Abstract

We present a novel approach for the generation of high extinction-ratio square pulses based on self-phase modulation of sinusoidally modulated optical signals (SMOS). A SMOS in a nonlinear medium experiences self-phase modulation induced by the nonlinear Kerr effect leading to the generation of distinct sidebands. A small variation in the peak power of the SMOS leads to a large variation in the power of the sidebands. Impressing a square pulse on the SMOS and filtering a sideband component results in a higher extinction-ratio square pulse. The advantage of high extinction-ratio pulses is demonstrated by a reduced background noise level in the Rayleigh backscattering traces of a phase-OTDR vibration measurement system.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Influence of finite extinction ratio on performance of phase-sensitive optical time-domain reflectometry

Meiqi Ren, Da-Peng Zhou, Liang Chen, and Xiaoyi Bao
Opt. Express 24(12) 13325-13333 (2016)

Enhanced phase-sensitive OTDR system with pulse width modulation Brillouin amplification

Haijun He, Bin Luo, Xihua Zou, Wei Pan, and Lianshan Yan
Opt. Express 26(18) 23714-23727 (2018)

Sensitivity enhancement beyond the wavelength limit in a novel sub-micron displacement sensor

Chams Baker, Liang Chen, and Xiaoyi Bao
Opt. Express 23(14) 17838-17844 (2015)

References

  • View by:
  • |
  • |
  • |

  1. H. F. Taylor and C. E. Lee, “Apparatus and method for fiber optic intrusion sensing,” (1993). US Patent5,194,847.
  2. Y. Lu, L. Chen, and X. Bao, “Distibuted vibration sensor based on coherent detection of phase-OTDR,” J. Lightw. Technol. 28, 3243–3249 (2010).
  3. A. Argyris, H. Simos, A. Ikiades, E. Roditi, and D. Syvridis, “Extinction ratio improvement by four-wave mixing in dispersion-shifted fibre,” Elec. Lett. 39, 230–232 (2003).
    [Crossref]
  4. K. K. Chow, C. Shu, C. Lin, and A. Bjarklev, “Extinction ratio improvement by pump-modulated four-wave mixing in a dispersion-flattened nonlinear photonic crystal fiber,” Opt. Express 13, 8900–8905 (2005).
    [Crossref] [PubMed]
  5. J. De Merlier, G. Morthier, T. Van Caenegem, R. Baets, I. Moerman, and P. Van Daele, “Experimental demonstration of 15 dB extinction ratio improvement in a new 2R optical regenerator based on an MMI-SOA,” European Conference on Optical Communications (2001).
  6. S. Jensen, “The nonlinear coherent coupler,” IEEE J. of Quantum Electron. 18, 1580–1583 (1982).
    [Crossref]
  7. S. Trillo, S. Wabnitz, E. M. Wright, and G. I. Stegeman, “Soliton switching in fiber nonlinear directional couplers,” Opt. Lett. 13, 672–674 (1988).
    [Crossref] [PubMed]
  8. P. Mamyshev, “All optical data regeneration based on self-phase modulation effect,” ECOC 98, 475–476 (1998).
  9. A. Dandridge, A. B. Tveten, and T. G. Giallorenzi, “Homodyne demodulation scheme for fiber optic sensors using phase generated carrier,” IEEE Trans. on Microwave Theory and Tech. 30, 1635–1641 (1982).
    [Crossref]
  10. A. Boskovic, S. V. Chernikov, J. R. Taylor, L. Gruner-Nielsen, and O. A. Levring, “Direct continuous-wave measurement of n2 in various types of telecommunication fiber at 1.55 µ m,” Opt. Lett. 21, 1966–1968 (1996).
    [Crossref] [PubMed]

2010 (1)

Y. Lu, L. Chen, and X. Bao, “Distibuted vibration sensor based on coherent detection of phase-OTDR,” J. Lightw. Technol. 28, 3243–3249 (2010).

2005 (1)

2003 (1)

A. Argyris, H. Simos, A. Ikiades, E. Roditi, and D. Syvridis, “Extinction ratio improvement by four-wave mixing in dispersion-shifted fibre,” Elec. Lett. 39, 230–232 (2003).
[Crossref]

1998 (1)

P. Mamyshev, “All optical data regeneration based on self-phase modulation effect,” ECOC 98, 475–476 (1998).

1996 (1)

1988 (1)

1982 (2)

A. Dandridge, A. B. Tveten, and T. G. Giallorenzi, “Homodyne demodulation scheme for fiber optic sensors using phase generated carrier,” IEEE Trans. on Microwave Theory and Tech. 30, 1635–1641 (1982).
[Crossref]

S. Jensen, “The nonlinear coherent coupler,” IEEE J. of Quantum Electron. 18, 1580–1583 (1982).
[Crossref]

Argyris, A.

A. Argyris, H. Simos, A. Ikiades, E. Roditi, and D. Syvridis, “Extinction ratio improvement by four-wave mixing in dispersion-shifted fibre,” Elec. Lett. 39, 230–232 (2003).
[Crossref]

Baets, R.

J. De Merlier, G. Morthier, T. Van Caenegem, R. Baets, I. Moerman, and P. Van Daele, “Experimental demonstration of 15 dB extinction ratio improvement in a new 2R optical regenerator based on an MMI-SOA,” European Conference on Optical Communications (2001).

Bao, X.

Y. Lu, L. Chen, and X. Bao, “Distibuted vibration sensor based on coherent detection of phase-OTDR,” J. Lightw. Technol. 28, 3243–3249 (2010).

Bjarklev, A.

Boskovic, A.

Chen, L.

Y. Lu, L. Chen, and X. Bao, “Distibuted vibration sensor based on coherent detection of phase-OTDR,” J. Lightw. Technol. 28, 3243–3249 (2010).

Chernikov, S. V.

Chow, K. K.

Dandridge, A.

A. Dandridge, A. B. Tveten, and T. G. Giallorenzi, “Homodyne demodulation scheme for fiber optic sensors using phase generated carrier,” IEEE Trans. on Microwave Theory and Tech. 30, 1635–1641 (1982).
[Crossref]

De Merlier, J.

J. De Merlier, G. Morthier, T. Van Caenegem, R. Baets, I. Moerman, and P. Van Daele, “Experimental demonstration of 15 dB extinction ratio improvement in a new 2R optical regenerator based on an MMI-SOA,” European Conference on Optical Communications (2001).

Giallorenzi, T. G.

A. Dandridge, A. B. Tveten, and T. G. Giallorenzi, “Homodyne demodulation scheme for fiber optic sensors using phase generated carrier,” IEEE Trans. on Microwave Theory and Tech. 30, 1635–1641 (1982).
[Crossref]

Gruner-Nielsen, L.

Ikiades, A.

A. Argyris, H. Simos, A. Ikiades, E. Roditi, and D. Syvridis, “Extinction ratio improvement by four-wave mixing in dispersion-shifted fibre,” Elec. Lett. 39, 230–232 (2003).
[Crossref]

Jensen, S.

S. Jensen, “The nonlinear coherent coupler,” IEEE J. of Quantum Electron. 18, 1580–1583 (1982).
[Crossref]

Lee, C. E.

H. F. Taylor and C. E. Lee, “Apparatus and method for fiber optic intrusion sensing,” (1993). US Patent5,194,847.

Levring, O. A.

Lin, C.

Lu, Y.

Y. Lu, L. Chen, and X. Bao, “Distibuted vibration sensor based on coherent detection of phase-OTDR,” J. Lightw. Technol. 28, 3243–3249 (2010).

Mamyshev, P.

P. Mamyshev, “All optical data regeneration based on self-phase modulation effect,” ECOC 98, 475–476 (1998).

Moerman, I.

J. De Merlier, G. Morthier, T. Van Caenegem, R. Baets, I. Moerman, and P. Van Daele, “Experimental demonstration of 15 dB extinction ratio improvement in a new 2R optical regenerator based on an MMI-SOA,” European Conference on Optical Communications (2001).

Morthier, G.

J. De Merlier, G. Morthier, T. Van Caenegem, R. Baets, I. Moerman, and P. Van Daele, “Experimental demonstration of 15 dB extinction ratio improvement in a new 2R optical regenerator based on an MMI-SOA,” European Conference on Optical Communications (2001).

Roditi, E.

A. Argyris, H. Simos, A. Ikiades, E. Roditi, and D. Syvridis, “Extinction ratio improvement by four-wave mixing in dispersion-shifted fibre,” Elec. Lett. 39, 230–232 (2003).
[Crossref]

Shu, C.

Simos, H.

A. Argyris, H. Simos, A. Ikiades, E. Roditi, and D. Syvridis, “Extinction ratio improvement by four-wave mixing in dispersion-shifted fibre,” Elec. Lett. 39, 230–232 (2003).
[Crossref]

Stegeman, G. I.

Syvridis, D.

A. Argyris, H. Simos, A. Ikiades, E. Roditi, and D. Syvridis, “Extinction ratio improvement by four-wave mixing in dispersion-shifted fibre,” Elec. Lett. 39, 230–232 (2003).
[Crossref]

Taylor, H. F.

H. F. Taylor and C. E. Lee, “Apparatus and method for fiber optic intrusion sensing,” (1993). US Patent5,194,847.

Taylor, J. R.

Trillo, S.

Tveten, A. B.

A. Dandridge, A. B. Tveten, and T. G. Giallorenzi, “Homodyne demodulation scheme for fiber optic sensors using phase generated carrier,” IEEE Trans. on Microwave Theory and Tech. 30, 1635–1641 (1982).
[Crossref]

Van Caenegem, T.

J. De Merlier, G. Morthier, T. Van Caenegem, R. Baets, I. Moerman, and P. Van Daele, “Experimental demonstration of 15 dB extinction ratio improvement in a new 2R optical regenerator based on an MMI-SOA,” European Conference on Optical Communications (2001).

Van Daele, P.

J. De Merlier, G. Morthier, T. Van Caenegem, R. Baets, I. Moerman, and P. Van Daele, “Experimental demonstration of 15 dB extinction ratio improvement in a new 2R optical regenerator based on an MMI-SOA,” European Conference on Optical Communications (2001).

Wabnitz, S.

Wright, E. M.

ECOC (1)

P. Mamyshev, “All optical data regeneration based on self-phase modulation effect,” ECOC 98, 475–476 (1998).

Elec. Lett. (1)

A. Argyris, H. Simos, A. Ikiades, E. Roditi, and D. Syvridis, “Extinction ratio improvement by four-wave mixing in dispersion-shifted fibre,” Elec. Lett. 39, 230–232 (2003).
[Crossref]

IEEE J. of Quantum Electron. (1)

S. Jensen, “The nonlinear coherent coupler,” IEEE J. of Quantum Electron. 18, 1580–1583 (1982).
[Crossref]

IEEE Trans. on Microwave Theory and Tech. (1)

A. Dandridge, A. B. Tveten, and T. G. Giallorenzi, “Homodyne demodulation scheme for fiber optic sensors using phase generated carrier,” IEEE Trans. on Microwave Theory and Tech. 30, 1635–1641 (1982).
[Crossref]

J. Lightw. Technol. (1)

Y. Lu, L. Chen, and X. Bao, “Distibuted vibration sensor based on coherent detection of phase-OTDR,” J. Lightw. Technol. 28, 3243–3249 (2010).

Opt. Express (1)

Opt. Lett. (2)

Other (2)

J. De Merlier, G. Morthier, T. Van Caenegem, R. Baets, I. Moerman, and P. Van Daele, “Experimental demonstration of 15 dB extinction ratio improvement in a new 2R optical regenerator based on an MMI-SOA,” European Conference on Optical Communications (2001).

H. F. Taylor and C. E. Lee, “Apparatus and method for fiber optic intrusion sensing,” (1993). US Patent5,194,847.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Illustration of a square-pulse.
Fig. 2
Fig. 2 Calculated values of a) the sideband power as a function of the nonlinear phase-shift, and b) the output extinction-ratio as a function of the input signal extinction-ratio.
Fig. 3
Fig. 3 a) Schematic of the proposed extinction-ratio enhancement setup, illustrations of spectral and temporal shapes of b) the CW laser signal, c) the SMOS, d) the square-pulse-impressed SMOS, e) the square-pulse-impressed SMOS after experiencing self-phase modulation in the Kerr medium, and f) the square-pulse obtained by filtering the nth-order sideband. BPF: Band-Pass Filter, EOM: Electro-Optic Modulator, KM: Kerr Medium.
Fig. 4
Fig. 4 Calculation of the required extinction-ratio as a function of the FUT length for several pulse durations when ρ = 1.
Fig. 5
Fig. 5 Schematic of the phase-OTDR setup for vibration measurement. BPF: Band-Pass Filter, EDFA: Erbium-doped Fiber Amplifier, EOM: Electro-Optical Modulator, FUT: Fiber Under Test, HP-EDFA: High-power EDFA, KM: Kerr Medium, OSC: Oscilloscope, PC: Polarization Controller, PD: Photo-detector.
Fig. 6
Fig. 6 Measured optical spectra at a) the input, and b) the output of the nonlinear Kerr medium. Measured values of c) the sideband power as a function of the nonlinear phase-shift, and d) the output extinction-ratio as a function of the input signal extinction-ratio.
Fig. 7
Fig. 7 Measured backscattering traces of a) high-ε pulses for a 1.5 km FUT, b) direct-modulation pulses for a 1.5 km FUT, c) high-ε pulses for a 26.5 km FUT, and d) direct-modulation pulses for a 26.5 km FUT.
Fig. 8
Fig. 8 Vibration measurement experimental result from a phase-OTDR system implemented using the proposed high-ε pulse source; a) overlayed squared-difference traces of a 1.5 km FUT showing maximum variation at L = 540.75 m, b) extracted vibration temporal profile at L = 540.75 m for a 1.5 km FUT, c) Zoomed overlayed squared-difference traces of a 26.5 km FUT showing maximum variation at L = 537.70 m, d) extracted vibration temporal profile at L = 537.70 m of a 26.5 km FUT.
Fig. 9
Fig. 9 Calculated output power fluctuations as a function of the input power fluctuations.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

A ( t ) = P p cos ( 0.5 ω s t ) ,
A ( t ) = P p cos ( 0.5 ω s t ) exp [ j γ P ( t ) L ] ,
P ( t ) = | A ( t ) | 2 = P p cos 2 ( 0.5 ω s t ) .
A ( t ) = { n = 0 j n P p exp { 0.5 j ϕ S P M } 2 [ J n ( 0.5 ϕ S P M ) + j J n + 1 ( 0.5 ϕ S P M ) ] e j ( n + 0.5 ) ω s t + n = 0 j n P p exp { 0.5 j ϕ S P M } 2 [ J n ( 0.5 ϕ S P M ) + j J n + 1 ( 0.5 ϕ S P M ) ] e j ( n + 0.5 ) ω s t }
P ( n ) ( ϕ S P M ) = | A ( ω ) | 2 | ω = ± ( n + 0.5 ) ω s = P 0 [ J n 2 ( 0.5 ϕ S P M ) + J n + 1 2 ( 0.5 ϕ S P M ) ]
A B S , m a x ( t , z ) = + z z + 0.5 W α s ( ζ ) A m a x e j 2 β ( t , ζ ) ζ α ζ d ζ ,
max { | A B S , m a x ( t , z ) | } = | A m a x | + z z + 0.5 W | α s ( ζ ) | e α ζ d ζ .
max { | A B S , m a x ( t , z ) | } = α 0 | A m a x | e α z ( 1 e 0.5 α W ) α .
max { | A B S , m i n ( t ) | } = α 0 | A m i n | ( 1 e α L ) α ,
ε r e q = ρ 2 ( e α L 1 ) 2 ( 1 e 0.5 α W ) 2 ,
δ m a x = P m a x P m i n P m a x + P m i n = ( max { | A B S , m a x | } + max { | A B S , m i n | } ) 2 ( max { | A B S , m a x | } max { | A B S , m i n | } ) 2 ( max { | A B S , m a x | } + max { | A B S , m i n | } ) 2 + ( max { | A B S , m a x | } max { | A B S , m i n | } ) 2 = ( ρ + 1 ) 2 ( ρ 1 ) 2 ( ρ + 1 ) 2 + ( ρ 1 ) 2 = 2 ρ 1 + ρ 2 .
ρ = 1 + 1 + δ m a x 2 δ m a x .

Metrics