely tunable single longitudinal mode fiber laser with cascaded fiber-ring secondary cavity,” IEEE Photonics Technol. Lett. 25(4), 323–326 (2013).
[Crossref]
S. Feng, S. Lu, W. Peng, Q. Li, T. Feng, and S. Jian, “Tunable single-polarization single-longitudinal-mode erbium-doped fiber ring laser employing a CMFBG filter and saturable absorber,” Opt. Laser Technol. 47, 102–106 (2013).
[Crossref]
K. S. Abedin, P. S. Westbrook, J. W. Nicholson, J. Porque, T. Kremp, and X. Liu, “Single-frequency Brillouin distributed feedback fiber laser,” Opt. Lett. 37(4), 605–607 (2012).
[Crossref]
[PubMed]
Q. Li, F. Yan, W. Peng, T. Feng, S. Feng, S. Tan, P. Liu, and W. Ren, “DFB laser based on single mode large effective area heavy concentration EDF,” Opt. Express 20(21), 23684–23689 (2012).
[Crossref]
[PubMed]
Q. Li, S. Feng, W. Peng, P. Liu, T. Feng, S. Tan, and F. Yan, “Photonic generation of microwave signal using a dual-wavelength fiber ring laser with fiber Bragg grating-based Fabry-Perot filter and saturable absorber,” Microw. Opt. Technol. Lett. 54(9), 2074–2077 (2012).
[Crossref]
B. Liu, C. Jia, H. Zhang, and J. Luo, “DBR-fiber-laser-based active temperature sensor and its applications in the measurement of fiber birefringence,” Microw. Opt. Technol. Lett. 52(1), 41–44 (2010).
[Crossref]
X. Chen, J. Yao, F. Zeng, and Z. Deng, “Single-longitudinal-mode fiber ring laser employing an equivalent phase-shifted fiber Bragg grating,” IEEE Photonics Technol. Lett. 17(7), 1390–1392 (2005).
[Crossref]
J. H. Geng, C. Spiegelberg, and S. B. Jiang, “Narrow linewidth fiber laser for 100-km optical frequency domain reflectometry,” IEEE Photonics Technol. Lett. 17(9), 1827–1829 (2005).
[Crossref]
J. F. Lemieux, A. Bellemare, C. Latrasse, and M. Tetu, “Step-tunable (100 GHz) hybrid laser based on Vernier effect between Fabry-Perot cavity and sampled fibre Bragg grating,” Electron. Lett. 35(11), 904–906 (1999).
[Crossref]
J. Zhang, C.-Y. Yue, G. W. Schinn, W. R. L. Clements, and J. W. Y. Lit, “Stable single-mode compound-ring erbium-doped fiber laser,” J. Lightwave Technol. 14(1), 104–109 (1996).
[Crossref]
T. Feng, F. Yan, S. Liu, Y. Bai, W. Peng, and S. Tan, “Switchable and tunable dual-wavelength single-longitudinal-mode erbium-doped fiber laser with special subring-cavity and superimposed fiber Bragg gratings,” Laser Phys. Lett. 11(12), 125106 (2014).
[Crossref]
J. F. Lemieux, A. Bellemare, C. Latrasse, and M. Tetu, “Step-tunable (100 GHz) hybrid laser based on Vernier effect between Fabry-Perot cavity and sampled fibre Bragg grating,” Electron. Lett. 35(11), 904–906 (1999).
[Crossref]
S. Tan, F. Yan, Q. Li, W. Peng, S. Liu, T. Feng, and F. Chang, “A stable single-longitudinal-mode dual-wavelength erbium-doped fiber ring laser with superimposed FBG and an in-line two-taper MZI filter,” Laser Phys. 23(7), 075112 (2013).
[Crossref]
Y. Zhao, J. Chang, Q. Wang, J. Ni, Z. Song, H. Qi, C. Wang, P. Wang, L. Gao, Z. Sun, G. Lv, T. Liu, and G. Peng, “Research on a novel composite structure Er3+-doped DBR fiber laser with a π-phase shifted FBG,” Opt. Express 21(19), 22515–22522 (2013).
[Crossref]
[PubMed]
S. Mo, X. Huang, S. Xu, C. Li, C. Yang, Z. Feng, W. Zhang, D. Chen, and Z. Yang, “600-Hz linewidth short-linear-cavity fiber laser,” Opt. Lett. 39(20), 5818–5821 (2014).
[Crossref]
[PubMed]
X. He, S. Xu, C. Li, C. Yang, Q. Yang, S. Mo, D. Chen, and Z. Yang, “1.95 μm kHz-linewidth single-frequency fiber laser using self-developed heavily Tm3+-doped germanate glass fiber,” Opt. Express 21(18), 20800–20805 (2013).
[Crossref]
[PubMed]
X. Chen, J. Yao, F. Zeng, and Z. Deng, “Single-longitudinal-mode fiber ring laser employing an equivalent phase-shifted fiber Bragg grating,” IEEE Photonics Technol. Lett. 17(7), 1390–1392 (2005).
[Crossref]
J. Zhang, C.-Y. Yue, G. W. Schinn, W. R. L. Clements, and J. W. Y. Lit, “Stable single-mode compound-ring erbium-doped fiber laser,” J. Lightwave Technol. 14(1), 104–109 (1996).
[Crossref]
X. Chen, J. Yao, F. Zeng, and Z. Deng, “Single-longitudinal-mode fiber ring laser employing an equivalent phase-shifted fiber Bragg grating,” IEEE Photonics Technol. Lett. 17(7), 1390–1392 (2005).
[Crossref]
S. Feng, Q. Mao, Y. Tian, Y. Ma, W. Li, and L. Wei, “Widely tunable single longitudinal mode fiber laser with cascaded fiber-ring secondary cavity,” IEEE Photonics Technol. Lett. 25(4), 323–326 (2013).
[Crossref]
S. Feng, C. Qi, Q. Li, W. Peng, S. Gao, and S. Jian, “Photonic generation of microwave signal by beating a dual-wavelength single longitudinal mode erbium-doped fiber ring laser based on the polarization maintaining fiber bragg grating,” Microw. Opt. Technol. Lett. 55(2), 347–351 (2013).
[Crossref]
S. Feng, S. Lu, W. Peng, Q. Li, T. Feng, and S. Jian, “Tunable single-polarization single-longitudinal-mode erbium-doped fiber ring laser employing a CMFBG filter and saturable absorber,” Opt. Laser Technol. 47, 102–106 (2013).
[Crossref]
Q. Li, S. Feng, W. Peng, P. Liu, T. Feng, S. Tan, and F. Yan, “Photonic generation of microwave signal using a dual-wavelength fiber ring laser with fiber Bragg grating-based Fabry-Perot filter and saturable absorber,” Microw. Opt. Technol. Lett. 54(9), 2074–2077 (2012).
[Crossref]
Q. Li, F. Yan, W. Peng, T. Feng, S. Feng, S. Tan, P. Liu, and W. Ren, “DFB laser based on single mode large effective area heavy concentration EDF,” Opt. Express 20(21), 23684–23689 (2012).
[Crossref]
[PubMed]
T. Feng, F. Yan, S. Liu, Y. Bai, W. Peng, and S. Tan, “Switchable and tunable dual-wavelength single-longitudinal-mode erbium-doped fiber laser with special subring-cavity and superimposed fiber Bragg gratings,” Laser Phys. Lett. 11(12), 125106 (2014).
[Crossref]
S. Feng, S. Lu, W. Peng, Q. Li, T. Feng, and S. Jian, “Tunable single-polarization single-longitudinal-mode erbium-doped fiber ring laser employing a CMFBG filter and saturable absorber,” Opt. Laser Technol. 47, 102–106 (2013).
[Crossref]
S. Tan, F. Yan, Q. Li, W. Peng, S. Liu, T. Feng, and F. Chang, “A stable single-longitudinal-mode dual-wavelength erbium-doped fiber ring laser with superimposed FBG and an in-line two-taper MZI filter,” Laser Phys. 23(7), 075112 (2013).
[Crossref]
Q. Li, S. Feng, W. Peng, P. Liu, T. Feng, S. Tan, and F. Yan, “Photonic generation of microwave signal using a dual-wavelength fiber ring laser with fiber Bragg grating-based Fabry-Perot filter and saturable absorber,” Microw. Opt. Technol. Lett. 54(9), 2074–2077 (2012).
[Crossref]
Q. Li, F. Yan, W. Peng, T. Feng, S. Feng, S. Tan, P. Liu, and W. Ren, “DFB laser based on single mode large effective area heavy concentration EDF,” Opt. Express 20(21), 23684–23689 (2012).
[Crossref]
[PubMed]
S. Mo, X. Huang, S. Xu, C. Li, C. Yang, Z. Feng, W. Zhang, D. Chen, and Z. Yang, “600-Hz linewidth short-linear-cavity fiber laser,” Opt. Lett. 39(20), 5818–5821 (2014).
[Crossref]
[PubMed]
Y. Zhao, J. Chang, Q. Wang, J. Ni, Z. Song, H. Qi, C. Wang, P. Wang, L. Gao, Z. Sun, G. Lv, T. Liu, and G. Peng, “Research on a novel composite structure Er3+-doped DBR fiber laser with a π-phase shifted FBG,” Opt. Express 21(19), 22515–22522 (2013).
[Crossref]
[PubMed]
S. Feng, C. Qi, Q. Li, W. Peng, S. Gao, and S. Jian, “Photonic generation of microwave signal by beating a dual-wavelength single longitudinal mode erbium-doped fiber ring laser based on the polarization maintaining fiber bragg grating,” Microw. Opt. Technol. Lett. 55(2), 347–351 (2013).
[Crossref]
J. H. Geng, C. Spiegelberg, and S. B. Jiang, “Narrow linewidth fiber laser for 100-km optical frequency domain reflectometry,” IEEE Photonics Technol. Lett. 17(9), 1827–1829 (2005).
[Crossref]
T. Sun, Y. Guo, T. Wang, J. Huo, and L. Zhang, “Dual-wavelength single longitudinal mode fiber laser for microwave generation,” Opt. Laser Technol. 67, 143–145 (2015).
[Crossref]
X. He, S. Xu, C. Li, C. Yang, Q. Yang, S. Mo, D. Chen, and Z. Yang, “1.95 μm kHz-linewidth single-frequency fiber laser using self-developed heavily Tm3+-doped germanate glass fiber,” Opt. Express 21(18), 20800–20805 (2013).
[Crossref]
[PubMed]
X. He, D. N. Wang, and C. R. Liao, “Tunable and switchable dual-wavelength single-longitudinal-mode erbium-doped fiber lasers,” J. Lightwave Technol. 29(6), 842–849 (2011).
X. He, X. Fang, C. Liao, D. N. Wang, and J. Sun, “A tunable and switchable single-longitudinal-mode dual-wavelength fiber laser with a simple linear cavity,” Opt. Express 17(24), 21773–21781 (2009).
[Crossref]
[PubMed]
S. Mo, X. Huang, S. Xu, C. Li, C. Yang, Z. Feng, W. Zhang, D. Chen, and Z. Yang, “600-Hz linewidth short-linear-cavity fiber laser,” Opt. Lett. 39(20), 5818–5821 (2014).
[Crossref]
[PubMed]
T. Sun, Y. Guo, T. Wang, J. Huo, and L. Zhang, “Dual-wavelength single longitudinal mode fiber laser for microwave generation,” Opt. Laser Technol. 67, 143–145 (2015).
[Crossref]
B. Liu, C. Jia, H. Zhang, and J. Luo, “DBR-fiber-laser-based active temperature sensor and its applications in the measurement of fiber birefringence,” Microw. Opt. Technol. Lett. 52(1), 41–44 (2010).
[Crossref]
S. Feng, S. Lu, W. Peng, Q. Li, T. Feng, and S. Jian, “Tunable single-polarization single-longitudinal-mode erbium-doped fiber ring laser employing a CMFBG filter and saturable absorber,” Opt. Laser Technol. 47, 102–106 (2013).
[Crossref]
S. Feng, C. Qi, Q. Li, W. Peng, S. Gao, and S. Jian, “Photonic generation of microwave signal by beating a dual-wavelength single longitudinal mode erbium-doped fiber ring laser based on the polarization maintaining fiber bragg grating,” Microw. Opt. Technol. Lett. 55(2), 347–351 (2013).
[Crossref]
J. H. Geng, C. Spiegelberg, and S. B. Jiang, “Narrow linewidth fiber laser for 100-km optical frequency domain reflectometry,” IEEE Photonics Technol. Lett. 17(9), 1827–1829 (2005).
[Crossref]
J. F. Lemieux, A. Bellemare, C. Latrasse, and M. Tetu, “Step-tunable (100 GHz) hybrid laser based on Vernier effect between Fabry-Perot cavity and sampled fibre Bragg grating,” Electron. Lett. 35(11), 904–906 (1999).
[Crossref]
J. F. Lemieux, A. Bellemare, C. Latrasse, and M. Tetu, “Step-tunable (100 GHz) hybrid laser based on Vernier effect between Fabry-Perot cavity and sampled fibre Bragg grating,” Electron. Lett. 35(11), 904–906 (1999).
[Crossref]
S. Mo, X. Huang, S. Xu, C. Li, C. Yang, Z. Feng, W. Zhang, D. Chen, and Z. Yang, “600-Hz linewidth short-linear-cavity fiber laser,” Opt. Lett. 39(20), 5818–5821 (2014).
[Crossref]
[PubMed]
X. He, S. Xu, C. Li, C. Yang, Q. Yang, S. Mo, D. Chen, and Z. Yang, “1.95 μm kHz-linewidth single-frequency fiber laser using self-developed heavily Tm3+-doped germanate glass fiber,” Opt. Express 21(18), 20800–20805 (2013).
[Crossref]
[PubMed]
S. Tan, F. Yan, Q. Li, W. Peng, S. Liu, T. Feng, and F. Chang, “A stable single-longitudinal-mode dual-wavelength erbium-doped fiber ring laser with superimposed FBG and an in-line two-taper MZI filter,” Laser Phys. 23(7), 075112 (2013).
[Crossref]
S. Feng, C. Qi, Q. Li, W. Peng, S. Gao, and S. Jian, “Photonic generation of microwave signal by beating a dual-wavelength single longitudinal mode erbium-doped fiber ring laser based on the polarization maintaining fiber bragg grating,” Microw. Opt. Technol. Lett. 55(2), 347–351 (2013).
[Crossref]
S. Feng, S. Lu, W. Peng, Q. Li, T. Feng, and S. Jian, “Tunable single-polarization single-longitudinal-mode erbium-doped fiber ring laser employing a CMFBG filter and saturable absorber,” Opt. Laser Technol. 47, 102–106 (2013).
[Crossref]
Q. Li, S. Feng, W. Peng, P. Liu, T. Feng, S. Tan, and F. Yan, “Photonic generation of microwave signal using a dual-wavelength fiber ring laser with fiber Bragg grating-based Fabry-Perot filter and saturable absorber,” Microw. Opt. Technol. Lett. 54(9), 2074–2077 (2012).
[Crossref]
Q. Li, F. Yan, W. Peng, T. Feng, S. Feng, S. Tan, P. Liu, and W. Ren, “DFB laser based on single mode large effective area heavy concentration EDF,” Opt. Express 20(21), 23684–23689 (2012).
[Crossref]
[PubMed]
S. Feng, Q. Mao, Y. Tian, Y. Ma, W. Li, and L. Wei, “Widely tunable single longitudinal mode fiber laser with cascaded fiber-ring secondary cavity,” IEEE Photonics Technol. Lett. 25(4), 323–326 (2013).
[Crossref]
J. Zhang, C.-Y. Yue, G. W. Schinn, W. R. L. Clements, and J. W. Y. Lit, “Stable single-mode compound-ring erbium-doped fiber laser,” J. Lightwave Technol. 14(1), 104–109 (1996).
[Crossref]
B. Liu, C. Jia, H. Zhang, and J. Luo, “DBR-fiber-laser-based active temperature sensor and its applications in the measurement of fiber birefringence,” Microw. Opt. Technol. Lett. 52(1), 41–44 (2010).
[Crossref]
Q. Li, F. Yan, W. Peng, T. Feng, S. Feng, S. Tan, P. Liu, and W. Ren, “DFB laser based on single mode large effective area heavy concentration EDF,” Opt. Express 20(21), 23684–23689 (2012).
[Crossref]
[PubMed]
Q. Li, S. Feng, W. Peng, P. Liu, T. Feng, S. Tan, and F. Yan, “Photonic generation of microwave signal using a dual-wavelength fiber ring laser with fiber Bragg grating-based Fabry-Perot filter and saturable absorber,” Microw. Opt. Technol. Lett. 54(9), 2074–2077 (2012).
[Crossref]
T. Feng, F. Yan, S. Liu, Y. Bai, W. Peng, and S. Tan, “Switchable and tunable dual-wavelength single-longitudinal-mode erbium-doped fiber laser with special subring-cavity and superimposed fiber Bragg gratings,” Laser Phys. Lett. 11(12), 125106 (2014).
[Crossref]
S. Tan, F. Yan, Q. Li, W. Peng, S. Liu, T. Feng, and F. Chang, “A stable single-longitudinal-mode dual-wavelength erbium-doped fiber ring laser with superimposed FBG and an in-line two-taper MZI filter,” Laser Phys. 23(7), 075112 (2013).
[Crossref]
Y. Zhao, J. Chang, Q. Wang, J. Ni, Z. Song, H. Qi, C. Wang, P. Wang, L. Gao, Z. Sun, G. Lv, T. Liu, and G. Peng, “Research on a novel composite structure Er3+-doped DBR fiber laser with a π-phase shifted FBG,” Opt. Express 21(19), 22515–22522 (2013).
[Crossref]
[PubMed]
S. Feng, S. Lu, W. Peng, Q. Li, T. Feng, and S. Jian, “Tunable single-polarization single-longitudinal-mode erbium-doped fiber ring laser employing a CMFBG filter and saturable absorber,” Opt. Laser Technol. 47, 102–106 (2013).
[Crossref]
B. Liu, C. Jia, H. Zhang, and J. Luo, “DBR-fiber-laser-based active temperature sensor and its applications in the measurement of fiber birefringence,” Microw. Opt. Technol. Lett. 52(1), 41–44 (2010).
[Crossref]
Y. Zhao, J. Chang, Q. Wang, J. Ni, Z. Song, H. Qi, C. Wang, P. Wang, L. Gao, Z. Sun, G. Lv, T. Liu, and G. Peng, “Research on a novel composite structure Er3+-doped DBR fiber laser with a π-phase shifted FBG,” Opt. Express 21(19), 22515–22522 (2013).
[Crossref]
[PubMed]
S. Feng, Q. Mao, Y. Tian, Y. Ma, W. Li, and L. Wei, “Widely tunable single longitudinal mode fiber laser with cascaded fiber-ring secondary cavity,” IEEE Photonics Technol. Lett. 25(4), 323–326 (2013).
[Crossref]
S. Feng, Q. Mao, Y. Tian, Y. Ma, W. Li, and L. Wei, “Widely tunable single longitudinal mode fiber laser with cascaded fiber-ring secondary cavity,” IEEE Photonics Technol. Lett. 25(4), 323–326 (2013).
[Crossref]
S. Mo, X. Huang, S. Xu, C. Li, C. Yang, Z. Feng, W. Zhang, D. Chen, and Z. Yang, “600-Hz linewidth short-linear-cavity fiber laser,” Opt. Lett. 39(20), 5818–5821 (2014).
[Crossref]
[PubMed]
X. He, S. Xu, C. Li, C. Yang, Q. Yang, S. Mo, D. Chen, and Z. Yang, “1.95 μm kHz-linewidth single-frequency fiber laser using self-developed heavily Tm3+-doped germanate glass fiber,” Opt. Express 21(18), 20800–20805 (2013).
[Crossref]
[PubMed]
Y. Zhao, J. Chang, Q. Wang, J. Ni, Z. Song, H. Qi, C. Wang, P. Wang, L. Gao, Z. Sun, G. Lv, T. Liu, and G. Peng, “Research on a novel composite structure Er3+-doped DBR fiber laser with a π-phase shifted FBG,” Opt. Express 21(19), 22515–22522 (2013).
[Crossref]
[PubMed]
Y. Zhao, J. Chang, Q. Wang, J. Ni, Z. Song, H. Qi, C. Wang, P. Wang, L. Gao, Z. Sun, G. Lv, T. Liu, and G. Peng, “Research on a novel composite structure Er3+-doped DBR fiber laser with a π-phase shifted FBG,” Opt. Express 21(19), 22515–22522 (2013).
[Crossref]
[PubMed]
T. Feng, F. Yan, S. Liu, Y. Bai, W. Peng, and S. Tan, “Switchable and tunable dual-wavelength single-longitudinal-mode erbium-doped fiber laser with special subring-cavity and superimposed fiber Bragg gratings,” Laser Phys. Lett. 11(12), 125106 (2014).
[Crossref]
S. Feng, S. Lu, W. Peng, Q. Li, T. Feng, and S. Jian, “Tunable single-polarization single-longitudinal-mode erbium-doped fiber ring laser employing a CMFBG filter and saturable absorber,” Opt. Laser Technol. 47, 102–106 (2013).
[Crossref]
S. Tan, F. Yan, Q. Li, W. Peng, S. Liu, T. Feng, and F. Chang, “A stable single-longitudinal-mode dual-wavelength erbium-doped fiber ring laser with superimposed FBG and an in-line two-taper MZI filter,” Laser Phys. 23(7), 075112 (2013).
[Crossref]
S. Feng, C. Qi, Q. Li, W. Peng, S. Gao, and S. Jian, “Photonic generation of microwave signal by beating a dual-wavelength single longitudinal mode erbium-doped fiber ring laser based on the polarization maintaining fiber bragg grating,” Microw. Opt. Technol. Lett. 55(2), 347–351 (2013).
[Crossref]
Q. Li, S. Feng, W. Peng, P. Liu, T. Feng, S. Tan, and F. Yan, “Photonic generation of microwave signal using a dual-wavelength fiber ring laser with fiber Bragg grating-based Fabry-Perot filter and saturable absorber,” Microw. Opt. Technol. Lett. 54(9), 2074–2077 (2012).
[Crossref]
Q. Li, F. Yan, W. Peng, T. Feng, S. Feng, S. Tan, P. Liu, and W. Ren, “DFB laser based on single mode large effective area heavy concentration EDF,” Opt. Express 20(21), 23684–23689 (2012).
[Crossref]
[PubMed]
S. Feng, C. Qi, Q. Li, W. Peng, S. Gao, and S. Jian, “Photonic generation of microwave signal by beating a dual-wavelength single longitudinal mode erbium-doped fiber ring laser based on the polarization maintaining fiber bragg grating,” Microw. Opt. Technol. Lett. 55(2), 347–351 (2013).
[Crossref]
Y. Zhao, J. Chang, Q. Wang, J. Ni, Z. Song, H. Qi, C. Wang, P. Wang, L. Gao, Z. Sun, G. Lv, T. Liu, and G. Peng, “Research on a novel composite structure Er3+-doped DBR fiber laser with a π-phase shifted FBG,” Opt. Express 21(19), 22515–22522 (2013).
[Crossref]
[PubMed]
Q. Li, F. Yan, W. Peng, T. Feng, S. Feng, S. Tan, P. Liu, and W. Ren, “DFB laser based on single mode large effective area heavy concentration EDF,” Opt. Express 20(21), 23684–23689 (2012).
[Crossref]
[PubMed]
J. Zhang, C.-Y. Yue, G. W. Schinn, W. R. L. Clements, and J. W. Y. Lit, “Stable single-mode compound-ring erbium-doped fiber laser,” J. Lightwave Technol. 14(1), 104–109 (1996).
[Crossref]
Y. Zhao, J. Chang, Q. Wang, J. Ni, Z. Song, H. Qi, C. Wang, P. Wang, L. Gao, Z. Sun, G. Lv, T. Liu, and G. Peng, “Research on a novel composite structure Er3+-doped DBR fiber laser with a π-phase shifted FBG,” Opt. Express 21(19), 22515–22522 (2013).
[Crossref]
[PubMed]
J. H. Geng, C. Spiegelberg, and S. B. Jiang, “Narrow linewidth fiber laser for 100-km optical frequency domain reflectometry,” IEEE Photonics Technol. Lett. 17(9), 1827–1829 (2005).
[Crossref]
T. Sun, Y. Guo, T. Wang, J. Huo, and L. Zhang, “Dual-wavelength single longitudinal mode fiber laser for microwave generation,” Opt. Laser Technol. 67, 143–145 (2015).
[Crossref]
Y. Zhao, J. Chang, Q. Wang, J. Ni, Z. Song, H. Qi, C. Wang, P. Wang, L. Gao, Z. Sun, G. Lv, T. Liu, and G. Peng, “Research on a novel composite structure Er3+-doped DBR fiber laser with a π-phase shifted FBG,” Opt. Express 21(19), 22515–22522 (2013).
[Crossref]
[PubMed]
T. Feng, F. Yan, S. Liu, Y. Bai, W. Peng, and S. Tan, “Switchable and tunable dual-wavelength single-longitudinal-mode erbium-doped fiber laser with special subring-cavity and superimposed fiber Bragg gratings,” Laser Phys. Lett. 11(12), 125106 (2014).
[Crossref]
S. Tan, F. Yan, Q. Li, W. Peng, S. Liu, T. Feng, and F. Chang, “A stable single-longitudinal-mode dual-wavelength erbium-doped fiber ring laser with superimposed FBG and an in-line two-taper MZI filter,” Laser Phys. 23(7), 075112 (2013).
[Crossref]
Q. Li, S. Feng, W. Peng, P. Liu, T. Feng, S. Tan, and F. Yan, “Photonic generation of microwave signal using a dual-wavelength fiber ring laser with fiber Bragg grating-based Fabry-Perot filter and saturable absorber,” Microw. Opt. Technol. Lett. 54(9), 2074–2077 (2012).
[Crossref]
Q. Li, F. Yan, W. Peng, T. Feng, S. Feng, S. Tan, P. Liu, and W. Ren, “DFB laser based on single mode large effective area heavy concentration EDF,” Opt. Express 20(21), 23684–23689 (2012).
[Crossref]
[PubMed]
J. F. Lemieux, A. Bellemare, C. Latrasse, and M. Tetu, “Step-tunable (100 GHz) hybrid laser based on Vernier effect between Fabry-Perot cavity and sampled fibre Bragg grating,” Electron. Lett. 35(11), 904–906 (1999).
[Crossref]
S. Feng, Q. Mao, Y. Tian, Y. Ma, W. Li, and L. Wei, “Widely tunable single longitudinal mode fiber laser with cascaded fiber-ring secondary cavity,” IEEE Photonics Technol. Lett. 25(4), 323–326 (2013).
[Crossref]
Y. Zhao, J. Chang, Q. Wang, J. Ni, Z. Song, H. Qi, C. Wang, P. Wang, L. Gao, Z. Sun, G. Lv, T. Liu, and G. Peng, “Research on a novel composite structure Er3+-doped DBR fiber laser with a π-phase shifted FBG,” Opt. Express 21(19), 22515–22522 (2013).
[Crossref]
[PubMed]
X. He, D. N. Wang, and C. R. Liao, “Tunable and switchable dual-wavelength single-longitudinal-mode erbium-doped fiber lasers,” J. Lightwave Technol. 29(6), 842–849 (2011).
X. He, X. Fang, C. Liao, D. N. Wang, and J. Sun, “A tunable and switchable single-longitudinal-mode dual-wavelength fiber laser with a simple linear cavity,” Opt. Express 17(24), 21773–21781 (2009).
[Crossref]
[PubMed]
Y. Zhao, J. Chang, Q. Wang, J. Ni, Z. Song, H. Qi, C. Wang, P. Wang, L. Gao, Z. Sun, G. Lv, T. Liu, and G. Peng, “Research on a novel composite structure Er3+-doped DBR fiber laser with a π-phase shifted FBG,” Opt. Express 21(19), 22515–22522 (2013).
[Crossref]
[PubMed]
Y. Zhao, J. Chang, Q. Wang, J. Ni, Z. Song, H. Qi, C. Wang, P. Wang, L. Gao, Z. Sun, G. Lv, T. Liu, and G. Peng, “Research on a novel composite structure Er3+-doped DBR fiber laser with a π-phase shifted FBG,” Opt. Express 21(19), 22515–22522 (2013).
[Crossref]
[PubMed]
T. Sun, Y. Guo, T. Wang, J. Huo, and L. Zhang, “Dual-wavelength single longitudinal mode fiber laser for microwave generation,” Opt. Laser Technol. 67, 143–145 (2015).
[Crossref]
S. Feng, Q. Mao, Y. Tian, Y. Ma, W. Li, and L. Wei, “Widely tunable single longitudinal mode fiber laser with cascaded fiber-ring secondary cavity,” IEEE Photonics Technol. Lett. 25(4), 323–326 (2013).
[Crossref]
S. Mo, X. Huang, S. Xu, C. Li, C. Yang, Z. Feng, W. Zhang, D. Chen, and Z. Yang, “600-Hz linewidth short-linear-cavity fiber laser,” Opt. Lett. 39(20), 5818–5821 (2014).
[Crossref]
[PubMed]
X. He, S. Xu, C. Li, C. Yang, Q. Yang, S. Mo, D. Chen, and Z. Yang, “1.95 μm kHz-linewidth single-frequency fiber laser using self-developed heavily Tm3+-doped germanate glass fiber,” Opt. Express 21(18), 20800–20805 (2013).
[Crossref]
[PubMed]
T. Feng, F. Yan, S. Liu, Y. Bai, W. Peng, and S. Tan, “Switchable and tunable dual-wavelength single-longitudinal-mode erbium-doped fiber laser with special subring-cavity and superimposed fiber Bragg gratings,” Laser Phys. Lett. 11(12), 125106 (2014).
[Crossref]
S. Tan, F. Yan, Q. Li, W. Peng, S. Liu, T. Feng, and F. Chang, “A stable single-longitudinal-mode dual-wavelength erbium-doped fiber ring laser with superimposed FBG and an in-line two-taper MZI filter,” Laser Phys. 23(7), 075112 (2013).
[Crossref]
Q. Li, S. Feng, W. Peng, P. Liu, T. Feng, S. Tan, and F. Yan, “Photonic generation of microwave signal using a dual-wavelength fiber ring laser with fiber Bragg grating-based Fabry-Perot filter and saturable absorber,” Microw. Opt. Technol. Lett. 54(9), 2074–2077 (2012).
[Crossref]
Q. Li, F. Yan, W. Peng, T. Feng, S. Feng, S. Tan, P. Liu, and W. Ren, “DFB laser based on single mode large effective area heavy concentration EDF,” Opt. Express 20(21), 23684–23689 (2012).
[Crossref]
[PubMed]
S. Mo, X. Huang, S. Xu, C. Li, C. Yang, Z. Feng, W. Zhang, D. Chen, and Z. Yang, “600-Hz linewidth short-linear-cavity fiber laser,” Opt. Lett. 39(20), 5818–5821 (2014).
[Crossref]
[PubMed]
X. He, S. Xu, C. Li, C. Yang, Q. Yang, S. Mo, D. Chen, and Z. Yang, “1.95 μm kHz-linewidth single-frequency fiber laser using self-developed heavily Tm3+-doped germanate glass fiber,” Opt. Express 21(18), 20800–20805 (2013).
[Crossref]
[PubMed]
X. He, S. Xu, C. Li, C. Yang, Q. Yang, S. Mo, D. Chen, and Z. Yang, “1.95 μm kHz-linewidth single-frequency fiber laser using self-developed heavily Tm3+-doped germanate glass fiber,” Opt. Express 21(18), 20800–20805 (2013).
[Crossref]
[PubMed]
S. Mo, X. Huang, S. Xu, C. Li, C. Yang, Z. Feng, W. Zhang, D. Chen, and Z. Yang, “600-Hz linewidth short-linear-cavity fiber laser,” Opt. Lett. 39(20), 5818–5821 (2014).
[Crossref]
[PubMed]
X. He, S. Xu, C. Li, C. Yang, Q. Yang, S. Mo, D. Chen, and Z. Yang, “1.95 μm kHz-linewidth single-frequency fiber laser using self-developed heavily Tm3+-doped germanate glass fiber,” Opt. Express 21(18), 20800–20805 (2013).
[Crossref]
[PubMed]
X. Chen, J. Yao, F. Zeng, and Z. Deng, “Single-longitudinal-mode fiber ring laser employing an equivalent phase-shifted fiber Bragg grating,” IEEE Photonics Technol. Lett. 17(7), 1390–1392 (2005).
[Crossref]
J. Zhang, C.-Y. Yue, G. W. Schinn, W. R. L. Clements, and J. W. Y. Lit, “Stable single-mode compound-ring erbium-doped fiber laser,” J. Lightwave Technol. 14(1), 104–109 (1996).
[Crossref]
X. Chen, J. Yao, F. Zeng, and Z. Deng, “Single-longitudinal-mode fiber ring laser employing an equivalent phase-shifted fiber Bragg grating,” IEEE Photonics Technol. Lett. 17(7), 1390–1392 (2005).
[Crossref]
B. Liu, C. Jia, H. Zhang, and J. Luo, “DBR-fiber-laser-based active temperature sensor and its applications in the measurement of fiber birefringence,” Microw. Opt. Technol. Lett. 52(1), 41–44 (2010).
[Crossref]
J. Zhang, C.-Y. Yue, G. W. Schinn, W. R. L. Clements, and J. W. Y. Lit, “Stable single-mode compound-ring erbium-doped fiber laser,” J. Lightwave Technol. 14(1), 104–109 (1996).
[Crossref]
T. Sun, Y. Guo, T. Wang, J. Huo, and L. Zhang, “Dual-wavelength single longitudinal mode fiber laser for microwave generation,” Opt. Laser Technol. 67, 143–145 (2015).
[Crossref]
S. Mo, X. Huang, S. Xu, C. Li, C. Yang, Z. Feng, W. Zhang, D. Chen, and Z. Yang, “600-Hz linewidth short-linear-cavity fiber laser,” Opt. Lett. 39(20), 5818–5821 (2014).
[Crossref]
[PubMed]
Y. Zhao, J. Chang, Q. Wang, J. Ni, Z. Song, H. Qi, C. Wang, P. Wang, L. Gao, Z. Sun, G. Lv, T. Liu, and G. Peng, “Research on a novel composite structure Er3+-doped DBR fiber laser with a π-phase shifted FBG,” Opt. Express 21(19), 22515–22522 (2013).
[Crossref]
[PubMed]
J. F. Lemieux, A. Bellemare, C. Latrasse, and M. Tetu, “Step-tunable (100 GHz) hybrid laser based on Vernier effect between Fabry-Perot cavity and sampled fibre Bragg grating,” Electron. Lett. 35(11), 904–906 (1999).
[Crossref]
J. H. Geng, C. Spiegelberg, and S. B. Jiang, “Narrow linewidth fiber laser for 100-km optical frequency domain reflectometry,” IEEE Photonics Technol. Lett. 17(9), 1827–1829 (2005).
[Crossref]
S. Feng, Q. Mao, Y. Tian, Y. Ma, W. Li, and L. Wei, “Widely tunable single longitudinal mode fiber laser with cascaded fiber-ring secondary cavity,” IEEE Photonics Technol. Lett. 25(4), 323–326 (2013).
[Crossref]
X. Chen, J. Yao, F. Zeng, and Z. Deng, “Single-longitudinal-mode fiber ring laser employing an equivalent phase-shifted fiber Bragg grating,” IEEE Photonics Technol. Lett. 17(7), 1390–1392 (2005).
[Crossref]
X. He, D. N. Wang, and C. R. Liao, “Tunable and switchable dual-wavelength single-longitudinal-mode erbium-doped fiber lasers,” J. Lightwave Technol. 29(6), 842–849 (2011).
J. Zhang, C.-Y. Yue, G. W. Schinn, W. R. L. Clements, and J. W. Y. Lit, “Stable single-mode compound-ring erbium-doped fiber laser,” J. Lightwave Technol. 14(1), 104–109 (1996).
[Crossref]
S. Tan, F. Yan, Q. Li, W. Peng, S. Liu, T. Feng, and F. Chang, “A stable single-longitudinal-mode dual-wavelength erbium-doped fiber ring laser with superimposed FBG and an in-line two-taper MZI filter,” Laser Phys. 23(7), 075112 (2013).
[Crossref]
T. Feng, F. Yan, S. Liu, Y. Bai, W. Peng, and S. Tan, “Switchable and tunable dual-wavelength single-longitudinal-mode erbium-doped fiber laser with special subring-cavity and superimposed fiber Bragg gratings,” Laser Phys. Lett. 11(12), 125106 (2014).
[Crossref]
S. Feng, C. Qi, Q. Li, W. Peng, S. Gao, and S. Jian, “Photonic generation of microwave signal by beating a dual-wavelength single longitudinal mode erbium-doped fiber ring laser based on the polarization maintaining fiber bragg grating,” Microw. Opt. Technol. Lett. 55(2), 347–351 (2013).
[Crossref]
Q. Li, S. Feng, W. Peng, P. Liu, T. Feng, S. Tan, and F. Yan, “Photonic generation of microwave signal using a dual-wavelength fiber ring laser with fiber Bragg grating-based Fabry-Perot filter and saturable absorber,” Microw. Opt. Technol. Lett. 54(9), 2074–2077 (2012).
[Crossref]
B. Liu, C. Jia, H. Zhang, and J. Luo, “DBR-fiber-laser-based active temperature sensor and its applications in the measurement of fiber birefringence,” Microw. Opt. Technol. Lett. 52(1), 41–44 (2010).
[Crossref]
Q. Li, F. Yan, W. Peng, T. Feng, S. Feng, S. Tan, P. Liu, and W. Ren, “DFB laser based on single mode large effective area heavy concentration EDF,” Opt. Express 20(21), 23684–23689 (2012).
[Crossref]
[PubMed]
X. He, X. Fang, C. Liao, D. N. Wang, and J. Sun, “A tunable and switchable single-longitudinal-mode dual-wavelength fiber laser with a simple linear cavity,” Opt. Express 17(24), 21773–21781 (2009).
[Crossref]
[PubMed]
T. Zhu, B. Zhang, L. Shi, S. Huang, M. Deng, J. Liu, and X. Li, “Tunable dual-wavelength fiber laser with ultra-narrow linewidth based on Rayleigh backscattering,” Opt. Express 24(2), 1324–1330 (2016).
[Crossref]
[PubMed]
Y. Zhao, J. Chang, Q. Wang, J. Ni, Z. Song, H. Qi, C. Wang, P. Wang, L. Gao, Z. Sun, G. Lv, T. Liu, and G. Peng, “Research on a novel composite structure Er3+-doped DBR fiber laser with a π-phase shifted FBG,” Opt. Express 21(19), 22515–22522 (2013).
[Crossref]
[PubMed]
X. He, S. Xu, C. Li, C. Yang, Q. Yang, S. Mo, D. Chen, and Z. Yang, “1.95 μm kHz-linewidth single-frequency fiber laser using self-developed heavily Tm3+-doped germanate glass fiber,” Opt. Express 21(18), 20800–20805 (2013).
[Crossref]
[PubMed]
T. Sun, Y. Guo, T. Wang, J. Huo, and L. Zhang, “Dual-wavelength single longitudinal mode fiber laser for microwave generation,” Opt. Laser Technol. 67, 143–145 (2015).
[Crossref]
S. Feng, S. Lu, W. Peng, Q. Li, T. Feng, and S. Jian, “Tunable single-polarization single-longitudinal-mode erbium-doped fiber ring laser employing a CMFBG filter and saturable absorber,” Opt. Laser Technol. 47, 102–106 (2013).
[Crossref]
K. S. Abedin, P. S. Westbrook, J. W. Nicholson, J. Porque, T. Kremp, and X. Liu, “Single-frequency Brillouin distributed feedback fiber laser,” Opt. Lett. 37(4), 605–607 (2012).
[Crossref]
[PubMed]
S. Mo, X. Huang, S. Xu, C. Li, C. Yang, Z. Feng, W. Zhang, D. Chen, and Z. Yang, “600-Hz linewidth short-linear-cavity fiber laser,” Opt. Lett. 39(20), 5818–5821 (2014).
[Crossref]
[PubMed]
C. C. Lee, Y. K. Chen, and S. K. Liaw, “Single-longitudinal-mode fiber laser with a passive multiple-ring cavity and its application for video transmission,” Opt. Lett. 23(5), 358–360 (1998).
[Crossref]
[PubMed]
H. Al-Taiy, N. Wenzel, S. Preußler, J. Klinger, and T. Schneider, “Ultra-narrow linewidth, stable and tunable laser source for optical communication systems and spectroscopy,” Opt. Lett. 39(20), 5826–5829 (2014).
[Crossref]
[PubMed]
S. Orazio, Principles of Lasers (Plenum Publishing Corporation, 1998).