Abstract

The impact of vectorial magnetic field effects on electrical conductivity and nonlinear optical transmittance exhibited by multi-wall carbon nanotubes was studied. The samples were synthetized by an aerosol pyrolysis processing route in a thin film form. Optical signals in a two-wave mixing configuration allowed us to identify two orthogonal directions of propagation for a magnetic field travelling through the nanomaterials studied. A selective modification in optical absorption was considered to be induced by magnetic perturbations in the sample. Standard optical Kerr gate measurements were carried out for exploring the third order nonlinear optical behavior of the film. A capacitive effect influenced by optical and magnetic excitations was distinguished to be characteristic of the sample. Magneto-quantum conductivity sensitive to the direction of an external magnetic field interacting with the tubes was analyzed. Magnetically-induced changes in electronic band parameters seem to be the main responsible for the optical and electrical modulation observed in the nanostructures. Immediate applications for developing magneto-optical and magneto-electrical functions can be contemplated.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Nematic liquid crystal reorientation around multi-walled carbon nanotubes mapped via Raman microscopy

T. Cacace, A. García-García, G. Zito, V. Tkachenko, G. Rusciano, M. A. Geday, J.M. Otón, A. Marino, and A. Sasso
Opt. Express 24(14) 15954-15964 (2016)

Optical properties of ordered vertical arrays of multi-walled carbon nanotubes from FDTD simulations

Hua Bao, Xiulin Ruan, and Timothy S. Fisher
Opt. Express 18(6) 6347-6359 (2010)

Tailoring terahertz surface plasmon wave through free-standing multi-walled carbon nanotubes metasurface

Yue Wang, Zijian Cui, Dongying Zhu, Xianbin Zhang, and Li Qian
Opt. Express 26(12) 15343-15352 (2018)

References

  • View by:
  • |
  • |
  • |

  1. Y. Sukhorukov, N. Loshkareva, A. Telegin, and E. Mostovshchikova, “Magnetotrasmission and magnetoreflection of unpolarized light in magnetic semiconductors,” Opt. Spectrosc. 116(6), 878–884 (2014).
    [Crossref]
  2. H. Khosravi, N. Daneshfar, and A. Bahari, “Effect of a magnetic field on high-harmonic generation by carbon nanotubes,” Opt. Lett. 34(11), 1723–1725 (2009).
    [Crossref] [PubMed]
  3. S. N. Song, X. K. Wang, R. P. Chang, and J. B. Ketterson, “Electronic properties of graphite nanotubules from galvanomagnetic effects,” Phys. Rev. Lett. 72(5), 697–700 (1994).
    [Crossref] [PubMed]
  4. D. Schmid, P. Stiller, Ch. Strunk, and A. Hüttel, “Magnetic damping of a carbon nanotube nano-electromechanical resonator,” New J. Phys. 14(8), 083024 (2012).
    [Crossref]
  5. S. Ferrari, M. Bini, D. Capsoni, P. Galinetto, M. S. Grandi, U. Griebner, G. Steinmeyer, A. Agnesi, F. Pirzio, E. Ugolotti, G. Reali, and V. Massarotti, “Optimizing single-walled-carbon-nanotube-based saturable absorbers for ultrafast lasers,” Adv. Funct. Mater. 22(20), 4369–4375 (2012).
    [Crossref]
  6. J. E. Riggs, D. B. Walker, D. L. Carroll, and Y.-P. Sun, “Optical limiting properties of suspended and solubilized carbon nanotubes,” J. Phys. Chem. B 104(30), 7071–7076 (2000).
    [Crossref]
  7. C. Poole and F. Owens, Introduction to nanotechnology (John Wiley & Sons, 2003).
  8. F. L. Shyu, C. P. Chang, R. B. Chen, C. W. Chiu, and M. F. Lin, “Magnetoelectronic and optical properties of carbon nanotubes,” Phys. Rev. B 67(4), 045405 (2003).
    [Crossref]
  9. X. Zhang, Z. Yu, C. Wang, D. Zarrouk, J. W. Seo, J. C. Cheng, A. D. Buchan, K. Takei, Y. Zhao, J. W. Ager, J. Zhang, M. Hettick, M. C. Hersam, A. P. Pisano, R. S. Fearing, and A. Javey, “Photoactuators and motors based on carbon nanotubes with selective chirality distributions,” Nat. Commun. 5, 2983 (2014).
    [PubMed]
  10. P. Keshavarzian, “Novel and general carbon nanotube FET-based circuit designs to implement all of the 39 ternary functions without mathematical operations,” Microelectronics J. 44(9), 794–801 (2013).
    [Crossref]
  11. C. Vales-Pinzón, J. Alvarado-Gil, R. Medina-Esquivel, and P. Martínez-Torres, “Polarized light transmission in ferrofluids loaded with carbon nanotubes in the presence of a uniform magnetic field,” J. Magn. Magn. Mater. 369, 114–121 (2014).
    [Crossref]
  12. J. A. García-Merino, C. L. Martínez-González, C. R. T.-S. Miguel, M. Trejo-Valdez, H. Martínez-Gutiérrez, and C. Torres-Torres, “Photothermal, photoconductive and nonlinear optical effects induced by nanosecond pulse irradiation in multi-wall carbon nanotubes,” Mater. Sci. Eng. B 194, 27–33 (2015).
    [Crossref]
  13. R. Boyd, Nonlinear optics (Academic, 2003).
  14. J. Park, A. Reina, R. Saito, J. Kong, G. Dresselhaus, and M. Dresselhaus, “G′ band Raman spectra of single, double and triple layer graphene,” Carbon 47(5), 1303–1310 (2009).
    [Crossref]
  15. M. Mansuripur, Classical optics and its applications (Cambridge University, 2009).
  16. W. Hayt, Engineering electromagnetics (McGraw-Hill Book, 2007).
  17. G. Strangle, Modeling of materials of processing: an approachable and practical guide (Springer, 1998).
  18. T. Nakanishi and T. Ando, “Conductivity in carbon nanotubes with Aharonov-Bohm flux,” J. Phys. Soc. Jpn. 74(11), 3027–3034 (2005).
    [Crossref]
  19. R. Tsuchikawa, D. Heligman, B. T. Blue, Z. Y. Zhang, A. Ahmadi, E. R. Mucciolo, J. Hone, and M. Ishigami, “Scattering strength of potassium on a carbon nanotube with known chirality,” http://arxiv.org/abs/1511.06684v1 .
    [Crossref]
  20. S. Botti, R. Ciardi, L. De Dominicis, L. S. Asilyan, R. Fantoni, and T. Marolo, “DFWM measurements of third-order susceptibility of single-wall carbon nanotubes grown without catalyst,” Chem. Phys. Lett. 378(1), 117–121 (2003).
  21. K. Kordás, T. Mustonen, G. Tóth, J. Vähäkangas, H. Jantunen, A. Gupta, K. V. Rao, R. Vajtai, and P. M. Ajayan, “Magnetic-field induced efficient alignment of carbon nanotubes in aqueous solutions,” Chem. Mater. 19(4), 787–791 (2007).
    [Crossref]

2015 (1)

J. A. García-Merino, C. L. Martínez-González, C. R. T.-S. Miguel, M. Trejo-Valdez, H. Martínez-Gutiérrez, and C. Torres-Torres, “Photothermal, photoconductive and nonlinear optical effects induced by nanosecond pulse irradiation in multi-wall carbon nanotubes,” Mater. Sci. Eng. B 194, 27–33 (2015).
[Crossref]

2014 (3)

X. Zhang, Z. Yu, C. Wang, D. Zarrouk, J. W. Seo, J. C. Cheng, A. D. Buchan, K. Takei, Y. Zhao, J. W. Ager, J. Zhang, M. Hettick, M. C. Hersam, A. P. Pisano, R. S. Fearing, and A. Javey, “Photoactuators and motors based on carbon nanotubes with selective chirality distributions,” Nat. Commun. 5, 2983 (2014).
[PubMed]

C. Vales-Pinzón, J. Alvarado-Gil, R. Medina-Esquivel, and P. Martínez-Torres, “Polarized light transmission in ferrofluids loaded with carbon nanotubes in the presence of a uniform magnetic field,” J. Magn. Magn. Mater. 369, 114–121 (2014).
[Crossref]

Y. Sukhorukov, N. Loshkareva, A. Telegin, and E. Mostovshchikova, “Magnetotrasmission and magnetoreflection of unpolarized light in magnetic semiconductors,” Opt. Spectrosc. 116(6), 878–884 (2014).
[Crossref]

2013 (1)

P. Keshavarzian, “Novel and general carbon nanotube FET-based circuit designs to implement all of the 39 ternary functions without mathematical operations,” Microelectronics J. 44(9), 794–801 (2013).
[Crossref]

2012 (2)

D. Schmid, P. Stiller, Ch. Strunk, and A. Hüttel, “Magnetic damping of a carbon nanotube nano-electromechanical resonator,” New J. Phys. 14(8), 083024 (2012).
[Crossref]

S. Ferrari, M. Bini, D. Capsoni, P. Galinetto, M. S. Grandi, U. Griebner, G. Steinmeyer, A. Agnesi, F. Pirzio, E. Ugolotti, G. Reali, and V. Massarotti, “Optimizing single-walled-carbon-nanotube-based saturable absorbers for ultrafast lasers,” Adv. Funct. Mater. 22(20), 4369–4375 (2012).
[Crossref]

2009 (2)

J. Park, A. Reina, R. Saito, J. Kong, G. Dresselhaus, and M. Dresselhaus, “G′ band Raman spectra of single, double and triple layer graphene,” Carbon 47(5), 1303–1310 (2009).
[Crossref]

H. Khosravi, N. Daneshfar, and A. Bahari, “Effect of a magnetic field on high-harmonic generation by carbon nanotubes,” Opt. Lett. 34(11), 1723–1725 (2009).
[Crossref] [PubMed]

2007 (1)

K. Kordás, T. Mustonen, G. Tóth, J. Vähäkangas, H. Jantunen, A. Gupta, K. V. Rao, R. Vajtai, and P. M. Ajayan, “Magnetic-field induced efficient alignment of carbon nanotubes in aqueous solutions,” Chem. Mater. 19(4), 787–791 (2007).
[Crossref]

2005 (1)

T. Nakanishi and T. Ando, “Conductivity in carbon nanotubes with Aharonov-Bohm flux,” J. Phys. Soc. Jpn. 74(11), 3027–3034 (2005).
[Crossref]

2003 (2)

S. Botti, R. Ciardi, L. De Dominicis, L. S. Asilyan, R. Fantoni, and T. Marolo, “DFWM measurements of third-order susceptibility of single-wall carbon nanotubes grown without catalyst,” Chem. Phys. Lett. 378(1), 117–121 (2003).

F. L. Shyu, C. P. Chang, R. B. Chen, C. W. Chiu, and M. F. Lin, “Magnetoelectronic and optical properties of carbon nanotubes,” Phys. Rev. B 67(4), 045405 (2003).
[Crossref]

2000 (1)

J. E. Riggs, D. B. Walker, D. L. Carroll, and Y.-P. Sun, “Optical limiting properties of suspended and solubilized carbon nanotubes,” J. Phys. Chem. B 104(30), 7071–7076 (2000).
[Crossref]

1994 (1)

S. N. Song, X. K. Wang, R. P. Chang, and J. B. Ketterson, “Electronic properties of graphite nanotubules from galvanomagnetic effects,” Phys. Rev. Lett. 72(5), 697–700 (1994).
[Crossref] [PubMed]

Ager, J. W.

X. Zhang, Z. Yu, C. Wang, D. Zarrouk, J. W. Seo, J. C. Cheng, A. D. Buchan, K. Takei, Y. Zhao, J. W. Ager, J. Zhang, M. Hettick, M. C. Hersam, A. P. Pisano, R. S. Fearing, and A. Javey, “Photoactuators and motors based on carbon nanotubes with selective chirality distributions,” Nat. Commun. 5, 2983 (2014).
[PubMed]

Agnesi, A.

S. Ferrari, M. Bini, D. Capsoni, P. Galinetto, M. S. Grandi, U. Griebner, G. Steinmeyer, A. Agnesi, F. Pirzio, E. Ugolotti, G. Reali, and V. Massarotti, “Optimizing single-walled-carbon-nanotube-based saturable absorbers for ultrafast lasers,” Adv. Funct. Mater. 22(20), 4369–4375 (2012).
[Crossref]

Ajayan, P. M.

K. Kordás, T. Mustonen, G. Tóth, J. Vähäkangas, H. Jantunen, A. Gupta, K. V. Rao, R. Vajtai, and P. M. Ajayan, “Magnetic-field induced efficient alignment of carbon nanotubes in aqueous solutions,” Chem. Mater. 19(4), 787–791 (2007).
[Crossref]

Alvarado-Gil, J.

C. Vales-Pinzón, J. Alvarado-Gil, R. Medina-Esquivel, and P. Martínez-Torres, “Polarized light transmission in ferrofluids loaded with carbon nanotubes in the presence of a uniform magnetic field,” J. Magn. Magn. Mater. 369, 114–121 (2014).
[Crossref]

Ando, T.

T. Nakanishi and T. Ando, “Conductivity in carbon nanotubes with Aharonov-Bohm flux,” J. Phys. Soc. Jpn. 74(11), 3027–3034 (2005).
[Crossref]

Asilyan, L. S.

S. Botti, R. Ciardi, L. De Dominicis, L. S. Asilyan, R. Fantoni, and T. Marolo, “DFWM measurements of third-order susceptibility of single-wall carbon nanotubes grown without catalyst,” Chem. Phys. Lett. 378(1), 117–121 (2003).

Bahari, A.

Bini, M.

S. Ferrari, M. Bini, D. Capsoni, P. Galinetto, M. S. Grandi, U. Griebner, G. Steinmeyer, A. Agnesi, F. Pirzio, E. Ugolotti, G. Reali, and V. Massarotti, “Optimizing single-walled-carbon-nanotube-based saturable absorbers for ultrafast lasers,” Adv. Funct. Mater. 22(20), 4369–4375 (2012).
[Crossref]

Botti, S.

S. Botti, R. Ciardi, L. De Dominicis, L. S. Asilyan, R. Fantoni, and T. Marolo, “DFWM measurements of third-order susceptibility of single-wall carbon nanotubes grown without catalyst,” Chem. Phys. Lett. 378(1), 117–121 (2003).

Buchan, A. D.

X. Zhang, Z. Yu, C. Wang, D. Zarrouk, J. W. Seo, J. C. Cheng, A. D. Buchan, K. Takei, Y. Zhao, J. W. Ager, J. Zhang, M. Hettick, M. C. Hersam, A. P. Pisano, R. S. Fearing, and A. Javey, “Photoactuators and motors based on carbon nanotubes with selective chirality distributions,” Nat. Commun. 5, 2983 (2014).
[PubMed]

Capsoni, D.

S. Ferrari, M. Bini, D. Capsoni, P. Galinetto, M. S. Grandi, U. Griebner, G. Steinmeyer, A. Agnesi, F. Pirzio, E. Ugolotti, G. Reali, and V. Massarotti, “Optimizing single-walled-carbon-nanotube-based saturable absorbers for ultrafast lasers,” Adv. Funct. Mater. 22(20), 4369–4375 (2012).
[Crossref]

Carroll, D. L.

J. E. Riggs, D. B. Walker, D. L. Carroll, and Y.-P. Sun, “Optical limiting properties of suspended and solubilized carbon nanotubes,” J. Phys. Chem. B 104(30), 7071–7076 (2000).
[Crossref]

Chang, C. P.

F. L. Shyu, C. P. Chang, R. B. Chen, C. W. Chiu, and M. F. Lin, “Magnetoelectronic and optical properties of carbon nanotubes,” Phys. Rev. B 67(4), 045405 (2003).
[Crossref]

Chang, R. P.

S. N. Song, X. K. Wang, R. P. Chang, and J. B. Ketterson, “Electronic properties of graphite nanotubules from galvanomagnetic effects,” Phys. Rev. Lett. 72(5), 697–700 (1994).
[Crossref] [PubMed]

Chen, R. B.

F. L. Shyu, C. P. Chang, R. B. Chen, C. W. Chiu, and M. F. Lin, “Magnetoelectronic and optical properties of carbon nanotubes,” Phys. Rev. B 67(4), 045405 (2003).
[Crossref]

Cheng, J. C.

X. Zhang, Z. Yu, C. Wang, D. Zarrouk, J. W. Seo, J. C. Cheng, A. D. Buchan, K. Takei, Y. Zhao, J. W. Ager, J. Zhang, M. Hettick, M. C. Hersam, A. P. Pisano, R. S. Fearing, and A. Javey, “Photoactuators and motors based on carbon nanotubes with selective chirality distributions,” Nat. Commun. 5, 2983 (2014).
[PubMed]

Chiu, C. W.

F. L. Shyu, C. P. Chang, R. B. Chen, C. W. Chiu, and M. F. Lin, “Magnetoelectronic and optical properties of carbon nanotubes,” Phys. Rev. B 67(4), 045405 (2003).
[Crossref]

Ciardi, R.

S. Botti, R. Ciardi, L. De Dominicis, L. S. Asilyan, R. Fantoni, and T. Marolo, “DFWM measurements of third-order susceptibility of single-wall carbon nanotubes grown without catalyst,” Chem. Phys. Lett. 378(1), 117–121 (2003).

Daneshfar, N.

De Dominicis, L.

S. Botti, R. Ciardi, L. De Dominicis, L. S. Asilyan, R. Fantoni, and T. Marolo, “DFWM measurements of third-order susceptibility of single-wall carbon nanotubes grown without catalyst,” Chem. Phys. Lett. 378(1), 117–121 (2003).

Dresselhaus, G.

J. Park, A. Reina, R. Saito, J. Kong, G. Dresselhaus, and M. Dresselhaus, “G′ band Raman spectra of single, double and triple layer graphene,” Carbon 47(5), 1303–1310 (2009).
[Crossref]

Dresselhaus, M.

J. Park, A. Reina, R. Saito, J. Kong, G. Dresselhaus, and M. Dresselhaus, “G′ band Raman spectra of single, double and triple layer graphene,” Carbon 47(5), 1303–1310 (2009).
[Crossref]

Fantoni, R.

S. Botti, R. Ciardi, L. De Dominicis, L. S. Asilyan, R. Fantoni, and T. Marolo, “DFWM measurements of third-order susceptibility of single-wall carbon nanotubes grown without catalyst,” Chem. Phys. Lett. 378(1), 117–121 (2003).

Fearing, R. S.

X. Zhang, Z. Yu, C. Wang, D. Zarrouk, J. W. Seo, J. C. Cheng, A. D. Buchan, K. Takei, Y. Zhao, J. W. Ager, J. Zhang, M. Hettick, M. C. Hersam, A. P. Pisano, R. S. Fearing, and A. Javey, “Photoactuators and motors based on carbon nanotubes with selective chirality distributions,” Nat. Commun. 5, 2983 (2014).
[PubMed]

Ferrari, S.

S. Ferrari, M. Bini, D. Capsoni, P. Galinetto, M. S. Grandi, U. Griebner, G. Steinmeyer, A. Agnesi, F. Pirzio, E. Ugolotti, G. Reali, and V. Massarotti, “Optimizing single-walled-carbon-nanotube-based saturable absorbers for ultrafast lasers,” Adv. Funct. Mater. 22(20), 4369–4375 (2012).
[Crossref]

Galinetto, P.

S. Ferrari, M. Bini, D. Capsoni, P. Galinetto, M. S. Grandi, U. Griebner, G. Steinmeyer, A. Agnesi, F. Pirzio, E. Ugolotti, G. Reali, and V. Massarotti, “Optimizing single-walled-carbon-nanotube-based saturable absorbers for ultrafast lasers,” Adv. Funct. Mater. 22(20), 4369–4375 (2012).
[Crossref]

García-Merino, J. A.

J. A. García-Merino, C. L. Martínez-González, C. R. T.-S. Miguel, M. Trejo-Valdez, H. Martínez-Gutiérrez, and C. Torres-Torres, “Photothermal, photoconductive and nonlinear optical effects induced by nanosecond pulse irradiation in multi-wall carbon nanotubes,” Mater. Sci. Eng. B 194, 27–33 (2015).
[Crossref]

Grandi, M. S.

S. Ferrari, M. Bini, D. Capsoni, P. Galinetto, M. S. Grandi, U. Griebner, G. Steinmeyer, A. Agnesi, F. Pirzio, E. Ugolotti, G. Reali, and V. Massarotti, “Optimizing single-walled-carbon-nanotube-based saturable absorbers for ultrafast lasers,” Adv. Funct. Mater. 22(20), 4369–4375 (2012).
[Crossref]

Griebner, U.

S. Ferrari, M. Bini, D. Capsoni, P. Galinetto, M. S. Grandi, U. Griebner, G. Steinmeyer, A. Agnesi, F. Pirzio, E. Ugolotti, G. Reali, and V. Massarotti, “Optimizing single-walled-carbon-nanotube-based saturable absorbers for ultrafast lasers,” Adv. Funct. Mater. 22(20), 4369–4375 (2012).
[Crossref]

Gupta, A.

K. Kordás, T. Mustonen, G. Tóth, J. Vähäkangas, H. Jantunen, A. Gupta, K. V. Rao, R. Vajtai, and P. M. Ajayan, “Magnetic-field induced efficient alignment of carbon nanotubes in aqueous solutions,” Chem. Mater. 19(4), 787–791 (2007).
[Crossref]

Hersam, M. C.

X. Zhang, Z. Yu, C. Wang, D. Zarrouk, J. W. Seo, J. C. Cheng, A. D. Buchan, K. Takei, Y. Zhao, J. W. Ager, J. Zhang, M. Hettick, M. C. Hersam, A. P. Pisano, R. S. Fearing, and A. Javey, “Photoactuators and motors based on carbon nanotubes with selective chirality distributions,” Nat. Commun. 5, 2983 (2014).
[PubMed]

Hettick, M.

X. Zhang, Z. Yu, C. Wang, D. Zarrouk, J. W. Seo, J. C. Cheng, A. D. Buchan, K. Takei, Y. Zhao, J. W. Ager, J. Zhang, M. Hettick, M. C. Hersam, A. P. Pisano, R. S. Fearing, and A. Javey, “Photoactuators and motors based on carbon nanotubes with selective chirality distributions,” Nat. Commun. 5, 2983 (2014).
[PubMed]

Hüttel, A.

D. Schmid, P. Stiller, Ch. Strunk, and A. Hüttel, “Magnetic damping of a carbon nanotube nano-electromechanical resonator,” New J. Phys. 14(8), 083024 (2012).
[Crossref]

Jantunen, H.

K. Kordás, T. Mustonen, G. Tóth, J. Vähäkangas, H. Jantunen, A. Gupta, K. V. Rao, R. Vajtai, and P. M. Ajayan, “Magnetic-field induced efficient alignment of carbon nanotubes in aqueous solutions,” Chem. Mater. 19(4), 787–791 (2007).
[Crossref]

Javey, A.

X. Zhang, Z. Yu, C. Wang, D. Zarrouk, J. W. Seo, J. C. Cheng, A. D. Buchan, K. Takei, Y. Zhao, J. W. Ager, J. Zhang, M. Hettick, M. C. Hersam, A. P. Pisano, R. S. Fearing, and A. Javey, “Photoactuators and motors based on carbon nanotubes with selective chirality distributions,” Nat. Commun. 5, 2983 (2014).
[PubMed]

Keshavarzian, P.

P. Keshavarzian, “Novel and general carbon nanotube FET-based circuit designs to implement all of the 39 ternary functions without mathematical operations,” Microelectronics J. 44(9), 794–801 (2013).
[Crossref]

Ketterson, J. B.

S. N. Song, X. K. Wang, R. P. Chang, and J. B. Ketterson, “Electronic properties of graphite nanotubules from galvanomagnetic effects,” Phys. Rev. Lett. 72(5), 697–700 (1994).
[Crossref] [PubMed]

Khosravi, H.

Kong, J.

J. Park, A. Reina, R. Saito, J. Kong, G. Dresselhaus, and M. Dresselhaus, “G′ band Raman spectra of single, double and triple layer graphene,” Carbon 47(5), 1303–1310 (2009).
[Crossref]

Kordás, K.

K. Kordás, T. Mustonen, G. Tóth, J. Vähäkangas, H. Jantunen, A. Gupta, K. V. Rao, R. Vajtai, and P. M. Ajayan, “Magnetic-field induced efficient alignment of carbon nanotubes in aqueous solutions,” Chem. Mater. 19(4), 787–791 (2007).
[Crossref]

Lin, M. F.

F. L. Shyu, C. P. Chang, R. B. Chen, C. W. Chiu, and M. F. Lin, “Magnetoelectronic and optical properties of carbon nanotubes,” Phys. Rev. B 67(4), 045405 (2003).
[Crossref]

Loshkareva, N.

Y. Sukhorukov, N. Loshkareva, A. Telegin, and E. Mostovshchikova, “Magnetotrasmission and magnetoreflection of unpolarized light in magnetic semiconductors,” Opt. Spectrosc. 116(6), 878–884 (2014).
[Crossref]

Marolo, T.

S. Botti, R. Ciardi, L. De Dominicis, L. S. Asilyan, R. Fantoni, and T. Marolo, “DFWM measurements of third-order susceptibility of single-wall carbon nanotubes grown without catalyst,” Chem. Phys. Lett. 378(1), 117–121 (2003).

Martínez-González, C. L.

J. A. García-Merino, C. L. Martínez-González, C. R. T.-S. Miguel, M. Trejo-Valdez, H. Martínez-Gutiérrez, and C. Torres-Torres, “Photothermal, photoconductive and nonlinear optical effects induced by nanosecond pulse irradiation in multi-wall carbon nanotubes,” Mater. Sci. Eng. B 194, 27–33 (2015).
[Crossref]

Martínez-Gutiérrez, H.

J. A. García-Merino, C. L. Martínez-González, C. R. T.-S. Miguel, M. Trejo-Valdez, H. Martínez-Gutiérrez, and C. Torres-Torres, “Photothermal, photoconductive and nonlinear optical effects induced by nanosecond pulse irradiation in multi-wall carbon nanotubes,” Mater. Sci. Eng. B 194, 27–33 (2015).
[Crossref]

Martínez-Torres, P.

C. Vales-Pinzón, J. Alvarado-Gil, R. Medina-Esquivel, and P. Martínez-Torres, “Polarized light transmission in ferrofluids loaded with carbon nanotubes in the presence of a uniform magnetic field,” J. Magn. Magn. Mater. 369, 114–121 (2014).
[Crossref]

Massarotti, V.

S. Ferrari, M. Bini, D. Capsoni, P. Galinetto, M. S. Grandi, U. Griebner, G. Steinmeyer, A. Agnesi, F. Pirzio, E. Ugolotti, G. Reali, and V. Massarotti, “Optimizing single-walled-carbon-nanotube-based saturable absorbers for ultrafast lasers,” Adv. Funct. Mater. 22(20), 4369–4375 (2012).
[Crossref]

Medina-Esquivel, R.

C. Vales-Pinzón, J. Alvarado-Gil, R. Medina-Esquivel, and P. Martínez-Torres, “Polarized light transmission in ferrofluids loaded with carbon nanotubes in the presence of a uniform magnetic field,” J. Magn. Magn. Mater. 369, 114–121 (2014).
[Crossref]

Miguel, C. R. T.-S.

J. A. García-Merino, C. L. Martínez-González, C. R. T.-S. Miguel, M. Trejo-Valdez, H. Martínez-Gutiérrez, and C. Torres-Torres, “Photothermal, photoconductive and nonlinear optical effects induced by nanosecond pulse irradiation in multi-wall carbon nanotubes,” Mater. Sci. Eng. B 194, 27–33 (2015).
[Crossref]

Mostovshchikova, E.

Y. Sukhorukov, N. Loshkareva, A. Telegin, and E. Mostovshchikova, “Magnetotrasmission and magnetoreflection of unpolarized light in magnetic semiconductors,” Opt. Spectrosc. 116(6), 878–884 (2014).
[Crossref]

Mustonen, T.

K. Kordás, T. Mustonen, G. Tóth, J. Vähäkangas, H. Jantunen, A. Gupta, K. V. Rao, R. Vajtai, and P. M. Ajayan, “Magnetic-field induced efficient alignment of carbon nanotubes in aqueous solutions,” Chem. Mater. 19(4), 787–791 (2007).
[Crossref]

Nakanishi, T.

T. Nakanishi and T. Ando, “Conductivity in carbon nanotubes with Aharonov-Bohm flux,” J. Phys. Soc. Jpn. 74(11), 3027–3034 (2005).
[Crossref]

Park, J.

J. Park, A. Reina, R. Saito, J. Kong, G. Dresselhaus, and M. Dresselhaus, “G′ band Raman spectra of single, double and triple layer graphene,” Carbon 47(5), 1303–1310 (2009).
[Crossref]

Pirzio, F.

S. Ferrari, M. Bini, D. Capsoni, P. Galinetto, M. S. Grandi, U. Griebner, G. Steinmeyer, A. Agnesi, F. Pirzio, E. Ugolotti, G. Reali, and V. Massarotti, “Optimizing single-walled-carbon-nanotube-based saturable absorbers for ultrafast lasers,” Adv. Funct. Mater. 22(20), 4369–4375 (2012).
[Crossref]

Pisano, A. P.

X. Zhang, Z. Yu, C. Wang, D. Zarrouk, J. W. Seo, J. C. Cheng, A. D. Buchan, K. Takei, Y. Zhao, J. W. Ager, J. Zhang, M. Hettick, M. C. Hersam, A. P. Pisano, R. S. Fearing, and A. Javey, “Photoactuators and motors based on carbon nanotubes with selective chirality distributions,” Nat. Commun. 5, 2983 (2014).
[PubMed]

Rao, K. V.

K. Kordás, T. Mustonen, G. Tóth, J. Vähäkangas, H. Jantunen, A. Gupta, K. V. Rao, R. Vajtai, and P. M. Ajayan, “Magnetic-field induced efficient alignment of carbon nanotubes in aqueous solutions,” Chem. Mater. 19(4), 787–791 (2007).
[Crossref]

Reali, G.

S. Ferrari, M. Bini, D. Capsoni, P. Galinetto, M. S. Grandi, U. Griebner, G. Steinmeyer, A. Agnesi, F. Pirzio, E. Ugolotti, G. Reali, and V. Massarotti, “Optimizing single-walled-carbon-nanotube-based saturable absorbers for ultrafast lasers,” Adv. Funct. Mater. 22(20), 4369–4375 (2012).
[Crossref]

Reina, A.

J. Park, A. Reina, R. Saito, J. Kong, G. Dresselhaus, and M. Dresselhaus, “G′ band Raman spectra of single, double and triple layer graphene,” Carbon 47(5), 1303–1310 (2009).
[Crossref]

Riggs, J. E.

J. E. Riggs, D. B. Walker, D. L. Carroll, and Y.-P. Sun, “Optical limiting properties of suspended and solubilized carbon nanotubes,” J. Phys. Chem. B 104(30), 7071–7076 (2000).
[Crossref]

Saito, R.

J. Park, A. Reina, R. Saito, J. Kong, G. Dresselhaus, and M. Dresselhaus, “G′ band Raman spectra of single, double and triple layer graphene,” Carbon 47(5), 1303–1310 (2009).
[Crossref]

Schmid, D.

D. Schmid, P. Stiller, Ch. Strunk, and A. Hüttel, “Magnetic damping of a carbon nanotube nano-electromechanical resonator,” New J. Phys. 14(8), 083024 (2012).
[Crossref]

Seo, J. W.

X. Zhang, Z. Yu, C. Wang, D. Zarrouk, J. W. Seo, J. C. Cheng, A. D. Buchan, K. Takei, Y. Zhao, J. W. Ager, J. Zhang, M. Hettick, M. C. Hersam, A. P. Pisano, R. S. Fearing, and A. Javey, “Photoactuators and motors based on carbon nanotubes with selective chirality distributions,” Nat. Commun. 5, 2983 (2014).
[PubMed]

Shyu, F. L.

F. L. Shyu, C. P. Chang, R. B. Chen, C. W. Chiu, and M. F. Lin, “Magnetoelectronic and optical properties of carbon nanotubes,” Phys. Rev. B 67(4), 045405 (2003).
[Crossref]

Song, S. N.

S. N. Song, X. K. Wang, R. P. Chang, and J. B. Ketterson, “Electronic properties of graphite nanotubules from galvanomagnetic effects,” Phys. Rev. Lett. 72(5), 697–700 (1994).
[Crossref] [PubMed]

Steinmeyer, G.

S. Ferrari, M. Bini, D. Capsoni, P. Galinetto, M. S. Grandi, U. Griebner, G. Steinmeyer, A. Agnesi, F. Pirzio, E. Ugolotti, G. Reali, and V. Massarotti, “Optimizing single-walled-carbon-nanotube-based saturable absorbers for ultrafast lasers,” Adv. Funct. Mater. 22(20), 4369–4375 (2012).
[Crossref]

Stiller, P.

D. Schmid, P. Stiller, Ch. Strunk, and A. Hüttel, “Magnetic damping of a carbon nanotube nano-electromechanical resonator,” New J. Phys. 14(8), 083024 (2012).
[Crossref]

Strunk, Ch.

D. Schmid, P. Stiller, Ch. Strunk, and A. Hüttel, “Magnetic damping of a carbon nanotube nano-electromechanical resonator,” New J. Phys. 14(8), 083024 (2012).
[Crossref]

Sukhorukov, Y.

Y. Sukhorukov, N. Loshkareva, A. Telegin, and E. Mostovshchikova, “Magnetotrasmission and magnetoreflection of unpolarized light in magnetic semiconductors,” Opt. Spectrosc. 116(6), 878–884 (2014).
[Crossref]

Sun, Y.-P.

J. E. Riggs, D. B. Walker, D. L. Carroll, and Y.-P. Sun, “Optical limiting properties of suspended and solubilized carbon nanotubes,” J. Phys. Chem. B 104(30), 7071–7076 (2000).
[Crossref]

Takei, K.

X. Zhang, Z. Yu, C. Wang, D. Zarrouk, J. W. Seo, J. C. Cheng, A. D. Buchan, K. Takei, Y. Zhao, J. W. Ager, J. Zhang, M. Hettick, M. C. Hersam, A. P. Pisano, R. S. Fearing, and A. Javey, “Photoactuators and motors based on carbon nanotubes with selective chirality distributions,” Nat. Commun. 5, 2983 (2014).
[PubMed]

Telegin, A.

Y. Sukhorukov, N. Loshkareva, A. Telegin, and E. Mostovshchikova, “Magnetotrasmission and magnetoreflection of unpolarized light in magnetic semiconductors,” Opt. Spectrosc. 116(6), 878–884 (2014).
[Crossref]

Torres-Torres, C.

J. A. García-Merino, C. L. Martínez-González, C. R. T.-S. Miguel, M. Trejo-Valdez, H. Martínez-Gutiérrez, and C. Torres-Torres, “Photothermal, photoconductive and nonlinear optical effects induced by nanosecond pulse irradiation in multi-wall carbon nanotubes,” Mater. Sci. Eng. B 194, 27–33 (2015).
[Crossref]

Tóth, G.

K. Kordás, T. Mustonen, G. Tóth, J. Vähäkangas, H. Jantunen, A. Gupta, K. V. Rao, R. Vajtai, and P. M. Ajayan, “Magnetic-field induced efficient alignment of carbon nanotubes in aqueous solutions,” Chem. Mater. 19(4), 787–791 (2007).
[Crossref]

Trejo-Valdez, M.

J. A. García-Merino, C. L. Martínez-González, C. R. T.-S. Miguel, M. Trejo-Valdez, H. Martínez-Gutiérrez, and C. Torres-Torres, “Photothermal, photoconductive and nonlinear optical effects induced by nanosecond pulse irradiation in multi-wall carbon nanotubes,” Mater. Sci. Eng. B 194, 27–33 (2015).
[Crossref]

Ugolotti, E.

S. Ferrari, M. Bini, D. Capsoni, P. Galinetto, M. S. Grandi, U. Griebner, G. Steinmeyer, A. Agnesi, F. Pirzio, E. Ugolotti, G. Reali, and V. Massarotti, “Optimizing single-walled-carbon-nanotube-based saturable absorbers for ultrafast lasers,” Adv. Funct. Mater. 22(20), 4369–4375 (2012).
[Crossref]

Vähäkangas, J.

K. Kordás, T. Mustonen, G. Tóth, J. Vähäkangas, H. Jantunen, A. Gupta, K. V. Rao, R. Vajtai, and P. M. Ajayan, “Magnetic-field induced efficient alignment of carbon nanotubes in aqueous solutions,” Chem. Mater. 19(4), 787–791 (2007).
[Crossref]

Vajtai, R.

K. Kordás, T. Mustonen, G. Tóth, J. Vähäkangas, H. Jantunen, A. Gupta, K. V. Rao, R. Vajtai, and P. M. Ajayan, “Magnetic-field induced efficient alignment of carbon nanotubes in aqueous solutions,” Chem. Mater. 19(4), 787–791 (2007).
[Crossref]

Vales-Pinzón, C.

C. Vales-Pinzón, J. Alvarado-Gil, R. Medina-Esquivel, and P. Martínez-Torres, “Polarized light transmission in ferrofluids loaded with carbon nanotubes in the presence of a uniform magnetic field,” J. Magn. Magn. Mater. 369, 114–121 (2014).
[Crossref]

Walker, D. B.

J. E. Riggs, D. B. Walker, D. L. Carroll, and Y.-P. Sun, “Optical limiting properties of suspended and solubilized carbon nanotubes,” J. Phys. Chem. B 104(30), 7071–7076 (2000).
[Crossref]

Wang, C.

X. Zhang, Z. Yu, C. Wang, D. Zarrouk, J. W. Seo, J. C. Cheng, A. D. Buchan, K. Takei, Y. Zhao, J. W. Ager, J. Zhang, M. Hettick, M. C. Hersam, A. P. Pisano, R. S. Fearing, and A. Javey, “Photoactuators and motors based on carbon nanotubes with selective chirality distributions,” Nat. Commun. 5, 2983 (2014).
[PubMed]

Wang, X. K.

S. N. Song, X. K. Wang, R. P. Chang, and J. B. Ketterson, “Electronic properties of graphite nanotubules from galvanomagnetic effects,” Phys. Rev. Lett. 72(5), 697–700 (1994).
[Crossref] [PubMed]

Yu, Z.

X. Zhang, Z. Yu, C. Wang, D. Zarrouk, J. W. Seo, J. C. Cheng, A. D. Buchan, K. Takei, Y. Zhao, J. W. Ager, J. Zhang, M. Hettick, M. C. Hersam, A. P. Pisano, R. S. Fearing, and A. Javey, “Photoactuators and motors based on carbon nanotubes with selective chirality distributions,” Nat. Commun. 5, 2983 (2014).
[PubMed]

Zarrouk, D.

X. Zhang, Z. Yu, C. Wang, D. Zarrouk, J. W. Seo, J. C. Cheng, A. D. Buchan, K. Takei, Y. Zhao, J. W. Ager, J. Zhang, M. Hettick, M. C. Hersam, A. P. Pisano, R. S. Fearing, and A. Javey, “Photoactuators and motors based on carbon nanotubes with selective chirality distributions,” Nat. Commun. 5, 2983 (2014).
[PubMed]

Zhang, J.

X. Zhang, Z. Yu, C. Wang, D. Zarrouk, J. W. Seo, J. C. Cheng, A. D. Buchan, K. Takei, Y. Zhao, J. W. Ager, J. Zhang, M. Hettick, M. C. Hersam, A. P. Pisano, R. S. Fearing, and A. Javey, “Photoactuators and motors based on carbon nanotubes with selective chirality distributions,” Nat. Commun. 5, 2983 (2014).
[PubMed]

Zhang, X.

X. Zhang, Z. Yu, C. Wang, D. Zarrouk, J. W. Seo, J. C. Cheng, A. D. Buchan, K. Takei, Y. Zhao, J. W. Ager, J. Zhang, M. Hettick, M. C. Hersam, A. P. Pisano, R. S. Fearing, and A. Javey, “Photoactuators and motors based on carbon nanotubes with selective chirality distributions,” Nat. Commun. 5, 2983 (2014).
[PubMed]

Zhao, Y.

X. Zhang, Z. Yu, C. Wang, D. Zarrouk, J. W. Seo, J. C. Cheng, A. D. Buchan, K. Takei, Y. Zhao, J. W. Ager, J. Zhang, M. Hettick, M. C. Hersam, A. P. Pisano, R. S. Fearing, and A. Javey, “Photoactuators and motors based on carbon nanotubes with selective chirality distributions,” Nat. Commun. 5, 2983 (2014).
[PubMed]

Adv. Funct. Mater. (1)

S. Ferrari, M. Bini, D. Capsoni, P. Galinetto, M. S. Grandi, U. Griebner, G. Steinmeyer, A. Agnesi, F. Pirzio, E. Ugolotti, G. Reali, and V. Massarotti, “Optimizing single-walled-carbon-nanotube-based saturable absorbers for ultrafast lasers,” Adv. Funct. Mater. 22(20), 4369–4375 (2012).
[Crossref]

Carbon (1)

J. Park, A. Reina, R. Saito, J. Kong, G. Dresselhaus, and M. Dresselhaus, “G′ band Raman spectra of single, double and triple layer graphene,” Carbon 47(5), 1303–1310 (2009).
[Crossref]

Chem. Mater. (1)

K. Kordás, T. Mustonen, G. Tóth, J. Vähäkangas, H. Jantunen, A. Gupta, K. V. Rao, R. Vajtai, and P. M. Ajayan, “Magnetic-field induced efficient alignment of carbon nanotubes in aqueous solutions,” Chem. Mater. 19(4), 787–791 (2007).
[Crossref]

Chem. Phys. Lett. (1)

S. Botti, R. Ciardi, L. De Dominicis, L. S. Asilyan, R. Fantoni, and T. Marolo, “DFWM measurements of third-order susceptibility of single-wall carbon nanotubes grown without catalyst,” Chem. Phys. Lett. 378(1), 117–121 (2003).

J. Magn. Magn. Mater. (1)

C. Vales-Pinzón, J. Alvarado-Gil, R. Medina-Esquivel, and P. Martínez-Torres, “Polarized light transmission in ferrofluids loaded with carbon nanotubes in the presence of a uniform magnetic field,” J. Magn. Magn. Mater. 369, 114–121 (2014).
[Crossref]

J. Phys. Chem. B (1)

J. E. Riggs, D. B. Walker, D. L. Carroll, and Y.-P. Sun, “Optical limiting properties of suspended and solubilized carbon nanotubes,” J. Phys. Chem. B 104(30), 7071–7076 (2000).
[Crossref]

J. Phys. Soc. Jpn. (1)

T. Nakanishi and T. Ando, “Conductivity in carbon nanotubes with Aharonov-Bohm flux,” J. Phys. Soc. Jpn. 74(11), 3027–3034 (2005).
[Crossref]

Mater. Sci. Eng. B (1)

J. A. García-Merino, C. L. Martínez-González, C. R. T.-S. Miguel, M. Trejo-Valdez, H. Martínez-Gutiérrez, and C. Torres-Torres, “Photothermal, photoconductive and nonlinear optical effects induced by nanosecond pulse irradiation in multi-wall carbon nanotubes,” Mater. Sci. Eng. B 194, 27–33 (2015).
[Crossref]

Microelectronics J. (1)

P. Keshavarzian, “Novel and general carbon nanotube FET-based circuit designs to implement all of the 39 ternary functions without mathematical operations,” Microelectronics J. 44(9), 794–801 (2013).
[Crossref]

Nat. Commun. (1)

X. Zhang, Z. Yu, C. Wang, D. Zarrouk, J. W. Seo, J. C. Cheng, A. D. Buchan, K. Takei, Y. Zhao, J. W. Ager, J. Zhang, M. Hettick, M. C. Hersam, A. P. Pisano, R. S. Fearing, and A. Javey, “Photoactuators and motors based on carbon nanotubes with selective chirality distributions,” Nat. Commun. 5, 2983 (2014).
[PubMed]

New J. Phys. (1)

D. Schmid, P. Stiller, Ch. Strunk, and A. Hüttel, “Magnetic damping of a carbon nanotube nano-electromechanical resonator,” New J. Phys. 14(8), 083024 (2012).
[Crossref]

Opt. Lett. (1)

Opt. Spectrosc. (1)

Y. Sukhorukov, N. Loshkareva, A. Telegin, and E. Mostovshchikova, “Magnetotrasmission and magnetoreflection of unpolarized light in magnetic semiconductors,” Opt. Spectrosc. 116(6), 878–884 (2014).
[Crossref]

Phys. Rev. B (1)

F. L. Shyu, C. P. Chang, R. B. Chen, C. W. Chiu, and M. F. Lin, “Magnetoelectronic and optical properties of carbon nanotubes,” Phys. Rev. B 67(4), 045405 (2003).
[Crossref]

Phys. Rev. Lett. (1)

S. N. Song, X. K. Wang, R. P. Chang, and J. B. Ketterson, “Electronic properties of graphite nanotubules from galvanomagnetic effects,” Phys. Rev. Lett. 72(5), 697–700 (1994).
[Crossref] [PubMed]

Other (6)

C. Poole and F. Owens, Introduction to nanotechnology (John Wiley & Sons, 2003).

R. Boyd, Nonlinear optics (Academic, 2003).

R. Tsuchikawa, D. Heligman, B. T. Blue, Z. Y. Zhang, A. Ahmadi, E. R. Mucciolo, J. Hone, and M. Ishigami, “Scattering strength of potassium on a carbon nanotube with known chirality,” http://arxiv.org/abs/1511.06684v1 .
[Crossref]

M. Mansuripur, Classical optics and its applications (Cambridge University, 2009).

W. Hayt, Engineering electromagnetics (McGraw-Hill Book, 2007).

G. Strangle, Modeling of materials of processing: an approachable and practical guide (Springer, 1998).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 (a) Representative TEM image for the MWCNTs, (b) Micro-Raman measurements in the MWCNTs, (c) Bode plots corresponding to impedance spectra of the MWCNTs influenced by magneto-conductive and photo-conductive effects.
Fig. 2
Fig. 2 (a) Transmittance (absorbance (b)) as a function of the magnetic field induced in the sample, (c) Magneto-quantum conductivity of the sample for z and y direction of propagation of the magnetic field, in respect to the 2D surface of the thin film.
Fig. 3
Fig. 3 a) Transmittance of the probe beam vs irradiance of the pump beam interaction with the MWCNTs in an OKG. b) Diagram for describing the propagation of the magnetic fields and the optical beams interacting in an OKG. c) Nonlinear optical response exhibited by MWCNTs studied by an OKE under the influence of an external magnetic field.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

2 E ± = n ± 2 ω 2 c 2 E ± .
n ± 2 = n 0 2 +4π( A | E ± | 2 +(A+B) | E | 2 )
T=exp(z α 0 )
T=exp( 4πz λ ε( η 0 2 μ 1 ) )
T+R+A=1
σ(B)= e 2 2 ( Λ K + + Λ K )
1 Λ K± = 2πW L ( 2πW L k 0 ± )(1δ)[ ( A B ϕ 0 + φ e ) 2 +Δ φ 2 ]
Δφ= δ 1δ L k 0 + 2π ( 1+ [ 1+4 φ e 2 ( 2π L k 0 ) 2 ] 1/2 ) 1/2
E= 2πγ L [ 1+ ( 2π φ e k + L ) 2 ] ( A B ϕ 0 ) 2 + φ e + ( k + L 2π ) 2

Metrics