Abstract

We demonstrate numerically through rigorous coupled wave analysis (RCWA) that replacing the prism in the Otto configuration with gratings enables us to excite and control different modes and field patterns of surface phonon polaritons (SPhPs) through the incident wavelength and height of the Otto spacing layer. This modified Otto configuration provides us the following multiple modes, namely, SPhP mode, Fabry-Pérot (FP) cavity resonance, dielectric waveguide grating resonance (DWGR) and hybridized between different combinations of the above mentioned modes. We show that this modified grating-coupled Otto configuration has a highly confined field pattern within the structure, making it more sensitive to local refractive index changes on the SiC surface. The hybridized surface phonon polariton modes also provide a stronger field enhancement compared to conventional pure mode excitation.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Tunable Fano resonance based on grating-coupled and graphene-based Otto configuration

Jicheng Wang, Ci Song, Jing Hang, Zheng-Da Hu, and Feng Zhang
Opt. Express 25(20) 23880-23892 (2017)

Surface phonon polaritons on SiC substrate for surface-enhanced infrared absorption spectroscopy

Hyun Chul Kim and Xing Cheng
J. Opt. Soc. Am. B 27(11) 2393-2397 (2010)

Resonant phase jump with enhanced electric field caused by surface phonon polariton in terahertz region

Takanori Okada, Masaya Nagai, and Koichiro Tanaka
Opt. Express 16(8) 5633-5641 (2008)

References

  • View by:
  • |
  • |
  • |

  1. B. G. Ghamsari, X. G. Xu, L. Gilburd, G. C. Walker, and P. Berini, “Mid-infrared surface phonon polaritons in boron-nitride nanotubes,” J. Opt. 16, 114008 (2014).
    [Crossref]
  2. K. Tsushima, S. Mori, Y. Nishimura, K. Hishii, K. Kasahara, T. Yaji, H. Miyazaki, N. Ikeda, M. Ochiai, H. Oosato, and Y. Sugimoto, “Observation of the enhancement of the electric field normal to the surface of mid-infrared slot antennas,” in “IEEE 2013 7th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics,” (IEEE, 2013), pp. 508–510.
  3. X. G. Xu, J.-H. Jiang, L. Gilburd, R. G. Rensing, K. S. Burch, C. Zhi, Y. Bando, D. Golberg, and G. C. Walker, “Mid-infrared polaritonic coupling between boron nitride nanotubes and graphene,” ACS Nano 8, 11305–11312 (2014).
    [Crossref] [PubMed]
  4. S. Basu, Y. Yang, and L. Wang, “Near-field radiative heat transfer between metamaterials coated with silicon carbide thin films,” Appl. Phys. Lett. 106, 033106 (2015).
    [Crossref]
  5. D.-Z. A. Chen and G. Chen, “Heat flow in thin films via surface phonon-polaritons,” Front. Heat Mass Transf. 1, 023005 (2010).
    [Crossref]
  6. M. Francoeur, M. P. Mengüç, and R. Vaillon, “Control of near-field radiative heat transfer via surface phonon–polariton coupling in thin films,” Appl. Phys. A 103, 547–550 (2011).
    [Crossref]
  7. T. Tokunaga, L. Tranchant, N. Takama, S. Volz, and B. Kim, “Experimental study of heat transfer in micro glass tubes mediated by surface phonon polaritons,” J. Phys.: Conf. Ser. 395, 012108 (2012).
  8. B. Neuner, D. Korobkin, C. Fietz, D. Carole, G. Ferro, and G. Shvets, “Critically coupled surface phonon-polariton excitation in silicon carbide,” Opt. Lett. 34, 2667 (2009).
    [Crossref]
  9. N. Dmitruk, T. Barlas, I. Dmitruk, S. Kutovyi, N. Berezovska, J. Sabataityte, and I. Simkiene, “IR reflection, attenuated total reflection, and raman scattering of porous polar III–V semiconductors,” Phys. Stat. Solidi (B) 247, 955–961 (2010).
  10. R. H. Hussein, O. Pagès, F. Firszt, W. Paszkowicz, and A. Maillard, “Near-forward raman scattering by bulk and surface phonon-polaritons in the model percolation-type ZnBeSe alloy,” Appl. Phys. Lett. 103, 071912 (2013).
    [Crossref]
  11. A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,” Z. Angew. Phys. 216, 398–410 (1968).
  12. C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source,” Nano Lett. 7, 2784–2788 (2007).
    [Crossref] [PubMed]
  13. P. K. Mishra and B. Sahoo, “Growth of amorphous carbon and graphene on pulse laser deposited SiC films and their characterization studies,” Laser Part. Beams 31, 63–71 (2012).
    [Crossref]
  14. T. A. Friedmann, P. B. Mirkarimi, D. L. Medlin, K. F. McCarty, E. J. Klaus, D. R. Boehme, H. A. Johnsen, M. J. Mills, D. K. Ottesen, and J. C. Barbour, “Ion-assisted pulsed laser deposition of cubic boron nitride films,” J. Appl. Phys. 76, 3088 (1994).
    [Crossref]
  15. T. Terasako, H. Song, H. Makino, S. Shirakata, and T. Yamamoto, “Temperature dependence of electrical properties of Ga-doped ZnO films deposited by ion plating with DC arc discharge,” Thin Solid Films 528, 19–25 (2013).
    [Crossref]
  16. O. M. Nayfeh, A. G. Birdwell, C. Tan, M. Dubey, H. Gullapalli, Z. Liu, A. L. M. Reddy, and P. M. Ajayan, “Increased mobility for layer-by-layer transferred chemical vapor deposited graphene/boron-nitride thin films,” Appl. Phys. Lett. 102, 103115 (2013).
    [Crossref]
  17. J. Provine, C. Roper, J. A. Schuller, M. L. Brongersma, R. Maboudian, and R. T. Howe, “The dependence of poly-crystalline SiC mid-infrared optical properties on deposition conditions,” in “2008 IEEE/LEOS International Conference on Optical MEMs and Nanophotonics,” (IEEE, 2008), pp. 182–183.
  18. S. Lee, S. Ng, K. Saw, Z. Hassan, and H. A. Hassan, “Surface phonon polariton characteristics of bulk wurtzite ZnO crystal,” Physica B 406, 115–118 (2011).
    [Crossref]
  19. A. A. Hamilton, T. Dumelow, T. J. Parker, and S. R. P. Smith, “Far infrared attenuated total reflection spectroscopy for investigating superlattice phonon parameters,” J. Phys.: Condens. Matter 8, 8027–8039 (1996).
  20. Y. Chen, Y. Francescato, J. D. Caldwell, V. Giannini, T. W. W. Maß, O. J. Glembocki, F. J. Bezares, T. Taubner, R. Kasica, M. Hong, and S. A. Maier, “Spectral tuning of localized surface phonon polariton resonators for low-loss mid-IR applications,” ACS Photon. 1, 718–724 (2014).
    [Crossref]
  21. D. Ju, Y. Jiang, and H. Pei, “Controllable mode hybridization and interaction within a plasmonic cavity formed by two bimetallic gratings,” Plasmonics 8, 1387–1394 (2013).
    [Crossref]
  22. S. S. Wang and R. Magnusson, “Theory and applications of guided-mode resonance filters,” Appl. Opt. 32, 2606 (1993).
    [Crossref] [PubMed]
  23. W. Zhou, Y. Wu, M. Yu, P. Hao, G. Liu, and K. Li, “Extraordinary optical absorption based on guided-mode resonance,” Opt. Lett. 38, 5393 (2013).
    [Crossref] [PubMed]
  24. H. W. Icenogle, B. C. Platt, and W. L. Wolfe, “Refractive indexes and temperature coefficients of germanium and silicon,” Appl. Opt. 15, 2348 (1976).
    [Crossref] [PubMed]
  25. B. Tatian, “Fitting refractive-index data with the sellmeier dispersion formula,” Appl. Opt. 23, 4477 (1984).
    [Crossref] [PubMed]
  26. H. H. Li, “Refractive index of alkali halides and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 5, 329 (1976).
    [Crossref]
  27. V. Karagodsky and C. J. Chang-Hasnain, “Physics of near-wavelength high contrast gratings,” Opt. Express 20, 10888 (2012).
    [Crossref] [PubMed]
  28. L. Wang, B. Lee, X. Wang, and Z. Zhang, “Spatial and temporal coherence of thermal radiation in asymmetric fabry–perot resonance cavities,” Int. J. Heat Mass Transf. 52, 3024–3031 (2009).
    [Crossref]
  29. L. P. Wang, S. Basu, and Z. M. Zhang, “Direct measurement of thermal emission from a fabry–perot cavity resonator,” J. Heat Transf. 134, 072701 (2012).
    [Crossref]
  30. P. Berini, “Long-range surface plasmon polaritons,” Adv. Opt. Photon. 1, 484 (2009).
    [Crossref]
  31. D. Y. Lei, J. T. K. Wan, and H. C. Ong, “Numerical and analytical evaluations of the sensing sensitivity of waveguide mode in one-dimensional metallic gratings,” Nanotechnology 23, 275501 (2012).
    [Crossref] [PubMed]
  32. G. Dolling, H. G. Smith, R. M. Nicklow, P. R. Vijayaraghavan, and M. K. Wilkinson, “Lattice dynamics of lithium fluoride,” Phys. Rev. 168, 970–979 (1968).
    [Crossref]

2015 (1)

S. Basu, Y. Yang, and L. Wang, “Near-field radiative heat transfer between metamaterials coated with silicon carbide thin films,” Appl. Phys. Lett. 106, 033106 (2015).
[Crossref]

2014 (3)

B. G. Ghamsari, X. G. Xu, L. Gilburd, G. C. Walker, and P. Berini, “Mid-infrared surface phonon polaritons in boron-nitride nanotubes,” J. Opt. 16, 114008 (2014).
[Crossref]

X. G. Xu, J.-H. Jiang, L. Gilburd, R. G. Rensing, K. S. Burch, C. Zhi, Y. Bando, D. Golberg, and G. C. Walker, “Mid-infrared polaritonic coupling between boron nitride nanotubes and graphene,” ACS Nano 8, 11305–11312 (2014).
[Crossref] [PubMed]

Y. Chen, Y. Francescato, J. D. Caldwell, V. Giannini, T. W. W. Maß, O. J. Glembocki, F. J. Bezares, T. Taubner, R. Kasica, M. Hong, and S. A. Maier, “Spectral tuning of localized surface phonon polariton resonators for low-loss mid-IR applications,” ACS Photon. 1, 718–724 (2014).
[Crossref]

2013 (5)

D. Ju, Y. Jiang, and H. Pei, “Controllable mode hybridization and interaction within a plasmonic cavity formed by two bimetallic gratings,” Plasmonics 8, 1387–1394 (2013).
[Crossref]

W. Zhou, Y. Wu, M. Yu, P. Hao, G. Liu, and K. Li, “Extraordinary optical absorption based on guided-mode resonance,” Opt. Lett. 38, 5393 (2013).
[Crossref] [PubMed]

R. H. Hussein, O. Pagès, F. Firszt, W. Paszkowicz, and A. Maillard, “Near-forward raman scattering by bulk and surface phonon-polaritons in the model percolation-type ZnBeSe alloy,” Appl. Phys. Lett. 103, 071912 (2013).
[Crossref]

T. Terasako, H. Song, H. Makino, S. Shirakata, and T. Yamamoto, “Temperature dependence of electrical properties of Ga-doped ZnO films deposited by ion plating with DC arc discharge,” Thin Solid Films 528, 19–25 (2013).
[Crossref]

O. M. Nayfeh, A. G. Birdwell, C. Tan, M. Dubey, H. Gullapalli, Z. Liu, A. L. M. Reddy, and P. M. Ajayan, “Increased mobility for layer-by-layer transferred chemical vapor deposited graphene/boron-nitride thin films,” Appl. Phys. Lett. 102, 103115 (2013).
[Crossref]

2012 (5)

P. K. Mishra and B. Sahoo, “Growth of amorphous carbon and graphene on pulse laser deposited SiC films and their characterization studies,” Laser Part. Beams 31, 63–71 (2012).
[Crossref]

T. Tokunaga, L. Tranchant, N. Takama, S. Volz, and B. Kim, “Experimental study of heat transfer in micro glass tubes mediated by surface phonon polaritons,” J. Phys.: Conf. Ser. 395, 012108 (2012).

V. Karagodsky and C. J. Chang-Hasnain, “Physics of near-wavelength high contrast gratings,” Opt. Express 20, 10888 (2012).
[Crossref] [PubMed]

L. P. Wang, S. Basu, and Z. M. Zhang, “Direct measurement of thermal emission from a fabry–perot cavity resonator,” J. Heat Transf. 134, 072701 (2012).
[Crossref]

D. Y. Lei, J. T. K. Wan, and H. C. Ong, “Numerical and analytical evaluations of the sensing sensitivity of waveguide mode in one-dimensional metallic gratings,” Nanotechnology 23, 275501 (2012).
[Crossref] [PubMed]

2011 (2)

M. Francoeur, M. P. Mengüç, and R. Vaillon, “Control of near-field radiative heat transfer via surface phonon–polariton coupling in thin films,” Appl. Phys. A 103, 547–550 (2011).
[Crossref]

S. Lee, S. Ng, K. Saw, Z. Hassan, and H. A. Hassan, “Surface phonon polariton characteristics of bulk wurtzite ZnO crystal,” Physica B 406, 115–118 (2011).
[Crossref]

2010 (2)

N. Dmitruk, T. Barlas, I. Dmitruk, S. Kutovyi, N. Berezovska, J. Sabataityte, and I. Simkiene, “IR reflection, attenuated total reflection, and raman scattering of porous polar III–V semiconductors,” Phys. Stat. Solidi (B) 247, 955–961 (2010).

D.-Z. A. Chen and G. Chen, “Heat flow in thin films via surface phonon-polaritons,” Front. Heat Mass Transf. 1, 023005 (2010).
[Crossref]

2009 (3)

2007 (1)

C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source,” Nano Lett. 7, 2784–2788 (2007).
[Crossref] [PubMed]

1996 (1)

A. A. Hamilton, T. Dumelow, T. J. Parker, and S. R. P. Smith, “Far infrared attenuated total reflection spectroscopy for investigating superlattice phonon parameters,” J. Phys.: Condens. Matter 8, 8027–8039 (1996).

1994 (1)

T. A. Friedmann, P. B. Mirkarimi, D. L. Medlin, K. F. McCarty, E. J. Klaus, D. R. Boehme, H. A. Johnsen, M. J. Mills, D. K. Ottesen, and J. C. Barbour, “Ion-assisted pulsed laser deposition of cubic boron nitride films,” J. Appl. Phys. 76, 3088 (1994).
[Crossref]

1993 (1)

1984 (1)

1976 (2)

H. H. Li, “Refractive index of alkali halides and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 5, 329 (1976).
[Crossref]

H. W. Icenogle, B. C. Platt, and W. L. Wolfe, “Refractive indexes and temperature coefficients of germanium and silicon,” Appl. Opt. 15, 2348 (1976).
[Crossref] [PubMed]

1968 (2)

G. Dolling, H. G. Smith, R. M. Nicklow, P. R. Vijayaraghavan, and M. K. Wilkinson, “Lattice dynamics of lithium fluoride,” Phys. Rev. 168, 970–979 (1968).
[Crossref]

A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,” Z. Angew. Phys. 216, 398–410 (1968).

Ajayan, P. M.

O. M. Nayfeh, A. G. Birdwell, C. Tan, M. Dubey, H. Gullapalli, Z. Liu, A. L. M. Reddy, and P. M. Ajayan, “Increased mobility for layer-by-layer transferred chemical vapor deposited graphene/boron-nitride thin films,” Appl. Phys. Lett. 102, 103115 (2013).
[Crossref]

Albrecht, M.

C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source,” Nano Lett. 7, 2784–2788 (2007).
[Crossref] [PubMed]

Bando, Y.

X. G. Xu, J.-H. Jiang, L. Gilburd, R. G. Rensing, K. S. Burch, C. Zhi, Y. Bando, D. Golberg, and G. C. Walker, “Mid-infrared polaritonic coupling between boron nitride nanotubes and graphene,” ACS Nano 8, 11305–11312 (2014).
[Crossref] [PubMed]

Barbour, J. C.

T. A. Friedmann, P. B. Mirkarimi, D. L. Medlin, K. F. McCarty, E. J. Klaus, D. R. Boehme, H. A. Johnsen, M. J. Mills, D. K. Ottesen, and J. C. Barbour, “Ion-assisted pulsed laser deposition of cubic boron nitride films,” J. Appl. Phys. 76, 3088 (1994).
[Crossref]

Barlas, T.

N. Dmitruk, T. Barlas, I. Dmitruk, S. Kutovyi, N. Berezovska, J. Sabataityte, and I. Simkiene, “IR reflection, attenuated total reflection, and raman scattering of porous polar III–V semiconductors,” Phys. Stat. Solidi (B) 247, 955–961 (2010).

Basu, S.

S. Basu, Y. Yang, and L. Wang, “Near-field radiative heat transfer between metamaterials coated with silicon carbide thin films,” Appl. Phys. Lett. 106, 033106 (2015).
[Crossref]

L. P. Wang, S. Basu, and Z. M. Zhang, “Direct measurement of thermal emission from a fabry–perot cavity resonator,” J. Heat Transf. 134, 072701 (2012).
[Crossref]

Berezovska, N.

N. Dmitruk, T. Barlas, I. Dmitruk, S. Kutovyi, N. Berezovska, J. Sabataityte, and I. Simkiene, “IR reflection, attenuated total reflection, and raman scattering of porous polar III–V semiconductors,” Phys. Stat. Solidi (B) 247, 955–961 (2010).

Berini, P.

B. G. Ghamsari, X. G. Xu, L. Gilburd, G. C. Walker, and P. Berini, “Mid-infrared surface phonon polaritons in boron-nitride nanotubes,” J. Opt. 16, 114008 (2014).
[Crossref]

P. Berini, “Long-range surface plasmon polaritons,” Adv. Opt. Photon. 1, 484 (2009).
[Crossref]

Bezares, F. J.

Y. Chen, Y. Francescato, J. D. Caldwell, V. Giannini, T. W. W. Maß, O. J. Glembocki, F. J. Bezares, T. Taubner, R. Kasica, M. Hong, and S. A. Maier, “Spectral tuning of localized surface phonon polariton resonators for low-loss mid-IR applications,” ACS Photon. 1, 718–724 (2014).
[Crossref]

Birdwell, A. G.

O. M. Nayfeh, A. G. Birdwell, C. Tan, M. Dubey, H. Gullapalli, Z. Liu, A. L. M. Reddy, and P. M. Ajayan, “Increased mobility for layer-by-layer transferred chemical vapor deposited graphene/boron-nitride thin films,” Appl. Phys. Lett. 102, 103115 (2013).
[Crossref]

Boehme, D. R.

T. A. Friedmann, P. B. Mirkarimi, D. L. Medlin, K. F. McCarty, E. J. Klaus, D. R. Boehme, H. A. Johnsen, M. J. Mills, D. K. Ottesen, and J. C. Barbour, “Ion-assisted pulsed laser deposition of cubic boron nitride films,” J. Appl. Phys. 76, 3088 (1994).
[Crossref]

Brongersma, M. L.

J. Provine, C. Roper, J. A. Schuller, M. L. Brongersma, R. Maboudian, and R. T. Howe, “The dependence of poly-crystalline SiC mid-infrared optical properties on deposition conditions,” in “2008 IEEE/LEOS International Conference on Optical MEMs and Nanophotonics,” (IEEE, 2008), pp. 182–183.

Burch, K. S.

X. G. Xu, J.-H. Jiang, L. Gilburd, R. G. Rensing, K. S. Burch, C. Zhi, Y. Bando, D. Golberg, and G. C. Walker, “Mid-infrared polaritonic coupling between boron nitride nanotubes and graphene,” ACS Nano 8, 11305–11312 (2014).
[Crossref] [PubMed]

Caldwell, J. D.

Y. Chen, Y. Francescato, J. D. Caldwell, V. Giannini, T. W. W. Maß, O. J. Glembocki, F. J. Bezares, T. Taubner, R. Kasica, M. Hong, and S. A. Maier, “Spectral tuning of localized surface phonon polariton resonators for low-loss mid-IR applications,” ACS Photon. 1, 718–724 (2014).
[Crossref]

Carole, D.

Chang-Hasnain, C. J.

Chen, D.-Z. A.

D.-Z. A. Chen and G. Chen, “Heat flow in thin films via surface phonon-polaritons,” Front. Heat Mass Transf. 1, 023005 (2010).
[Crossref]

Chen, G.

D.-Z. A. Chen and G. Chen, “Heat flow in thin films via surface phonon-polaritons,” Front. Heat Mass Transf. 1, 023005 (2010).
[Crossref]

Chen, Y.

Y. Chen, Y. Francescato, J. D. Caldwell, V. Giannini, T. W. W. Maß, O. J. Glembocki, F. J. Bezares, T. Taubner, R. Kasica, M. Hong, and S. A. Maier, “Spectral tuning of localized surface phonon polariton resonators for low-loss mid-IR applications,” ACS Photon. 1, 718–724 (2014).
[Crossref]

Dmitruk, I.

N. Dmitruk, T. Barlas, I. Dmitruk, S. Kutovyi, N. Berezovska, J. Sabataityte, and I. Simkiene, “IR reflection, attenuated total reflection, and raman scattering of porous polar III–V semiconductors,” Phys. Stat. Solidi (B) 247, 955–961 (2010).

Dmitruk, N.

N. Dmitruk, T. Barlas, I. Dmitruk, S. Kutovyi, N. Berezovska, J. Sabataityte, and I. Simkiene, “IR reflection, attenuated total reflection, and raman scattering of porous polar III–V semiconductors,” Phys. Stat. Solidi (B) 247, 955–961 (2010).

Dolling, G.

G. Dolling, H. G. Smith, R. M. Nicklow, P. R. Vijayaraghavan, and M. K. Wilkinson, “Lattice dynamics of lithium fluoride,” Phys. Rev. 168, 970–979 (1968).
[Crossref]

Dubey, M.

O. M. Nayfeh, A. G. Birdwell, C. Tan, M. Dubey, H. Gullapalli, Z. Liu, A. L. M. Reddy, and P. M. Ajayan, “Increased mobility for layer-by-layer transferred chemical vapor deposited graphene/boron-nitride thin films,” Appl. Phys. Lett. 102, 103115 (2013).
[Crossref]

Dumelow, T.

A. A. Hamilton, T. Dumelow, T. J. Parker, and S. R. P. Smith, “Far infrared attenuated total reflection spectroscopy for investigating superlattice phonon parameters,” J. Phys.: Condens. Matter 8, 8027–8039 (1996).

Elsaesser, T.

C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source,” Nano Lett. 7, 2784–2788 (2007).
[Crossref] [PubMed]

Ferro, G.

Fietz, C.

Firszt, F.

R. H. Hussein, O. Pagès, F. Firszt, W. Paszkowicz, and A. Maillard, “Near-forward raman scattering by bulk and surface phonon-polaritons in the model percolation-type ZnBeSe alloy,” Appl. Phys. Lett. 103, 071912 (2013).
[Crossref]

Francescato, Y.

Y. Chen, Y. Francescato, J. D. Caldwell, V. Giannini, T. W. W. Maß, O. J. Glembocki, F. J. Bezares, T. Taubner, R. Kasica, M. Hong, and S. A. Maier, “Spectral tuning of localized surface phonon polariton resonators for low-loss mid-IR applications,” ACS Photon. 1, 718–724 (2014).
[Crossref]

Francoeur, M.

M. Francoeur, M. P. Mengüç, and R. Vaillon, “Control of near-field radiative heat transfer via surface phonon–polariton coupling in thin films,” Appl. Phys. A 103, 547–550 (2011).
[Crossref]

Friedmann, T. A.

T. A. Friedmann, P. B. Mirkarimi, D. L. Medlin, K. F. McCarty, E. J. Klaus, D. R. Boehme, H. A. Johnsen, M. J. Mills, D. K. Ottesen, and J. C. Barbour, “Ion-assisted pulsed laser deposition of cubic boron nitride films,” J. Appl. Phys. 76, 3088 (1994).
[Crossref]

Ghamsari, B. G.

B. G. Ghamsari, X. G. Xu, L. Gilburd, G. C. Walker, and P. Berini, “Mid-infrared surface phonon polaritons in boron-nitride nanotubes,” J. Opt. 16, 114008 (2014).
[Crossref]

Giannini, V.

Y. Chen, Y. Francescato, J. D. Caldwell, V. Giannini, T. W. W. Maß, O. J. Glembocki, F. J. Bezares, T. Taubner, R. Kasica, M. Hong, and S. A. Maier, “Spectral tuning of localized surface phonon polariton resonators for low-loss mid-IR applications,” ACS Photon. 1, 718–724 (2014).
[Crossref]

Gilburd, L.

B. G. Ghamsari, X. G. Xu, L. Gilburd, G. C. Walker, and P. Berini, “Mid-infrared surface phonon polaritons in boron-nitride nanotubes,” J. Opt. 16, 114008 (2014).
[Crossref]

X. G. Xu, J.-H. Jiang, L. Gilburd, R. G. Rensing, K. S. Burch, C. Zhi, Y. Bando, D. Golberg, and G. C. Walker, “Mid-infrared polaritonic coupling between boron nitride nanotubes and graphene,” ACS Nano 8, 11305–11312 (2014).
[Crossref] [PubMed]

Glembocki, O. J.

Y. Chen, Y. Francescato, J. D. Caldwell, V. Giannini, T. W. W. Maß, O. J. Glembocki, F. J. Bezares, T. Taubner, R. Kasica, M. Hong, and S. A. Maier, “Spectral tuning of localized surface phonon polariton resonators for low-loss mid-IR applications,” ACS Photon. 1, 718–724 (2014).
[Crossref]

Golberg, D.

X. G. Xu, J.-H. Jiang, L. Gilburd, R. G. Rensing, K. S. Burch, C. Zhi, Y. Bando, D. Golberg, and G. C. Walker, “Mid-infrared polaritonic coupling between boron nitride nanotubes and graphene,” ACS Nano 8, 11305–11312 (2014).
[Crossref] [PubMed]

Gullapalli, H.

O. M. Nayfeh, A. G. Birdwell, C. Tan, M. Dubey, H. Gullapalli, Z. Liu, A. L. M. Reddy, and P. M. Ajayan, “Increased mobility for layer-by-layer transferred chemical vapor deposited graphene/boron-nitride thin films,” Appl. Phys. Lett. 102, 103115 (2013).
[Crossref]

Hamilton, A. A.

A. A. Hamilton, T. Dumelow, T. J. Parker, and S. R. P. Smith, “Far infrared attenuated total reflection spectroscopy for investigating superlattice phonon parameters,” J. Phys.: Condens. Matter 8, 8027–8039 (1996).

Hao, P.

Hassan, H. A.

S. Lee, S. Ng, K. Saw, Z. Hassan, and H. A. Hassan, “Surface phonon polariton characteristics of bulk wurtzite ZnO crystal,” Physica B 406, 115–118 (2011).
[Crossref]

Hassan, Z.

S. Lee, S. Ng, K. Saw, Z. Hassan, and H. A. Hassan, “Surface phonon polariton characteristics of bulk wurtzite ZnO crystal,” Physica B 406, 115–118 (2011).
[Crossref]

Hishii, K.

K. Tsushima, S. Mori, Y. Nishimura, K. Hishii, K. Kasahara, T. Yaji, H. Miyazaki, N. Ikeda, M. Ochiai, H. Oosato, and Y. Sugimoto, “Observation of the enhancement of the electric field normal to the surface of mid-infrared slot antennas,” in “IEEE 2013 7th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics,” (IEEE, 2013), pp. 508–510.

Hong, M.

Y. Chen, Y. Francescato, J. D. Caldwell, V. Giannini, T. W. W. Maß, O. J. Glembocki, F. J. Bezares, T. Taubner, R. Kasica, M. Hong, and S. A. Maier, “Spectral tuning of localized surface phonon polariton resonators for low-loss mid-IR applications,” ACS Photon. 1, 718–724 (2014).
[Crossref]

Howe, R. T.

J. Provine, C. Roper, J. A. Schuller, M. L. Brongersma, R. Maboudian, and R. T. Howe, “The dependence of poly-crystalline SiC mid-infrared optical properties on deposition conditions,” in “2008 IEEE/LEOS International Conference on Optical MEMs and Nanophotonics,” (IEEE, 2008), pp. 182–183.

Hussein, R. H.

R. H. Hussein, O. Pagès, F. Firszt, W. Paszkowicz, and A. Maillard, “Near-forward raman scattering by bulk and surface phonon-polaritons in the model percolation-type ZnBeSe alloy,” Appl. Phys. Lett. 103, 071912 (2013).
[Crossref]

Icenogle, H. W.

Ikeda, N.

K. Tsushima, S. Mori, Y. Nishimura, K. Hishii, K. Kasahara, T. Yaji, H. Miyazaki, N. Ikeda, M. Ochiai, H. Oosato, and Y. Sugimoto, “Observation of the enhancement of the electric field normal to the surface of mid-infrared slot antennas,” in “IEEE 2013 7th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics,” (IEEE, 2013), pp. 508–510.

Jiang, J.-H.

X. G. Xu, J.-H. Jiang, L. Gilburd, R. G. Rensing, K. S. Burch, C. Zhi, Y. Bando, D. Golberg, and G. C. Walker, “Mid-infrared polaritonic coupling between boron nitride nanotubes and graphene,” ACS Nano 8, 11305–11312 (2014).
[Crossref] [PubMed]

Jiang, Y.

D. Ju, Y. Jiang, and H. Pei, “Controllable mode hybridization and interaction within a plasmonic cavity formed by two bimetallic gratings,” Plasmonics 8, 1387–1394 (2013).
[Crossref]

Johnsen, H. A.

T. A. Friedmann, P. B. Mirkarimi, D. L. Medlin, K. F. McCarty, E. J. Klaus, D. R. Boehme, H. A. Johnsen, M. J. Mills, D. K. Ottesen, and J. C. Barbour, “Ion-assisted pulsed laser deposition of cubic boron nitride films,” J. Appl. Phys. 76, 3088 (1994).
[Crossref]

Ju, D.

D. Ju, Y. Jiang, and H. Pei, “Controllable mode hybridization and interaction within a plasmonic cavity formed by two bimetallic gratings,” Plasmonics 8, 1387–1394 (2013).
[Crossref]

Karagodsky, V.

Kasahara, K.

K. Tsushima, S. Mori, Y. Nishimura, K. Hishii, K. Kasahara, T. Yaji, H. Miyazaki, N. Ikeda, M. Ochiai, H. Oosato, and Y. Sugimoto, “Observation of the enhancement of the electric field normal to the surface of mid-infrared slot antennas,” in “IEEE 2013 7th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics,” (IEEE, 2013), pp. 508–510.

Kasica, R.

Y. Chen, Y. Francescato, J. D. Caldwell, V. Giannini, T. W. W. Maß, O. J. Glembocki, F. J. Bezares, T. Taubner, R. Kasica, M. Hong, and S. A. Maier, “Spectral tuning of localized surface phonon polariton resonators for low-loss mid-IR applications,” ACS Photon. 1, 718–724 (2014).
[Crossref]

Kim, B.

T. Tokunaga, L. Tranchant, N. Takama, S. Volz, and B. Kim, “Experimental study of heat transfer in micro glass tubes mediated by surface phonon polaritons,” J. Phys.: Conf. Ser. 395, 012108 (2012).

Klaus, E. J.

T. A. Friedmann, P. B. Mirkarimi, D. L. Medlin, K. F. McCarty, E. J. Klaus, D. R. Boehme, H. A. Johnsen, M. J. Mills, D. K. Ottesen, and J. C. Barbour, “Ion-assisted pulsed laser deposition of cubic boron nitride films,” J. Appl. Phys. 76, 3088 (1994).
[Crossref]

Korobkin, D.

Kutovyi, S.

N. Dmitruk, T. Barlas, I. Dmitruk, S. Kutovyi, N. Berezovska, J. Sabataityte, and I. Simkiene, “IR reflection, attenuated total reflection, and raman scattering of porous polar III–V semiconductors,” Phys. Stat. Solidi (B) 247, 955–961 (2010).

Lee, B.

L. Wang, B. Lee, X. Wang, and Z. Zhang, “Spatial and temporal coherence of thermal radiation in asymmetric fabry–perot resonance cavities,” Int. J. Heat Mass Transf. 52, 3024–3031 (2009).
[Crossref]

Lee, S.

S. Lee, S. Ng, K. Saw, Z. Hassan, and H. A. Hassan, “Surface phonon polariton characteristics of bulk wurtzite ZnO crystal,” Physica B 406, 115–118 (2011).
[Crossref]

Lei, D. Y.

D. Y. Lei, J. T. K. Wan, and H. C. Ong, “Numerical and analytical evaluations of the sensing sensitivity of waveguide mode in one-dimensional metallic gratings,” Nanotechnology 23, 275501 (2012).
[Crossref] [PubMed]

Li, H. H.

H. H. Li, “Refractive index of alkali halides and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 5, 329 (1976).
[Crossref]

Li, K.

Lienau, C.

C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source,” Nano Lett. 7, 2784–2788 (2007).
[Crossref] [PubMed]

Liu, G.

Liu, Z.

O. M. Nayfeh, A. G. Birdwell, C. Tan, M. Dubey, H. Gullapalli, Z. Liu, A. L. M. Reddy, and P. M. Ajayan, “Increased mobility for layer-by-layer transferred chemical vapor deposited graphene/boron-nitride thin films,” Appl. Phys. Lett. 102, 103115 (2013).
[Crossref]

Maboudian, R.

J. Provine, C. Roper, J. A. Schuller, M. L. Brongersma, R. Maboudian, and R. T. Howe, “The dependence of poly-crystalline SiC mid-infrared optical properties on deposition conditions,” in “2008 IEEE/LEOS International Conference on Optical MEMs and Nanophotonics,” (IEEE, 2008), pp. 182–183.

Magnusson, R.

Maier, S. A.

Y. Chen, Y. Francescato, J. D. Caldwell, V. Giannini, T. W. W. Maß, O. J. Glembocki, F. J. Bezares, T. Taubner, R. Kasica, M. Hong, and S. A. Maier, “Spectral tuning of localized surface phonon polariton resonators for low-loss mid-IR applications,” ACS Photon. 1, 718–724 (2014).
[Crossref]

Maillard, A.

R. H. Hussein, O. Pagès, F. Firszt, W. Paszkowicz, and A. Maillard, “Near-forward raman scattering by bulk and surface phonon-polaritons in the model percolation-type ZnBeSe alloy,” Appl. Phys. Lett. 103, 071912 (2013).
[Crossref]

Makino, H.

T. Terasako, H. Song, H. Makino, S. Shirakata, and T. Yamamoto, “Temperature dependence of electrical properties of Ga-doped ZnO films deposited by ion plating with DC arc discharge,” Thin Solid Films 528, 19–25 (2013).
[Crossref]

Maß, T. W. W.

Y. Chen, Y. Francescato, J. D. Caldwell, V. Giannini, T. W. W. Maß, O. J. Glembocki, F. J. Bezares, T. Taubner, R. Kasica, M. Hong, and S. A. Maier, “Spectral tuning of localized surface phonon polariton resonators for low-loss mid-IR applications,” ACS Photon. 1, 718–724 (2014).
[Crossref]

McCarty, K. F.

T. A. Friedmann, P. B. Mirkarimi, D. L. Medlin, K. F. McCarty, E. J. Klaus, D. R. Boehme, H. A. Johnsen, M. J. Mills, D. K. Ottesen, and J. C. Barbour, “Ion-assisted pulsed laser deposition of cubic boron nitride films,” J. Appl. Phys. 76, 3088 (1994).
[Crossref]

Medlin, D. L.

T. A. Friedmann, P. B. Mirkarimi, D. L. Medlin, K. F. McCarty, E. J. Klaus, D. R. Boehme, H. A. Johnsen, M. J. Mills, D. K. Ottesen, and J. C. Barbour, “Ion-assisted pulsed laser deposition of cubic boron nitride films,” J. Appl. Phys. 76, 3088 (1994).
[Crossref]

Mengüç, M. P.

M. Francoeur, M. P. Mengüç, and R. Vaillon, “Control of near-field radiative heat transfer via surface phonon–polariton coupling in thin films,” Appl. Phys. A 103, 547–550 (2011).
[Crossref]

Mills, M. J.

T. A. Friedmann, P. B. Mirkarimi, D. L. Medlin, K. F. McCarty, E. J. Klaus, D. R. Boehme, H. A. Johnsen, M. J. Mills, D. K. Ottesen, and J. C. Barbour, “Ion-assisted pulsed laser deposition of cubic boron nitride films,” J. Appl. Phys. 76, 3088 (1994).
[Crossref]

Mirkarimi, P. B.

T. A. Friedmann, P. B. Mirkarimi, D. L. Medlin, K. F. McCarty, E. J. Klaus, D. R. Boehme, H. A. Johnsen, M. J. Mills, D. K. Ottesen, and J. C. Barbour, “Ion-assisted pulsed laser deposition of cubic boron nitride films,” J. Appl. Phys. 76, 3088 (1994).
[Crossref]

Mishra, P. K.

P. K. Mishra and B. Sahoo, “Growth of amorphous carbon and graphene on pulse laser deposited SiC films and their characterization studies,” Laser Part. Beams 31, 63–71 (2012).
[Crossref]

Miyazaki, H.

K. Tsushima, S. Mori, Y. Nishimura, K. Hishii, K. Kasahara, T. Yaji, H. Miyazaki, N. Ikeda, M. Ochiai, H. Oosato, and Y. Sugimoto, “Observation of the enhancement of the electric field normal to the surface of mid-infrared slot antennas,” in “IEEE 2013 7th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics,” (IEEE, 2013), pp. 508–510.

Mori, S.

K. Tsushima, S. Mori, Y. Nishimura, K. Hishii, K. Kasahara, T. Yaji, H. Miyazaki, N. Ikeda, M. Ochiai, H. Oosato, and Y. Sugimoto, “Observation of the enhancement of the electric field normal to the surface of mid-infrared slot antennas,” in “IEEE 2013 7th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics,” (IEEE, 2013), pp. 508–510.

Nayfeh, O. M.

O. M. Nayfeh, A. G. Birdwell, C. Tan, M. Dubey, H. Gullapalli, Z. Liu, A. L. M. Reddy, and P. M. Ajayan, “Increased mobility for layer-by-layer transferred chemical vapor deposited graphene/boron-nitride thin films,” Appl. Phys. Lett. 102, 103115 (2013).
[Crossref]

Neacsu, C. C.

C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source,” Nano Lett. 7, 2784–2788 (2007).
[Crossref] [PubMed]

Neuner, B.

Ng, S.

S. Lee, S. Ng, K. Saw, Z. Hassan, and H. A. Hassan, “Surface phonon polariton characteristics of bulk wurtzite ZnO crystal,” Physica B 406, 115–118 (2011).
[Crossref]

Nicklow, R. M.

G. Dolling, H. G. Smith, R. M. Nicklow, P. R. Vijayaraghavan, and M. K. Wilkinson, “Lattice dynamics of lithium fluoride,” Phys. Rev. 168, 970–979 (1968).
[Crossref]

Nishimura, Y.

K. Tsushima, S. Mori, Y. Nishimura, K. Hishii, K. Kasahara, T. Yaji, H. Miyazaki, N. Ikeda, M. Ochiai, H. Oosato, and Y. Sugimoto, “Observation of the enhancement of the electric field normal to the surface of mid-infrared slot antennas,” in “IEEE 2013 7th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics,” (IEEE, 2013), pp. 508–510.

Ochiai, M.

K. Tsushima, S. Mori, Y. Nishimura, K. Hishii, K. Kasahara, T. Yaji, H. Miyazaki, N. Ikeda, M. Ochiai, H. Oosato, and Y. Sugimoto, “Observation of the enhancement of the electric field normal to the surface of mid-infrared slot antennas,” in “IEEE 2013 7th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics,” (IEEE, 2013), pp. 508–510.

Ong, H. C.

D. Y. Lei, J. T. K. Wan, and H. C. Ong, “Numerical and analytical evaluations of the sensing sensitivity of waveguide mode in one-dimensional metallic gratings,” Nanotechnology 23, 275501 (2012).
[Crossref] [PubMed]

Oosato, H.

K. Tsushima, S. Mori, Y. Nishimura, K. Hishii, K. Kasahara, T. Yaji, H. Miyazaki, N. Ikeda, M. Ochiai, H. Oosato, and Y. Sugimoto, “Observation of the enhancement of the electric field normal to the surface of mid-infrared slot antennas,” in “IEEE 2013 7th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics,” (IEEE, 2013), pp. 508–510.

Ottesen, D. K.

T. A. Friedmann, P. B. Mirkarimi, D. L. Medlin, K. F. McCarty, E. J. Klaus, D. R. Boehme, H. A. Johnsen, M. J. Mills, D. K. Ottesen, and J. C. Barbour, “Ion-assisted pulsed laser deposition of cubic boron nitride films,” J. Appl. Phys. 76, 3088 (1994).
[Crossref]

Otto, A.

A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,” Z. Angew. Phys. 216, 398–410 (1968).

Pagès, O.

R. H. Hussein, O. Pagès, F. Firszt, W. Paszkowicz, and A. Maillard, “Near-forward raman scattering by bulk and surface phonon-polaritons in the model percolation-type ZnBeSe alloy,” Appl. Phys. Lett. 103, 071912 (2013).
[Crossref]

Parker, T. J.

A. A. Hamilton, T. Dumelow, T. J. Parker, and S. R. P. Smith, “Far infrared attenuated total reflection spectroscopy for investigating superlattice phonon parameters,” J. Phys.: Condens. Matter 8, 8027–8039 (1996).

Paszkowicz, W.

R. H. Hussein, O. Pagès, F. Firszt, W. Paszkowicz, and A. Maillard, “Near-forward raman scattering by bulk and surface phonon-polaritons in the model percolation-type ZnBeSe alloy,” Appl. Phys. Lett. 103, 071912 (2013).
[Crossref]

Pei, H.

D. Ju, Y. Jiang, and H. Pei, “Controllable mode hybridization and interaction within a plasmonic cavity formed by two bimetallic gratings,” Plasmonics 8, 1387–1394 (2013).
[Crossref]

Platt, B. C.

Provine, J.

J. Provine, C. Roper, J. A. Schuller, M. L. Brongersma, R. Maboudian, and R. T. Howe, “The dependence of poly-crystalline SiC mid-infrared optical properties on deposition conditions,” in “2008 IEEE/LEOS International Conference on Optical MEMs and Nanophotonics,” (IEEE, 2008), pp. 182–183.

Raschke, M. B.

C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source,” Nano Lett. 7, 2784–2788 (2007).
[Crossref] [PubMed]

Reddy, A. L. M.

O. M. Nayfeh, A. G. Birdwell, C. Tan, M. Dubey, H. Gullapalli, Z. Liu, A. L. M. Reddy, and P. M. Ajayan, “Increased mobility for layer-by-layer transferred chemical vapor deposited graphene/boron-nitride thin films,” Appl. Phys. Lett. 102, 103115 (2013).
[Crossref]

Rensing, R. G.

X. G. Xu, J.-H. Jiang, L. Gilburd, R. G. Rensing, K. S. Burch, C. Zhi, Y. Bando, D. Golberg, and G. C. Walker, “Mid-infrared polaritonic coupling between boron nitride nanotubes and graphene,” ACS Nano 8, 11305–11312 (2014).
[Crossref] [PubMed]

Roper, C.

J. Provine, C. Roper, J. A. Schuller, M. L. Brongersma, R. Maboudian, and R. T. Howe, “The dependence of poly-crystalline SiC mid-infrared optical properties on deposition conditions,” in “2008 IEEE/LEOS International Conference on Optical MEMs and Nanophotonics,” (IEEE, 2008), pp. 182–183.

Ropers, C.

C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source,” Nano Lett. 7, 2784–2788 (2007).
[Crossref] [PubMed]

Sabataityte, J.

N. Dmitruk, T. Barlas, I. Dmitruk, S. Kutovyi, N. Berezovska, J. Sabataityte, and I. Simkiene, “IR reflection, attenuated total reflection, and raman scattering of porous polar III–V semiconductors,” Phys. Stat. Solidi (B) 247, 955–961 (2010).

Sahoo, B.

P. K. Mishra and B. Sahoo, “Growth of amorphous carbon and graphene on pulse laser deposited SiC films and their characterization studies,” Laser Part. Beams 31, 63–71 (2012).
[Crossref]

Saw, K.

S. Lee, S. Ng, K. Saw, Z. Hassan, and H. A. Hassan, “Surface phonon polariton characteristics of bulk wurtzite ZnO crystal,” Physica B 406, 115–118 (2011).
[Crossref]

Schuller, J. A.

J. Provine, C. Roper, J. A. Schuller, M. L. Brongersma, R. Maboudian, and R. T. Howe, “The dependence of poly-crystalline SiC mid-infrared optical properties on deposition conditions,” in “2008 IEEE/LEOS International Conference on Optical MEMs and Nanophotonics,” (IEEE, 2008), pp. 182–183.

Shirakata, S.

T. Terasako, H. Song, H. Makino, S. Shirakata, and T. Yamamoto, “Temperature dependence of electrical properties of Ga-doped ZnO films deposited by ion plating with DC arc discharge,” Thin Solid Films 528, 19–25 (2013).
[Crossref]

Shvets, G.

Simkiene, I.

N. Dmitruk, T. Barlas, I. Dmitruk, S. Kutovyi, N. Berezovska, J. Sabataityte, and I. Simkiene, “IR reflection, attenuated total reflection, and raman scattering of porous polar III–V semiconductors,” Phys. Stat. Solidi (B) 247, 955–961 (2010).

Smith, H. G.

G. Dolling, H. G. Smith, R. M. Nicklow, P. R. Vijayaraghavan, and M. K. Wilkinson, “Lattice dynamics of lithium fluoride,” Phys. Rev. 168, 970–979 (1968).
[Crossref]

Smith, S. R. P.

A. A. Hamilton, T. Dumelow, T. J. Parker, and S. R. P. Smith, “Far infrared attenuated total reflection spectroscopy for investigating superlattice phonon parameters,” J. Phys.: Condens. Matter 8, 8027–8039 (1996).

Song, H.

T. Terasako, H. Song, H. Makino, S. Shirakata, and T. Yamamoto, “Temperature dependence of electrical properties of Ga-doped ZnO films deposited by ion plating with DC arc discharge,” Thin Solid Films 528, 19–25 (2013).
[Crossref]

Sugimoto, Y.

K. Tsushima, S. Mori, Y. Nishimura, K. Hishii, K. Kasahara, T. Yaji, H. Miyazaki, N. Ikeda, M. Ochiai, H. Oosato, and Y. Sugimoto, “Observation of the enhancement of the electric field normal to the surface of mid-infrared slot antennas,” in “IEEE 2013 7th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics,” (IEEE, 2013), pp. 508–510.

Takama, N.

T. Tokunaga, L. Tranchant, N. Takama, S. Volz, and B. Kim, “Experimental study of heat transfer in micro glass tubes mediated by surface phonon polaritons,” J. Phys.: Conf. Ser. 395, 012108 (2012).

Tan, C.

O. M. Nayfeh, A. G. Birdwell, C. Tan, M. Dubey, H. Gullapalli, Z. Liu, A. L. M. Reddy, and P. M. Ajayan, “Increased mobility for layer-by-layer transferred chemical vapor deposited graphene/boron-nitride thin films,” Appl. Phys. Lett. 102, 103115 (2013).
[Crossref]

Tatian, B.

Taubner, T.

Y. Chen, Y. Francescato, J. D. Caldwell, V. Giannini, T. W. W. Maß, O. J. Glembocki, F. J. Bezares, T. Taubner, R. Kasica, M. Hong, and S. A. Maier, “Spectral tuning of localized surface phonon polariton resonators for low-loss mid-IR applications,” ACS Photon. 1, 718–724 (2014).
[Crossref]

Terasako, T.

T. Terasako, H. Song, H. Makino, S. Shirakata, and T. Yamamoto, “Temperature dependence of electrical properties of Ga-doped ZnO films deposited by ion plating with DC arc discharge,” Thin Solid Films 528, 19–25 (2013).
[Crossref]

Tokunaga, T.

T. Tokunaga, L. Tranchant, N. Takama, S. Volz, and B. Kim, “Experimental study of heat transfer in micro glass tubes mediated by surface phonon polaritons,” J. Phys.: Conf. Ser. 395, 012108 (2012).

Tranchant, L.

T. Tokunaga, L. Tranchant, N. Takama, S. Volz, and B. Kim, “Experimental study of heat transfer in micro glass tubes mediated by surface phonon polaritons,” J. Phys.: Conf. Ser. 395, 012108 (2012).

Tsushima, K.

K. Tsushima, S. Mori, Y. Nishimura, K. Hishii, K. Kasahara, T. Yaji, H. Miyazaki, N. Ikeda, M. Ochiai, H. Oosato, and Y. Sugimoto, “Observation of the enhancement of the electric field normal to the surface of mid-infrared slot antennas,” in “IEEE 2013 7th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics,” (IEEE, 2013), pp. 508–510.

Vaillon, R.

M. Francoeur, M. P. Mengüç, and R. Vaillon, “Control of near-field radiative heat transfer via surface phonon–polariton coupling in thin films,” Appl. Phys. A 103, 547–550 (2011).
[Crossref]

Vijayaraghavan, P. R.

G. Dolling, H. G. Smith, R. M. Nicklow, P. R. Vijayaraghavan, and M. K. Wilkinson, “Lattice dynamics of lithium fluoride,” Phys. Rev. 168, 970–979 (1968).
[Crossref]

Volz, S.

T. Tokunaga, L. Tranchant, N. Takama, S. Volz, and B. Kim, “Experimental study of heat transfer in micro glass tubes mediated by surface phonon polaritons,” J. Phys.: Conf. Ser. 395, 012108 (2012).

Walker, G. C.

X. G. Xu, J.-H. Jiang, L. Gilburd, R. G. Rensing, K. S. Burch, C. Zhi, Y. Bando, D. Golberg, and G. C. Walker, “Mid-infrared polaritonic coupling between boron nitride nanotubes and graphene,” ACS Nano 8, 11305–11312 (2014).
[Crossref] [PubMed]

B. G. Ghamsari, X. G. Xu, L. Gilburd, G. C. Walker, and P. Berini, “Mid-infrared surface phonon polaritons in boron-nitride nanotubes,” J. Opt. 16, 114008 (2014).
[Crossref]

Wan, J. T. K.

D. Y. Lei, J. T. K. Wan, and H. C. Ong, “Numerical and analytical evaluations of the sensing sensitivity of waveguide mode in one-dimensional metallic gratings,” Nanotechnology 23, 275501 (2012).
[Crossref] [PubMed]

Wang, L.

S. Basu, Y. Yang, and L. Wang, “Near-field radiative heat transfer between metamaterials coated with silicon carbide thin films,” Appl. Phys. Lett. 106, 033106 (2015).
[Crossref]

L. Wang, B. Lee, X. Wang, and Z. Zhang, “Spatial and temporal coherence of thermal radiation in asymmetric fabry–perot resonance cavities,” Int. J. Heat Mass Transf. 52, 3024–3031 (2009).
[Crossref]

Wang, L. P.

L. P. Wang, S. Basu, and Z. M. Zhang, “Direct measurement of thermal emission from a fabry–perot cavity resonator,” J. Heat Transf. 134, 072701 (2012).
[Crossref]

Wang, S. S.

Wang, X.

L. Wang, B. Lee, X. Wang, and Z. Zhang, “Spatial and temporal coherence of thermal radiation in asymmetric fabry–perot resonance cavities,” Int. J. Heat Mass Transf. 52, 3024–3031 (2009).
[Crossref]

Wilkinson, M. K.

G. Dolling, H. G. Smith, R. M. Nicklow, P. R. Vijayaraghavan, and M. K. Wilkinson, “Lattice dynamics of lithium fluoride,” Phys. Rev. 168, 970–979 (1968).
[Crossref]

Wolfe, W. L.

Wu, Y.

Xu, X. G.

B. G. Ghamsari, X. G. Xu, L. Gilburd, G. C. Walker, and P. Berini, “Mid-infrared surface phonon polaritons in boron-nitride nanotubes,” J. Opt. 16, 114008 (2014).
[Crossref]

X. G. Xu, J.-H. Jiang, L. Gilburd, R. G. Rensing, K. S. Burch, C. Zhi, Y. Bando, D. Golberg, and G. C. Walker, “Mid-infrared polaritonic coupling between boron nitride nanotubes and graphene,” ACS Nano 8, 11305–11312 (2014).
[Crossref] [PubMed]

Yaji, T.

K. Tsushima, S. Mori, Y. Nishimura, K. Hishii, K. Kasahara, T. Yaji, H. Miyazaki, N. Ikeda, M. Ochiai, H. Oosato, and Y. Sugimoto, “Observation of the enhancement of the electric field normal to the surface of mid-infrared slot antennas,” in “IEEE 2013 7th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics,” (IEEE, 2013), pp. 508–510.

Yamamoto, T.

T. Terasako, H. Song, H. Makino, S. Shirakata, and T. Yamamoto, “Temperature dependence of electrical properties of Ga-doped ZnO films deposited by ion plating with DC arc discharge,” Thin Solid Films 528, 19–25 (2013).
[Crossref]

Yang, Y.

S. Basu, Y. Yang, and L. Wang, “Near-field radiative heat transfer between metamaterials coated with silicon carbide thin films,” Appl. Phys. Lett. 106, 033106 (2015).
[Crossref]

Yu, M.

Zhang, Z.

L. Wang, B. Lee, X. Wang, and Z. Zhang, “Spatial and temporal coherence of thermal radiation in asymmetric fabry–perot resonance cavities,” Int. J. Heat Mass Transf. 52, 3024–3031 (2009).
[Crossref]

Zhang, Z. M.

L. P. Wang, S. Basu, and Z. M. Zhang, “Direct measurement of thermal emission from a fabry–perot cavity resonator,” J. Heat Transf. 134, 072701 (2012).
[Crossref]

Zhi, C.

X. G. Xu, J.-H. Jiang, L. Gilburd, R. G. Rensing, K. S. Burch, C. Zhi, Y. Bando, D. Golberg, and G. C. Walker, “Mid-infrared polaritonic coupling between boron nitride nanotubes and graphene,” ACS Nano 8, 11305–11312 (2014).
[Crossref] [PubMed]

Zhou, W.

ACS Nano (1)

X. G. Xu, J.-H. Jiang, L. Gilburd, R. G. Rensing, K. S. Burch, C. Zhi, Y. Bando, D. Golberg, and G. C. Walker, “Mid-infrared polaritonic coupling between boron nitride nanotubes and graphene,” ACS Nano 8, 11305–11312 (2014).
[Crossref] [PubMed]

ACS Photon. (1)

Y. Chen, Y. Francescato, J. D. Caldwell, V. Giannini, T. W. W. Maß, O. J. Glembocki, F. J. Bezares, T. Taubner, R. Kasica, M. Hong, and S. A. Maier, “Spectral tuning of localized surface phonon polariton resonators for low-loss mid-IR applications,” ACS Photon. 1, 718–724 (2014).
[Crossref]

Adv. Opt. Photon. (1)

Appl. Opt. (3)

Appl. Phys. A (1)

M. Francoeur, M. P. Mengüç, and R. Vaillon, “Control of near-field radiative heat transfer via surface phonon–polariton coupling in thin films,” Appl. Phys. A 103, 547–550 (2011).
[Crossref]

Appl. Phys. Lett. (3)

S. Basu, Y. Yang, and L. Wang, “Near-field radiative heat transfer between metamaterials coated with silicon carbide thin films,” Appl. Phys. Lett. 106, 033106 (2015).
[Crossref]

R. H. Hussein, O. Pagès, F. Firszt, W. Paszkowicz, and A. Maillard, “Near-forward raman scattering by bulk and surface phonon-polaritons in the model percolation-type ZnBeSe alloy,” Appl. Phys. Lett. 103, 071912 (2013).
[Crossref]

O. M. Nayfeh, A. G. Birdwell, C. Tan, M. Dubey, H. Gullapalli, Z. Liu, A. L. M. Reddy, and P. M. Ajayan, “Increased mobility for layer-by-layer transferred chemical vapor deposited graphene/boron-nitride thin films,” Appl. Phys. Lett. 102, 103115 (2013).
[Crossref]

Front. Heat Mass Transf. (1)

D.-Z. A. Chen and G. Chen, “Heat flow in thin films via surface phonon-polaritons,” Front. Heat Mass Transf. 1, 023005 (2010).
[Crossref]

Int. J. Heat Mass Transf. (1)

L. Wang, B. Lee, X. Wang, and Z. Zhang, “Spatial and temporal coherence of thermal radiation in asymmetric fabry–perot resonance cavities,” Int. J. Heat Mass Transf. 52, 3024–3031 (2009).
[Crossref]

J. Appl. Phys. (1)

T. A. Friedmann, P. B. Mirkarimi, D. L. Medlin, K. F. McCarty, E. J. Klaus, D. R. Boehme, H. A. Johnsen, M. J. Mills, D. K. Ottesen, and J. C. Barbour, “Ion-assisted pulsed laser deposition of cubic boron nitride films,” J. Appl. Phys. 76, 3088 (1994).
[Crossref]

J. Heat Transf. (1)

L. P. Wang, S. Basu, and Z. M. Zhang, “Direct measurement of thermal emission from a fabry–perot cavity resonator,” J. Heat Transf. 134, 072701 (2012).
[Crossref]

J. Opt. (1)

B. G. Ghamsari, X. G. Xu, L. Gilburd, G. C. Walker, and P. Berini, “Mid-infrared surface phonon polaritons in boron-nitride nanotubes,” J. Opt. 16, 114008 (2014).
[Crossref]

J. Phys. Chem. Ref. Data (1)

H. H. Li, “Refractive index of alkali halides and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 5, 329 (1976).
[Crossref]

J. Phys.: Condens. Matter (1)

A. A. Hamilton, T. Dumelow, T. J. Parker, and S. R. P. Smith, “Far infrared attenuated total reflection spectroscopy for investigating superlattice phonon parameters,” J. Phys.: Condens. Matter 8, 8027–8039 (1996).

J. Phys.: Conf. Ser. (1)

T. Tokunaga, L. Tranchant, N. Takama, S. Volz, and B. Kim, “Experimental study of heat transfer in micro glass tubes mediated by surface phonon polaritons,” J. Phys.: Conf. Ser. 395, 012108 (2012).

Laser Part. Beams (1)

P. K. Mishra and B. Sahoo, “Growth of amorphous carbon and graphene on pulse laser deposited SiC films and their characterization studies,” Laser Part. Beams 31, 63–71 (2012).
[Crossref]

Nano Lett. (1)

C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source,” Nano Lett. 7, 2784–2788 (2007).
[Crossref] [PubMed]

Nanotechnology (1)

D. Y. Lei, J. T. K. Wan, and H. C. Ong, “Numerical and analytical evaluations of the sensing sensitivity of waveguide mode in one-dimensional metallic gratings,” Nanotechnology 23, 275501 (2012).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Lett. (2)

Phys. Rev. (1)

G. Dolling, H. G. Smith, R. M. Nicklow, P. R. Vijayaraghavan, and M. K. Wilkinson, “Lattice dynamics of lithium fluoride,” Phys. Rev. 168, 970–979 (1968).
[Crossref]

Phys. Stat. Solidi (B) (1)

N. Dmitruk, T. Barlas, I. Dmitruk, S. Kutovyi, N. Berezovska, J. Sabataityte, and I. Simkiene, “IR reflection, attenuated total reflection, and raman scattering of porous polar III–V semiconductors,” Phys. Stat. Solidi (B) 247, 955–961 (2010).

Physica B (1)

S. Lee, S. Ng, K. Saw, Z. Hassan, and H. A. Hassan, “Surface phonon polariton characteristics of bulk wurtzite ZnO crystal,” Physica B 406, 115–118 (2011).
[Crossref]

Plasmonics (1)

D. Ju, Y. Jiang, and H. Pei, “Controllable mode hybridization and interaction within a plasmonic cavity formed by two bimetallic gratings,” Plasmonics 8, 1387–1394 (2013).
[Crossref]

Thin Solid Films (1)

T. Terasako, H. Song, H. Makino, S. Shirakata, and T. Yamamoto, “Temperature dependence of electrical properties of Ga-doped ZnO films deposited by ion plating with DC arc discharge,” Thin Solid Films 528, 19–25 (2013).
[Crossref]

Z. Angew. Phys. (1)

A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,” Z. Angew. Phys. 216, 398–410 (1968).

Other (2)

J. Provine, C. Roper, J. A. Schuller, M. L. Brongersma, R. Maboudian, and R. T. Howe, “The dependence of poly-crystalline SiC mid-infrared optical properties on deposition conditions,” in “2008 IEEE/LEOS International Conference on Optical MEMs and Nanophotonics,” (IEEE, 2008), pp. 182–183.

K. Tsushima, S. Mori, Y. Nishimura, K. Hishii, K. Kasahara, T. Yaji, H. Miyazaki, N. Ikeda, M. Ochiai, H. Oosato, and Y. Sugimoto, “Observation of the enhancement of the electric field normal to the surface of mid-infrared slot antennas,” in “IEEE 2013 7th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics,” (IEEE, 2013), pp. 508–510.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Four schemes for excitation of SPhPs. (a) prism based Kretschmann configuration, (b) prism based Otto configuration, (c) grating coupled SPhPs, and (d) modified grating-coupled Otto configuration. Different field distributions of this structure are shown in Fig. 8
Fig. 2
Fig. 2 shows complex permittivity of SiC as calculated by the Drude model with ωLO = 972 cm−1 at λLO = 10.288 µm, the transverse optical phonon frequency ωTO = 796 cm−1 at λTO = 12.563 µm, the damping rate due to vibrational anharmonicity γ = 3.75 cm−1, and the high-frequency dielectric constant ε = 6.5.
Fig. 3
Fig. 3 shows (a) the simulated zeroth order reflectance for the system shown in Fig. 1(d) as a function of spacer thickness ds and incident wavelength λ0 with normal incidence and the electric field parallel to the grating vector and (b) corresponding phase profile (radians) of the zeroth order reflectance.
Fig. 4
Fig. 4 (a) shows penetration depth and refractive index seen by phonon field. (b) shows the lines where kphonon match the kg calculated from the approximate dispersion relation for the 1st diffracted order (blue), 2nd diffracted order (red), 3rd diffracted order (yellow) and 4th diffracted order (magenta) as a function of spacing layer thickness and incident wavelength.
Fig. 5
Fig. 5 (a) zeroth order reflectance as a function of spacer thickness ds and incident wavelength λ0 with normal incidence and the electric field parallel to the grating vector for case (i) and (b) corresponding phase profile of the zeroth order reflectance for case (i) (real part of complex permittivity is zero, that is no SPhP excitation). (c) and (d) show similar results to (a) and (b) for case (ii) (imaginary part of complex permittivity is zero, no losses).
Fig. 6
Fig. 6 shows FP cavity thickness ds calculated using Eq. 7 (red curve) in comparison with the FP cavity position calculated using RCWA (black curve) for M=1.
Fig. 7
Fig. 7 shows (a) zeroth order reflectance as a function of spacer made of KBr with refractive index of 1.5, thickness ds and incident wavelength λ0 with normal incidence and the electric field parallel to the grating vector for ns =1.5 and (b) corresponding phase profile of the zeroth order reflectance for ns =1.5
Fig. 8
Fig. 8 shows normalized magnetic field distribution, Hy/Hinc|, for the following operating points. (a) DWGR mode at λ0 of 10.67 µm and ds of 0.25 µm corresponding to ‘A’ in Fig. 3(a). It is clear this mode is strongly confined to the grating. (b) SPhPs excited by the 4th diffracted order at λ0 of 10.90 µm and ds of 0.25 µm corresponding to ‘B’ in Fig. 3(a). (c) SPhPs excited by the 3rd diffracted order at λ0 of 11.12 µm and ds of 0.25 µm corresponding to ‘C’ in Fig. 3(a). (d) SPhPs excited by the 2nd diffracted order at λ0 of 11.98 µm and ds of 0.25 µm corresponding to ‘D’ in Fig. 3(a). (e) FP cavity mode at λ0 of 10.34 µm and ds of 2.00 µm corresponding to ‘E’ in Fig. 3(a). (f) Hybridized position between DWGR and FP cavity at λ0 of 10.79 µm and ds of 3.66 µm corresponding to ‘F’ in Fig. 3(a). (g) FP cavity at λ0 of 10.85 µm and ds of 3.82 µm corresponding to ‘G’ in Fig. 3(a). (h) Hybridized position between SPhPs excited by the 2nd diffracted order and FP cavity at λ0 of 10.87 µm and ds of 3.82 µm corresponding to ‘H’ in Fig. 3(a). (i) FP cavity at λ0 of 10.90 µm and ds of 3.82 µm corresponding to ‘I’ in Fig. 3(a).
Fig. 9
Fig. 9 shows local refractive index sensitivity measurement method.
Fig. 10
Fig. 10 shows (a) sensitivity and (b) figure of merit for a hybrid device with spacing layer made of LiF of 0.25 µm thickness. The local refractive index on the top of SiC material was varied by changing the refractive index of LiF from 1.02 to 1.03 [32] with varied thickness h.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

ε S i C ( ω ) = ε ω 2 ω L O 2 + i γ ω ω 2 ω T O 2 + i γ ω
k x m = m k g = m 2 π λ g
k p h o n o n ( λ 0 ) = 2 π λ 0 ε S i C ( λ 0 ) ε e f f ε S i C ( λ 0 ) + ε e f f
k z ( λ 0 ) = ( 2 π ε s λ 0 ) 2 k x m 2 ( λ 0 )
ε e f f = n e f f 2 = | z = 0 z = d s n s e i k z z d z + z = d s z = d s + h g n g r a t i n g e i k z z d z + z = d s + h g z = e i k z z d z z = 0 z = e i k z z d z |
m a x { n i n c , n s } | n a v g g r a t i n g | < n g
2 β + ϕ 1 + ϕ 2 = 2 M π

Metrics