Abstract

We demonstrate narrowband cw injection seeding of a femtosecond double-pass optical parametric generator at 43 MHz repetition rate with a simple, low power external cavity diode laser. Up to 2.5 W of near-IR radiation (1.5 – 1.66 µm) as well as 800 mW of tunable mid-IR radiation (2.75 – 3.15 µm) with pulse durations below 300 fs are generated with a remarkable pulse-to-pulse and long term power stability. Compared to conventional, vacuum noise seeded optical parametric generators, the presented frequency conversion scheme does not only exhibit superior gain and noise dynamics, but also a high degree of flexibility upon control parameters such as pump power, seed power, or spectral position of the seed.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Noise characteristics of high power fiber-laser pumped femtosecond optical parametric generation

Jintao Fan, Wei Chen, Chenglin Gu, Youjian Song, Lu Chai, Chingyue Wang, and Minglie Hu
Opt. Express 25(20) 24594-24603 (2017)

Frequency-locked, injection-seeded, pulsed narrowband optical parametric generator

Thomas A. Reichardt, Ray P. Bambha, Thomas J. Kulp, and Randal L. Schmitt
Appl. Opt. 42(18) 3564-3569 (2003)

References

  • View by:
  • |
  • |
  • |

  1. A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6(7), 440–449 (2012).
    [Crossref]
  2. A. H. Zewail, Femtochemistry: Ultrafast Dynamics of the Chemical Bond (World Scientific, 1994).
  3. J.-C. Diels and W. Rudolph, Ultrashort Laser Pulse Phenomena, 2nd ed. (Elsevier Inc., 2006).
  4. D. Yelin and Y. Silberberg, “Laser scanning third-harmonic-generation microscopy in biology,” Opt. Express 5(8), 169–175 (1999).
    [Crossref] [PubMed]
  5. C. H. Camp and M. T. Cicerone, “Chemically sensitive bioimaging with coherent Raman scattering,” Nat. Photonics 9(5), 295–305 (2015).
    [Crossref]
  6. S. V. Marchese, E. Innerhofer, R. Paschotta, S. Kurimura, K. Kitamura, G. Arisholm, and U. Keller, “Room temperature femtosecond optical parametric generation in MgO-doped stoichiometric LiTaO3,” J. Appl. Phys.-B 81(8), 1049–1052 (2005).
    [Crossref]
  7. T. W. Neely, T. A. Johnson, and S. A. Diddams, “High-power broadband laser source tunable from 3.0 μm to 4.4 μm based on a femtosecond Yb:fiber oscillator,” Opt. Lett. 36(20), 4020–4022 (2011).
    [Crossref] [PubMed]
  8. K. C. Burr, C. L. Tang, M. A. Arbore, and M. M. Fejer, “High-repetition-rate femtosecond optical parametric oscillator based on periodically poled lithium niobate,” Appl. Phys. Lett. 70(25), 3341 (1997).
    [Crossref]
  9. T. Steinle, A. Steinmann, R. Hegenbarth, and H. Giessen, “Watt-level optical parametric amplifier at 42 MHz tunable from 1.35 to 4.5 μm coherently seeded with solitons,” Opt. Express 22(8), 9567–9573 (2014).
    [Crossref] [PubMed]
  10. F. Mörz, T. Steinle, A. Steinmann, and H. Giessen, “Multi-Watt femtosecond optical parametric master oscillator power amplifier at 43 MHz,” Opt. Express 23(18), 23960–23967 (2015).
    [Crossref] [PubMed]
  11. C. Manzoni, G. Cirmi, D. Brida, S. de Silvestri, and G. Cerullo, “Optical-parametric-generation process driven by femtosecond pulses: Timing and carrier-envelope phase properties,” Phys. Rev. A 79(3), 033818 (2009).
    [Crossref]
  12. H. Linnenbank and S. Linden, “High repetition rate femtosecond double pass optical parametric generator with more than 2 W tunable output in the NIR,” Opt. Express 22(15), 18072–18077 (2014).
    [Crossref] [PubMed]
  13. M. Marangoni, R. Osellame, R. Ramponi, G. Cerullo, A. Steinmann, and U. Morgner, “Near-infrared optical parametric amplifier at 1 MHz directly pumped by a femtosecond oscillator,” Opt. Lett. 32(11), 1489–1491 (2007).
    [Crossref] [PubMed]
  14. X. Xie, A. M. Schober, C. Langrock, R. V. Roussev, J. R. Kurz, and M. M. Fejer, “Picojoule threshold, picosecond optical parametric generation in reverse proton-exchanged lithium niobate waveguides,” J. Opt. Soc. Am. B 21(7), 1397–1402 (2004).
    [Crossref]
  15. P. Zhao, B. Zhang, E. Li, R. Zhou, D. Xu, Y. Lu, T. Zhang, F. Ji, X. Zhu, P. Wang, and J. Yao, “Experimental study on a high conversion efficiency, low threshold, high-repetition-rate periodically poled lithium niobate optical parametric generator,” Opt. Express 14(16), 7224–7229 (2006).
    [Crossref] [PubMed]
  16. M. Levenius, V. Pasiskevicius, F. Laurell, and K. Gallo, “Ultra-broadband optical parametric generation in periodically poled stoichiometric LiTaO3.,” Opt. Express 19(5), 4121–4128 (2011).
    [Crossref] [PubMed]
  17. J. E. Bjorkholm and H. G. Danielmeyer, “Frequency control of a pulsed optical parametric oscillator by radiation injection,” Appl. Phys. Lett. 15(6), 171 (1969).
    [Crossref]
  18. B. Köhler, U. Bäder, A. Nebel, J.-P. Meyn, and R. Wallenstein, “A 9.5-W 82-MHz-repetition-rate picoseconds optical parametric generator with cw diode laser injection seeding,” Appl. Phys. B 75(1), 31–34 (2002).
    [Crossref]
  19. L. Xu, H.-Y. Chan, S.-U. Alam, D. J. Richardson, and D. P. Shepherd, “High-energy, near- and mid-IR picosecond pulses generated by a fiber-MOPA-pumped optical parametric generator and amplifier,” Opt. Express 23(10), 12613–12618 (2015).
    [Crossref] [PubMed]
  20. T. Südmeyer, J. A. Au, R. Paschotta, U. Keller, P. G. R. Smith, G. W. Ross, and D. C. Hanna, “Novel ultrafast parametric systems: high repetition rate single-pass OPG and fibre-feedback OPO,” J. Phys. D Appl. Phys. 34(16), 2433–2439 (2001).
    [Crossref]
  21. S. T. Yang and S. P. Velsko, “Frequency-agile kilohertz repetition-rate optical parametric oscillator based on periodically poled lithium niobate,” Opt. Lett. 24(3), 133–135 (1999).
    [Crossref] [PubMed]
  22. C. W. Hsu and C. C. Yang, “Broadband infrared generation with noncollinear optical parametric processes on periodically poled LiNbO3.,” Opt. Lett. 26(18), 1412–1414 (2001).
    [Crossref] [PubMed]
  23. G. Arisholm, “General analysis of group velocity effects in collinear optical parametric amplifiers and generators,” Opt. Express 15(10), 6513–6527 (2007).
    [Crossref] [PubMed]
  24. R. W. Boyd, Nonlinear Optics (Third Edition) (Elsevier Inc., 2008).

2015 (3)

2014 (2)

2012 (1)

A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6(7), 440–449 (2012).
[Crossref]

2011 (2)

2009 (1)

C. Manzoni, G. Cirmi, D. Brida, S. de Silvestri, and G. Cerullo, “Optical-parametric-generation process driven by femtosecond pulses: Timing and carrier-envelope phase properties,” Phys. Rev. A 79(3), 033818 (2009).
[Crossref]

2007 (2)

2006 (1)

2005 (1)

S. V. Marchese, E. Innerhofer, R. Paschotta, S. Kurimura, K. Kitamura, G. Arisholm, and U. Keller, “Room temperature femtosecond optical parametric generation in MgO-doped stoichiometric LiTaO3,” J. Appl. Phys.-B 81(8), 1049–1052 (2005).
[Crossref]

2004 (1)

2002 (1)

B. Köhler, U. Bäder, A. Nebel, J.-P. Meyn, and R. Wallenstein, “A 9.5-W 82-MHz-repetition-rate picoseconds optical parametric generator with cw diode laser injection seeding,” Appl. Phys. B 75(1), 31–34 (2002).
[Crossref]

2001 (2)

T. Südmeyer, J. A. Au, R. Paschotta, U. Keller, P. G. R. Smith, G. W. Ross, and D. C. Hanna, “Novel ultrafast parametric systems: high repetition rate single-pass OPG and fibre-feedback OPO,” J. Phys. D Appl. Phys. 34(16), 2433–2439 (2001).
[Crossref]

C. W. Hsu and C. C. Yang, “Broadband infrared generation with noncollinear optical parametric processes on periodically poled LiNbO3.,” Opt. Lett. 26(18), 1412–1414 (2001).
[Crossref] [PubMed]

1999 (2)

1997 (1)

K. C. Burr, C. L. Tang, M. A. Arbore, and M. M. Fejer, “High-repetition-rate femtosecond optical parametric oscillator based on periodically poled lithium niobate,” Appl. Phys. Lett. 70(25), 3341 (1997).
[Crossref]

1969 (1)

J. E. Bjorkholm and H. G. Danielmeyer, “Frequency control of a pulsed optical parametric oscillator by radiation injection,” Appl. Phys. Lett. 15(6), 171 (1969).
[Crossref]

Alam, S.-U.

Arbore, M. A.

K. C. Burr, C. L. Tang, M. A. Arbore, and M. M. Fejer, “High-repetition-rate femtosecond optical parametric oscillator based on periodically poled lithium niobate,” Appl. Phys. Lett. 70(25), 3341 (1997).
[Crossref]

Arisholm, G.

G. Arisholm, “General analysis of group velocity effects in collinear optical parametric amplifiers and generators,” Opt. Express 15(10), 6513–6527 (2007).
[Crossref] [PubMed]

S. V. Marchese, E. Innerhofer, R. Paschotta, S. Kurimura, K. Kitamura, G. Arisholm, and U. Keller, “Room temperature femtosecond optical parametric generation in MgO-doped stoichiometric LiTaO3,” J. Appl. Phys.-B 81(8), 1049–1052 (2005).
[Crossref]

Au, J. A.

T. Südmeyer, J. A. Au, R. Paschotta, U. Keller, P. G. R. Smith, G. W. Ross, and D. C. Hanna, “Novel ultrafast parametric systems: high repetition rate single-pass OPG and fibre-feedback OPO,” J. Phys. D Appl. Phys. 34(16), 2433–2439 (2001).
[Crossref]

Bäder, U.

B. Köhler, U. Bäder, A. Nebel, J.-P. Meyn, and R. Wallenstein, “A 9.5-W 82-MHz-repetition-rate picoseconds optical parametric generator with cw diode laser injection seeding,” Appl. Phys. B 75(1), 31–34 (2002).
[Crossref]

Bjorkholm, J. E.

J. E. Bjorkholm and H. G. Danielmeyer, “Frequency control of a pulsed optical parametric oscillator by radiation injection,” Appl. Phys. Lett. 15(6), 171 (1969).
[Crossref]

Brida, D.

C. Manzoni, G. Cirmi, D. Brida, S. de Silvestri, and G. Cerullo, “Optical-parametric-generation process driven by femtosecond pulses: Timing and carrier-envelope phase properties,” Phys. Rev. A 79(3), 033818 (2009).
[Crossref]

Burr, K. C.

K. C. Burr, C. L. Tang, M. A. Arbore, and M. M. Fejer, “High-repetition-rate femtosecond optical parametric oscillator based on periodically poled lithium niobate,” Appl. Phys. Lett. 70(25), 3341 (1997).
[Crossref]

Camp, C. H.

C. H. Camp and M. T. Cicerone, “Chemically sensitive bioimaging with coherent Raman scattering,” Nat. Photonics 9(5), 295–305 (2015).
[Crossref]

Cerullo, G.

C. Manzoni, G. Cirmi, D. Brida, S. de Silvestri, and G. Cerullo, “Optical-parametric-generation process driven by femtosecond pulses: Timing and carrier-envelope phase properties,” Phys. Rev. A 79(3), 033818 (2009).
[Crossref]

M. Marangoni, R. Osellame, R. Ramponi, G. Cerullo, A. Steinmann, and U. Morgner, “Near-infrared optical parametric amplifier at 1 MHz directly pumped by a femtosecond oscillator,” Opt. Lett. 32(11), 1489–1491 (2007).
[Crossref] [PubMed]

Chan, H.-Y.

Cicerone, M. T.

C. H. Camp and M. T. Cicerone, “Chemically sensitive bioimaging with coherent Raman scattering,” Nat. Photonics 9(5), 295–305 (2015).
[Crossref]

Cirmi, G.

C. Manzoni, G. Cirmi, D. Brida, S. de Silvestri, and G. Cerullo, “Optical-parametric-generation process driven by femtosecond pulses: Timing and carrier-envelope phase properties,” Phys. Rev. A 79(3), 033818 (2009).
[Crossref]

Danielmeyer, H. G.

J. E. Bjorkholm and H. G. Danielmeyer, “Frequency control of a pulsed optical parametric oscillator by radiation injection,” Appl. Phys. Lett. 15(6), 171 (1969).
[Crossref]

de Silvestri, S.

C. Manzoni, G. Cirmi, D. Brida, S. de Silvestri, and G. Cerullo, “Optical-parametric-generation process driven by femtosecond pulses: Timing and carrier-envelope phase properties,” Phys. Rev. A 79(3), 033818 (2009).
[Crossref]

Diddams, S. A.

Fejer, M. M.

X. Xie, A. M. Schober, C. Langrock, R. V. Roussev, J. R. Kurz, and M. M. Fejer, “Picojoule threshold, picosecond optical parametric generation in reverse proton-exchanged lithium niobate waveguides,” J. Opt. Soc. Am. B 21(7), 1397–1402 (2004).
[Crossref]

K. C. Burr, C. L. Tang, M. A. Arbore, and M. M. Fejer, “High-repetition-rate femtosecond optical parametric oscillator based on periodically poled lithium niobate,” Appl. Phys. Lett. 70(25), 3341 (1997).
[Crossref]

Gallo, K.

Giessen, H.

Hanna, D. C.

T. Südmeyer, J. A. Au, R. Paschotta, U. Keller, P. G. R. Smith, G. W. Ross, and D. C. Hanna, “Novel ultrafast parametric systems: high repetition rate single-pass OPG and fibre-feedback OPO,” J. Phys. D Appl. Phys. 34(16), 2433–2439 (2001).
[Crossref]

Hänsch, T. W.

A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6(7), 440–449 (2012).
[Crossref]

Hegenbarth, R.

Hsu, C. W.

Innerhofer, E.

S. V. Marchese, E. Innerhofer, R. Paschotta, S. Kurimura, K. Kitamura, G. Arisholm, and U. Keller, “Room temperature femtosecond optical parametric generation in MgO-doped stoichiometric LiTaO3,” J. Appl. Phys.-B 81(8), 1049–1052 (2005).
[Crossref]

Ji, F.

Johnson, T. A.

Keller, U.

S. V. Marchese, E. Innerhofer, R. Paschotta, S. Kurimura, K. Kitamura, G. Arisholm, and U. Keller, “Room temperature femtosecond optical parametric generation in MgO-doped stoichiometric LiTaO3,” J. Appl. Phys.-B 81(8), 1049–1052 (2005).
[Crossref]

T. Südmeyer, J. A. Au, R. Paschotta, U. Keller, P. G. R. Smith, G. W. Ross, and D. C. Hanna, “Novel ultrafast parametric systems: high repetition rate single-pass OPG and fibre-feedback OPO,” J. Phys. D Appl. Phys. 34(16), 2433–2439 (2001).
[Crossref]

Kitamura, K.

S. V. Marchese, E. Innerhofer, R. Paschotta, S. Kurimura, K. Kitamura, G. Arisholm, and U. Keller, “Room temperature femtosecond optical parametric generation in MgO-doped stoichiometric LiTaO3,” J. Appl. Phys.-B 81(8), 1049–1052 (2005).
[Crossref]

Köhler, B.

B. Köhler, U. Bäder, A. Nebel, J.-P. Meyn, and R. Wallenstein, “A 9.5-W 82-MHz-repetition-rate picoseconds optical parametric generator with cw diode laser injection seeding,” Appl. Phys. B 75(1), 31–34 (2002).
[Crossref]

Kurimura, S.

S. V. Marchese, E. Innerhofer, R. Paschotta, S. Kurimura, K. Kitamura, G. Arisholm, and U. Keller, “Room temperature femtosecond optical parametric generation in MgO-doped stoichiometric LiTaO3,” J. Appl. Phys.-B 81(8), 1049–1052 (2005).
[Crossref]

Kurz, J. R.

Langrock, C.

Laurell, F.

Levenius, M.

Li, E.

Linden, S.

Linnenbank, H.

Lu, Y.

Manzoni, C.

C. Manzoni, G. Cirmi, D. Brida, S. de Silvestri, and G. Cerullo, “Optical-parametric-generation process driven by femtosecond pulses: Timing and carrier-envelope phase properties,” Phys. Rev. A 79(3), 033818 (2009).
[Crossref]

Marangoni, M.

Marchese, S. V.

S. V. Marchese, E. Innerhofer, R. Paschotta, S. Kurimura, K. Kitamura, G. Arisholm, and U. Keller, “Room temperature femtosecond optical parametric generation in MgO-doped stoichiometric LiTaO3,” J. Appl. Phys.-B 81(8), 1049–1052 (2005).
[Crossref]

Meyn, J.-P.

B. Köhler, U. Bäder, A. Nebel, J.-P. Meyn, and R. Wallenstein, “A 9.5-W 82-MHz-repetition-rate picoseconds optical parametric generator with cw diode laser injection seeding,” Appl. Phys. B 75(1), 31–34 (2002).
[Crossref]

Morgner, U.

Mörz, F.

Nebel, A.

B. Köhler, U. Bäder, A. Nebel, J.-P. Meyn, and R. Wallenstein, “A 9.5-W 82-MHz-repetition-rate picoseconds optical parametric generator with cw diode laser injection seeding,” Appl. Phys. B 75(1), 31–34 (2002).
[Crossref]

Neely, T. W.

Osellame, R.

Paschotta, R.

S. V. Marchese, E. Innerhofer, R. Paschotta, S. Kurimura, K. Kitamura, G. Arisholm, and U. Keller, “Room temperature femtosecond optical parametric generation in MgO-doped stoichiometric LiTaO3,” J. Appl. Phys.-B 81(8), 1049–1052 (2005).
[Crossref]

T. Südmeyer, J. A. Au, R. Paschotta, U. Keller, P. G. R. Smith, G. W. Ross, and D. C. Hanna, “Novel ultrafast parametric systems: high repetition rate single-pass OPG and fibre-feedback OPO,” J. Phys. D Appl. Phys. 34(16), 2433–2439 (2001).
[Crossref]

Pasiskevicius, V.

Picqué, N.

A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6(7), 440–449 (2012).
[Crossref]

Ramponi, R.

Richardson, D. J.

Ross, G. W.

T. Südmeyer, J. A. Au, R. Paschotta, U. Keller, P. G. R. Smith, G. W. Ross, and D. C. Hanna, “Novel ultrafast parametric systems: high repetition rate single-pass OPG and fibre-feedback OPO,” J. Phys. D Appl. Phys. 34(16), 2433–2439 (2001).
[Crossref]

Roussev, R. V.

Schliesser, A.

A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6(7), 440–449 (2012).
[Crossref]

Schober, A. M.

Shepherd, D. P.

Silberberg, Y.

Smith, P. G. R.

T. Südmeyer, J. A. Au, R. Paschotta, U. Keller, P. G. R. Smith, G. W. Ross, and D. C. Hanna, “Novel ultrafast parametric systems: high repetition rate single-pass OPG and fibre-feedback OPO,” J. Phys. D Appl. Phys. 34(16), 2433–2439 (2001).
[Crossref]

Steinle, T.

Steinmann, A.

Südmeyer, T.

T. Südmeyer, J. A. Au, R. Paschotta, U. Keller, P. G. R. Smith, G. W. Ross, and D. C. Hanna, “Novel ultrafast parametric systems: high repetition rate single-pass OPG and fibre-feedback OPO,” J. Phys. D Appl. Phys. 34(16), 2433–2439 (2001).
[Crossref]

Tang, C. L.

K. C. Burr, C. L. Tang, M. A. Arbore, and M. M. Fejer, “High-repetition-rate femtosecond optical parametric oscillator based on periodically poled lithium niobate,” Appl. Phys. Lett. 70(25), 3341 (1997).
[Crossref]

Velsko, S. P.

Wallenstein, R.

B. Köhler, U. Bäder, A. Nebel, J.-P. Meyn, and R. Wallenstein, “A 9.5-W 82-MHz-repetition-rate picoseconds optical parametric generator with cw diode laser injection seeding,” Appl. Phys. B 75(1), 31–34 (2002).
[Crossref]

Wang, P.

Xie, X.

Xu, D.

Xu, L.

Yang, C. C.

Yang, S. T.

Yao, J.

Yelin, D.

Zhang, B.

Zhang, T.

Zhao, P.

Zhou, R.

Zhu, X.

Appl. Phys. B (1)

B. Köhler, U. Bäder, A. Nebel, J.-P. Meyn, and R. Wallenstein, “A 9.5-W 82-MHz-repetition-rate picoseconds optical parametric generator with cw diode laser injection seeding,” Appl. Phys. B 75(1), 31–34 (2002).
[Crossref]

Appl. Phys. Lett. (2)

K. C. Burr, C. L. Tang, M. A. Arbore, and M. M. Fejer, “High-repetition-rate femtosecond optical parametric oscillator based on periodically poled lithium niobate,” Appl. Phys. Lett. 70(25), 3341 (1997).
[Crossref]

J. E. Bjorkholm and H. G. Danielmeyer, “Frequency control of a pulsed optical parametric oscillator by radiation injection,” Appl. Phys. Lett. 15(6), 171 (1969).
[Crossref]

J. Appl. Phys.-B (1)

S. V. Marchese, E. Innerhofer, R. Paschotta, S. Kurimura, K. Kitamura, G. Arisholm, and U. Keller, “Room temperature femtosecond optical parametric generation in MgO-doped stoichiometric LiTaO3,” J. Appl. Phys.-B 81(8), 1049–1052 (2005).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. D Appl. Phys. (1)

T. Südmeyer, J. A. Au, R. Paschotta, U. Keller, P. G. R. Smith, G. W. Ross, and D. C. Hanna, “Novel ultrafast parametric systems: high repetition rate single-pass OPG and fibre-feedback OPO,” J. Phys. D Appl. Phys. 34(16), 2433–2439 (2001).
[Crossref]

Nat. Photonics (2)

C. H. Camp and M. T. Cicerone, “Chemically sensitive bioimaging with coherent Raman scattering,” Nat. Photonics 9(5), 295–305 (2015).
[Crossref]

A. Schliesser, N. Picqué, and T. W. Hänsch, “Mid-infrared frequency combs,” Nat. Photonics 6(7), 440–449 (2012).
[Crossref]

Opt. Express (8)

P. Zhao, B. Zhang, E. Li, R. Zhou, D. Xu, Y. Lu, T. Zhang, F. Ji, X. Zhu, P. Wang, and J. Yao, “Experimental study on a high conversion efficiency, low threshold, high-repetition-rate periodically poled lithium niobate optical parametric generator,” Opt. Express 14(16), 7224–7229 (2006).
[Crossref] [PubMed]

G. Arisholm, “General analysis of group velocity effects in collinear optical parametric amplifiers and generators,” Opt. Express 15(10), 6513–6527 (2007).
[Crossref] [PubMed]

M. Levenius, V. Pasiskevicius, F. Laurell, and K. Gallo, “Ultra-broadband optical parametric generation in periodically poled stoichiometric LiTaO3.,” Opt. Express 19(5), 4121–4128 (2011).
[Crossref] [PubMed]

D. Yelin and Y. Silberberg, “Laser scanning third-harmonic-generation microscopy in biology,” Opt. Express 5(8), 169–175 (1999).
[Crossref] [PubMed]

T. Steinle, A. Steinmann, R. Hegenbarth, and H. Giessen, “Watt-level optical parametric amplifier at 42 MHz tunable from 1.35 to 4.5 μm coherently seeded with solitons,” Opt. Express 22(8), 9567–9573 (2014).
[Crossref] [PubMed]

H. Linnenbank and S. Linden, “High repetition rate femtosecond double pass optical parametric generator with more than 2 W tunable output in the NIR,” Opt. Express 22(15), 18072–18077 (2014).
[Crossref] [PubMed]

L. Xu, H.-Y. Chan, S.-U. Alam, D. J. Richardson, and D. P. Shepherd, “High-energy, near- and mid-IR picosecond pulses generated by a fiber-MOPA-pumped optical parametric generator and amplifier,” Opt. Express 23(10), 12613–12618 (2015).
[Crossref] [PubMed]

F. Mörz, T. Steinle, A. Steinmann, and H. Giessen, “Multi-Watt femtosecond optical parametric master oscillator power amplifier at 43 MHz,” Opt. Express 23(18), 23960–23967 (2015).
[Crossref] [PubMed]

Opt. Lett. (4)

Phys. Rev. A (1)

C. Manzoni, G. Cirmi, D. Brida, S. de Silvestri, and G. Cerullo, “Optical-parametric-generation process driven by femtosecond pulses: Timing and carrier-envelope phase properties,” Phys. Rev. A 79(3), 033818 (2009).
[Crossref]

Other (3)

A. H. Zewail, Femtochemistry: Ultrafast Dynamics of the Chemical Bond (World Scientific, 1994).

J.-C. Diels and W. Rudolph, Ultrashort Laser Pulse Phenomena, 2nd ed. (Elsevier Inc., 2006).

R. W. Boyd, Nonlinear Optics (Third Edition) (Elsevier Inc., 2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental setup consisting of (I) a double-pass OPG pumped by an Yb:KGW high power oscillator and (II) the seeding unit with of a narrowband, low power cw external cavity diode laser (ECDL) and a Faraday rotator combined with a polarizing beamsplitter to separate the seed from the signal output.

Fig. 2
Fig. 2

(a) Tuning range (left axis) and average output power (right axis) of both the double-pass OPG without seed (dashed lines and open squares) and with narrowband cw injection seeding (continuous lines and filled squares) for different poling periods of 30 µm (blue), 30.5 µm (green), and 31 µm (red). (b) Spectra of the ECDL used as seed for the measurements depicted in (a). The peak level indicates the utilized seed power as 2 mW (blue), 5 mW (green), and 1 mW (red). The dim lines indicate the corresponding spectral positions of subfigures (a) and (b). (c) Intensity autocorrelation traces of the signal spectra depicted in (a), plotted in the same way. The FWHM pulse durations are given for the longer pulses, i.e., those generated with the cw injection seeded OPG, assuming sech2-pulse shapes. All measurements were taken at a constant pump power of 6.2 W.

Fig. 3
Fig. 3

(a) Total conversion efficiency, i.e., the ratio of the sum of signal and idler power and the average incident pump power versus the average incident pump power of the OPG without seeding (red triangles), with 5 mW (black squares), and 0.25 mW (blue circles) cw injection seeding at a wavelength of approximately 1570 nm (green spectra in Fig. 2(a)). (b) and (c) depict average output powers of the generated signal and idler radiation, respectively.

Fig. 4
Fig. 4

(a-e) Intensity autocorrelation traces and (f-j) corresponding spectra of the signal radiation of the OPG without seeding (red), with 5 mW (black), and 0.25 mW (blue) cw injection seeding for signal powers of approximately 100 mW (a and f), 450 mW (b and g), 750 mW (c and h), 1200 mW (d and i), and 1500 mW (e and j). The FWHM values of the spectra are given for the OPG without seeding (red values) and with 5 mW cw injection seeding (black values), as well as the corresponding pulse durations assuming sech2-pulse shapes.

Fig. 5
Fig. 5

(a) Long term average power stability recorded over one hour of the OPG without seeding (red traces) and with 5 mW cw injection seeding (black traces) slightly above the operation threshold (grey axes), i.e., at 3.4 W pump power and 2.0 W pump power, respectively, and at 6.2 W pump power (black axes). (b) Pulse-to-pulse stability over 1 µs for the same conditions as in subfigure (a). (c) Intensity noise spectrum of the OPG without seeding (red traces) and with 5 mW cw injection seeding (black traces) for pump powers increasing from 2 W to 6.2 W (dotted to solid lines), measured at 1.3 mA photocurrent. The detection electronic background is displayed in grey.

Metrics