Abstract

We propose three-dimensional (3D) head-mounted display (HMD) providing multi-focal and wearable functions by using polarization-dependent optical path switching in Savart plate. The multi-focal function is implemented as micro display with high pixel density of 1666 pixels per inches is optically duplicated in longitudinal direction according to the polarization state. The combination of micro display, fast switching polarization rotator and Savart plate retains small form factor suitable for wearable function. The optical aberrations of duplicated panels are investigated by ray tracing according to both wavelength and polarization state. Astigmatism and lateral chromatic aberration of extraordinary wave are compensated by modification of the Savart plate and sub-pixel shifting method, respectively. To verify the feasibility of the proposed system, a prototype of the HMD module for monocular eye is implemented. The module has the compact size of 40 mm by 90 mm by 40 mm and the weight of 131 g with wearable function. The micro display and polarization rotator are synchronized in real-time as 30 Hz and two focal planes are formed at 640 and 900 mm away from eye box, respectively. In experiments, the prototype also provides augmented reality function by combining the optically duplicated panels with a beam splitter. The multi-focal function of the optically duplicated panels without astigmatism and color dispersion compensation is verified. When light field optimization for two additive layers is performed, perspective images are observed, and the integration of real world scene and high quality 3D images is confirmed.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Compact see-through 3D head-mounted display based on wavefront modulation with holographic grating filter

Qiankun Gao, Juan Liu, Xinhui Duan, Tao Zhao, Xin Li, and Peilin Liu
Opt. Express 25(7) 8412-8424 (2017)

3D holographic head mounted display using holographic optical elements with astigmatism aberration compensation

Han-Ju Yeom, Hee-Jae Kim, Seong-Bok Kim, HuiJun Zhang, BoNi Li, Yeong-Min Ji, Sang-Hoo Kim, and Jae-Hyeung Park
Opt. Express 23(25) 32025-32034 (2015)

Multifocal planes head-mounted displays

Jannick P. Rolland, Myron W. Krueger, and Alexei Goon
Appl. Opt. 39(19) 3209-3215 (2000)

References

  • View by:
  • |
  • |
  • |

  1. J. Geng, “Three-dimensional display technologies,” Adv. Opt. Photonics 5(4), 456–535 (2013).
    [Crossref] [PubMed]
  2. B. Lee, “Three-dimensional displays, past and present,” Phys. Today 66(4), 36–41 (2013).
    [Crossref]
  3. Y. Kim, J. Kim, K. Hong, H. K. Yang, J.-H. Jung, H. Choi, S.-W. Min, J.-M. Seo, J.-M. Hwang, and B. Lee, “Accommodative response of integral imaging in near distance,” J. Disp. Technol. 8(2), 70–78 (2012).
    [Crossref]
  4. J. Nakamura, K. Tanaka, and Y. Takaki, “Increase in depth of field of eyes using reduced-view super multi-view displays,” Appl. Phys. Express 6(2), 022501 (2013).
    [Crossref]
  5. C. C. Gordon, T. Churchill, C. E. Clauser, B. Bradtmiller, J. T. McConville, I. Tebbetts, and R. A. Walker, “Anthropometric survey of US army personnel: methods and summary statistics,” United States Army Natick Research, Development, and Engineering Center (1988).
  6. Y. Takaki and N. Nago, “Multi-projection of lenticular displays to construct a 256-view super multi-view display,” Opt. Express 18(9), 8824–8835 (2010).
    [Crossref] [PubMed]
  7. Y. Takaki, Y. Urano, S. Kashiwada, H. Ando, and K. Nakamura, “Super multi-view windshield display for long-distance image information presentation,” Opt. Express 19(2), 704–716 (2011).
    [Crossref] [PubMed]
  8. D. Teng, L. Liu, and B. Wang, “Super multi-view three-dimensional display through spatial-spectrum time-multiplexing of planar aligned OLED microdisplays,” Opt. Express 22(25), 31448–31457 (2014).
    [Crossref] [PubMed]
  9. L. Liu, Z. Pang, and D. Teng, “Super multi-view three-dimensional display technique for portable devices,” Opt. Express 24(5), 4421–4430 (2016).
    [Crossref]
  10. K. Akeley, S. J. Watt, A. R. Girshick, and M. S. Banks, “A stereo display prototype with multiple focal distances,” ACM Trans. Graph. 23(3), 804–813 (2004).
    [Crossref]
  11. G. Wetzstein, D. Lanman, W. Heidrich, and R. Raskar, “Layered 3D: tomographic image synthesis for attenuation-based light field and high dynamic range displays,” ACM Trans. Graph. 30(4), 95 (2011).
    [Crossref]
  12. D. Lanman, G. Wetzstein, M. Hirsch, W. Heidrich, and R. Raskar, “Polarization fields: dynamic light field display using multi-layer LCDs,” ACM Trans. Graph. 30(6), 186 (2011).
    [Crossref]
  13. F. Huang, K. Chen, and G. Wetzstein, “The light field stereoscope: immersive computer graphics via factored near-eye light field displays with focus cues,” ACM Trans. Graph. 33, 60 (2015).
  14. S. Suyama, Y. Ishigure, H. Takada, K. Nakazawa, J. Hosohata, Y. Takao, and T. Fujikado, “Evaluation of visual fatigue in viewing a depth-fused 3-D display in comparison with a 2-D display,” NTT Tech. Rev. 3, 82–89 (2005).
  15. X. Hu and H. Hua, “High-resolution optical see-through multi-focal-plane head-mounted display using freeform optics,” Opt. Express 22(11), 13896–13903 (2014).
    [Crossref] [PubMed]
  16. S. Moon, S.-G. Park, C.-K. Lee, J. Cho, S. Lee, and B. Lee, “Computational multi-projection display,” Opt. Express 24(8), 9025–9037 (2016).
    [Crossref] [PubMed]
  17. S. Lee, C. Jang, S. Moon, J. Cho, and B. Lee, “Additive light field displays: realization of augmented reality with holographic optical elements,” ACM Trans. Graph. 35(4), 60 (2016).
    [Crossref]
  18. Y. Kim, H. Choi, J. Kim, S. W. Cho, Y. Kim, G. Park, and B. Lee, “Depth-enhanced integral imaging display system with electrically variable image planes using polymer-dispersed liquid-crystal layers,” Appl. Opt. 46(18), 3766–3773 (2007).
    [Crossref] [PubMed]
  19. S. Liu, Y. Li, P. Zhou, X. Li, N. Rong, S. Huang, W. Lu, and Y. Su, “A multi-plane optical see-through head mounted display design for augmented reality applications,” J. Soc. Inf. Disp. 24(4), 246–251 (2016).
    [Crossref]
  20. X. Hu and H. Hua, “Design and assessment of a depth-fused multi-focal-plane display prototype,” J. Disp. Technol. 10(4), 308–316 (2014).
    [Crossref]
  21. R. Konrad, E. A. Cooper, and G. Wetzstein, “Novel optical configurations for virtual reality: evaluating user preference and performance with focus-tunable and monovision near-eye displays,” in Proc. of the ACM Conference on Human Factors in Computing Systems (2016), pp. 1211–1220.
    [Crossref]
  22. S. Yoon, H. Baek, S. W. Min, S.-G. Park, M. K. Park, S. H. Yoo, H. R. Kim, and B. Lee, “Implementation of active-type Lamina 3D display system,” Opt. Express 23(12), 15848–15856 (2015).
    [Crossref] [PubMed]
  23. J.-H. Park, S. Jung, H. Choi, and B. Lee, “Integral imaging with multiple image planes using a uniaxial crystal plate,” Opt. Express 11(16), 1862–1875 (2003).
    [Crossref] [PubMed]
  24. G. D. Love, D. M. Hoffman, P. J. W. Hands, J. Gao, A. K. Kirby, and M. S. Banks, “High-speed switchable lens enables the development of a volumetric stereoscopic display,” Opt. Express 17(18), 15716–15725 (2009).
    [Crossref] [PubMed]
  25. C. K. Park, S. S. Lee, and Y. S. Hwang, “Depth-extended integral imaging system based on a birefringence lens array providing polarization switchable focal lengths,” Opt. Express 17(21), 19047–19054 (2009).
    [Crossref] [PubMed]
  26. S.-G. Park, S. Yoon, J. Yeom, H. Baek, S.-W. Min, and B. Lee, “Lamina 3D display: projection-type depth-fused display using polarization-encoded depth information,” Opt. Express 22(21), 26162–26172 (2014).
    [Crossref] [PubMed]
  27. H.-S. Chen, Y.-J. Wang, P.-J. Chen, and Y.-H. Lin, “Electrically adjustable location of a projected image in augmented reality via a liquid-crystal lens,” Opt. Express 23(22), 28154–28162 (2015).
    [Crossref] [PubMed]
  28. C.-K. Lee, S.-G. Park, S. Moon, and B. Lee, “Viewing zone duplication of multi-projection 3D display system using uniaxial crystal,” Opt. Express 24(8), 8458–8470 (2016).
    [Crossref] [PubMed]
  29. Y.-H. Lee, F. Peng, and S.-T. Wu, “Fast-response switchable lens for 3D and wearable displays,” Opt. Express 24(2), 1668–1675 (2016).
    [Crossref] [PubMed]
  30. M. Avendaño-Alejo and M. Rosete-Aguilar, “Optical path difference in a plane-parallel uniaxial plate,” J. Opt. Soc. Am. A 23(4), 926–932 (2006).
    [Crossref] [PubMed]
  31. T. Mu, C. Zhang, Q. Li, L. Zhang, Y. Wei, and Q. Chen, “Achromatic Savart polariscope: choice of materials,” Opt. Express 22(5), 5043–5051 (2014).
    [Crossref] [PubMed]
  32. J. P. Lesso, A. J. Duncan, W. Sibbett, and M. J. Padgett, “Aberrations introduced by a lens made from a birefringent material,” Appl. Opt. 39(4), 592–598 (2000).
    [Crossref] [PubMed]
  33. D. Schmid, T.-Y. Huang, S. Hazrat, R. Dirks, O. Hosten, S. Quint, D. Thian, and P. G. Kwiat, “Adjustable and robust methods for polarization-dependent focusing,” Opt. Express 21(13), 15538–15552 (2013).
    [Crossref] [PubMed]
  34. W. Jun-Fang, Z. Chun-Min, Z. Ying-Tang, L. Han-Chen, and Z. Xue-Jun, “Refraction of extraordinary rays and ordinary rays in the Savart polariscope,” Chin. Phys. B 17(7), 2504–2508 (2008).
    [Crossref]
  35. X. Chen, Y. Luo, J. Zhang, K. Jiang, J. B. Pendry, and S. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat. Commun. 2, 176 (2011).
    [Crossref] [PubMed]
  36. S.-G. Park, J.-Y. Hong, C.-K. Lee, and B. Lee, “Real-mode depth-fused display with viewer tracking,” Opt. Express 23(20), 26710–26722 (2015).
    [Crossref] [PubMed]
  37. D. Lanman and D. Luebke, “Near-eye light field displays,” ACM Trans. Graph. 32(6), 1–10 (2013).
    [Crossref]
  38. Y. M. Kim, J. Yim, Y.-K. Ahn, and S.-W. Min, “Compensation of elemental image using multiple view vectors for off-axis integral floating system,” Appl. Opt. 53(10), 1975–1982 (2014).
    [Crossref] [PubMed]

2016 (6)

2015 (4)

2014 (6)

2013 (5)

D. Schmid, T.-Y. Huang, S. Hazrat, R. Dirks, O. Hosten, S. Quint, D. Thian, and P. G. Kwiat, “Adjustable and robust methods for polarization-dependent focusing,” Opt. Express 21(13), 15538–15552 (2013).
[Crossref] [PubMed]

D. Lanman and D. Luebke, “Near-eye light field displays,” ACM Trans. Graph. 32(6), 1–10 (2013).
[Crossref]

J. Geng, “Three-dimensional display technologies,” Adv. Opt. Photonics 5(4), 456–535 (2013).
[Crossref] [PubMed]

B. Lee, “Three-dimensional displays, past and present,” Phys. Today 66(4), 36–41 (2013).
[Crossref]

J. Nakamura, K. Tanaka, and Y. Takaki, “Increase in depth of field of eyes using reduced-view super multi-view displays,” Appl. Phys. Express 6(2), 022501 (2013).
[Crossref]

2012 (1)

Y. Kim, J. Kim, K. Hong, H. K. Yang, J.-H. Jung, H. Choi, S.-W. Min, J.-M. Seo, J.-M. Hwang, and B. Lee, “Accommodative response of integral imaging in near distance,” J. Disp. Technol. 8(2), 70–78 (2012).
[Crossref]

2011 (4)

Y. Takaki, Y. Urano, S. Kashiwada, H. Ando, and K. Nakamura, “Super multi-view windshield display for long-distance image information presentation,” Opt. Express 19(2), 704–716 (2011).
[Crossref] [PubMed]

G. Wetzstein, D. Lanman, W. Heidrich, and R. Raskar, “Layered 3D: tomographic image synthesis for attenuation-based light field and high dynamic range displays,” ACM Trans. Graph. 30(4), 95 (2011).
[Crossref]

D. Lanman, G. Wetzstein, M. Hirsch, W. Heidrich, and R. Raskar, “Polarization fields: dynamic light field display using multi-layer LCDs,” ACM Trans. Graph. 30(6), 186 (2011).
[Crossref]

X. Chen, Y. Luo, J. Zhang, K. Jiang, J. B. Pendry, and S. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat. Commun. 2, 176 (2011).
[Crossref] [PubMed]

2010 (1)

2009 (2)

2008 (1)

W. Jun-Fang, Z. Chun-Min, Z. Ying-Tang, L. Han-Chen, and Z. Xue-Jun, “Refraction of extraordinary rays and ordinary rays in the Savart polariscope,” Chin. Phys. B 17(7), 2504–2508 (2008).
[Crossref]

2007 (1)

2006 (1)

2005 (1)

S. Suyama, Y. Ishigure, H. Takada, K. Nakazawa, J. Hosohata, Y. Takao, and T. Fujikado, “Evaluation of visual fatigue in viewing a depth-fused 3-D display in comparison with a 2-D display,” NTT Tech. Rev. 3, 82–89 (2005).

2004 (1)

K. Akeley, S. J. Watt, A. R. Girshick, and M. S. Banks, “A stereo display prototype with multiple focal distances,” ACM Trans. Graph. 23(3), 804–813 (2004).
[Crossref]

2003 (1)

2000 (1)

Ahn, Y.-K.

Akeley, K.

K. Akeley, S. J. Watt, A. R. Girshick, and M. S. Banks, “A stereo display prototype with multiple focal distances,” ACM Trans. Graph. 23(3), 804–813 (2004).
[Crossref]

Ando, H.

Avendaño-Alejo, M.

Baek, H.

Banks, M. S.

Chen, H.-S.

Chen, K.

F. Huang, K. Chen, and G. Wetzstein, “The light field stereoscope: immersive computer graphics via factored near-eye light field displays with focus cues,” ACM Trans. Graph. 33, 60 (2015).

Chen, P.-J.

Chen, Q.

Chen, X.

X. Chen, Y. Luo, J. Zhang, K. Jiang, J. B. Pendry, and S. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat. Commun. 2, 176 (2011).
[Crossref] [PubMed]

Cho, J.

S. Moon, S.-G. Park, C.-K. Lee, J. Cho, S. Lee, and B. Lee, “Computational multi-projection display,” Opt. Express 24(8), 9025–9037 (2016).
[Crossref] [PubMed]

S. Lee, C. Jang, S. Moon, J. Cho, and B. Lee, “Additive light field displays: realization of augmented reality with holographic optical elements,” ACM Trans. Graph. 35(4), 60 (2016).
[Crossref]

Cho, S. W.

Choi, H.

Chun-Min, Z.

W. Jun-Fang, Z. Chun-Min, Z. Ying-Tang, L. Han-Chen, and Z. Xue-Jun, “Refraction of extraordinary rays and ordinary rays in the Savart polariscope,” Chin. Phys. B 17(7), 2504–2508 (2008).
[Crossref]

Cooper, E. A.

R. Konrad, E. A. Cooper, and G. Wetzstein, “Novel optical configurations for virtual reality: evaluating user preference and performance with focus-tunable and monovision near-eye displays,” in Proc. of the ACM Conference on Human Factors in Computing Systems (2016), pp. 1211–1220.
[Crossref]

Dirks, R.

Duncan, A. J.

Fujikado, T.

S. Suyama, Y. Ishigure, H. Takada, K. Nakazawa, J. Hosohata, Y. Takao, and T. Fujikado, “Evaluation of visual fatigue in viewing a depth-fused 3-D display in comparison with a 2-D display,” NTT Tech. Rev. 3, 82–89 (2005).

Gao, J.

Geng, J.

J. Geng, “Three-dimensional display technologies,” Adv. Opt. Photonics 5(4), 456–535 (2013).
[Crossref] [PubMed]

Girshick, A. R.

K. Akeley, S. J. Watt, A. R. Girshick, and M. S. Banks, “A stereo display prototype with multiple focal distances,” ACM Trans. Graph. 23(3), 804–813 (2004).
[Crossref]

Han-Chen, L.

W. Jun-Fang, Z. Chun-Min, Z. Ying-Tang, L. Han-Chen, and Z. Xue-Jun, “Refraction of extraordinary rays and ordinary rays in the Savart polariscope,” Chin. Phys. B 17(7), 2504–2508 (2008).
[Crossref]

Hands, P. J. W.

Hazrat, S.

Heidrich, W.

G. Wetzstein, D. Lanman, W. Heidrich, and R. Raskar, “Layered 3D: tomographic image synthesis for attenuation-based light field and high dynamic range displays,” ACM Trans. Graph. 30(4), 95 (2011).
[Crossref]

D. Lanman, G. Wetzstein, M. Hirsch, W. Heidrich, and R. Raskar, “Polarization fields: dynamic light field display using multi-layer LCDs,” ACM Trans. Graph. 30(6), 186 (2011).
[Crossref]

Hirsch, M.

D. Lanman, G. Wetzstein, M. Hirsch, W. Heidrich, and R. Raskar, “Polarization fields: dynamic light field display using multi-layer LCDs,” ACM Trans. Graph. 30(6), 186 (2011).
[Crossref]

Hoffman, D. M.

Hong, J.-Y.

Hong, K.

Y. Kim, J. Kim, K. Hong, H. K. Yang, J.-H. Jung, H. Choi, S.-W. Min, J.-M. Seo, J.-M. Hwang, and B. Lee, “Accommodative response of integral imaging in near distance,” J. Disp. Technol. 8(2), 70–78 (2012).
[Crossref]

Hosohata, J.

S. Suyama, Y. Ishigure, H. Takada, K. Nakazawa, J. Hosohata, Y. Takao, and T. Fujikado, “Evaluation of visual fatigue in viewing a depth-fused 3-D display in comparison with a 2-D display,” NTT Tech. Rev. 3, 82–89 (2005).

Hosten, O.

Hu, X.

X. Hu and H. Hua, “Design and assessment of a depth-fused multi-focal-plane display prototype,” J. Disp. Technol. 10(4), 308–316 (2014).
[Crossref]

X. Hu and H. Hua, “High-resolution optical see-through multi-focal-plane head-mounted display using freeform optics,” Opt. Express 22(11), 13896–13903 (2014).
[Crossref] [PubMed]

Hua, H.

X. Hu and H. Hua, “High-resolution optical see-through multi-focal-plane head-mounted display using freeform optics,” Opt. Express 22(11), 13896–13903 (2014).
[Crossref] [PubMed]

X. Hu and H. Hua, “Design and assessment of a depth-fused multi-focal-plane display prototype,” J. Disp. Technol. 10(4), 308–316 (2014).
[Crossref]

Huang, F.

F. Huang, K. Chen, and G. Wetzstein, “The light field stereoscope: immersive computer graphics via factored near-eye light field displays with focus cues,” ACM Trans. Graph. 33, 60 (2015).

Huang, S.

S. Liu, Y. Li, P. Zhou, X. Li, N. Rong, S. Huang, W. Lu, and Y. Su, “A multi-plane optical see-through head mounted display design for augmented reality applications,” J. Soc. Inf. Disp. 24(4), 246–251 (2016).
[Crossref]

Huang, T.-Y.

Hwang, J.-M.

Y. Kim, J. Kim, K. Hong, H. K. Yang, J.-H. Jung, H. Choi, S.-W. Min, J.-M. Seo, J.-M. Hwang, and B. Lee, “Accommodative response of integral imaging in near distance,” J. Disp. Technol. 8(2), 70–78 (2012).
[Crossref]

Hwang, Y. S.

Ishigure, Y.

S. Suyama, Y. Ishigure, H. Takada, K. Nakazawa, J. Hosohata, Y. Takao, and T. Fujikado, “Evaluation of visual fatigue in viewing a depth-fused 3-D display in comparison with a 2-D display,” NTT Tech. Rev. 3, 82–89 (2005).

Jang, C.

S. Lee, C. Jang, S. Moon, J. Cho, and B. Lee, “Additive light field displays: realization of augmented reality with holographic optical elements,” ACM Trans. Graph. 35(4), 60 (2016).
[Crossref]

Jiang, K.

X. Chen, Y. Luo, J. Zhang, K. Jiang, J. B. Pendry, and S. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat. Commun. 2, 176 (2011).
[Crossref] [PubMed]

Jun-Fang, W.

W. Jun-Fang, Z. Chun-Min, Z. Ying-Tang, L. Han-Chen, and Z. Xue-Jun, “Refraction of extraordinary rays and ordinary rays in the Savart polariscope,” Chin. Phys. B 17(7), 2504–2508 (2008).
[Crossref]

Jung, J.-H.

Y. Kim, J. Kim, K. Hong, H. K. Yang, J.-H. Jung, H. Choi, S.-W. Min, J.-M. Seo, J.-M. Hwang, and B. Lee, “Accommodative response of integral imaging in near distance,” J. Disp. Technol. 8(2), 70–78 (2012).
[Crossref]

Jung, S.

Kashiwada, S.

Kim, H. R.

Kim, J.

Y. Kim, J. Kim, K. Hong, H. K. Yang, J.-H. Jung, H. Choi, S.-W. Min, J.-M. Seo, J.-M. Hwang, and B. Lee, “Accommodative response of integral imaging in near distance,” J. Disp. Technol. 8(2), 70–78 (2012).
[Crossref]

Y. Kim, H. Choi, J. Kim, S. W. Cho, Y. Kim, G. Park, and B. Lee, “Depth-enhanced integral imaging display system with electrically variable image planes using polymer-dispersed liquid-crystal layers,” Appl. Opt. 46(18), 3766–3773 (2007).
[Crossref] [PubMed]

Kim, Y.

Kim, Y. M.

Kirby, A. K.

Konrad, R.

R. Konrad, E. A. Cooper, and G. Wetzstein, “Novel optical configurations for virtual reality: evaluating user preference and performance with focus-tunable and monovision near-eye displays,” in Proc. of the ACM Conference on Human Factors in Computing Systems (2016), pp. 1211–1220.
[Crossref]

Kwiat, P. G.

Lanman, D.

D. Lanman and D. Luebke, “Near-eye light field displays,” ACM Trans. Graph. 32(6), 1–10 (2013).
[Crossref]

D. Lanman, G. Wetzstein, M. Hirsch, W. Heidrich, and R. Raskar, “Polarization fields: dynamic light field display using multi-layer LCDs,” ACM Trans. Graph. 30(6), 186 (2011).
[Crossref]

G. Wetzstein, D. Lanman, W. Heidrich, and R. Raskar, “Layered 3D: tomographic image synthesis for attenuation-based light field and high dynamic range displays,” ACM Trans. Graph. 30(4), 95 (2011).
[Crossref]

Lee, B.

S. Lee, C. Jang, S. Moon, J. Cho, and B. Lee, “Additive light field displays: realization of augmented reality with holographic optical elements,” ACM Trans. Graph. 35(4), 60 (2016).
[Crossref]

S. Moon, S.-G. Park, C.-K. Lee, J. Cho, S. Lee, and B. Lee, “Computational multi-projection display,” Opt. Express 24(8), 9025–9037 (2016).
[Crossref] [PubMed]

C.-K. Lee, S.-G. Park, S. Moon, and B. Lee, “Viewing zone duplication of multi-projection 3D display system using uniaxial crystal,” Opt. Express 24(8), 8458–8470 (2016).
[Crossref] [PubMed]

S. Yoon, H. Baek, S. W. Min, S.-G. Park, M. K. Park, S. H. Yoo, H. R. Kim, and B. Lee, “Implementation of active-type Lamina 3D display system,” Opt. Express 23(12), 15848–15856 (2015).
[Crossref] [PubMed]

S.-G. Park, J.-Y. Hong, C.-K. Lee, and B. Lee, “Real-mode depth-fused display with viewer tracking,” Opt. Express 23(20), 26710–26722 (2015).
[Crossref] [PubMed]

S.-G. Park, S. Yoon, J. Yeom, H. Baek, S.-W. Min, and B. Lee, “Lamina 3D display: projection-type depth-fused display using polarization-encoded depth information,” Opt. Express 22(21), 26162–26172 (2014).
[Crossref] [PubMed]

B. Lee, “Three-dimensional displays, past and present,” Phys. Today 66(4), 36–41 (2013).
[Crossref]

Y. Kim, J. Kim, K. Hong, H. K. Yang, J.-H. Jung, H. Choi, S.-W. Min, J.-M. Seo, J.-M. Hwang, and B. Lee, “Accommodative response of integral imaging in near distance,” J. Disp. Technol. 8(2), 70–78 (2012).
[Crossref]

Y. Kim, H. Choi, J. Kim, S. W. Cho, Y. Kim, G. Park, and B. Lee, “Depth-enhanced integral imaging display system with electrically variable image planes using polymer-dispersed liquid-crystal layers,” Appl. Opt. 46(18), 3766–3773 (2007).
[Crossref] [PubMed]

J.-H. Park, S. Jung, H. Choi, and B. Lee, “Integral imaging with multiple image planes using a uniaxial crystal plate,” Opt. Express 11(16), 1862–1875 (2003).
[Crossref] [PubMed]

Lee, C.-K.

Lee, S.

S. Lee, C. Jang, S. Moon, J. Cho, and B. Lee, “Additive light field displays: realization of augmented reality with holographic optical elements,” ACM Trans. Graph. 35(4), 60 (2016).
[Crossref]

S. Moon, S.-G. Park, C.-K. Lee, J. Cho, S. Lee, and B. Lee, “Computational multi-projection display,” Opt. Express 24(8), 9025–9037 (2016).
[Crossref] [PubMed]

Lee, S. S.

Lee, Y.-H.

Lesso, J. P.

Li, Q.

Li, X.

S. Liu, Y. Li, P. Zhou, X. Li, N. Rong, S. Huang, W. Lu, and Y. Su, “A multi-plane optical see-through head mounted display design for augmented reality applications,” J. Soc. Inf. Disp. 24(4), 246–251 (2016).
[Crossref]

Li, Y.

S. Liu, Y. Li, P. Zhou, X. Li, N. Rong, S. Huang, W. Lu, and Y. Su, “A multi-plane optical see-through head mounted display design for augmented reality applications,” J. Soc. Inf. Disp. 24(4), 246–251 (2016).
[Crossref]

Lin, Y.-H.

Liu, L.

Liu, S.

S. Liu, Y. Li, P. Zhou, X. Li, N. Rong, S. Huang, W. Lu, and Y. Su, “A multi-plane optical see-through head mounted display design for augmented reality applications,” J. Soc. Inf. Disp. 24(4), 246–251 (2016).
[Crossref]

Love, G. D.

Lu, W.

S. Liu, Y. Li, P. Zhou, X. Li, N. Rong, S. Huang, W. Lu, and Y. Su, “A multi-plane optical see-through head mounted display design for augmented reality applications,” J. Soc. Inf. Disp. 24(4), 246–251 (2016).
[Crossref]

Luebke, D.

D. Lanman and D. Luebke, “Near-eye light field displays,” ACM Trans. Graph. 32(6), 1–10 (2013).
[Crossref]

Luo, Y.

X. Chen, Y. Luo, J. Zhang, K. Jiang, J. B. Pendry, and S. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat. Commun. 2, 176 (2011).
[Crossref] [PubMed]

Min, S. W.

Min, S.-W.

Moon, S.

Mu, T.

Nago, N.

Nakamura, J.

J. Nakamura, K. Tanaka, and Y. Takaki, “Increase in depth of field of eyes using reduced-view super multi-view displays,” Appl. Phys. Express 6(2), 022501 (2013).
[Crossref]

Nakamura, K.

Nakazawa, K.

S. Suyama, Y. Ishigure, H. Takada, K. Nakazawa, J. Hosohata, Y. Takao, and T. Fujikado, “Evaluation of visual fatigue in viewing a depth-fused 3-D display in comparison with a 2-D display,” NTT Tech. Rev. 3, 82–89 (2005).

Padgett, M. J.

Pang, Z.

Park, C. K.

Park, G.

Park, J.-H.

Park, M. K.

Park, S.-G.

Pendry, J. B.

X. Chen, Y. Luo, J. Zhang, K. Jiang, J. B. Pendry, and S. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat. Commun. 2, 176 (2011).
[Crossref] [PubMed]

Peng, F.

Quint, S.

Raskar, R.

D. Lanman, G. Wetzstein, M. Hirsch, W. Heidrich, and R. Raskar, “Polarization fields: dynamic light field display using multi-layer LCDs,” ACM Trans. Graph. 30(6), 186 (2011).
[Crossref]

G. Wetzstein, D. Lanman, W. Heidrich, and R. Raskar, “Layered 3D: tomographic image synthesis for attenuation-based light field and high dynamic range displays,” ACM Trans. Graph. 30(4), 95 (2011).
[Crossref]

Rong, N.

S. Liu, Y. Li, P. Zhou, X. Li, N. Rong, S. Huang, W. Lu, and Y. Su, “A multi-plane optical see-through head mounted display design for augmented reality applications,” J. Soc. Inf. Disp. 24(4), 246–251 (2016).
[Crossref]

Rosete-Aguilar, M.

Schmid, D.

Seo, J.-M.

Y. Kim, J. Kim, K. Hong, H. K. Yang, J.-H. Jung, H. Choi, S.-W. Min, J.-M. Seo, J.-M. Hwang, and B. Lee, “Accommodative response of integral imaging in near distance,” J. Disp. Technol. 8(2), 70–78 (2012).
[Crossref]

Sibbett, W.

Su, Y.

S. Liu, Y. Li, P. Zhou, X. Li, N. Rong, S. Huang, W. Lu, and Y. Su, “A multi-plane optical see-through head mounted display design for augmented reality applications,” J. Soc. Inf. Disp. 24(4), 246–251 (2016).
[Crossref]

Suyama, S.

S. Suyama, Y. Ishigure, H. Takada, K. Nakazawa, J. Hosohata, Y. Takao, and T. Fujikado, “Evaluation of visual fatigue in viewing a depth-fused 3-D display in comparison with a 2-D display,” NTT Tech. Rev. 3, 82–89 (2005).

Takada, H.

S. Suyama, Y. Ishigure, H. Takada, K. Nakazawa, J. Hosohata, Y. Takao, and T. Fujikado, “Evaluation of visual fatigue in viewing a depth-fused 3-D display in comparison with a 2-D display,” NTT Tech. Rev. 3, 82–89 (2005).

Takaki, Y.

Takao, Y.

S. Suyama, Y. Ishigure, H. Takada, K. Nakazawa, J. Hosohata, Y. Takao, and T. Fujikado, “Evaluation of visual fatigue in viewing a depth-fused 3-D display in comparison with a 2-D display,” NTT Tech. Rev. 3, 82–89 (2005).

Tanaka, K.

J. Nakamura, K. Tanaka, and Y. Takaki, “Increase in depth of field of eyes using reduced-view super multi-view displays,” Appl. Phys. Express 6(2), 022501 (2013).
[Crossref]

Teng, D.

Thian, D.

Urano, Y.

Wang, B.

Wang, Y.-J.

Watt, S. J.

K. Akeley, S. J. Watt, A. R. Girshick, and M. S. Banks, “A stereo display prototype with multiple focal distances,” ACM Trans. Graph. 23(3), 804–813 (2004).
[Crossref]

Wei, Y.

Wetzstein, G.

F. Huang, K. Chen, and G. Wetzstein, “The light field stereoscope: immersive computer graphics via factored near-eye light field displays with focus cues,” ACM Trans. Graph. 33, 60 (2015).

D. Lanman, G. Wetzstein, M. Hirsch, W. Heidrich, and R. Raskar, “Polarization fields: dynamic light field display using multi-layer LCDs,” ACM Trans. Graph. 30(6), 186 (2011).
[Crossref]

G. Wetzstein, D. Lanman, W. Heidrich, and R. Raskar, “Layered 3D: tomographic image synthesis for attenuation-based light field and high dynamic range displays,” ACM Trans. Graph. 30(4), 95 (2011).
[Crossref]

R. Konrad, E. A. Cooper, and G. Wetzstein, “Novel optical configurations for virtual reality: evaluating user preference and performance with focus-tunable and monovision near-eye displays,” in Proc. of the ACM Conference on Human Factors in Computing Systems (2016), pp. 1211–1220.
[Crossref]

Wu, S.-T.

Xue-Jun, Z.

W. Jun-Fang, Z. Chun-Min, Z. Ying-Tang, L. Han-Chen, and Z. Xue-Jun, “Refraction of extraordinary rays and ordinary rays in the Savart polariscope,” Chin. Phys. B 17(7), 2504–2508 (2008).
[Crossref]

Yang, H. K.

Y. Kim, J. Kim, K. Hong, H. K. Yang, J.-H. Jung, H. Choi, S.-W. Min, J.-M. Seo, J.-M. Hwang, and B. Lee, “Accommodative response of integral imaging in near distance,” J. Disp. Technol. 8(2), 70–78 (2012).
[Crossref]

Yeom, J.

Yim, J.

Ying-Tang, Z.

W. Jun-Fang, Z. Chun-Min, Z. Ying-Tang, L. Han-Chen, and Z. Xue-Jun, “Refraction of extraordinary rays and ordinary rays in the Savart polariscope,” Chin. Phys. B 17(7), 2504–2508 (2008).
[Crossref]

Yoo, S. H.

Yoon, S.

Zhang, C.

Zhang, J.

X. Chen, Y. Luo, J. Zhang, K. Jiang, J. B. Pendry, and S. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat. Commun. 2, 176 (2011).
[Crossref] [PubMed]

Zhang, L.

Zhang, S.

X. Chen, Y. Luo, J. Zhang, K. Jiang, J. B. Pendry, and S. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat. Commun. 2, 176 (2011).
[Crossref] [PubMed]

Zhou, P.

S. Liu, Y. Li, P. Zhou, X. Li, N. Rong, S. Huang, W. Lu, and Y. Su, “A multi-plane optical see-through head mounted display design for augmented reality applications,” J. Soc. Inf. Disp. 24(4), 246–251 (2016).
[Crossref]

ACM Trans. Graph. (6)

K. Akeley, S. J. Watt, A. R. Girshick, and M. S. Banks, “A stereo display prototype with multiple focal distances,” ACM Trans. Graph. 23(3), 804–813 (2004).
[Crossref]

G. Wetzstein, D. Lanman, W. Heidrich, and R. Raskar, “Layered 3D: tomographic image synthesis for attenuation-based light field and high dynamic range displays,” ACM Trans. Graph. 30(4), 95 (2011).
[Crossref]

D. Lanman, G. Wetzstein, M. Hirsch, W. Heidrich, and R. Raskar, “Polarization fields: dynamic light field display using multi-layer LCDs,” ACM Trans. Graph. 30(6), 186 (2011).
[Crossref]

F. Huang, K. Chen, and G. Wetzstein, “The light field stereoscope: immersive computer graphics via factored near-eye light field displays with focus cues,” ACM Trans. Graph. 33, 60 (2015).

S. Lee, C. Jang, S. Moon, J. Cho, and B. Lee, “Additive light field displays: realization of augmented reality with holographic optical elements,” ACM Trans. Graph. 35(4), 60 (2016).
[Crossref]

D. Lanman and D. Luebke, “Near-eye light field displays,” ACM Trans. Graph. 32(6), 1–10 (2013).
[Crossref]

Adv. Opt. Photonics (1)

J. Geng, “Three-dimensional display technologies,” Adv. Opt. Photonics 5(4), 456–535 (2013).
[Crossref] [PubMed]

Appl. Opt. (3)

Appl. Phys. Express (1)

J. Nakamura, K. Tanaka, and Y. Takaki, “Increase in depth of field of eyes using reduced-view super multi-view displays,” Appl. Phys. Express 6(2), 022501 (2013).
[Crossref]

Chin. Phys. B (1)

W. Jun-Fang, Z. Chun-Min, Z. Ying-Tang, L. Han-Chen, and Z. Xue-Jun, “Refraction of extraordinary rays and ordinary rays in the Savart polariscope,” Chin. Phys. B 17(7), 2504–2508 (2008).
[Crossref]

J. Disp. Technol. (2)

X. Hu and H. Hua, “Design and assessment of a depth-fused multi-focal-plane display prototype,” J. Disp. Technol. 10(4), 308–316 (2014).
[Crossref]

Y. Kim, J. Kim, K. Hong, H. K. Yang, J.-H. Jung, H. Choi, S.-W. Min, J.-M. Seo, J.-M. Hwang, and B. Lee, “Accommodative response of integral imaging in near distance,” J. Disp. Technol. 8(2), 70–78 (2012).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Soc. Inf. Disp. (1)

S. Liu, Y. Li, P. Zhou, X. Li, N. Rong, S. Huang, W. Lu, and Y. Su, “A multi-plane optical see-through head mounted display design for augmented reality applications,” J. Soc. Inf. Disp. 24(4), 246–251 (2016).
[Crossref]

Nat. Commun. (1)

X. Chen, Y. Luo, J. Zhang, K. Jiang, J. B. Pendry, and S. Zhang, “Macroscopic invisibility cloaking of visible light,” Nat. Commun. 2, 176 (2011).
[Crossref] [PubMed]

NTT Tech. Rev. (1)

S. Suyama, Y. Ishigure, H. Takada, K. Nakazawa, J. Hosohata, Y. Takao, and T. Fujikado, “Evaluation of visual fatigue in viewing a depth-fused 3-D display in comparison with a 2-D display,” NTT Tech. Rev. 3, 82–89 (2005).

Opt. Express (17)

X. Hu and H. Hua, “High-resolution optical see-through multi-focal-plane head-mounted display using freeform optics,” Opt. Express 22(11), 13896–13903 (2014).
[Crossref] [PubMed]

S. Moon, S.-G. Park, C.-K. Lee, J. Cho, S. Lee, and B. Lee, “Computational multi-projection display,” Opt. Express 24(8), 9025–9037 (2016).
[Crossref] [PubMed]

Y. Takaki and N. Nago, “Multi-projection of lenticular displays to construct a 256-view super multi-view display,” Opt. Express 18(9), 8824–8835 (2010).
[Crossref] [PubMed]

Y. Takaki, Y. Urano, S. Kashiwada, H. Ando, and K. Nakamura, “Super multi-view windshield display for long-distance image information presentation,” Opt. Express 19(2), 704–716 (2011).
[Crossref] [PubMed]

D. Teng, L. Liu, and B. Wang, “Super multi-view three-dimensional display through spatial-spectrum time-multiplexing of planar aligned OLED microdisplays,” Opt. Express 22(25), 31448–31457 (2014).
[Crossref] [PubMed]

L. Liu, Z. Pang, and D. Teng, “Super multi-view three-dimensional display technique for portable devices,” Opt. Express 24(5), 4421–4430 (2016).
[Crossref]

S.-G. Park, J.-Y. Hong, C.-K. Lee, and B. Lee, “Real-mode depth-fused display with viewer tracking,” Opt. Express 23(20), 26710–26722 (2015).
[Crossref] [PubMed]

T. Mu, C. Zhang, Q. Li, L. Zhang, Y. Wei, and Q. Chen, “Achromatic Savart polariscope: choice of materials,” Opt. Express 22(5), 5043–5051 (2014).
[Crossref] [PubMed]

D. Schmid, T.-Y. Huang, S. Hazrat, R. Dirks, O. Hosten, S. Quint, D. Thian, and P. G. Kwiat, “Adjustable and robust methods for polarization-dependent focusing,” Opt. Express 21(13), 15538–15552 (2013).
[Crossref] [PubMed]

S. Yoon, H. Baek, S. W. Min, S.-G. Park, M. K. Park, S. H. Yoo, H. R. Kim, and B. Lee, “Implementation of active-type Lamina 3D display system,” Opt. Express 23(12), 15848–15856 (2015).
[Crossref] [PubMed]

J.-H. Park, S. Jung, H. Choi, and B. Lee, “Integral imaging with multiple image planes using a uniaxial crystal plate,” Opt. Express 11(16), 1862–1875 (2003).
[Crossref] [PubMed]

G. D. Love, D. M. Hoffman, P. J. W. Hands, J. Gao, A. K. Kirby, and M. S. Banks, “High-speed switchable lens enables the development of a volumetric stereoscopic display,” Opt. Express 17(18), 15716–15725 (2009).
[Crossref] [PubMed]

C. K. Park, S. S. Lee, and Y. S. Hwang, “Depth-extended integral imaging system based on a birefringence lens array providing polarization switchable focal lengths,” Opt. Express 17(21), 19047–19054 (2009).
[Crossref] [PubMed]

S.-G. Park, S. Yoon, J. Yeom, H. Baek, S.-W. Min, and B. Lee, “Lamina 3D display: projection-type depth-fused display using polarization-encoded depth information,” Opt. Express 22(21), 26162–26172 (2014).
[Crossref] [PubMed]

H.-S. Chen, Y.-J. Wang, P.-J. Chen, and Y.-H. Lin, “Electrically adjustable location of a projected image in augmented reality via a liquid-crystal lens,” Opt. Express 23(22), 28154–28162 (2015).
[Crossref] [PubMed]

C.-K. Lee, S.-G. Park, S. Moon, and B. Lee, “Viewing zone duplication of multi-projection 3D display system using uniaxial crystal,” Opt. Express 24(8), 8458–8470 (2016).
[Crossref] [PubMed]

Y.-H. Lee, F. Peng, and S.-T. Wu, “Fast-response switchable lens for 3D and wearable displays,” Opt. Express 24(2), 1668–1675 (2016).
[Crossref] [PubMed]

Phys. Today (1)

B. Lee, “Three-dimensional displays, past and present,” Phys. Today 66(4), 36–41 (2013).
[Crossref]

Other (2)

C. C. Gordon, T. Churchill, C. E. Clauser, B. Bradtmiller, J. T. McConville, I. Tebbetts, and R. A. Walker, “Anthropometric survey of US army personnel: methods and summary statistics,” United States Army Natick Research, Development, and Engineering Center (1988).

R. Konrad, E. A. Cooper, and G. Wetzstein, “Novel optical configurations for virtual reality: evaluating user preference and performance with focus-tunable and monovision near-eye displays,” in Proc. of the ACM Conference on Human Factors in Computing Systems (2016), pp. 1211–1220.
[Crossref]

Supplementary Material (5)

NameDescription
» Visualization 1: MOV (855 KB)      Focus change between front and rear planes
» Visualization 2: MOV (3746 KB)      Perspective change in horizontal direction
» Visualization 3: MOV (3497 KB)      Perspective change in vertical direction
» Visualization 4: MOV (1280 KB)      Focus change of car 3D image
» Visualization 5: MOV (3187 KB)      Perspective change of car 3D image

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Multi-focal HMD system using Savart plate: (a) schematic diagram of proposed system, (b) optically equivalent model of proposed system
Fig. 2
Fig. 2 Astigmatism in plane-parallel calcite plate: ray tracing for (a) horizontal component (top view, optic axis with 45 degrees), (b) vertical component (side view, optic axis of 45 with degrees), and (c) trajectory of virtual image of point light source with angle of optic axis
Fig. 3
Fig. 3 Astigmatism compensation using Savart plate with half wave plate: (a) horizontal component (top view) and (b) vertical component (side view)
Fig. 4
Fig. 4 Color dispersion in modified Savart plate: (a) spectrum of micro OLED and center wavelength, (b) chromatic aberration in modified Savart plate
Fig. 5
Fig. 5 3D image reconstruction: (a) light field optimization for two additive layers, (b) real-time operation of two additive layers
Fig. 6
Fig. 6 Experimental setup: (a) wearable function of proposed system, (b) detailed configuration of HMD module, (c) experimental setup with real objects
Fig. 7
Fig. 7 Focus changes between front and rear virtual planes: (a) focus change without compensation, (b) focus change with compensation (Visualization 1)
Fig. 8
Fig. 8 3D images in proposed system: (a) perspective images, (b) focus changes (Visualization 2, Visualization 3, Visualization 4 and Visualization 5)

Tables (3)

Tables Icon

Table 1 Simulation conditions for astigmatism analysis

Tables Icon

Table 2 Simulation conditions for color dispersion analysis

Tables Icon

Table 3 Experimental conditions

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

θ window =2 tan 1 ( W bs 2( d eye + W bs ) ),
θ image =2 tan 1 ( W a 2( d eye + S a ) ),
Δs'= Δs ( s f f)( s f +Δsf) f 2 ,
λ c = 1 P total p(λ)λd λ,
{ n o =2.69705+0.0192064/( λ 2 0.01820)0.0151624 λ 2 , n e =2.18438+0.0087309/( λ 2 0.01018)0.0024411 λ 2 ,
{ N green =[ Δ C green p sub p p ], N blue =[ Δ C blue 2 p sub p p ],
l t ( x,y,u,v )= p f ( f f (x,y,u,v))+ p r ( f r (x,y,u,v )),

Metrics