Abstract

In this paper we report the generation of wavelength-division-multiplexed, time-bin entangled photon pairs by using cascaded optical second nonlinearities (sum-frequency generation and subsequent spontaneous parametric downconversion) in a periodically poled LiNbO3 device. Visibilities of approximately 94% were clearly observed in two-photon interference experiments for all the wavelength-multiplexed channels under investigation (five pairs), with insensitivity to the polarization states of the photon pairs. We also evaluated the performances in terms of quantum-key-distribution (QKD) applications by using four single-photon detectors, which enables to evaluate the QKD performance properly. The results showed long-term stability over 70 hours, maintaining approximately 3% of the quantum error rate and 110 bit/s of the sifted key rate.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Long-distance entanglement-based quantum key distribution over optical fiber

T. Honjo, S. W. Nam, H. Takesue, Q. Zhang, H. Kamada, Y. Nishida, O. Tadanaga, M. Asobe, B. Baek, R. Hadfield, S. Miki, M. Fujiwara, M. Sasaki, Z. Wang, K. Inoue, and Y. Yamamoto
Opt. Express 16(23) 19118-19126 (2008)

Generation of polarization entangled photon pairs at telecommunication wavelength using cascaded χ(2) processes in a periodically poled LiNbO3 ridge waveguide

Shin Arahira, Naoto Namekata, Tadashi Kishimoto, Hiroki Yaegashi, and Shuichiro Inoue
Opt. Express 19(17) 16032-16043 (2011)

References

  • View by:
  • |
  • |
  • |

  1. C. Liang, K. F. Lee, J. Chen, and P. Kumar, “Distribution of fiber-generated polarization entangled photon-pairs over 100 km of standard fiber in OC-192 WDM environment,” in Optical Fiber Communication Conference, Technical Digest (CD) (Optical Society of America, 2006), paper PDP35.
  2. J. F. Dynes, H. Takesue, Z. L. Yuan, A. W. Sharpe, K. Harada, T. Honjo, H. Kamada, O. Tadanaga, Y. Nishida, M. Asobe, and A. J. Shields, “Efficient entanglement distribution over 200 kilometers,” Opt. Express 17(14), 11440–11449 (2009).
    [Crossref] [PubMed]
  3. K. Resch, M. Lindenthal, B. Blauensteiner, H. Böhm, A. Fedrizzi, C. Kurtsiefer, A. Poppe, T. Schmitt-Manderbach, M. Taraba, R. Ursin, P. Walther, H. Weier, H. Weinfurter, and A. Zeilinger, “Distributing entanglement and single photons through an intra-city, free-space quantum channel,” Opt. Express 13(1), 202–209 (2005).
    [Crossref] [PubMed]
  4. R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Ömer, M. Fürst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Entanglement-based quantum communication over 144 km,” Nat. Phys. 3(7), 481–486 (2007).
    [Crossref]
  5. P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995).
    [Crossref] [PubMed]
  6. P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultra-bright source of polarization-entangled photons,” Phys. Rev. A 60(2), R773–R776 (1999).
    [Crossref]
  7. A. Yoshizawa, R. Kaji, and H. Tsuchida, “Generation of polarization-entangled photon pairs at 1550 nm using two PPLN waveguides,” Electron. Lett. 39(7), 621–622 (2003).
    [Crossref]
  8. A. Martin, A. Issautier, H. Herrmann, W. Sohler, D. B. Ostrowsky, O. Alibart, and S. Tanzilli, “A polarization entangled photon-pair source based on a type-II PPLN waveguide emitting at a telecom wavelength,” New J. Phys. 12(10), 103005 (2010).
    [Crossref]
  9. S. Arahira, N. Namekata, T. Kishimoto, H. Yaegashi, and S. Inoue, “Generation of polarization entangled photon pairs at telecommunication wavelength using cascaded χ2 processes in a periodically poled LiNbO3 ridge waveguide,” Opt. Express 19(17), 16032–16043 (2011).
    [Crossref] [PubMed]
  10. J.-W. Pan, D. Bouwmeester, H. Weinfurter, and A. Zeilinger, “Experimental entanglement swapping: entangling photons that never interacted,” Phys. Rev. Lett. 80(18), 3891–3894 (1998).
    [Crossref]
  11. H. de Riedmatten, I. Marcikic, J. A. W. van Houwelingen, W. Tittel, H. Zbinden, and N. Gisin, “Long distance entanglement swapping with photons from separated sources,” Phys. Rev. A 71(5), 050302 (2005).
    [Crossref]
  12. G. Fujii, N. Namekata, M. Motoya, S. Kurimura, and S. Inoue, “Bright narrowband source of photon pairs at optical telecommunication wavelengths using a type-II periodically poled lithium niobate waveguide,” Opt. Express 15(20), 12769–12776 (2007).
    [Crossref] [PubMed]
  13. T. Suhara, H. Okabe, and M. Fujimura, “Generation of polarization-entangled photons by type-II quasi-phase-matched waveguide nonlinear-optic device,” IEEE Photonics Technol. Lett. 19(14), 1093–1095 (2007).
    [Crossref]
  14. A. F. Abouraddy, M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Quantum optical coherence tomography with dispersion cancellation,” Phys. Rev. A 65(5), 053817 (2002).
    [Crossref]
  15. M. Okano, H. H. Lim, R. Okamoto, N. Nishizawa, S. Kurimura, and S. Takeuchi, “0.54 μm resolution two-photon interference with dispersion cancellation for quantum optical coherence tomography,” Sci. Rep. 5, 18042 (2015).
    [Crossref] [PubMed]
  16. H. C. Lim, A. Yoshizawa, H. Tsuchida, and K. Kikuchi, “Broadband source of telecom-band polarization-entangled photon-pairs for wavelength-multiplexed entanglement distribution,” Opt. Express 16(20), 16052–16057 (2008).
    [Crossref] [PubMed]
  17. H. C. Lim, A. Yoshizawa, H. Tsuchida, and K. Kikuchi, “Wavelength-multiplexed distribution of highly entangled photon-pairs over optical fiber,” Opt. Express 16(26), 22099–22104 (2008).
    [Crossref] [PubMed]
  18. S. Arahira and H. Murai, “Nearly degenerate wavelength-multiplexed polarization entanglement by cascaded optical nonlinearities in a PPLN ridge waveguide device,” Opt. Express 21(6), 7841–7850 (2013).
    [Crossref] [PubMed]
  19. M. Medic, J. B. Altepeter, M. A. Hall, M. Patel, and P. Kumar, “Fiber-based telecommunication-band source of degenerate entangled photons,” Opt. Lett. 35(6), 802–804 (2010).
    [Crossref] [PubMed]
  20. J. Brendel, W. Tittel, H. Zbinden, and N. Gisin, “Pulsed energy-time entangled twin-photon source for quantum communication,” Phys. Rev. Lett. 82(12), 2594–2597 (1999).
    [Crossref]
  21. T. Kishimoto and K. Nakamura, “Periodically poled MgO-doped stoichiometric LiNbO3 wavelength convertor with ridge-type annealed proton-exchanged waveguide,” IEEE Photonics Technol. Lett. 23(3), 161–163 (2011).
    [Crossref]
  22. Redfern Integrated Optics Inc, http://www.rio-inc.com/ (California, USA).
  23. H. Takesue and K. Inoue, “1.5-microm band quantum-correlated photon pair generation in dispersion-shifted fiber: suppression of noise photons by cooling fiber,” Opt. Express 13(20), 7832–7839 (2005).
    [Crossref] [PubMed]
  24. B. Miquel and H. Takesue, “Observation of 1.5μm band entanglement using single photon detectors based on sinusoidally gated InGaAs/InP avalanche photodiodes,” New J. Phys. 11(4), 045006 (2009).
    [Crossref]
  25. S. Arahira and H. Murai, “Effects of afterpulse events on performance of entanglement-based quantum key distribution system,” Jpn. J. Appl. Phys. 55(3), 032801 (2016).
    [Crossref]

2016 (1)

S. Arahira and H. Murai, “Effects of afterpulse events on performance of entanglement-based quantum key distribution system,” Jpn. J. Appl. Phys. 55(3), 032801 (2016).
[Crossref]

2015 (1)

M. Okano, H. H. Lim, R. Okamoto, N. Nishizawa, S. Kurimura, and S. Takeuchi, “0.54 μm resolution two-photon interference with dispersion cancellation for quantum optical coherence tomography,” Sci. Rep. 5, 18042 (2015).
[Crossref] [PubMed]

2013 (1)

2011 (2)

S. Arahira, N. Namekata, T. Kishimoto, H. Yaegashi, and S. Inoue, “Generation of polarization entangled photon pairs at telecommunication wavelength using cascaded χ2 processes in a periodically poled LiNbO3 ridge waveguide,” Opt. Express 19(17), 16032–16043 (2011).
[Crossref] [PubMed]

T. Kishimoto and K. Nakamura, “Periodically poled MgO-doped stoichiometric LiNbO3 wavelength convertor with ridge-type annealed proton-exchanged waveguide,” IEEE Photonics Technol. Lett. 23(3), 161–163 (2011).
[Crossref]

2010 (2)

A. Martin, A. Issautier, H. Herrmann, W. Sohler, D. B. Ostrowsky, O. Alibart, and S. Tanzilli, “A polarization entangled photon-pair source based on a type-II PPLN waveguide emitting at a telecom wavelength,” New J. Phys. 12(10), 103005 (2010).
[Crossref]

M. Medic, J. B. Altepeter, M. A. Hall, M. Patel, and P. Kumar, “Fiber-based telecommunication-band source of degenerate entangled photons,” Opt. Lett. 35(6), 802–804 (2010).
[Crossref] [PubMed]

2009 (2)

J. F. Dynes, H. Takesue, Z. L. Yuan, A. W. Sharpe, K. Harada, T. Honjo, H. Kamada, O. Tadanaga, Y. Nishida, M. Asobe, and A. J. Shields, “Efficient entanglement distribution over 200 kilometers,” Opt. Express 17(14), 11440–11449 (2009).
[Crossref] [PubMed]

B. Miquel and H. Takesue, “Observation of 1.5μm band entanglement using single photon detectors based on sinusoidally gated InGaAs/InP avalanche photodiodes,” New J. Phys. 11(4), 045006 (2009).
[Crossref]

2008 (2)

2007 (3)

G. Fujii, N. Namekata, M. Motoya, S. Kurimura, and S. Inoue, “Bright narrowband source of photon pairs at optical telecommunication wavelengths using a type-II periodically poled lithium niobate waveguide,” Opt. Express 15(20), 12769–12776 (2007).
[Crossref] [PubMed]

T. Suhara, H. Okabe, and M. Fujimura, “Generation of polarization-entangled photons by type-II quasi-phase-matched waveguide nonlinear-optic device,” IEEE Photonics Technol. Lett. 19(14), 1093–1095 (2007).
[Crossref]

R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Ömer, M. Fürst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Entanglement-based quantum communication over 144 km,” Nat. Phys. 3(7), 481–486 (2007).
[Crossref]

2005 (3)

2003 (1)

A. Yoshizawa, R. Kaji, and H. Tsuchida, “Generation of polarization-entangled photon pairs at 1550 nm using two PPLN waveguides,” Electron. Lett. 39(7), 621–622 (2003).
[Crossref]

2002 (1)

A. F. Abouraddy, M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Quantum optical coherence tomography with dispersion cancellation,” Phys. Rev. A 65(5), 053817 (2002).
[Crossref]

1999 (2)

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultra-bright source of polarization-entangled photons,” Phys. Rev. A 60(2), R773–R776 (1999).
[Crossref]

J. Brendel, W. Tittel, H. Zbinden, and N. Gisin, “Pulsed energy-time entangled twin-photon source for quantum communication,” Phys. Rev. Lett. 82(12), 2594–2597 (1999).
[Crossref]

1998 (1)

J.-W. Pan, D. Bouwmeester, H. Weinfurter, and A. Zeilinger, “Experimental entanglement swapping: entangling photons that never interacted,” Phys. Rev. Lett. 80(18), 3891–3894 (1998).
[Crossref]

1995 (1)

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995).
[Crossref] [PubMed]

Abouraddy, A. F.

A. F. Abouraddy, M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Quantum optical coherence tomography with dispersion cancellation,” Phys. Rev. A 65(5), 053817 (2002).
[Crossref]

Alibart, O.

A. Martin, A. Issautier, H. Herrmann, W. Sohler, D. B. Ostrowsky, O. Alibart, and S. Tanzilli, “A polarization entangled photon-pair source based on a type-II PPLN waveguide emitting at a telecom wavelength,” New J. Phys. 12(10), 103005 (2010).
[Crossref]

Altepeter, J. B.

Appelbaum, I.

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultra-bright source of polarization-entangled photons,” Phys. Rev. A 60(2), R773–R776 (1999).
[Crossref]

Arahira, S.

Asobe, M.

Barbieri, C.

R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Ömer, M. Fürst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Entanglement-based quantum communication over 144 km,” Nat. Phys. 3(7), 481–486 (2007).
[Crossref]

Blauensteiner, B.

R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Ömer, M. Fürst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Entanglement-based quantum communication over 144 km,” Nat. Phys. 3(7), 481–486 (2007).
[Crossref]

K. Resch, M. Lindenthal, B. Blauensteiner, H. Böhm, A. Fedrizzi, C. Kurtsiefer, A. Poppe, T. Schmitt-Manderbach, M. Taraba, R. Ursin, P. Walther, H. Weier, H. Weinfurter, and A. Zeilinger, “Distributing entanglement and single photons through an intra-city, free-space quantum channel,” Opt. Express 13(1), 202–209 (2005).
[Crossref] [PubMed]

Böhm, H.

Bouwmeester, D.

J.-W. Pan, D. Bouwmeester, H. Weinfurter, and A. Zeilinger, “Experimental entanglement swapping: entangling photons that never interacted,” Phys. Rev. Lett. 80(18), 3891–3894 (1998).
[Crossref]

Brendel, J.

J. Brendel, W. Tittel, H. Zbinden, and N. Gisin, “Pulsed energy-time entangled twin-photon source for quantum communication,” Phys. Rev. Lett. 82(12), 2594–2597 (1999).
[Crossref]

de Riedmatten, H.

H. de Riedmatten, I. Marcikic, J. A. W. van Houwelingen, W. Tittel, H. Zbinden, and N. Gisin, “Long distance entanglement swapping with photons from separated sources,” Phys. Rev. A 71(5), 050302 (2005).
[Crossref]

Dynes, J. F.

Eberhard, P. H.

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultra-bright source of polarization-entangled photons,” Phys. Rev. A 60(2), R773–R776 (1999).
[Crossref]

Fedrizzi, A.

Fujii, G.

Fujimura, M.

T. Suhara, H. Okabe, and M. Fujimura, “Generation of polarization-entangled photons by type-II quasi-phase-matched waveguide nonlinear-optic device,” IEEE Photonics Technol. Lett. 19(14), 1093–1095 (2007).
[Crossref]

Fürst, M.

R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Ömer, M. Fürst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Entanglement-based quantum communication over 144 km,” Nat. Phys. 3(7), 481–486 (2007).
[Crossref]

Gisin, N.

H. de Riedmatten, I. Marcikic, J. A. W. van Houwelingen, W. Tittel, H. Zbinden, and N. Gisin, “Long distance entanglement swapping with photons from separated sources,” Phys. Rev. A 71(5), 050302 (2005).
[Crossref]

J. Brendel, W. Tittel, H. Zbinden, and N. Gisin, “Pulsed energy-time entangled twin-photon source for quantum communication,” Phys. Rev. Lett. 82(12), 2594–2597 (1999).
[Crossref]

Hall, M. A.

Harada, K.

Herrmann, H.

A. Martin, A. Issautier, H. Herrmann, W. Sohler, D. B. Ostrowsky, O. Alibart, and S. Tanzilli, “A polarization entangled photon-pair source based on a type-II PPLN waveguide emitting at a telecom wavelength,” New J. Phys. 12(10), 103005 (2010).
[Crossref]

Honjo, T.

Inoue, K.

Inoue, S.

Issautier, A.

A. Martin, A. Issautier, H. Herrmann, W. Sohler, D. B. Ostrowsky, O. Alibart, and S. Tanzilli, “A polarization entangled photon-pair source based on a type-II PPLN waveguide emitting at a telecom wavelength,” New J. Phys. 12(10), 103005 (2010).
[Crossref]

Jennewein, T.

R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Ömer, M. Fürst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Entanglement-based quantum communication over 144 km,” Nat. Phys. 3(7), 481–486 (2007).
[Crossref]

Kaji, R.

A. Yoshizawa, R. Kaji, and H. Tsuchida, “Generation of polarization-entangled photon pairs at 1550 nm using two PPLN waveguides,” Electron. Lett. 39(7), 621–622 (2003).
[Crossref]

Kamada, H.

Kikuchi, K.

Kishimoto, T.

T. Kishimoto and K. Nakamura, “Periodically poled MgO-doped stoichiometric LiNbO3 wavelength convertor with ridge-type annealed proton-exchanged waveguide,” IEEE Photonics Technol. Lett. 23(3), 161–163 (2011).
[Crossref]

S. Arahira, N. Namekata, T. Kishimoto, H. Yaegashi, and S. Inoue, “Generation of polarization entangled photon pairs at telecommunication wavelength using cascaded χ2 processes in a periodically poled LiNbO3 ridge waveguide,” Opt. Express 19(17), 16032–16043 (2011).
[Crossref] [PubMed]

Kumar, P.

Kurimura, S.

M. Okano, H. H. Lim, R. Okamoto, N. Nishizawa, S. Kurimura, and S. Takeuchi, “0.54 μm resolution two-photon interference with dispersion cancellation for quantum optical coherence tomography,” Sci. Rep. 5, 18042 (2015).
[Crossref] [PubMed]

G. Fujii, N. Namekata, M. Motoya, S. Kurimura, and S. Inoue, “Bright narrowband source of photon pairs at optical telecommunication wavelengths using a type-II periodically poled lithium niobate waveguide,” Opt. Express 15(20), 12769–12776 (2007).
[Crossref] [PubMed]

Kurtsiefer, C.

Kwiat, P. G.

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultra-bright source of polarization-entangled photons,” Phys. Rev. A 60(2), R773–R776 (1999).
[Crossref]

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995).
[Crossref] [PubMed]

Lim, H. C.

Lim, H. H.

M. Okano, H. H. Lim, R. Okamoto, N. Nishizawa, S. Kurimura, and S. Takeuchi, “0.54 μm resolution two-photon interference with dispersion cancellation for quantum optical coherence tomography,” Sci. Rep. 5, 18042 (2015).
[Crossref] [PubMed]

Lindenthal, M.

R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Ömer, M. Fürst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Entanglement-based quantum communication over 144 km,” Nat. Phys. 3(7), 481–486 (2007).
[Crossref]

K. Resch, M. Lindenthal, B. Blauensteiner, H. Böhm, A. Fedrizzi, C. Kurtsiefer, A. Poppe, T. Schmitt-Manderbach, M. Taraba, R. Ursin, P. Walther, H. Weier, H. Weinfurter, and A. Zeilinger, “Distributing entanglement and single photons through an intra-city, free-space quantum channel,” Opt. Express 13(1), 202–209 (2005).
[Crossref] [PubMed]

Marcikic, I.

H. de Riedmatten, I. Marcikic, J. A. W. van Houwelingen, W. Tittel, H. Zbinden, and N. Gisin, “Long distance entanglement swapping with photons from separated sources,” Phys. Rev. A 71(5), 050302 (2005).
[Crossref]

Martin, A.

A. Martin, A. Issautier, H. Herrmann, W. Sohler, D. B. Ostrowsky, O. Alibart, and S. Tanzilli, “A polarization entangled photon-pair source based on a type-II PPLN waveguide emitting at a telecom wavelength,” New J. Phys. 12(10), 103005 (2010).
[Crossref]

Mattle, K.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995).
[Crossref] [PubMed]

Medic, M.

Meyenburg, M.

R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Ömer, M. Fürst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Entanglement-based quantum communication over 144 km,” Nat. Phys. 3(7), 481–486 (2007).
[Crossref]

Miquel, B.

B. Miquel and H. Takesue, “Observation of 1.5μm band entanglement using single photon detectors based on sinusoidally gated InGaAs/InP avalanche photodiodes,” New J. Phys. 11(4), 045006 (2009).
[Crossref]

Motoya, M.

Murai, H.

S. Arahira and H. Murai, “Effects of afterpulse events on performance of entanglement-based quantum key distribution system,” Jpn. J. Appl. Phys. 55(3), 032801 (2016).
[Crossref]

S. Arahira and H. Murai, “Nearly degenerate wavelength-multiplexed polarization entanglement by cascaded optical nonlinearities in a PPLN ridge waveguide device,” Opt. Express 21(6), 7841–7850 (2013).
[Crossref] [PubMed]

Nakamura, K.

T. Kishimoto and K. Nakamura, “Periodically poled MgO-doped stoichiometric LiNbO3 wavelength convertor with ridge-type annealed proton-exchanged waveguide,” IEEE Photonics Technol. Lett. 23(3), 161–163 (2011).
[Crossref]

Namekata, N.

Nasr, M. B.

A. F. Abouraddy, M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Quantum optical coherence tomography with dispersion cancellation,” Phys. Rev. A 65(5), 053817 (2002).
[Crossref]

Nishida, Y.

Nishizawa, N.

M. Okano, H. H. Lim, R. Okamoto, N. Nishizawa, S. Kurimura, and S. Takeuchi, “0.54 μm resolution two-photon interference with dispersion cancellation for quantum optical coherence tomography,” Sci. Rep. 5, 18042 (2015).
[Crossref] [PubMed]

Okabe, H.

T. Suhara, H. Okabe, and M. Fujimura, “Generation of polarization-entangled photons by type-II quasi-phase-matched waveguide nonlinear-optic device,” IEEE Photonics Technol. Lett. 19(14), 1093–1095 (2007).
[Crossref]

Okamoto, R.

M. Okano, H. H. Lim, R. Okamoto, N. Nishizawa, S. Kurimura, and S. Takeuchi, “0.54 μm resolution two-photon interference with dispersion cancellation for quantum optical coherence tomography,” Sci. Rep. 5, 18042 (2015).
[Crossref] [PubMed]

Okano, M.

M. Okano, H. H. Lim, R. Okamoto, N. Nishizawa, S. Kurimura, and S. Takeuchi, “0.54 μm resolution two-photon interference with dispersion cancellation for quantum optical coherence tomography,” Sci. Rep. 5, 18042 (2015).
[Crossref] [PubMed]

Ömer, B.

R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Ömer, M. Fürst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Entanglement-based quantum communication over 144 km,” Nat. Phys. 3(7), 481–486 (2007).
[Crossref]

Ostrowsky, D. B.

A. Martin, A. Issautier, H. Herrmann, W. Sohler, D. B. Ostrowsky, O. Alibart, and S. Tanzilli, “A polarization entangled photon-pair source based on a type-II PPLN waveguide emitting at a telecom wavelength,” New J. Phys. 12(10), 103005 (2010).
[Crossref]

Pan, J.-W.

J.-W. Pan, D. Bouwmeester, H. Weinfurter, and A. Zeilinger, “Experimental entanglement swapping: entangling photons that never interacted,” Phys. Rev. Lett. 80(18), 3891–3894 (1998).
[Crossref]

Patel, M.

Perdigues, J.

R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Ömer, M. Fürst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Entanglement-based quantum communication over 144 km,” Nat. Phys. 3(7), 481–486 (2007).
[Crossref]

Poppe, A.

Rarity, J.

R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Ömer, M. Fürst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Entanglement-based quantum communication over 144 km,” Nat. Phys. 3(7), 481–486 (2007).
[Crossref]

Resch, K.

Saleh, B. E. A.

A. F. Abouraddy, M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Quantum optical coherence tomography with dispersion cancellation,” Phys. Rev. A 65(5), 053817 (2002).
[Crossref]

Scheidl, T.

R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Ömer, M. Fürst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Entanglement-based quantum communication over 144 km,” Nat. Phys. 3(7), 481–486 (2007).
[Crossref]

Schmitt-Manderbach, T.

R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Ömer, M. Fürst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Entanglement-based quantum communication over 144 km,” Nat. Phys. 3(7), 481–486 (2007).
[Crossref]

K. Resch, M. Lindenthal, B. Blauensteiner, H. Böhm, A. Fedrizzi, C. Kurtsiefer, A. Poppe, T. Schmitt-Manderbach, M. Taraba, R. Ursin, P. Walther, H. Weier, H. Weinfurter, and A. Zeilinger, “Distributing entanglement and single photons through an intra-city, free-space quantum channel,” Opt. Express 13(1), 202–209 (2005).
[Crossref] [PubMed]

Sergienko, A. V.

A. F. Abouraddy, M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Quantum optical coherence tomography with dispersion cancellation,” Phys. Rev. A 65(5), 053817 (2002).
[Crossref]

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995).
[Crossref] [PubMed]

Sharpe, A. W.

Shields, A. J.

Shih, Y.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995).
[Crossref] [PubMed]

Sodnik, Z.

R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Ömer, M. Fürst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Entanglement-based quantum communication over 144 km,” Nat. Phys. 3(7), 481–486 (2007).
[Crossref]

Sohler, W.

A. Martin, A. Issautier, H. Herrmann, W. Sohler, D. B. Ostrowsky, O. Alibart, and S. Tanzilli, “A polarization entangled photon-pair source based on a type-II PPLN waveguide emitting at a telecom wavelength,” New J. Phys. 12(10), 103005 (2010).
[Crossref]

Suhara, T.

T. Suhara, H. Okabe, and M. Fujimura, “Generation of polarization-entangled photons by type-II quasi-phase-matched waveguide nonlinear-optic device,” IEEE Photonics Technol. Lett. 19(14), 1093–1095 (2007).
[Crossref]

Tadanaga, O.

Takesue, H.

Takeuchi, S.

M. Okano, H. H. Lim, R. Okamoto, N. Nishizawa, S. Kurimura, and S. Takeuchi, “0.54 μm resolution two-photon interference with dispersion cancellation for quantum optical coherence tomography,” Sci. Rep. 5, 18042 (2015).
[Crossref] [PubMed]

Tanzilli, S.

A. Martin, A. Issautier, H. Herrmann, W. Sohler, D. B. Ostrowsky, O. Alibart, and S. Tanzilli, “A polarization entangled photon-pair source based on a type-II PPLN waveguide emitting at a telecom wavelength,” New J. Phys. 12(10), 103005 (2010).
[Crossref]

Taraba, M.

Teich, M. C.

A. F. Abouraddy, M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Quantum optical coherence tomography with dispersion cancellation,” Phys. Rev. A 65(5), 053817 (2002).
[Crossref]

Tiefenbacher, F.

R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Ömer, M. Fürst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Entanglement-based quantum communication over 144 km,” Nat. Phys. 3(7), 481–486 (2007).
[Crossref]

Tittel, W.

H. de Riedmatten, I. Marcikic, J. A. W. van Houwelingen, W. Tittel, H. Zbinden, and N. Gisin, “Long distance entanglement swapping with photons from separated sources,” Phys. Rev. A 71(5), 050302 (2005).
[Crossref]

J. Brendel, W. Tittel, H. Zbinden, and N. Gisin, “Pulsed energy-time entangled twin-photon source for quantum communication,” Phys. Rev. Lett. 82(12), 2594–2597 (1999).
[Crossref]

Trojek, P.

R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Ömer, M. Fürst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Entanglement-based quantum communication over 144 km,” Nat. Phys. 3(7), 481–486 (2007).
[Crossref]

Tsuchida, H.

Ursin, R.

R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Ömer, M. Fürst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Entanglement-based quantum communication over 144 km,” Nat. Phys. 3(7), 481–486 (2007).
[Crossref]

K. Resch, M. Lindenthal, B. Blauensteiner, H. Böhm, A. Fedrizzi, C. Kurtsiefer, A. Poppe, T. Schmitt-Manderbach, M. Taraba, R. Ursin, P. Walther, H. Weier, H. Weinfurter, and A. Zeilinger, “Distributing entanglement and single photons through an intra-city, free-space quantum channel,” Opt. Express 13(1), 202–209 (2005).
[Crossref] [PubMed]

van Houwelingen, J. A. W.

H. de Riedmatten, I. Marcikic, J. A. W. van Houwelingen, W. Tittel, H. Zbinden, and N. Gisin, “Long distance entanglement swapping with photons from separated sources,” Phys. Rev. A 71(5), 050302 (2005).
[Crossref]

Waks, E.

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultra-bright source of polarization-entangled photons,” Phys. Rev. A 60(2), R773–R776 (1999).
[Crossref]

Walther, P.

Weier, H.

R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Ömer, M. Fürst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Entanglement-based quantum communication over 144 km,” Nat. Phys. 3(7), 481–486 (2007).
[Crossref]

K. Resch, M. Lindenthal, B. Blauensteiner, H. Böhm, A. Fedrizzi, C. Kurtsiefer, A. Poppe, T. Schmitt-Manderbach, M. Taraba, R. Ursin, P. Walther, H. Weier, H. Weinfurter, and A. Zeilinger, “Distributing entanglement and single photons through an intra-city, free-space quantum channel,” Opt. Express 13(1), 202–209 (2005).
[Crossref] [PubMed]

Weinfurter, H.

R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Ömer, M. Fürst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Entanglement-based quantum communication over 144 km,” Nat. Phys. 3(7), 481–486 (2007).
[Crossref]

K. Resch, M. Lindenthal, B. Blauensteiner, H. Böhm, A. Fedrizzi, C. Kurtsiefer, A. Poppe, T. Schmitt-Manderbach, M. Taraba, R. Ursin, P. Walther, H. Weier, H. Weinfurter, and A. Zeilinger, “Distributing entanglement and single photons through an intra-city, free-space quantum channel,” Opt. Express 13(1), 202–209 (2005).
[Crossref] [PubMed]

J.-W. Pan, D. Bouwmeester, H. Weinfurter, and A. Zeilinger, “Experimental entanglement swapping: entangling photons that never interacted,” Phys. Rev. Lett. 80(18), 3891–3894 (1998).
[Crossref]

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995).
[Crossref] [PubMed]

White, A. G.

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultra-bright source of polarization-entangled photons,” Phys. Rev. A 60(2), R773–R776 (1999).
[Crossref]

Yaegashi, H.

Yoshizawa, A.

Yuan, Z. L.

Zbinden, H.

H. de Riedmatten, I. Marcikic, J. A. W. van Houwelingen, W. Tittel, H. Zbinden, and N. Gisin, “Long distance entanglement swapping with photons from separated sources,” Phys. Rev. A 71(5), 050302 (2005).
[Crossref]

J. Brendel, W. Tittel, H. Zbinden, and N. Gisin, “Pulsed energy-time entangled twin-photon source for quantum communication,” Phys. Rev. Lett. 82(12), 2594–2597 (1999).
[Crossref]

Zeilinger, A.

R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Ömer, M. Fürst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Entanglement-based quantum communication over 144 km,” Nat. Phys. 3(7), 481–486 (2007).
[Crossref]

K. Resch, M. Lindenthal, B. Blauensteiner, H. Böhm, A. Fedrizzi, C. Kurtsiefer, A. Poppe, T. Schmitt-Manderbach, M. Taraba, R. Ursin, P. Walther, H. Weier, H. Weinfurter, and A. Zeilinger, “Distributing entanglement and single photons through an intra-city, free-space quantum channel,” Opt. Express 13(1), 202–209 (2005).
[Crossref] [PubMed]

J.-W. Pan, D. Bouwmeester, H. Weinfurter, and A. Zeilinger, “Experimental entanglement swapping: entangling photons that never interacted,” Phys. Rev. Lett. 80(18), 3891–3894 (1998).
[Crossref]

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995).
[Crossref] [PubMed]

Electron. Lett. (1)

A. Yoshizawa, R. Kaji, and H. Tsuchida, “Generation of polarization-entangled photon pairs at 1550 nm using two PPLN waveguides,” Electron. Lett. 39(7), 621–622 (2003).
[Crossref]

IEEE Photonics Technol. Lett. (2)

T. Suhara, H. Okabe, and M. Fujimura, “Generation of polarization-entangled photons by type-II quasi-phase-matched waveguide nonlinear-optic device,” IEEE Photonics Technol. Lett. 19(14), 1093–1095 (2007).
[Crossref]

T. Kishimoto and K. Nakamura, “Periodically poled MgO-doped stoichiometric LiNbO3 wavelength convertor with ridge-type annealed proton-exchanged waveguide,” IEEE Photonics Technol. Lett. 23(3), 161–163 (2011).
[Crossref]

Jpn. J. Appl. Phys. (1)

S. Arahira and H. Murai, “Effects of afterpulse events on performance of entanglement-based quantum key distribution system,” Jpn. J. Appl. Phys. 55(3), 032801 (2016).
[Crossref]

Nat. Phys. (1)

R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Ömer, M. Fürst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Entanglement-based quantum communication over 144 km,” Nat. Phys. 3(7), 481–486 (2007).
[Crossref]

New J. Phys. (2)

A. Martin, A. Issautier, H. Herrmann, W. Sohler, D. B. Ostrowsky, O. Alibart, and S. Tanzilli, “A polarization entangled photon-pair source based on a type-II PPLN waveguide emitting at a telecom wavelength,” New J. Phys. 12(10), 103005 (2010).
[Crossref]

B. Miquel and H. Takesue, “Observation of 1.5μm band entanglement using single photon detectors based on sinusoidally gated InGaAs/InP avalanche photodiodes,” New J. Phys. 11(4), 045006 (2009).
[Crossref]

Opt. Express (8)

S. Arahira, N. Namekata, T. Kishimoto, H. Yaegashi, and S. Inoue, “Generation of polarization entangled photon pairs at telecommunication wavelength using cascaded χ2 processes in a periodically poled LiNbO3 ridge waveguide,” Opt. Express 19(17), 16032–16043 (2011).
[Crossref] [PubMed]

S. Arahira and H. Murai, “Nearly degenerate wavelength-multiplexed polarization entanglement by cascaded optical nonlinearities in a PPLN ridge waveguide device,” Opt. Express 21(6), 7841–7850 (2013).
[Crossref] [PubMed]

K. Resch, M. Lindenthal, B. Blauensteiner, H. Böhm, A. Fedrizzi, C. Kurtsiefer, A. Poppe, T. Schmitt-Manderbach, M. Taraba, R. Ursin, P. Walther, H. Weier, H. Weinfurter, and A. Zeilinger, “Distributing entanglement and single photons through an intra-city, free-space quantum channel,” Opt. Express 13(1), 202–209 (2005).
[Crossref] [PubMed]

H. Takesue and K. Inoue, “1.5-microm band quantum-correlated photon pair generation in dispersion-shifted fiber: suppression of noise photons by cooling fiber,” Opt. Express 13(20), 7832–7839 (2005).
[Crossref] [PubMed]

G. Fujii, N. Namekata, M. Motoya, S. Kurimura, and S. Inoue, “Bright narrowband source of photon pairs at optical telecommunication wavelengths using a type-II periodically poled lithium niobate waveguide,” Opt. Express 15(20), 12769–12776 (2007).
[Crossref] [PubMed]

H. C. Lim, A. Yoshizawa, H. Tsuchida, and K. Kikuchi, “Broadband source of telecom-band polarization-entangled photon-pairs for wavelength-multiplexed entanglement distribution,” Opt. Express 16(20), 16052–16057 (2008).
[Crossref] [PubMed]

H. C. Lim, A. Yoshizawa, H. Tsuchida, and K. Kikuchi, “Wavelength-multiplexed distribution of highly entangled photon-pairs over optical fiber,” Opt. Express 16(26), 22099–22104 (2008).
[Crossref] [PubMed]

J. F. Dynes, H. Takesue, Z. L. Yuan, A. W. Sharpe, K. Harada, T. Honjo, H. Kamada, O. Tadanaga, Y. Nishida, M. Asobe, and A. J. Shields, “Efficient entanglement distribution over 200 kilometers,” Opt. Express 17(14), 11440–11449 (2009).
[Crossref] [PubMed]

Opt. Lett. (1)

Phys. Rev. A (3)

A. F. Abouraddy, M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Quantum optical coherence tomography with dispersion cancellation,” Phys. Rev. A 65(5), 053817 (2002).
[Crossref]

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultra-bright source of polarization-entangled photons,” Phys. Rev. A 60(2), R773–R776 (1999).
[Crossref]

H. de Riedmatten, I. Marcikic, J. A. W. van Houwelingen, W. Tittel, H. Zbinden, and N. Gisin, “Long distance entanglement swapping with photons from separated sources,” Phys. Rev. A 71(5), 050302 (2005).
[Crossref]

Phys. Rev. Lett. (3)

J. Brendel, W. Tittel, H. Zbinden, and N. Gisin, “Pulsed energy-time entangled twin-photon source for quantum communication,” Phys. Rev. Lett. 82(12), 2594–2597 (1999).
[Crossref]

J.-W. Pan, D. Bouwmeester, H. Weinfurter, and A. Zeilinger, “Experimental entanglement swapping: entangling photons that never interacted,” Phys. Rev. Lett. 80(18), 3891–3894 (1998).
[Crossref]

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995).
[Crossref] [PubMed]

Sci. Rep. (1)

M. Okano, H. H. Lim, R. Okamoto, N. Nishizawa, S. Kurimura, and S. Takeuchi, “0.54 μm resolution two-photon interference with dispersion cancellation for quantum optical coherence tomography,” Sci. Rep. 5, 18042 (2015).
[Crossref] [PubMed]

Other (2)

C. Liang, K. F. Lee, J. Chen, and P. Kumar, “Distribution of fiber-generated polarization entangled photon-pairs over 100 km of standard fiber in OC-192 WDM environment,” in Optical Fiber Communication Conference, Technical Digest (CD) (Optical Society of America, 2006), paper PDP35.

Redfern Integrated Optics Inc, http://www.rio-inc.com/ (California, USA).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Operation principle of (entangled) photon-pair generation by cascaded SFG/SPDC with double-pump scheme. SFG: sum-frequency generation. SPDC: spontaneous parametric downconversion.

Fig. 2
Fig. 2

Experimental setup. LN mod.: LiNbO3 intensity modulator. EDFA: Erbium-doped fiber amplifier. OBF: optical bandpass filter. WDM: WDM filter. Pol. cntrl.: polarization controller (λ/2 waveplate and λ/4 waveplate). AWG: arrayed waveguide grating module. PLC-MZI: PLC-based Mach-Zehnder interferometer. D1~D4: single photon detectors. TAC: time-amplitude convertor.

Fig. 3
Fig. 3

Transmittance of two-stage sharp-edge OBF. Red dashed curve: filter#1. Blue dashed curve: filter#2. Black solid curve: total (two-stage).

Fig. 4
Fig. 4

Dependence of the mean number of photon pairs (μ) on the pair number. The averaged powers of the pump lights were + 4.8 dBm (pump#1) and + 10.0 dBm (pump#2). Error bars showed the maximum and the minimum values at five runs of measurements.

Fig. 5
Fig. 5

Two-photon interference fringes for the wavelength pair#1. Horizontal scale: chip temperature of PLC-MZI#2 (Tid,MZI) for idler photons. Chip temperatures of PLC-MZI#1 (Tsig,MZI) for signal photons were 55.47 °C (open black circles and red squares) and 55.31 °C (closed blue circles and green squares), respectively. Circles show the coincidence counts between D1 and D3, while squares are the results of their complements, between D1 and D4. Solid curves are fitting curves assuming sine curves.

Fig. 6
Fig. 6

Dependences of (a) the visibility and (b) the peak coincidence counts on the pair number in the two-photon interference experiments. Open black circles: results from the coincidence counts between D1 and D3. Open red squares: results from the coincidence counts between D1 and D4.

Fig. 7
Fig. 7

Results of the polarization dependence of (a), (b) the visibilities and (c), (d) the peak coincidence counts in the two-photon interference fringes for the wavelength pair#1. (a), (c): the polarization states of the idler photons were changed, while those of the signal photons were fixed. (b), (d): the polarization states of the signal photons were changed, while those of the idler photons were fixed. The horizontal scale is the angle of the λ/2 waveplate in the signal/idler side. The angles of the λ/4 waveplate in the signal/idler side were 0° (black), 22.5° (red), 45° (blue), 67.5° (green), and 90° (gray), respectively.

Fig. 8
Fig. 8

Results of long-term test of QKD demonstration for the wavelength pair#1. (a) Number of the sifted keys per round. (b) QBER. Black curves: results from the coincidence events between D1 and D3 or D4. Red curves: results from the coincidence events between D2 and D3 or D4. The integration time per round was 20 seconds.

Fig. 9
Fig. 9

Histogram of the error counts. (a) signal: bit<1> and idler: bit<0> (D1 and D4 were hit). (a) signal: bit<0> and idler: bit<1> (D2 and D3 were hit). Red solid curves were fitting curves assuming a Poisson distribution.

Fig. 10
Fig. 10

Results of the long-term test of the QBER for the wavelength pair#5.

Tables (2)

Tables Icon

Table 1 Definition of pair number and the corresponding channel number of the AWG filter.

Tables Icon

Table 2 Performances of the SPDs used in this work.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

V 1 1+4μ .
QBER 2μ 1+4μ .

Metrics