Abstract

Strong and directionally specific forward scattering from optical nanoantennas is of utmost importance for various applications in the broader context of photovoltaics and integrated light sources. Here, we outline a simple yet powerful design principle to perceive a nanoantenna that provides directional scattering into a higher index substrate based on the interference of multiple electric dipoles. A structural implementation of the electric dipole distribution is possible using plasmonic nanoparticles with a fairly simple geometry, i.e. two coupled rectangular nanoparticles, forming a dimer, on top of a substrate. The key to achieve directionality is to choose a sufficiently large size for the nanoparticles. This promotes the excitation of vertical electric dipole moments due to the bi-anisotropy of the nanoantenna. In turn, asymmetric scattering is obtained by ensuring the appropriate phase relation between the vertical electric dipole moments. The scattering strength and angular spread for an optimized nanoantenna can be shown to be broadband and robust against changes in the incidence angle. The scattering directionality is maintained even for an array configuration of the dimer. It only requires the preferred scattering direction of the isolated nanoantenna not to be prohibited by interference.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Forward and backward unidirectional scattering from plasmonic coupled wires

Ekaterina Poutrina, Alec Rose, Dean Brown, Augustine Urbas, and David R. Smith
Opt. Express 21(25) 31138-31154 (2013)

Optical scattering resonances of single and coupled dimer plasmonic nanoantennas

O. L. Muskens, V. Giannini, J. A. Sánchez-Gil, and J. Gómez Rivas
Opt. Express 15(26) 17736-17746 (2007)

Role of antenna modes and field enhancement in second harmonic generation from dipole nanoantennas

Domenico de Ceglia, Maria Antonietta Vincenti, Costantino De Angelis, Andrea Locatelli, Joseph W. Haus, and Michael Scalora
Opt. Express 23(2) 1715-1729 (2015)

References

  • View by:
  • |
  • |
  • |

  1. K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express 16(26), 21793–21800 (2008).
    [Crossref] [PubMed]
  2. F. Priolo, T. Gregorkiewicz, M. Galli, and T. F. Krauss, “Silicon nanostructures for photonics and photovoltaics,” Nat. Nanotechnol. 9(1), 19–32 (2014).
    [Crossref] [PubMed]
  3. N. X. A. Rivolta and B. Maes, “Angle-specific transparent conducting electrodes with metallic gratings,” J. Appl. Phys. 116(5), 053101 (2014).
    [Crossref]
  4. Y. Fu and J. R. Lakowicz, “Modification of single molecule fluorescence near metallic nanostructures,” Laser Photonics Rev. 3(1-2), 221–232 (2009).
    [Crossref]
  5. H. Aouani, O. Mahboub, N. Bonod, E. Devaux, E. Popov, H. Rigneault, T. W. Ebbesen, and J. Wenger, “Bright Unidirectional Fluorescence Emission of Molecules in a Nanoaperture with Plasmonic Corrugations,” Nano Lett. 11(2), 637–644 (2011).
    [Crossref] [PubMed]
  6. J. Feng, T. Okamoto, and S. Kawata, “Highly directional emission via coupled surface-plasmon tunneling from electroluminescence in organic light-emitting devices,” Appl. Phys. Lett. 87(24), 241109 (2005).
    [Crossref]
  7. S. Y. Zhang, G. A. Turnbull, and I. D. W. Samuel, “Enhancing the emission directionality of organic light-emitting diodes by using photonic microstructures,” Appl. Phys. Lett. 103(21), 213302 (2013).
    [Crossref]
  8. S. Y. Zhang, G. A. Turnbull, and I. D. W. Samuel, “Highly Directional Emission and Beam Steering from Organic Light-Emitting Diodes with a Substrate Diffractive Optical Element,” Adv. Opt. Mater. 2(4), 343–347 (2014).
    [Crossref]
  9. H. Elgala, R. Mesleh, and H. Haas, “Indoor Optical Wireless Communication: Potential and State-of-the-Art,” IEEE Commun. Mag. 49(9), 56–62 (2011).
    [Crossref]
  10. A. Abass, S. R.-K. Rodriguez, T. Ako, T. Aubert, M. Verschuuren, D. Van Thourhout, J. Beeckman, Z. Hens, J. Gómez Rivas, and B. Maes, “Active Liquid Crystal Tuning of Metallic Nanoantenna Enhanced Light Emission from Colloidal Quantum Dots,” Nano Lett. 14(10), 5555–5560 (2014).
    [Crossref] [PubMed]
  11. S. R. K. Rodriguez, S. Murai, M. A. Verschuuren, and J. G. Rivas, “Light-Emitting Waveguide-Plasmon Polaritons,” Phys. Rev. Lett. 109(16), 166803 (2012).
    [Crossref] [PubMed]
  12. A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional Emission of a Quantum Dot Coupled to a Nanoantenna,” Science 329(5994), 930–933 (2010).
    [Crossref] [PubMed]
  13. T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. Van Hulst, “Optical antennas direct single-molecule emission,” Nat. Photonics 2(4), 234–237 (2008).
    [Crossref]
  14. A. Abass, S. R.-K. Rodriguez, J. Gómez Rivas, and B. Maes, “Tailoring Dispersion and Eigenfield Profiles of Plasmonic Surface Lattice Resonances,” ACS Photonics 1(1), 61–68 (2014).
    [Crossref]
  15. J. Kim, Y. G. Roh, S. Cheon, U. J. Kim, S. W. Hwang, Y. Park, and C. W. Lee, “Directional radiation of Babinet-inverted optical nanoantenna integrated with plasmonic waveguide,” Sci. Rep. 5, 11832 (2015).
    [Crossref] [PubMed]
  16. X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband light bending with plasmonic nanoantennas,” Science 335(6067), 427 (2012).
    [Crossref] [PubMed]
  17. T. H. Taminiau, F. D. Stefani, and N. F. van Hulst, “Enhanced directional excitation and emission of single emitters by a nano-optical Yagi-Uda antenna,” Opt. Express 16(14), 10858–10866 (2008).
    [Crossref] [PubMed]
  18. D. Dregely, R. Taubert, J. Dorfmüller, R. Vogelgesang, K. Kern, and H. Giessen, “3D optical Yagi-Uda nanoantenna array,” Nat. Commun. 2, 267 (2011).
    [Crossref] [PubMed]
  19. J. Alda, J. M. Rico-Garcia, J. M. Lopez-Alonso, and G. Boreman, “Optical antennas for nano-photonic applications,” Nanotechnology 16(5), S230–S234 (2005).
    [Crossref]
  20. L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics 5(2), 83–90 (2011).
    [Crossref]
  21. D. Vercruysse, Y. Sonnefraud, N. Verellen, F. B. Fuchs, G. Di Martino, L. Lagae, V. V. Moshchalkov, S. A. Maier, and P. Van Dorpe, “Unidirectional side scattering of light by a single-element nanoantenna,” Nano Lett. 13(8), 3843–3849 (2013).
    [Crossref] [PubMed]
  22. T. Coenen, F. Bernal Arango, A. Femius Koenderink, and A. Polman, “Directional emission from a single plasmonic scatterer,” Nat. Commun. 5, 3250 (2014).
    [Crossref] [PubMed]
  23. A. W. Powell, N. Hjerrild, A. A. R. Watt, H. E. Assender, and J. M. Smith, “Directional plasmonic scattering from metal nanoparticles in thin-film environments,” Appl. Phys. Lett. 104(8), 081110 (2014).
    [Crossref]
  24. W. Yao, S. Liu, H. Liao, Z. Li, C. Sun, J. Chen, and Q. Gong, “Efficient Directional Excitation of Surface Plasmons by a Single-Element Nanoantenna,” Nano Lett. 15(5), 3115–3121 (2015).
    [Crossref] [PubMed]
  25. T. Shegai, S. Chen, V. D. Miljković, G. Zengin, P. Johansson, and M. Käll, “A bimetallic nanoantenna for directional colour routing,” Nat. Commun. 2, 481 (2011).
    [Crossref] [PubMed]
  26. A. Alù and N. Engheta, “Hertzian plasmonic nanodimer as an efficient optical nanoantenna,” Phys. Rev. B 78(19), 195111 (2008).
    [Crossref]
  27. F. B. Arango, T. Coenen, and A. F. Koenderink, “Underpinning Hybridization Intuition for Complex Nanoantennas by Magnetoelectric Quadrupolar Polarizability Retrieval,” ACS Photonics 1(5), 444–453 (2014).
    [Crossref]
  28. I. M. Hancu, A. G. Curto, M. Castro-López, M. Kuttge, and N. F. van Hulst, “Multipolar Interference for Directed Light Emission,” Nano Lett. 14(1), 166–171 (2014).
    [Crossref] [PubMed]
  29. R. Alaee, R. Filter, D. Lehr, F. Lederer, and C. Rockstuhl, “A generalized Kerker condition for highly directive nanoantennas,” Opt. Lett. 40(11), 2645–2648 (2015).
    [Crossref] [PubMed]
  30. I. Fernandez-Corbaton, “Forward and backward helicity scattering coefficients for systems with discrete rotational symmetry,” Opt. Express 21(24), 29885–29893 (2013).
    [Crossref] [PubMed]
  31. I. Fernandez-Corbaton, M. Fruhnert, and C. Rockstuhl, “Dual and Chiral Objects for Optical Activity in General Scattering Directions,” ACS Photonics 2(3), 376–384 (2015).
    [Crossref]
  32. J. Pomplun, S. Burger, L. Zschiedrich, and F. Schmidt, “Adaptive finite element method for simulation of optical nano structures,” Phys. Status Solidi, B Basic Res. 244(10), 3419–3434 (2007).
    [Crossref]
  33. W. Lukosz, “Light-Emission by Magnetic and Electric Dipoles Close to a Plane Dielectric Interface. 3. Radiation-Patterns of Dipoles with Arbitrary Orientation,” J. Opt. Soc. Am. 69(11), 1495–1503 (1979).
    [Crossref]
  34. W. Lukosz, “Theory of optical-environment-dependent spontaneous-emission rates for emitters in thin layers,” Phys. Rev. B 22(6), 3030–3038 (1980).
    [Crossref]
  35. M. Albooyeh, R. Alaee, C. Rockstuhl, and C. Simovski, “Revisiting substrate-induced bianisotropy in metasurfaces,” Phys. Rev. B 91(19), 195304 (2015).
    [Crossref]
  36. P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]
  37. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

2015 (5)

J. Kim, Y. G. Roh, S. Cheon, U. J. Kim, S. W. Hwang, Y. Park, and C. W. Lee, “Directional radiation of Babinet-inverted optical nanoantenna integrated with plasmonic waveguide,” Sci. Rep. 5, 11832 (2015).
[Crossref] [PubMed]

W. Yao, S. Liu, H. Liao, Z. Li, C. Sun, J. Chen, and Q. Gong, “Efficient Directional Excitation of Surface Plasmons by a Single-Element Nanoantenna,” Nano Lett. 15(5), 3115–3121 (2015).
[Crossref] [PubMed]

I. Fernandez-Corbaton, M. Fruhnert, and C. Rockstuhl, “Dual and Chiral Objects for Optical Activity in General Scattering Directions,” ACS Photonics 2(3), 376–384 (2015).
[Crossref]

M. Albooyeh, R. Alaee, C. Rockstuhl, and C. Simovski, “Revisiting substrate-induced bianisotropy in metasurfaces,” Phys. Rev. B 91(19), 195304 (2015).
[Crossref]

R. Alaee, R. Filter, D. Lehr, F. Lederer, and C. Rockstuhl, “A generalized Kerker condition for highly directive nanoantennas,” Opt. Lett. 40(11), 2645–2648 (2015).
[Crossref] [PubMed]

2014 (9)

F. B. Arango, T. Coenen, and A. F. Koenderink, “Underpinning Hybridization Intuition for Complex Nanoantennas by Magnetoelectric Quadrupolar Polarizability Retrieval,” ACS Photonics 1(5), 444–453 (2014).
[Crossref]

I. M. Hancu, A. G. Curto, M. Castro-López, M. Kuttge, and N. F. van Hulst, “Multipolar Interference for Directed Light Emission,” Nano Lett. 14(1), 166–171 (2014).
[Crossref] [PubMed]

T. Coenen, F. Bernal Arango, A. Femius Koenderink, and A. Polman, “Directional emission from a single plasmonic scatterer,” Nat. Commun. 5, 3250 (2014).
[Crossref] [PubMed]

A. W. Powell, N. Hjerrild, A. A. R. Watt, H. E. Assender, and J. M. Smith, “Directional plasmonic scattering from metal nanoparticles in thin-film environments,” Appl. Phys. Lett. 104(8), 081110 (2014).
[Crossref]

S. Y. Zhang, G. A. Turnbull, and I. D. W. Samuel, “Highly Directional Emission and Beam Steering from Organic Light-Emitting Diodes with a Substrate Diffractive Optical Element,” Adv. Opt. Mater. 2(4), 343–347 (2014).
[Crossref]

A. Abass, S. R.-K. Rodriguez, J. Gómez Rivas, and B. Maes, “Tailoring Dispersion and Eigenfield Profiles of Plasmonic Surface Lattice Resonances,” ACS Photonics 1(1), 61–68 (2014).
[Crossref]

F. Priolo, T. Gregorkiewicz, M. Galli, and T. F. Krauss, “Silicon nanostructures for photonics and photovoltaics,” Nat. Nanotechnol. 9(1), 19–32 (2014).
[Crossref] [PubMed]

N. X. A. Rivolta and B. Maes, “Angle-specific transparent conducting electrodes with metallic gratings,” J. Appl. Phys. 116(5), 053101 (2014).
[Crossref]

A. Abass, S. R.-K. Rodriguez, T. Ako, T. Aubert, M. Verschuuren, D. Van Thourhout, J. Beeckman, Z. Hens, J. Gómez Rivas, and B. Maes, “Active Liquid Crystal Tuning of Metallic Nanoantenna Enhanced Light Emission from Colloidal Quantum Dots,” Nano Lett. 14(10), 5555–5560 (2014).
[Crossref] [PubMed]

2013 (3)

S. Y. Zhang, G. A. Turnbull, and I. D. W. Samuel, “Enhancing the emission directionality of organic light-emitting diodes by using photonic microstructures,” Appl. Phys. Lett. 103(21), 213302 (2013).
[Crossref]

D. Vercruysse, Y. Sonnefraud, N. Verellen, F. B. Fuchs, G. Di Martino, L. Lagae, V. V. Moshchalkov, S. A. Maier, and P. Van Dorpe, “Unidirectional side scattering of light by a single-element nanoantenna,” Nano Lett. 13(8), 3843–3849 (2013).
[Crossref] [PubMed]

I. Fernandez-Corbaton, “Forward and backward helicity scattering coefficients for systems with discrete rotational symmetry,” Opt. Express 21(24), 29885–29893 (2013).
[Crossref] [PubMed]

2012 (2)

X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband light bending with plasmonic nanoantennas,” Science 335(6067), 427 (2012).
[Crossref] [PubMed]

S. R. K. Rodriguez, S. Murai, M. A. Verschuuren, and J. G. Rivas, “Light-Emitting Waveguide-Plasmon Polaritons,” Phys. Rev. Lett. 109(16), 166803 (2012).
[Crossref] [PubMed]

2011 (5)

H. Aouani, O. Mahboub, N. Bonod, E. Devaux, E. Popov, H. Rigneault, T. W. Ebbesen, and J. Wenger, “Bright Unidirectional Fluorescence Emission of Molecules in a Nanoaperture with Plasmonic Corrugations,” Nano Lett. 11(2), 637–644 (2011).
[Crossref] [PubMed]

D. Dregely, R. Taubert, J. Dorfmüller, R. Vogelgesang, K. Kern, and H. Giessen, “3D optical Yagi-Uda nanoantenna array,” Nat. Commun. 2, 267 (2011).
[Crossref] [PubMed]

H. Elgala, R. Mesleh, and H. Haas, “Indoor Optical Wireless Communication: Potential and State-of-the-Art,” IEEE Commun. Mag. 49(9), 56–62 (2011).
[Crossref]

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics 5(2), 83–90 (2011).
[Crossref]

T. Shegai, S. Chen, V. D. Miljković, G. Zengin, P. Johansson, and M. Käll, “A bimetallic nanoantenna for directional colour routing,” Nat. Commun. 2, 481 (2011).
[Crossref] [PubMed]

2010 (1)

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional Emission of a Quantum Dot Coupled to a Nanoantenna,” Science 329(5994), 930–933 (2010).
[Crossref] [PubMed]

2009 (1)

Y. Fu and J. R. Lakowicz, “Modification of single molecule fluorescence near metallic nanostructures,” Laser Photonics Rev. 3(1-2), 221–232 (2009).
[Crossref]

2008 (4)

T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. Van Hulst, “Optical antennas direct single-molecule emission,” Nat. Photonics 2(4), 234–237 (2008).
[Crossref]

A. Alù and N. Engheta, “Hertzian plasmonic nanodimer as an efficient optical nanoantenna,” Phys. Rev. B 78(19), 195111 (2008).
[Crossref]

T. H. Taminiau, F. D. Stefani, and N. F. van Hulst, “Enhanced directional excitation and emission of single emitters by a nano-optical Yagi-Uda antenna,” Opt. Express 16(14), 10858–10866 (2008).
[Crossref] [PubMed]

K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express 16(26), 21793–21800 (2008).
[Crossref] [PubMed]

2007 (1)

J. Pomplun, S. Burger, L. Zschiedrich, and F. Schmidt, “Adaptive finite element method for simulation of optical nano structures,” Phys. Status Solidi, B Basic Res. 244(10), 3419–3434 (2007).
[Crossref]

2005 (2)

J. Feng, T. Okamoto, and S. Kawata, “Highly directional emission via coupled surface-plasmon tunneling from electroluminescence in organic light-emitting devices,” Appl. Phys. Lett. 87(24), 241109 (2005).
[Crossref]

J. Alda, J. M. Rico-Garcia, J. M. Lopez-Alonso, and G. Boreman, “Optical antennas for nano-photonic applications,” Nanotechnology 16(5), S230–S234 (2005).
[Crossref]

1980 (1)

W. Lukosz, “Theory of optical-environment-dependent spontaneous-emission rates for emitters in thin layers,” Phys. Rev. B 22(6), 3030–3038 (1980).
[Crossref]

1979 (1)

1972 (1)

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Abass, A.

A. Abass, S. R.-K. Rodriguez, J. Gómez Rivas, and B. Maes, “Tailoring Dispersion and Eigenfield Profiles of Plasmonic Surface Lattice Resonances,” ACS Photonics 1(1), 61–68 (2014).
[Crossref]

A. Abass, S. R.-K. Rodriguez, T. Ako, T. Aubert, M. Verschuuren, D. Van Thourhout, J. Beeckman, Z. Hens, J. Gómez Rivas, and B. Maes, “Active Liquid Crystal Tuning of Metallic Nanoantenna Enhanced Light Emission from Colloidal Quantum Dots,” Nano Lett. 14(10), 5555–5560 (2014).
[Crossref] [PubMed]

Ako, T.

A. Abass, S. R.-K. Rodriguez, T. Ako, T. Aubert, M. Verschuuren, D. Van Thourhout, J. Beeckman, Z. Hens, J. Gómez Rivas, and B. Maes, “Active Liquid Crystal Tuning of Metallic Nanoantenna Enhanced Light Emission from Colloidal Quantum Dots,” Nano Lett. 14(10), 5555–5560 (2014).
[Crossref] [PubMed]

Alaee, R.

R. Alaee, R. Filter, D. Lehr, F. Lederer, and C. Rockstuhl, “A generalized Kerker condition for highly directive nanoantennas,” Opt. Lett. 40(11), 2645–2648 (2015).
[Crossref] [PubMed]

M. Albooyeh, R. Alaee, C. Rockstuhl, and C. Simovski, “Revisiting substrate-induced bianisotropy in metasurfaces,” Phys. Rev. B 91(19), 195304 (2015).
[Crossref]

Albooyeh, M.

M. Albooyeh, R. Alaee, C. Rockstuhl, and C. Simovski, “Revisiting substrate-induced bianisotropy in metasurfaces,” Phys. Rev. B 91(19), 195304 (2015).
[Crossref]

Alda, J.

J. Alda, J. M. Rico-Garcia, J. M. Lopez-Alonso, and G. Boreman, “Optical antennas for nano-photonic applications,” Nanotechnology 16(5), S230–S234 (2005).
[Crossref]

Alù, A.

A. Alù and N. Engheta, “Hertzian plasmonic nanodimer as an efficient optical nanoantenna,” Phys. Rev. B 78(19), 195111 (2008).
[Crossref]

Aouani, H.

H. Aouani, O. Mahboub, N. Bonod, E. Devaux, E. Popov, H. Rigneault, T. W. Ebbesen, and J. Wenger, “Bright Unidirectional Fluorescence Emission of Molecules in a Nanoaperture with Plasmonic Corrugations,” Nano Lett. 11(2), 637–644 (2011).
[Crossref] [PubMed]

Arango, F. B.

F. B. Arango, T. Coenen, and A. F. Koenderink, “Underpinning Hybridization Intuition for Complex Nanoantennas by Magnetoelectric Quadrupolar Polarizability Retrieval,” ACS Photonics 1(5), 444–453 (2014).
[Crossref]

Assender, H. E.

A. W. Powell, N. Hjerrild, A. A. R. Watt, H. E. Assender, and J. M. Smith, “Directional plasmonic scattering from metal nanoparticles in thin-film environments,” Appl. Phys. Lett. 104(8), 081110 (2014).
[Crossref]

Aubert, T.

A. Abass, S. R.-K. Rodriguez, T. Ako, T. Aubert, M. Verschuuren, D. Van Thourhout, J. Beeckman, Z. Hens, J. Gómez Rivas, and B. Maes, “Active Liquid Crystal Tuning of Metallic Nanoantenna Enhanced Light Emission from Colloidal Quantum Dots,” Nano Lett. 14(10), 5555–5560 (2014).
[Crossref] [PubMed]

Beeckman, J.

A. Abass, S. R.-K. Rodriguez, T. Ako, T. Aubert, M. Verschuuren, D. Van Thourhout, J. Beeckman, Z. Hens, J. Gómez Rivas, and B. Maes, “Active Liquid Crystal Tuning of Metallic Nanoantenna Enhanced Light Emission from Colloidal Quantum Dots,” Nano Lett. 14(10), 5555–5560 (2014).
[Crossref] [PubMed]

Bernal Arango, F.

T. Coenen, F. Bernal Arango, A. Femius Koenderink, and A. Polman, “Directional emission from a single plasmonic scatterer,” Nat. Commun. 5, 3250 (2014).
[Crossref] [PubMed]

Boltasseva, A.

X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband light bending with plasmonic nanoantennas,” Science 335(6067), 427 (2012).
[Crossref] [PubMed]

Bonod, N.

H. Aouani, O. Mahboub, N. Bonod, E. Devaux, E. Popov, H. Rigneault, T. W. Ebbesen, and J. Wenger, “Bright Unidirectional Fluorescence Emission of Molecules in a Nanoaperture with Plasmonic Corrugations,” Nano Lett. 11(2), 637–644 (2011).
[Crossref] [PubMed]

Boreman, G.

J. Alda, J. M. Rico-Garcia, J. M. Lopez-Alonso, and G. Boreman, “Optical antennas for nano-photonic applications,” Nanotechnology 16(5), S230–S234 (2005).
[Crossref]

Burger, S.

J. Pomplun, S. Burger, L. Zschiedrich, and F. Schmidt, “Adaptive finite element method for simulation of optical nano structures,” Phys. Status Solidi, B Basic Res. 244(10), 3419–3434 (2007).
[Crossref]

Castro-López, M.

I. M. Hancu, A. G. Curto, M. Castro-López, M. Kuttge, and N. F. van Hulst, “Multipolar Interference for Directed Light Emission,” Nano Lett. 14(1), 166–171 (2014).
[Crossref] [PubMed]

Catchpole, K. R.

Chen, J.

W. Yao, S. Liu, H. Liao, Z. Li, C. Sun, J. Chen, and Q. Gong, “Efficient Directional Excitation of Surface Plasmons by a Single-Element Nanoantenna,” Nano Lett. 15(5), 3115–3121 (2015).
[Crossref] [PubMed]

Chen, S.

T. Shegai, S. Chen, V. D. Miljković, G. Zengin, P. Johansson, and M. Käll, “A bimetallic nanoantenna for directional colour routing,” Nat. Commun. 2, 481 (2011).
[Crossref] [PubMed]

Cheon, S.

J. Kim, Y. G. Roh, S. Cheon, U. J. Kim, S. W. Hwang, Y. Park, and C. W. Lee, “Directional radiation of Babinet-inverted optical nanoantenna integrated with plasmonic waveguide,” Sci. Rep. 5, 11832 (2015).
[Crossref] [PubMed]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Coenen, T.

F. B. Arango, T. Coenen, and A. F. Koenderink, “Underpinning Hybridization Intuition for Complex Nanoantennas by Magnetoelectric Quadrupolar Polarizability Retrieval,” ACS Photonics 1(5), 444–453 (2014).
[Crossref]

T. Coenen, F. Bernal Arango, A. Femius Koenderink, and A. Polman, “Directional emission from a single plasmonic scatterer,” Nat. Commun. 5, 3250 (2014).
[Crossref] [PubMed]

Curto, A. G.

I. M. Hancu, A. G. Curto, M. Castro-López, M. Kuttge, and N. F. van Hulst, “Multipolar Interference for Directed Light Emission,” Nano Lett. 14(1), 166–171 (2014).
[Crossref] [PubMed]

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional Emission of a Quantum Dot Coupled to a Nanoantenna,” Science 329(5994), 930–933 (2010).
[Crossref] [PubMed]

Devaux, E.

H. Aouani, O. Mahboub, N. Bonod, E. Devaux, E. Popov, H. Rigneault, T. W. Ebbesen, and J. Wenger, “Bright Unidirectional Fluorescence Emission of Molecules in a Nanoaperture with Plasmonic Corrugations,” Nano Lett. 11(2), 637–644 (2011).
[Crossref] [PubMed]

Di Martino, G.

D. Vercruysse, Y. Sonnefraud, N. Verellen, F. B. Fuchs, G. Di Martino, L. Lagae, V. V. Moshchalkov, S. A. Maier, and P. Van Dorpe, “Unidirectional side scattering of light by a single-element nanoantenna,” Nano Lett. 13(8), 3843–3849 (2013).
[Crossref] [PubMed]

Dorfmüller, J.

D. Dregely, R. Taubert, J. Dorfmüller, R. Vogelgesang, K. Kern, and H. Giessen, “3D optical Yagi-Uda nanoantenna array,” Nat. Commun. 2, 267 (2011).
[Crossref] [PubMed]

Dregely, D.

D. Dregely, R. Taubert, J. Dorfmüller, R. Vogelgesang, K. Kern, and H. Giessen, “3D optical Yagi-Uda nanoantenna array,” Nat. Commun. 2, 267 (2011).
[Crossref] [PubMed]

Ebbesen, T. W.

H. Aouani, O. Mahboub, N. Bonod, E. Devaux, E. Popov, H. Rigneault, T. W. Ebbesen, and J. Wenger, “Bright Unidirectional Fluorescence Emission of Molecules in a Nanoaperture with Plasmonic Corrugations,” Nano Lett. 11(2), 637–644 (2011).
[Crossref] [PubMed]

Elgala, H.

H. Elgala, R. Mesleh, and H. Haas, “Indoor Optical Wireless Communication: Potential and State-of-the-Art,” IEEE Commun. Mag. 49(9), 56–62 (2011).
[Crossref]

Emani, N. K.

X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband light bending with plasmonic nanoantennas,” Science 335(6067), 427 (2012).
[Crossref] [PubMed]

Engheta, N.

A. Alù and N. Engheta, “Hertzian plasmonic nanodimer as an efficient optical nanoantenna,” Phys. Rev. B 78(19), 195111 (2008).
[Crossref]

Femius Koenderink, A.

T. Coenen, F. Bernal Arango, A. Femius Koenderink, and A. Polman, “Directional emission from a single plasmonic scatterer,” Nat. Commun. 5, 3250 (2014).
[Crossref] [PubMed]

Feng, J.

J. Feng, T. Okamoto, and S. Kawata, “Highly directional emission via coupled surface-plasmon tunneling from electroluminescence in organic light-emitting devices,” Appl. Phys. Lett. 87(24), 241109 (2005).
[Crossref]

Fernandez-Corbaton, I.

I. Fernandez-Corbaton, M. Fruhnert, and C. Rockstuhl, “Dual and Chiral Objects for Optical Activity in General Scattering Directions,” ACS Photonics 2(3), 376–384 (2015).
[Crossref]

I. Fernandez-Corbaton, “Forward and backward helicity scattering coefficients for systems with discrete rotational symmetry,” Opt. Express 21(24), 29885–29893 (2013).
[Crossref] [PubMed]

Filter, R.

Fruhnert, M.

I. Fernandez-Corbaton, M. Fruhnert, and C. Rockstuhl, “Dual and Chiral Objects for Optical Activity in General Scattering Directions,” ACS Photonics 2(3), 376–384 (2015).
[Crossref]

Fu, Y.

Y. Fu and J. R. Lakowicz, “Modification of single molecule fluorescence near metallic nanostructures,” Laser Photonics Rev. 3(1-2), 221–232 (2009).
[Crossref]

Fuchs, F. B.

D. Vercruysse, Y. Sonnefraud, N. Verellen, F. B. Fuchs, G. Di Martino, L. Lagae, V. V. Moshchalkov, S. A. Maier, and P. Van Dorpe, “Unidirectional side scattering of light by a single-element nanoantenna,” Nano Lett. 13(8), 3843–3849 (2013).
[Crossref] [PubMed]

Galli, M.

F. Priolo, T. Gregorkiewicz, M. Galli, and T. F. Krauss, “Silicon nanostructures for photonics and photovoltaics,” Nat. Nanotechnol. 9(1), 19–32 (2014).
[Crossref] [PubMed]

Giessen, H.

D. Dregely, R. Taubert, J. Dorfmüller, R. Vogelgesang, K. Kern, and H. Giessen, “3D optical Yagi-Uda nanoantenna array,” Nat. Commun. 2, 267 (2011).
[Crossref] [PubMed]

Gómez Rivas, J.

A. Abass, S. R.-K. Rodriguez, J. Gómez Rivas, and B. Maes, “Tailoring Dispersion and Eigenfield Profiles of Plasmonic Surface Lattice Resonances,” ACS Photonics 1(1), 61–68 (2014).
[Crossref]

A. Abass, S. R.-K. Rodriguez, T. Ako, T. Aubert, M. Verschuuren, D. Van Thourhout, J. Beeckman, Z. Hens, J. Gómez Rivas, and B. Maes, “Active Liquid Crystal Tuning of Metallic Nanoantenna Enhanced Light Emission from Colloidal Quantum Dots,” Nano Lett. 14(10), 5555–5560 (2014).
[Crossref] [PubMed]

Gong, Q.

W. Yao, S. Liu, H. Liao, Z. Li, C. Sun, J. Chen, and Q. Gong, “Efficient Directional Excitation of Surface Plasmons by a Single-Element Nanoantenna,” Nano Lett. 15(5), 3115–3121 (2015).
[Crossref] [PubMed]

Gregorkiewicz, T.

F. Priolo, T. Gregorkiewicz, M. Galli, and T. F. Krauss, “Silicon nanostructures for photonics and photovoltaics,” Nat. Nanotechnol. 9(1), 19–32 (2014).
[Crossref] [PubMed]

Haas, H.

H. Elgala, R. Mesleh, and H. Haas, “Indoor Optical Wireless Communication: Potential and State-of-the-Art,” IEEE Commun. Mag. 49(9), 56–62 (2011).
[Crossref]

Hancu, I. M.

I. M. Hancu, A. G. Curto, M. Castro-López, M. Kuttge, and N. F. van Hulst, “Multipolar Interference for Directed Light Emission,” Nano Lett. 14(1), 166–171 (2014).
[Crossref] [PubMed]

Hens, Z.

A. Abass, S. R.-K. Rodriguez, T. Ako, T. Aubert, M. Verschuuren, D. Van Thourhout, J. Beeckman, Z. Hens, J. Gómez Rivas, and B. Maes, “Active Liquid Crystal Tuning of Metallic Nanoantenna Enhanced Light Emission from Colloidal Quantum Dots,” Nano Lett. 14(10), 5555–5560 (2014).
[Crossref] [PubMed]

Hjerrild, N.

A. W. Powell, N. Hjerrild, A. A. R. Watt, H. E. Assender, and J. M. Smith, “Directional plasmonic scattering from metal nanoparticles in thin-film environments,” Appl. Phys. Lett. 104(8), 081110 (2014).
[Crossref]

Hwang, S. W.

J. Kim, Y. G. Roh, S. Cheon, U. J. Kim, S. W. Hwang, Y. Park, and C. W. Lee, “Directional radiation of Babinet-inverted optical nanoantenna integrated with plasmonic waveguide,” Sci. Rep. 5, 11832 (2015).
[Crossref] [PubMed]

Johansson, P.

T. Shegai, S. Chen, V. D. Miljković, G. Zengin, P. Johansson, and M. Käll, “A bimetallic nanoantenna for directional colour routing,” Nat. Commun. 2, 481 (2011).
[Crossref] [PubMed]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Käll, M.

T. Shegai, S. Chen, V. D. Miljković, G. Zengin, P. Johansson, and M. Käll, “A bimetallic nanoantenna for directional colour routing,” Nat. Commun. 2, 481 (2011).
[Crossref] [PubMed]

Kawata, S.

J. Feng, T. Okamoto, and S. Kawata, “Highly directional emission via coupled surface-plasmon tunneling from electroluminescence in organic light-emitting devices,” Appl. Phys. Lett. 87(24), 241109 (2005).
[Crossref]

Kern, K.

D. Dregely, R. Taubert, J. Dorfmüller, R. Vogelgesang, K. Kern, and H. Giessen, “3D optical Yagi-Uda nanoantenna array,” Nat. Commun. 2, 267 (2011).
[Crossref] [PubMed]

Kildishev, A. V.

X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband light bending with plasmonic nanoantennas,” Science 335(6067), 427 (2012).
[Crossref] [PubMed]

Kim, J.

J. Kim, Y. G. Roh, S. Cheon, U. J. Kim, S. W. Hwang, Y. Park, and C. W. Lee, “Directional radiation of Babinet-inverted optical nanoantenna integrated with plasmonic waveguide,” Sci. Rep. 5, 11832 (2015).
[Crossref] [PubMed]

Kim, U. J.

J. Kim, Y. G. Roh, S. Cheon, U. J. Kim, S. W. Hwang, Y. Park, and C. W. Lee, “Directional radiation of Babinet-inverted optical nanoantenna integrated with plasmonic waveguide,” Sci. Rep. 5, 11832 (2015).
[Crossref] [PubMed]

Koenderink, A. F.

F. B. Arango, T. Coenen, and A. F. Koenderink, “Underpinning Hybridization Intuition for Complex Nanoantennas by Magnetoelectric Quadrupolar Polarizability Retrieval,” ACS Photonics 1(5), 444–453 (2014).
[Crossref]

Krauss, T. F.

F. Priolo, T. Gregorkiewicz, M. Galli, and T. F. Krauss, “Silicon nanostructures for photonics and photovoltaics,” Nat. Nanotechnol. 9(1), 19–32 (2014).
[Crossref] [PubMed]

Kreuzer, M. P.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional Emission of a Quantum Dot Coupled to a Nanoantenna,” Science 329(5994), 930–933 (2010).
[Crossref] [PubMed]

Kuttge, M.

I. M. Hancu, A. G. Curto, M. Castro-López, M. Kuttge, and N. F. van Hulst, “Multipolar Interference for Directed Light Emission,” Nano Lett. 14(1), 166–171 (2014).
[Crossref] [PubMed]

Lagae, L.

D. Vercruysse, Y. Sonnefraud, N. Verellen, F. B. Fuchs, G. Di Martino, L. Lagae, V. V. Moshchalkov, S. A. Maier, and P. Van Dorpe, “Unidirectional side scattering of light by a single-element nanoantenna,” Nano Lett. 13(8), 3843–3849 (2013).
[Crossref] [PubMed]

Lakowicz, J. R.

Y. Fu and J. R. Lakowicz, “Modification of single molecule fluorescence near metallic nanostructures,” Laser Photonics Rev. 3(1-2), 221–232 (2009).
[Crossref]

Lederer, F.

Lee, C. W.

J. Kim, Y. G. Roh, S. Cheon, U. J. Kim, S. W. Hwang, Y. Park, and C. W. Lee, “Directional radiation of Babinet-inverted optical nanoantenna integrated with plasmonic waveguide,” Sci. Rep. 5, 11832 (2015).
[Crossref] [PubMed]

Lehr, D.

Li, Z.

W. Yao, S. Liu, H. Liao, Z. Li, C. Sun, J. Chen, and Q. Gong, “Efficient Directional Excitation of Surface Plasmons by a Single-Element Nanoantenna,” Nano Lett. 15(5), 3115–3121 (2015).
[Crossref] [PubMed]

Liao, H.

W. Yao, S. Liu, H. Liao, Z. Li, C. Sun, J. Chen, and Q. Gong, “Efficient Directional Excitation of Surface Plasmons by a Single-Element Nanoantenna,” Nano Lett. 15(5), 3115–3121 (2015).
[Crossref] [PubMed]

Liu, S.

W. Yao, S. Liu, H. Liao, Z. Li, C. Sun, J. Chen, and Q. Gong, “Efficient Directional Excitation of Surface Plasmons by a Single-Element Nanoantenna,” Nano Lett. 15(5), 3115–3121 (2015).
[Crossref] [PubMed]

Lopez-Alonso, J. M.

J. Alda, J. M. Rico-Garcia, J. M. Lopez-Alonso, and G. Boreman, “Optical antennas for nano-photonic applications,” Nanotechnology 16(5), S230–S234 (2005).
[Crossref]

Lukosz, W.

W. Lukosz, “Theory of optical-environment-dependent spontaneous-emission rates for emitters in thin layers,” Phys. Rev. B 22(6), 3030–3038 (1980).
[Crossref]

W. Lukosz, “Light-Emission by Magnetic and Electric Dipoles Close to a Plane Dielectric Interface. 3. Radiation-Patterns of Dipoles with Arbitrary Orientation,” J. Opt. Soc. Am. 69(11), 1495–1503 (1979).
[Crossref]

Maes, B.

A. Abass, S. R.-K. Rodriguez, T. Ako, T. Aubert, M. Verschuuren, D. Van Thourhout, J. Beeckman, Z. Hens, J. Gómez Rivas, and B. Maes, “Active Liquid Crystal Tuning of Metallic Nanoantenna Enhanced Light Emission from Colloidal Quantum Dots,” Nano Lett. 14(10), 5555–5560 (2014).
[Crossref] [PubMed]

A. Abass, S. R.-K. Rodriguez, J. Gómez Rivas, and B. Maes, “Tailoring Dispersion and Eigenfield Profiles of Plasmonic Surface Lattice Resonances,” ACS Photonics 1(1), 61–68 (2014).
[Crossref]

N. X. A. Rivolta and B. Maes, “Angle-specific transparent conducting electrodes with metallic gratings,” J. Appl. Phys. 116(5), 053101 (2014).
[Crossref]

Mahboub, O.

H. Aouani, O. Mahboub, N. Bonod, E. Devaux, E. Popov, H. Rigneault, T. W. Ebbesen, and J. Wenger, “Bright Unidirectional Fluorescence Emission of Molecules in a Nanoaperture with Plasmonic Corrugations,” Nano Lett. 11(2), 637–644 (2011).
[Crossref] [PubMed]

Maier, S. A.

D. Vercruysse, Y. Sonnefraud, N. Verellen, F. B. Fuchs, G. Di Martino, L. Lagae, V. V. Moshchalkov, S. A. Maier, and P. Van Dorpe, “Unidirectional side scattering of light by a single-element nanoantenna,” Nano Lett. 13(8), 3843–3849 (2013).
[Crossref] [PubMed]

Mesleh, R.

H. Elgala, R. Mesleh, and H. Haas, “Indoor Optical Wireless Communication: Potential and State-of-the-Art,” IEEE Commun. Mag. 49(9), 56–62 (2011).
[Crossref]

Miljkovic, V. D.

T. Shegai, S. Chen, V. D. Miljković, G. Zengin, P. Johansson, and M. Käll, “A bimetallic nanoantenna for directional colour routing,” Nat. Commun. 2, 481 (2011).
[Crossref] [PubMed]

Moshchalkov, V. V.

D. Vercruysse, Y. Sonnefraud, N. Verellen, F. B. Fuchs, G. Di Martino, L. Lagae, V. V. Moshchalkov, S. A. Maier, and P. Van Dorpe, “Unidirectional side scattering of light by a single-element nanoantenna,” Nano Lett. 13(8), 3843–3849 (2013).
[Crossref] [PubMed]

Murai, S.

S. R. K. Rodriguez, S. Murai, M. A. Verschuuren, and J. G. Rivas, “Light-Emitting Waveguide-Plasmon Polaritons,” Phys. Rev. Lett. 109(16), 166803 (2012).
[Crossref] [PubMed]

Ni, X.

X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband light bending with plasmonic nanoantennas,” Science 335(6067), 427 (2012).
[Crossref] [PubMed]

Novotny, L.

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics 5(2), 83–90 (2011).
[Crossref]

Okamoto, T.

J. Feng, T. Okamoto, and S. Kawata, “Highly directional emission via coupled surface-plasmon tunneling from electroluminescence in organic light-emitting devices,” Appl. Phys. Lett. 87(24), 241109 (2005).
[Crossref]

Park, Y.

J. Kim, Y. G. Roh, S. Cheon, U. J. Kim, S. W. Hwang, Y. Park, and C. W. Lee, “Directional radiation of Babinet-inverted optical nanoantenna integrated with plasmonic waveguide,” Sci. Rep. 5, 11832 (2015).
[Crossref] [PubMed]

Polman, A.

T. Coenen, F. Bernal Arango, A. Femius Koenderink, and A. Polman, “Directional emission from a single plasmonic scatterer,” Nat. Commun. 5, 3250 (2014).
[Crossref] [PubMed]

K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express 16(26), 21793–21800 (2008).
[Crossref] [PubMed]

Pomplun, J.

J. Pomplun, S. Burger, L. Zschiedrich, and F. Schmidt, “Adaptive finite element method for simulation of optical nano structures,” Phys. Status Solidi, B Basic Res. 244(10), 3419–3434 (2007).
[Crossref]

Popov, E.

H. Aouani, O. Mahboub, N. Bonod, E. Devaux, E. Popov, H. Rigneault, T. W. Ebbesen, and J. Wenger, “Bright Unidirectional Fluorescence Emission of Molecules in a Nanoaperture with Plasmonic Corrugations,” Nano Lett. 11(2), 637–644 (2011).
[Crossref] [PubMed]

Powell, A. W.

A. W. Powell, N. Hjerrild, A. A. R. Watt, H. E. Assender, and J. M. Smith, “Directional plasmonic scattering from metal nanoparticles in thin-film environments,” Appl. Phys. Lett. 104(8), 081110 (2014).
[Crossref]

Priolo, F.

F. Priolo, T. Gregorkiewicz, M. Galli, and T. F. Krauss, “Silicon nanostructures for photonics and photovoltaics,” Nat. Nanotechnol. 9(1), 19–32 (2014).
[Crossref] [PubMed]

Quidant, R.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional Emission of a Quantum Dot Coupled to a Nanoantenna,” Science 329(5994), 930–933 (2010).
[Crossref] [PubMed]

Rico-Garcia, J. M.

J. Alda, J. M. Rico-Garcia, J. M. Lopez-Alonso, and G. Boreman, “Optical antennas for nano-photonic applications,” Nanotechnology 16(5), S230–S234 (2005).
[Crossref]

Rigneault, H.

H. Aouani, O. Mahboub, N. Bonod, E. Devaux, E. Popov, H. Rigneault, T. W. Ebbesen, and J. Wenger, “Bright Unidirectional Fluorescence Emission of Molecules in a Nanoaperture with Plasmonic Corrugations,” Nano Lett. 11(2), 637–644 (2011).
[Crossref] [PubMed]

Rivas, J. G.

S. R. K. Rodriguez, S. Murai, M. A. Verschuuren, and J. G. Rivas, “Light-Emitting Waveguide-Plasmon Polaritons,” Phys. Rev. Lett. 109(16), 166803 (2012).
[Crossref] [PubMed]

Rivolta, N. X. A.

N. X. A. Rivolta and B. Maes, “Angle-specific transparent conducting electrodes with metallic gratings,” J. Appl. Phys. 116(5), 053101 (2014).
[Crossref]

Rockstuhl, C.

M. Albooyeh, R. Alaee, C. Rockstuhl, and C. Simovski, “Revisiting substrate-induced bianisotropy in metasurfaces,” Phys. Rev. B 91(19), 195304 (2015).
[Crossref]

R. Alaee, R. Filter, D. Lehr, F. Lederer, and C. Rockstuhl, “A generalized Kerker condition for highly directive nanoantennas,” Opt. Lett. 40(11), 2645–2648 (2015).
[Crossref] [PubMed]

I. Fernandez-Corbaton, M. Fruhnert, and C. Rockstuhl, “Dual and Chiral Objects for Optical Activity in General Scattering Directions,” ACS Photonics 2(3), 376–384 (2015).
[Crossref]

Rodriguez, S. R. K.

S. R. K. Rodriguez, S. Murai, M. A. Verschuuren, and J. G. Rivas, “Light-Emitting Waveguide-Plasmon Polaritons,” Phys. Rev. Lett. 109(16), 166803 (2012).
[Crossref] [PubMed]

Rodriguez, S. R.-K.

A. Abass, S. R.-K. Rodriguez, T. Ako, T. Aubert, M. Verschuuren, D. Van Thourhout, J. Beeckman, Z. Hens, J. Gómez Rivas, and B. Maes, “Active Liquid Crystal Tuning of Metallic Nanoantenna Enhanced Light Emission from Colloidal Quantum Dots,” Nano Lett. 14(10), 5555–5560 (2014).
[Crossref] [PubMed]

A. Abass, S. R.-K. Rodriguez, J. Gómez Rivas, and B. Maes, “Tailoring Dispersion and Eigenfield Profiles of Plasmonic Surface Lattice Resonances,” ACS Photonics 1(1), 61–68 (2014).
[Crossref]

Roh, Y. G.

J. Kim, Y. G. Roh, S. Cheon, U. J. Kim, S. W. Hwang, Y. Park, and C. W. Lee, “Directional radiation of Babinet-inverted optical nanoantenna integrated with plasmonic waveguide,” Sci. Rep. 5, 11832 (2015).
[Crossref] [PubMed]

Samuel, I. D. W.

S. Y. Zhang, G. A. Turnbull, and I. D. W. Samuel, “Highly Directional Emission and Beam Steering from Organic Light-Emitting Diodes with a Substrate Diffractive Optical Element,” Adv. Opt. Mater. 2(4), 343–347 (2014).
[Crossref]

S. Y. Zhang, G. A. Turnbull, and I. D. W. Samuel, “Enhancing the emission directionality of organic light-emitting diodes by using photonic microstructures,” Appl. Phys. Lett. 103(21), 213302 (2013).
[Crossref]

Schmidt, F.

J. Pomplun, S. Burger, L. Zschiedrich, and F. Schmidt, “Adaptive finite element method for simulation of optical nano structures,” Phys. Status Solidi, B Basic Res. 244(10), 3419–3434 (2007).
[Crossref]

Segerink, F. B.

T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. Van Hulst, “Optical antennas direct single-molecule emission,” Nat. Photonics 2(4), 234–237 (2008).
[Crossref]

Shalaev, V. M.

X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband light bending with plasmonic nanoantennas,” Science 335(6067), 427 (2012).
[Crossref] [PubMed]

Shegai, T.

T. Shegai, S. Chen, V. D. Miljković, G. Zengin, P. Johansson, and M. Käll, “A bimetallic nanoantenna for directional colour routing,” Nat. Commun. 2, 481 (2011).
[Crossref] [PubMed]

Simovski, C.

M. Albooyeh, R. Alaee, C. Rockstuhl, and C. Simovski, “Revisiting substrate-induced bianisotropy in metasurfaces,” Phys. Rev. B 91(19), 195304 (2015).
[Crossref]

Smith, J. M.

A. W. Powell, N. Hjerrild, A. A. R. Watt, H. E. Assender, and J. M. Smith, “Directional plasmonic scattering from metal nanoparticles in thin-film environments,” Appl. Phys. Lett. 104(8), 081110 (2014).
[Crossref]

Sonnefraud, Y.

D. Vercruysse, Y. Sonnefraud, N. Verellen, F. B. Fuchs, G. Di Martino, L. Lagae, V. V. Moshchalkov, S. A. Maier, and P. Van Dorpe, “Unidirectional side scattering of light by a single-element nanoantenna,” Nano Lett. 13(8), 3843–3849 (2013).
[Crossref] [PubMed]

Stefani, F. D.

T. H. Taminiau, F. D. Stefani, and N. F. van Hulst, “Enhanced directional excitation and emission of single emitters by a nano-optical Yagi-Uda antenna,” Opt. Express 16(14), 10858–10866 (2008).
[Crossref] [PubMed]

T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. Van Hulst, “Optical antennas direct single-molecule emission,” Nat. Photonics 2(4), 234–237 (2008).
[Crossref]

Sun, C.

W. Yao, S. Liu, H. Liao, Z. Li, C. Sun, J. Chen, and Q. Gong, “Efficient Directional Excitation of Surface Plasmons by a Single-Element Nanoantenna,” Nano Lett. 15(5), 3115–3121 (2015).
[Crossref] [PubMed]

Taminiau, T. H.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional Emission of a Quantum Dot Coupled to a Nanoantenna,” Science 329(5994), 930–933 (2010).
[Crossref] [PubMed]

T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. Van Hulst, “Optical antennas direct single-molecule emission,” Nat. Photonics 2(4), 234–237 (2008).
[Crossref]

T. H. Taminiau, F. D. Stefani, and N. F. van Hulst, “Enhanced directional excitation and emission of single emitters by a nano-optical Yagi-Uda antenna,” Opt. Express 16(14), 10858–10866 (2008).
[Crossref] [PubMed]

Taubert, R.

D. Dregely, R. Taubert, J. Dorfmüller, R. Vogelgesang, K. Kern, and H. Giessen, “3D optical Yagi-Uda nanoantenna array,” Nat. Commun. 2, 267 (2011).
[Crossref] [PubMed]

Turnbull, G. A.

S. Y. Zhang, G. A. Turnbull, and I. D. W. Samuel, “Highly Directional Emission and Beam Steering from Organic Light-Emitting Diodes with a Substrate Diffractive Optical Element,” Adv. Opt. Mater. 2(4), 343–347 (2014).
[Crossref]

S. Y. Zhang, G. A. Turnbull, and I. D. W. Samuel, “Enhancing the emission directionality of organic light-emitting diodes by using photonic microstructures,” Appl. Phys. Lett. 103(21), 213302 (2013).
[Crossref]

Van Dorpe, P.

D. Vercruysse, Y. Sonnefraud, N. Verellen, F. B. Fuchs, G. Di Martino, L. Lagae, V. V. Moshchalkov, S. A. Maier, and P. Van Dorpe, “Unidirectional side scattering of light by a single-element nanoantenna,” Nano Lett. 13(8), 3843–3849 (2013).
[Crossref] [PubMed]

van Hulst, N.

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics 5(2), 83–90 (2011).
[Crossref]

van Hulst, N. F.

I. M. Hancu, A. G. Curto, M. Castro-López, M. Kuttge, and N. F. van Hulst, “Multipolar Interference for Directed Light Emission,” Nano Lett. 14(1), 166–171 (2014).
[Crossref] [PubMed]

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional Emission of a Quantum Dot Coupled to a Nanoantenna,” Science 329(5994), 930–933 (2010).
[Crossref] [PubMed]

T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. Van Hulst, “Optical antennas direct single-molecule emission,” Nat. Photonics 2(4), 234–237 (2008).
[Crossref]

T. H. Taminiau, F. D. Stefani, and N. F. van Hulst, “Enhanced directional excitation and emission of single emitters by a nano-optical Yagi-Uda antenna,” Opt. Express 16(14), 10858–10866 (2008).
[Crossref] [PubMed]

Van Thourhout, D.

A. Abass, S. R.-K. Rodriguez, T. Ako, T. Aubert, M. Verschuuren, D. Van Thourhout, J. Beeckman, Z. Hens, J. Gómez Rivas, and B. Maes, “Active Liquid Crystal Tuning of Metallic Nanoantenna Enhanced Light Emission from Colloidal Quantum Dots,” Nano Lett. 14(10), 5555–5560 (2014).
[Crossref] [PubMed]

Vercruysse, D.

D. Vercruysse, Y. Sonnefraud, N. Verellen, F. B. Fuchs, G. Di Martino, L. Lagae, V. V. Moshchalkov, S. A. Maier, and P. Van Dorpe, “Unidirectional side scattering of light by a single-element nanoantenna,” Nano Lett. 13(8), 3843–3849 (2013).
[Crossref] [PubMed]

Verellen, N.

D. Vercruysse, Y. Sonnefraud, N. Verellen, F. B. Fuchs, G. Di Martino, L. Lagae, V. V. Moshchalkov, S. A. Maier, and P. Van Dorpe, “Unidirectional side scattering of light by a single-element nanoantenna,” Nano Lett. 13(8), 3843–3849 (2013).
[Crossref] [PubMed]

Verschuuren, M.

A. Abass, S. R.-K. Rodriguez, T. Ako, T. Aubert, M. Verschuuren, D. Van Thourhout, J. Beeckman, Z. Hens, J. Gómez Rivas, and B. Maes, “Active Liquid Crystal Tuning of Metallic Nanoantenna Enhanced Light Emission from Colloidal Quantum Dots,” Nano Lett. 14(10), 5555–5560 (2014).
[Crossref] [PubMed]

Verschuuren, M. A.

S. R. K. Rodriguez, S. Murai, M. A. Verschuuren, and J. G. Rivas, “Light-Emitting Waveguide-Plasmon Polaritons,” Phys. Rev. Lett. 109(16), 166803 (2012).
[Crossref] [PubMed]

Vogelgesang, R.

D. Dregely, R. Taubert, J. Dorfmüller, R. Vogelgesang, K. Kern, and H. Giessen, “3D optical Yagi-Uda nanoantenna array,” Nat. Commun. 2, 267 (2011).
[Crossref] [PubMed]

Volpe, G.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional Emission of a Quantum Dot Coupled to a Nanoantenna,” Science 329(5994), 930–933 (2010).
[Crossref] [PubMed]

Watt, A. A. R.

A. W. Powell, N. Hjerrild, A. A. R. Watt, H. E. Assender, and J. M. Smith, “Directional plasmonic scattering from metal nanoparticles in thin-film environments,” Appl. Phys. Lett. 104(8), 081110 (2014).
[Crossref]

Wenger, J.

H. Aouani, O. Mahboub, N. Bonod, E. Devaux, E. Popov, H. Rigneault, T. W. Ebbesen, and J. Wenger, “Bright Unidirectional Fluorescence Emission of Molecules in a Nanoaperture with Plasmonic Corrugations,” Nano Lett. 11(2), 637–644 (2011).
[Crossref] [PubMed]

Yao, W.

W. Yao, S. Liu, H. Liao, Z. Li, C. Sun, J. Chen, and Q. Gong, “Efficient Directional Excitation of Surface Plasmons by a Single-Element Nanoantenna,” Nano Lett. 15(5), 3115–3121 (2015).
[Crossref] [PubMed]

Zengin, G.

T. Shegai, S. Chen, V. D. Miljković, G. Zengin, P. Johansson, and M. Käll, “A bimetallic nanoantenna for directional colour routing,” Nat. Commun. 2, 481 (2011).
[Crossref] [PubMed]

Zhang, S. Y.

S. Y. Zhang, G. A. Turnbull, and I. D. W. Samuel, “Highly Directional Emission and Beam Steering from Organic Light-Emitting Diodes with a Substrate Diffractive Optical Element,” Adv. Opt. Mater. 2(4), 343–347 (2014).
[Crossref]

S. Y. Zhang, G. A. Turnbull, and I. D. W. Samuel, “Enhancing the emission directionality of organic light-emitting diodes by using photonic microstructures,” Appl. Phys. Lett. 103(21), 213302 (2013).
[Crossref]

Zschiedrich, L.

J. Pomplun, S. Burger, L. Zschiedrich, and F. Schmidt, “Adaptive finite element method for simulation of optical nano structures,” Phys. Status Solidi, B Basic Res. 244(10), 3419–3434 (2007).
[Crossref]

ACS Photonics (3)

A. Abass, S. R.-K. Rodriguez, J. Gómez Rivas, and B. Maes, “Tailoring Dispersion and Eigenfield Profiles of Plasmonic Surface Lattice Resonances,” ACS Photonics 1(1), 61–68 (2014).
[Crossref]

F. B. Arango, T. Coenen, and A. F. Koenderink, “Underpinning Hybridization Intuition for Complex Nanoantennas by Magnetoelectric Quadrupolar Polarizability Retrieval,” ACS Photonics 1(5), 444–453 (2014).
[Crossref]

I. Fernandez-Corbaton, M. Fruhnert, and C. Rockstuhl, “Dual and Chiral Objects for Optical Activity in General Scattering Directions,” ACS Photonics 2(3), 376–384 (2015).
[Crossref]

Adv. Opt. Mater. (1)

S. Y. Zhang, G. A. Turnbull, and I. D. W. Samuel, “Highly Directional Emission and Beam Steering from Organic Light-Emitting Diodes with a Substrate Diffractive Optical Element,” Adv. Opt. Mater. 2(4), 343–347 (2014).
[Crossref]

Appl. Phys. Lett. (3)

J. Feng, T. Okamoto, and S. Kawata, “Highly directional emission via coupled surface-plasmon tunneling from electroluminescence in organic light-emitting devices,” Appl. Phys. Lett. 87(24), 241109 (2005).
[Crossref]

S. Y. Zhang, G. A. Turnbull, and I. D. W. Samuel, “Enhancing the emission directionality of organic light-emitting diodes by using photonic microstructures,” Appl. Phys. Lett. 103(21), 213302 (2013).
[Crossref]

A. W. Powell, N. Hjerrild, A. A. R. Watt, H. E. Assender, and J. M. Smith, “Directional plasmonic scattering from metal nanoparticles in thin-film environments,” Appl. Phys. Lett. 104(8), 081110 (2014).
[Crossref]

IEEE Commun. Mag. (1)

H. Elgala, R. Mesleh, and H. Haas, “Indoor Optical Wireless Communication: Potential and State-of-the-Art,” IEEE Commun. Mag. 49(9), 56–62 (2011).
[Crossref]

J. Appl. Phys. (1)

N. X. A. Rivolta and B. Maes, “Angle-specific transparent conducting electrodes with metallic gratings,” J. Appl. Phys. 116(5), 053101 (2014).
[Crossref]

J. Opt. Soc. Am. (1)

Laser Photonics Rev. (1)

Y. Fu and J. R. Lakowicz, “Modification of single molecule fluorescence near metallic nanostructures,” Laser Photonics Rev. 3(1-2), 221–232 (2009).
[Crossref]

Nano Lett. (5)

H. Aouani, O. Mahboub, N. Bonod, E. Devaux, E. Popov, H. Rigneault, T. W. Ebbesen, and J. Wenger, “Bright Unidirectional Fluorescence Emission of Molecules in a Nanoaperture with Plasmonic Corrugations,” Nano Lett. 11(2), 637–644 (2011).
[Crossref] [PubMed]

A. Abass, S. R.-K. Rodriguez, T. Ako, T. Aubert, M. Verschuuren, D. Van Thourhout, J. Beeckman, Z. Hens, J. Gómez Rivas, and B. Maes, “Active Liquid Crystal Tuning of Metallic Nanoantenna Enhanced Light Emission from Colloidal Quantum Dots,” Nano Lett. 14(10), 5555–5560 (2014).
[Crossref] [PubMed]

D. Vercruysse, Y. Sonnefraud, N. Verellen, F. B. Fuchs, G. Di Martino, L. Lagae, V. V. Moshchalkov, S. A. Maier, and P. Van Dorpe, “Unidirectional side scattering of light by a single-element nanoantenna,” Nano Lett. 13(8), 3843–3849 (2013).
[Crossref] [PubMed]

W. Yao, S. Liu, H. Liao, Z. Li, C. Sun, J. Chen, and Q. Gong, “Efficient Directional Excitation of Surface Plasmons by a Single-Element Nanoantenna,” Nano Lett. 15(5), 3115–3121 (2015).
[Crossref] [PubMed]

I. M. Hancu, A. G. Curto, M. Castro-López, M. Kuttge, and N. F. van Hulst, “Multipolar Interference for Directed Light Emission,” Nano Lett. 14(1), 166–171 (2014).
[Crossref] [PubMed]

Nanotechnology (1)

J. Alda, J. M. Rico-Garcia, J. M. Lopez-Alonso, and G. Boreman, “Optical antennas for nano-photonic applications,” Nanotechnology 16(5), S230–S234 (2005).
[Crossref]

Nat. Commun. (3)

T. Coenen, F. Bernal Arango, A. Femius Koenderink, and A. Polman, “Directional emission from a single plasmonic scatterer,” Nat. Commun. 5, 3250 (2014).
[Crossref] [PubMed]

T. Shegai, S. Chen, V. D. Miljković, G. Zengin, P. Johansson, and M. Käll, “A bimetallic nanoantenna for directional colour routing,” Nat. Commun. 2, 481 (2011).
[Crossref] [PubMed]

D. Dregely, R. Taubert, J. Dorfmüller, R. Vogelgesang, K. Kern, and H. Giessen, “3D optical Yagi-Uda nanoantenna array,” Nat. Commun. 2, 267 (2011).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

F. Priolo, T. Gregorkiewicz, M. Galli, and T. F. Krauss, “Silicon nanostructures for photonics and photovoltaics,” Nat. Nanotechnol. 9(1), 19–32 (2014).
[Crossref] [PubMed]

Nat. Photonics (2)

T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. Van Hulst, “Optical antennas direct single-molecule emission,” Nat. Photonics 2(4), 234–237 (2008).
[Crossref]

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics 5(2), 83–90 (2011).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Phys. Rev. B (4)

W. Lukosz, “Theory of optical-environment-dependent spontaneous-emission rates for emitters in thin layers,” Phys. Rev. B 22(6), 3030–3038 (1980).
[Crossref]

M. Albooyeh, R. Alaee, C. Rockstuhl, and C. Simovski, “Revisiting substrate-induced bianisotropy in metasurfaces,” Phys. Rev. B 91(19), 195304 (2015).
[Crossref]

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

A. Alù and N. Engheta, “Hertzian plasmonic nanodimer as an efficient optical nanoantenna,” Phys. Rev. B 78(19), 195111 (2008).
[Crossref]

Phys. Rev. Lett. (1)

S. R. K. Rodriguez, S. Murai, M. A. Verschuuren, and J. G. Rivas, “Light-Emitting Waveguide-Plasmon Polaritons,” Phys. Rev. Lett. 109(16), 166803 (2012).
[Crossref] [PubMed]

Phys. Status Solidi, B Basic Res. (1)

J. Pomplun, S. Burger, L. Zschiedrich, and F. Schmidt, “Adaptive finite element method for simulation of optical nano structures,” Phys. Status Solidi, B Basic Res. 244(10), 3419–3434 (2007).
[Crossref]

Sci. Rep. (1)

J. Kim, Y. G. Roh, S. Cheon, U. J. Kim, S. W. Hwang, Y. Park, and C. W. Lee, “Directional radiation of Babinet-inverted optical nanoantenna integrated with plasmonic waveguide,” Sci. Rep. 5, 11832 (2015).
[Crossref] [PubMed]

Science (2)

X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband light bending with plasmonic nanoantennas,” Science 335(6067), 427 (2012).
[Crossref] [PubMed]

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional Emission of a Quantum Dot Coupled to a Nanoantenna,” Science 329(5994), 930–933 (2010).
[Crossref] [PubMed]

Other (1)

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Sketch of the asymmetric dimer nanoantenna.

Fig. 2
Fig. 2

(a) Far-field radiation patterns into the substrate of vertically and horizontally electric dipole line source placed 60nm above the substrate interface. The dashed red line corresponds to the radiation of the horizontally oriented electrical dipole and the blue solid line represents the radiation of the vertically oriented electrical dipole. (b) Radiation pattern of two vertically polarized dipole line sources with a phase difference of π/4 with respect to each other.

Fig. 3
Fig. 3

Scattered far-field intensity into the substrate for (a) single ridge with H = 100nm and W = 150nm and (b) asymmetric dimer H = 100nm, W1 = 50nm, and W2 = 150nm in the case of normal incident light at the wavelength of 530nm. The scattered far-field intensity is compared to the radiation of multiple electric dipoles (2 vertically polarized and one horizontally polarized) with fitted parameters. The field profile plot shows the scattered field intensity while the arrows give the scattered field. All far-field plots are given in the same scale. Parameters used in the multiple electric dipoles model for both cases can be found in Table 1 and Table 2 respectively.

Fig. 4
Fig. 4

(a) Scattered far-field intensity in the substrate at different incident wavelengths for the case of normal incident TM plane waves. (b) Scattered far-field intensity in the substrate at the wavelength of 530nm for different incoming angles θinc. All polar plots are shown for the optimized asymmetric dimer nanoantenna with H = 100nm, W1 = 50nm, g = 50nm, and W2 = 150nm. All the scattered far-field intensity plots are given in the same scale.

Fig. 5
Fig. 5

(a) Total scattering cross-section spectra for the asymmetric dimer system compared to that of the single elements at normal incidence. All scattering cross-section spectra are normalized relative to the incoming plane wave intensity. (b) Angular distribution of the forward scattering into the substrate for different wavelengths at normal incidence.

Fig. 6
Fig. 6

Scattered far-field intensity into the substrate of several dimer nanoantennas with different width combinations for a normally incident TM polarized plane wave from air at a wavelength of 530nm.

Fig. 7
Fig. 7

Diffraction of a 500nm period grating which comprises of the single dimer of Fig. 3(b) as its unit-cell. (a) Transmittance towards the + 1 order. (b) Transmittance towards the −1 order. The grating exhibits strong (low) diffraction efficiency for the + 1 (−1) order over a large angle and wavelength range. (c) Scattering from one unit-cell as a function of the scattered light parallel momentum k||,scat for two incidence conditions: incidence with k||,inc = −0.0015 rad/nm and incidence with k||,inc = + 0.0015 rad/nm. In both cases the free space wavelength is 530nm. Strong diffraction is achieved when the allowed by diffraction (vertical dashed lines) coincide with the k||,scat exhibiting strong scattering from the unit-cell.

Fig. 8
Fig. 8

Scattered near-field and substrate far-field of the individual ridges that comprise the dimer in Fig. 3(b). All ridges lie on top of the substrate and have height H = 100nm (a) ridge with width W = 50nm, (b) ridge width W = 150nm. The calculations were done for normal incidence at 530nm wavelength. Notice the difference of scale in the polar plots.

Fig. 9
Fig. 9

Fit of the scattered far-field in the substrate for the case of Fig. 3(b) at 530nm wavelength with the radiation of four electric dipole line sources (2 horizontally polarized and 2 vertically polarized dipoles). The fitted parameters are given in Table 3.

Fig. 10
Fig. 10

Far-field angular distribution of the asymmetric dimer with the 50nm ridge replaced by a 25nm ridge. The employment of a thinner ridge enhances directionality at the expense of reduction in the tolerance against variations in the angle of incidence.

Fig. 11
Fig. 11

Fit of the scattered far-field in the substrate for the case of Fig. 6(c) at 530nm wavelength to the radiation of four electric dipole line sources (2 horizontally polarized and 2 vertically polarized dipoles). The fitted parameters are given in Table 4.

Tables (4)

Tables Icon

Table 1 Single Ridge W = 150nm

Tables Icon

Table 2 Dimer W1 = 50nm W2 = 150nm (3 dipoles)

Tables Icon

Table 3 Dimer W1 = 50nm W2 = 150nm (4 dipoles)

Tables Icon

Table 4 Dimer W1 = 200nm W2 = 150nm (4 dipoles)

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

J(r,t)=Aδ(r r 0 ) e iωt e iϕ j

Metrics