Abstract

The structural evolution from void modification to self-assembled nanogratings in fused silica is observed for moderate (NA > 0.4) focusing conditions. Void formation, appears before the geometrical focus after the initial few pulses and after subsequent irradiation, nanogratings gradually occur at the top of the induced structures. Nonlinear Schrödinger equation based simulations are conducted to simulate the laser fluence, intensity and electron density in the regions of modification. Comparing the experiment with simulations, the voids form due to cavitation in the regions where electron density exceeds 1020 cm−3 but is below critical. In this scenario, the energy absorption is insufficient to reach the critical electron density that was once assumed to occur in the regime of void formation and nanogratings, shedding light on the potential formation mechanism of nanogratings.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optical seizing and merging of voids in silica glass with infrared femtosecond laser pulses

Wataru Watanabe, Tadamasa Toma, Kazuhiro Yamada, Junji Nishii, Ken-ichi Hayashi, and Kazuyoshi Itoh
Opt. Lett. 25(22) 1669-1671 (2000)

Ultrashort pulse induced modifications in ULE - from nanograting formation to laser darkening

Sören Richter, Doris Möncke, Felix Zimmermann, Efstratios I. Kamitsos, Lothar Wondraczek, Andreas Tünnermann, and Stefan Nolte
Opt. Mater. Express 5(8) 1834-1850 (2015)

Ultrafast laser-induced birefringence in various porosity silica glasses: from fused silica to aerogel

Ausra Cerkauskaite, Rokas Drevinskas, Alexey O. Rybaltovskii, and Peter G. Kazansky
Opt. Express 25(7) 8011-8021 (2017)

References

  • View by:
  • |
  • |
  • |

  1. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
    [Crossref]
  2. K. Sugioka and Y. Cheng, “Ultrafast lasers—reliable tools for advanced materials processing,” Light Sci. Appl. 3(4), e149 (2014).
    [Crossref]
  3. J. W. Chan, T. Huser, S. Risbud, and D. M. Krol, “Structural changes in fused silica after exposure to focused femtosecond laser pulses,” Opt. Lett. 26(21), 1726–1728 (2001).
    [Crossref] [PubMed]
  4. A. M. Streltsov and N. F. Borrelli, “Study of femtosecond-laser-written waveguides in glasses,” J. Opt. Soc. Am. B 19(10), 2496–2504 (2002).
    [Crossref]
  5. A. Zoubir, C. Rivero, R. Grodsky, K. Richardson, M. Richardson, T. Cardinal, and M. Couzi, “Laser-induced defects in fused silica by femtosecond IR irradiation,” Phys. Rev. B 73(22), 224117 (2006).
    [Crossref]
  6. V. R. Bhardwaj, P. B. Corkum, D. M. Rayner, C. Hnatovsky, E. Simova, and R. S. Taylor, “Stress in femtosecond-laser-written waveguides in fused silica,” Opt. Lett. 29(12), 1312–1314 (2004).
    [Crossref] [PubMed]
  7. Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
    [Crossref] [PubMed]
  8. V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96(5), 057404 (2006).
    [Crossref] [PubMed]
  9. E. Bricchi and P. G. Kazansky, “Extraordinary stability of anisotropic femtosecond direct-written structures embedded in silica glass,” Appl. Phys. Lett. 88(11), 111119 (2006).
    [Crossref]
  10. D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, “Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs,” Appl. Phys. Lett. 64(23), 3071–3073 (1994).
    [Crossref]
  11. J. H. Marburger, “Self-focusing: theory,” Prog. Quantum Electron. 4(75), 35–110 (1975).
    [Crossref]
  12. E. N. Glezer and E. Mazur, “Ultrafast-laser driven micro-explosions in transparent materials,” Appl. Phys. Lett. 71(7), 882–884 (1997).
    [Crossref]
  13. S. Juodkazis, H. Misawa, T. Hashimoto, E. G. Gamaly, and B. Luther-Davies, “Laser-induced microexplosion confined in a bulk of silica: Formation of nanovoids,” Appl. Phys. Lett. 88(20), 201909 (2006).
    [Crossref]
  14. S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures,” Phys. Rev. Lett. 96(16), 166101 (2006).
    [Crossref] [PubMed]
  15. S. Kanehira, J. Si, J. Qiu, K. Fujita, and K. Hirao, “Periodic nanovoid structures via femtosecond laser irradiation,” Nano Lett. 5(8), 1591–1595 (2005).
    [Crossref] [PubMed]
  16. E. Toratani, M. Kamata, and M. Obara, “Self-fabrication of void array in fused silica by femtosecond laser processing,” Appl. Phys. Lett. 87(17), 171103 (2005).
    [Crossref]
  17. C. Mauclair, A. Mermillod-Blondin, S. Landon, N. Huot, A. Rosenfeld, I. V. Hertel, E. Audouard, I. Myiamoto, and R. Stoian, “Single-pulse ultrafast laser imprinting of axial dot arrays in bulk glasses,” Opt. Lett. 36(3), 325–327 (2011).
    [Crossref] [PubMed]
  18. H. Y. Sun, J. Song, C. B. Li, J. Xu, X. S. Wang, Y. Cheng, Z. Z. Xu, J. R. Qiu, and T. Q. Jia, “Standing electron plasma wave mechanism of void array formation inside glass by femtosecond laser irradiation,” Appl. Phys., A Mater. Sci. Process. 88(2), 285–288 (2007).
    [Crossref]
  19. A. Vogel, N. Linz, S. Freidank, and G. Paltauf, “Femtosecond-laser-induced nanocavitation in water: implications for optical breakdown threshold and cell surgery,” Phys. Rev. Lett. 100(3), 038102 (2008).
    [Crossref] [PubMed]
  20. R. Taylor, C. Hnatovsky, and E. Simova, “Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica glass,” Laser Photonics Rev. 2(1–2), 26–46 (2008).
    [Crossref]
  21. F. Liang, R. Vallée, and S. L. Chin, “Mechanism of nanograting formation on the surface of fused silica,” Opt. Express 20(4), 4389–4396 (2012).
    [Crossref] [PubMed]
  22. S. Richter, F. Jia, M. Heinrich, S. Döring, U. Peschel, A. Tünnermann, and S. Nolte, “The role of self-trapped excitons and defects in the formation of nanogratings in fused silica,” Opt. Lett. 37(4), 482–484 (2012).
    [Crossref] [PubMed]
  23. M. Beresna, M. Gecevičius, P. G. Kazansky, T. Taylor, and A. V. Kavokin, “Exciton mediated self-organization in glass driven by ultrashort light pulses,” Appl. Phys. Lett. 101(5), 053120 (2012).
    [Crossref]
  24. R. Buividas, L. Rosa, R. Sliupas, T. Kudrius, G. Slekys, V. Datsyuk, and S. Juodkazis, “Mechanism of fine ripple formation on surfaces of (semi)transparent materials via a half-wavelength cavity feedback,” Nanotechnology 22(5), 055304 (2011).
    [Crossref] [PubMed]
  25. Y. Liao, W. Pan, Y. Cui, L. Qiao, Y. Bellouard, K. Sugioka, and Y. Cheng, “Formation of in-volume nanogratings with sub-100-nm periods in glass by femtosecond laser irradiation,” Opt. Lett. 40(15), 3623–3626 (2015).
    [Crossref] [PubMed]
  26. Y. Liao, J. Ni, L. Qiao, M. Huang, Y. Bellouard, K. Sugioka, and Y. Cheng, “High-fidelity visualization of formation of volume nanogratings in porous glass by femtosecond laser irradiation,” Optica 2(4), 329–334 (2015).
    [Crossref]
  27. A. Rudenko, J. Colombier, and T. E. Itina, “From random inhomogeneities to periodic nanostructures induced in bulk silica by ultrashort laser,” Phys. Rev. B 93(7), 075427 (2016).
    [Crossref]
  28. K. Mishchik, C. D’Amico, P. K. Velpula, C. Mauclair, A. Boukenter, Y. Ouerdane, and R. Stoian, “Ultrafast laser induced electronic and structural modifications in bulk fused silica,” J. Appl. Phys. 114(13), 133502 (2013).
    [Crossref]
  29. L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett. 89(18), 186601 (2002).
    [Crossref] [PubMed]
  30. A.-C. Tien, S. Backus, H. Kapteyn, M. Murnane, and G. Mourou, “Short-pulse laser damage in transparent materials as a function of pulse duration,” Phys. Rev. Lett. 82(19), 3883–3886 (1999).
    [Crossref]
  31. M. Lancry, B. Poumellec, J. Canning, K. Cook, J. C. Poulin, and F. Brisset, “Ultrafast nanoporous silica formation driven by femtosecond laser irradiation,” Laser Photonics Rev. 7(6), 953–962 (2013).
    [Crossref]
  32. M. Beresna, M. Gecevičius, M. Lancry, B. Poumellec, and P. G. Kazansky, “Broadband anisotropy of femtosecond laser induced nanogratings in fused silica,” Appl. Phys. Lett. 103(13), 131903 (2013).
    [Crossref]
  33. J. Song, X. Wang, X. Hu, Y. Dai, J. Qiu, Y. Cheng, and Z. Xu, “Formation mechanism of self-organized voids in dielectrics induced by tightly focused femtosecond laser pulses,” Appl. Phys. Lett. 92(9), 092904 (2008).
    [Crossref]
  34. A. Okhrimchuk, V. Mezentsev, H. Schmitz, M. Dubov, and I. Bennion, “Cascaded nonlinear absorption of femtosecond laser pulses in dielectrics,” Laser Phys. 19(7), 1415–1422 (2009).
    [Crossref]
  35. Z. Wu, H. Jiang, L. Luo, H. Guo, H. Yang, and Q. Gong, “Multiple foci and a long filament observed with focused femtosecond pulse propagation in fused silica,” Opt. Lett. 27(6), 448–450 (2002).
    [Crossref] [PubMed]
  36. I. M. Burakov, N. M. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, A. Rosenfeld, A. Husakou, and I. V. Hertel, “Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses,” J. Appl. Phys. 101(4), 043506 (2007).
    [Crossref]
  37. A. Marcinkevičius, V. Mizeikis, S. Juodkazis, S. Matsuo, and H. Misawa, “Effect of refractive index-mismatch on laser microfabrication in silica glass,” Appl. Phys., A Mater. Sci. Process. 76(2), 257–260 (2003).
    [Crossref]
  38. P. Török, P. Varga, Z. Laczik, and G. R. Booker, “Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive indices: an integral representation,” J. Opt. Soc. Am. A 12(2), 325–332 (1995).
    [Crossref]
  39. W. Liu, O. Kosareva, I. S. Golubtsov, A. Iwasaki, A. Becker, V. P. Kandidov, and S. L. Chin, “Femtosecond laser pulse filamentation versus optical breakdown in H2O,” Appl. Phys. B 76(3), 215–229 (2003).
    [Crossref]
  40. A. Couairon, O. G. Kosareva, N. A. Panov, D. E. Shipilo, V. A. Andreeva, V. Jukna, and F. Nesa, “Propagation equation for tight-focusing by a parabolic mirror,” Opt. Express 23(24), 31240–31252 (2015).
    [Crossref] [PubMed]
  41. C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol. 12(11), 1784–1794 (2001).
    [Crossref]
  42. E. G. Gamaly, L. Rapp, V. Roppo, S. Juodkazis, and A. V. Rode, “Generation of high energy density by fs-laser-induced confined microexplosion,” New J. Phys. 15(2), 025018 (2013).
    [Crossref]
  43. K. Mishchik, G. Cheng, G. Huo, I. M. Burakov, C. Mauclair, A. Mermillod-Blondin, A. Rosenfeld, Y. Ouerdane, A. Boukenter, O. Parriaux, and R. Stoian, “Nanosize structural modifications with polarization functions in ultrafast laser irradiated bulk fused silica,” Opt. Express 18(24), 24809–24824 (2010).
    [Crossref] [PubMed]
  44. P. N. Saeta and B. I. Greene, “Primary relaxation processes at the band edge of SiO2.,” Phys. Rev. Lett. 70(23), 3588–3591 (1993).
    [Crossref] [PubMed]
  45. D. G. Papazoglou and S. Tzortzakis, “Physical mechanisms of fused silica restructuring and densification after femtosecond laser excitation,” Opt. Mater. Express 1(4), 625–632 (2011).
    [Crossref]
  46. D. G. Papazoglou, I. Zergioti, and S. Tzortzakis, “Plasma strings from ultraviolet laser filaments drive permanent structural modifications in fused silica,” Opt. Lett. 32(14), 2055–2057 (2007).
    [Crossref] [PubMed]
  47. S. Höhm, A. Rosenfeld, J. Krüger, and J. Bonse, “Femtosecond laser-induced periodic surface structures on silica,” J. Appl. Phys. 112(1), 014901 (2012).
    [Crossref]
  48. P. P. Rajeev, M. Gertsvolf, C. Hnatovsky, E. Simova, R. S. Taylor, P. B. Corkum, D. M. Rayner, and V. R. Bhardwaj, “Transient nanoplasmonics inside dielectrics,” J. Phys. B 40(11), S273–S282 (2007).
    [Crossref]

2016 (1)

A. Rudenko, J. Colombier, and T. E. Itina, “From random inhomogeneities to periodic nanostructures induced in bulk silica by ultrashort laser,” Phys. Rev. B 93(7), 075427 (2016).
[Crossref]

2015 (3)

2014 (1)

K. Sugioka and Y. Cheng, “Ultrafast lasers—reliable tools for advanced materials processing,” Light Sci. Appl. 3(4), e149 (2014).
[Crossref]

2013 (4)

K. Mishchik, C. D’Amico, P. K. Velpula, C. Mauclair, A. Boukenter, Y. Ouerdane, and R. Stoian, “Ultrafast laser induced electronic and structural modifications in bulk fused silica,” J. Appl. Phys. 114(13), 133502 (2013).
[Crossref]

M. Lancry, B. Poumellec, J. Canning, K. Cook, J. C. Poulin, and F. Brisset, “Ultrafast nanoporous silica formation driven by femtosecond laser irradiation,” Laser Photonics Rev. 7(6), 953–962 (2013).
[Crossref]

M. Beresna, M. Gecevičius, M. Lancry, B. Poumellec, and P. G. Kazansky, “Broadband anisotropy of femtosecond laser induced nanogratings in fused silica,” Appl. Phys. Lett. 103(13), 131903 (2013).
[Crossref]

E. G. Gamaly, L. Rapp, V. Roppo, S. Juodkazis, and A. V. Rode, “Generation of high energy density by fs-laser-induced confined microexplosion,” New J. Phys. 15(2), 025018 (2013).
[Crossref]

2012 (4)

S. Höhm, A. Rosenfeld, J. Krüger, and J. Bonse, “Femtosecond laser-induced periodic surface structures on silica,” J. Appl. Phys. 112(1), 014901 (2012).
[Crossref]

F. Liang, R. Vallée, and S. L. Chin, “Mechanism of nanograting formation on the surface of fused silica,” Opt. Express 20(4), 4389–4396 (2012).
[Crossref] [PubMed]

S. Richter, F. Jia, M. Heinrich, S. Döring, U. Peschel, A. Tünnermann, and S. Nolte, “The role of self-trapped excitons and defects in the formation of nanogratings in fused silica,” Opt. Lett. 37(4), 482–484 (2012).
[Crossref] [PubMed]

M. Beresna, M. Gecevičius, P. G. Kazansky, T. Taylor, and A. V. Kavokin, “Exciton mediated self-organization in glass driven by ultrashort light pulses,” Appl. Phys. Lett. 101(5), 053120 (2012).
[Crossref]

2011 (3)

2010 (1)

2009 (1)

A. Okhrimchuk, V. Mezentsev, H. Schmitz, M. Dubov, and I. Bennion, “Cascaded nonlinear absorption of femtosecond laser pulses in dielectrics,” Laser Phys. 19(7), 1415–1422 (2009).
[Crossref]

2008 (4)

J. Song, X. Wang, X. Hu, Y. Dai, J. Qiu, Y. Cheng, and Z. Xu, “Formation mechanism of self-organized voids in dielectrics induced by tightly focused femtosecond laser pulses,” Appl. Phys. Lett. 92(9), 092904 (2008).
[Crossref]

A. Vogel, N. Linz, S. Freidank, and G. Paltauf, “Femtosecond-laser-induced nanocavitation in water: implications for optical breakdown threshold and cell surgery,” Phys. Rev. Lett. 100(3), 038102 (2008).
[Crossref] [PubMed]

R. Taylor, C. Hnatovsky, and E. Simova, “Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica glass,” Laser Photonics Rev. 2(1–2), 26–46 (2008).
[Crossref]

R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

2007 (4)

H. Y. Sun, J. Song, C. B. Li, J. Xu, X. S. Wang, Y. Cheng, Z. Z. Xu, J. R. Qiu, and T. Q. Jia, “Standing electron plasma wave mechanism of void array formation inside glass by femtosecond laser irradiation,” Appl. Phys., A Mater. Sci. Process. 88(2), 285–288 (2007).
[Crossref]

I. M. Burakov, N. M. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, A. Rosenfeld, A. Husakou, and I. V. Hertel, “Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses,” J. Appl. Phys. 101(4), 043506 (2007).
[Crossref]

D. G. Papazoglou, I. Zergioti, and S. Tzortzakis, “Plasma strings from ultraviolet laser filaments drive permanent structural modifications in fused silica,” Opt. Lett. 32(14), 2055–2057 (2007).
[Crossref] [PubMed]

P. P. Rajeev, M. Gertsvolf, C. Hnatovsky, E. Simova, R. S. Taylor, P. B. Corkum, D. M. Rayner, and V. R. Bhardwaj, “Transient nanoplasmonics inside dielectrics,” J. Phys. B 40(11), S273–S282 (2007).
[Crossref]

2006 (5)

A. Zoubir, C. Rivero, R. Grodsky, K. Richardson, M. Richardson, T. Cardinal, and M. Couzi, “Laser-induced defects in fused silica by femtosecond IR irradiation,” Phys. Rev. B 73(22), 224117 (2006).
[Crossref]

S. Juodkazis, H. Misawa, T. Hashimoto, E. G. Gamaly, and B. Luther-Davies, “Laser-induced microexplosion confined in a bulk of silica: Formation of nanovoids,” Appl. Phys. Lett. 88(20), 201909 (2006).
[Crossref]

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures,” Phys. Rev. Lett. 96(16), 166101 (2006).
[Crossref] [PubMed]

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96(5), 057404 (2006).
[Crossref] [PubMed]

E. Bricchi and P. G. Kazansky, “Extraordinary stability of anisotropic femtosecond direct-written structures embedded in silica glass,” Appl. Phys. Lett. 88(11), 111119 (2006).
[Crossref]

2005 (2)

S. Kanehira, J. Si, J. Qiu, K. Fujita, and K. Hirao, “Periodic nanovoid structures via femtosecond laser irradiation,” Nano Lett. 5(8), 1591–1595 (2005).
[Crossref] [PubMed]

E. Toratani, M. Kamata, and M. Obara, “Self-fabrication of void array in fused silica by femtosecond laser processing,” Appl. Phys. Lett. 87(17), 171103 (2005).
[Crossref]

2004 (1)

2003 (3)

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[Crossref] [PubMed]

A. Marcinkevičius, V. Mizeikis, S. Juodkazis, S. Matsuo, and H. Misawa, “Effect of refractive index-mismatch on laser microfabrication in silica glass,” Appl. Phys., A Mater. Sci. Process. 76(2), 257–260 (2003).
[Crossref]

W. Liu, O. Kosareva, I. S. Golubtsov, A. Iwasaki, A. Becker, V. P. Kandidov, and S. L. Chin, “Femtosecond laser pulse filamentation versus optical breakdown in H2O,” Appl. Phys. B 76(3), 215–229 (2003).
[Crossref]

2002 (3)

2001 (2)

J. W. Chan, T. Huser, S. Risbud, and D. M. Krol, “Structural changes in fused silica after exposure to focused femtosecond laser pulses,” Opt. Lett. 26(21), 1726–1728 (2001).
[Crossref] [PubMed]

C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol. 12(11), 1784–1794 (2001).
[Crossref]

1999 (1)

A.-C. Tien, S. Backus, H. Kapteyn, M. Murnane, and G. Mourou, “Short-pulse laser damage in transparent materials as a function of pulse duration,” Phys. Rev. Lett. 82(19), 3883–3886 (1999).
[Crossref]

1997 (1)

E. N. Glezer and E. Mazur, “Ultrafast-laser driven micro-explosions in transparent materials,” Appl. Phys. Lett. 71(7), 882–884 (1997).
[Crossref]

1995 (1)

1994 (1)

D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, “Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs,” Appl. Phys. Lett. 64(23), 3071–3073 (1994).
[Crossref]

1993 (1)

P. N. Saeta and B. I. Greene, “Primary relaxation processes at the band edge of SiO2.,” Phys. Rev. Lett. 70(23), 3588–3591 (1993).
[Crossref] [PubMed]

1975 (1)

J. H. Marburger, “Self-focusing: theory,” Prog. Quantum Electron. 4(75), 35–110 (1975).
[Crossref]

Andreeva, V. A.

Audouard, E.

C. Mauclair, A. Mermillod-Blondin, S. Landon, N. Huot, A. Rosenfeld, I. V. Hertel, E. Audouard, I. Myiamoto, and R. Stoian, “Single-pulse ultrafast laser imprinting of axial dot arrays in bulk glasses,” Opt. Lett. 36(3), 325–327 (2011).
[Crossref] [PubMed]

I. M. Burakov, N. M. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, A. Rosenfeld, A. Husakou, and I. V. Hertel, “Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses,” J. Appl. Phys. 101(4), 043506 (2007).
[Crossref]

Backus, S.

A.-C. Tien, S. Backus, H. Kapteyn, M. Murnane, and G. Mourou, “Short-pulse laser damage in transparent materials as a function of pulse duration,” Phys. Rev. Lett. 82(19), 3883–3886 (1999).
[Crossref]

Becker, A.

W. Liu, O. Kosareva, I. S. Golubtsov, A. Iwasaki, A. Becker, V. P. Kandidov, and S. L. Chin, “Femtosecond laser pulse filamentation versus optical breakdown in H2O,” Appl. Phys. B 76(3), 215–229 (2003).
[Crossref]

Bellouard, Y.

Bennion, I.

A. Okhrimchuk, V. Mezentsev, H. Schmitz, M. Dubov, and I. Bennion, “Cascaded nonlinear absorption of femtosecond laser pulses in dielectrics,” Laser Phys. 19(7), 1415–1422 (2009).
[Crossref]

Beresna, M.

M. Beresna, M. Gecevičius, M. Lancry, B. Poumellec, and P. G. Kazansky, “Broadband anisotropy of femtosecond laser induced nanogratings in fused silica,” Appl. Phys. Lett. 103(13), 131903 (2013).
[Crossref]

M. Beresna, M. Gecevičius, P. G. Kazansky, T. Taylor, and A. V. Kavokin, “Exciton mediated self-organization in glass driven by ultrashort light pulses,” Appl. Phys. Lett. 101(5), 053120 (2012).
[Crossref]

Bhardwaj, V. R.

P. P. Rajeev, M. Gertsvolf, C. Hnatovsky, E. Simova, R. S. Taylor, P. B. Corkum, D. M. Rayner, and V. R. Bhardwaj, “Transient nanoplasmonics inside dielectrics,” J. Phys. B 40(11), S273–S282 (2007).
[Crossref]

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96(5), 057404 (2006).
[Crossref] [PubMed]

V. R. Bhardwaj, P. B. Corkum, D. M. Rayner, C. Hnatovsky, E. Simova, and R. S. Taylor, “Stress in femtosecond-laser-written waveguides in fused silica,” Opt. Lett. 29(12), 1312–1314 (2004).
[Crossref] [PubMed]

Bonse, J.

S. Höhm, A. Rosenfeld, J. Krüger, and J. Bonse, “Femtosecond laser-induced periodic surface structures on silica,” J. Appl. Phys. 112(1), 014901 (2012).
[Crossref]

Booker, G. R.

Borrelli, N. F.

Boukenter, A.

K. Mishchik, C. D’Amico, P. K. Velpula, C. Mauclair, A. Boukenter, Y. Ouerdane, and R. Stoian, “Ultrafast laser induced electronic and structural modifications in bulk fused silica,” J. Appl. Phys. 114(13), 133502 (2013).
[Crossref]

K. Mishchik, G. Cheng, G. Huo, I. M. Burakov, C. Mauclair, A. Mermillod-Blondin, A. Rosenfeld, Y. Ouerdane, A. Boukenter, O. Parriaux, and R. Stoian, “Nanosize structural modifications with polarization functions in ultrafast laser irradiated bulk fused silica,” Opt. Express 18(24), 24809–24824 (2010).
[Crossref] [PubMed]

Bricchi, E.

E. Bricchi and P. G. Kazansky, “Extraordinary stability of anisotropic femtosecond direct-written structures embedded in silica glass,” Appl. Phys. Lett. 88(11), 111119 (2006).
[Crossref]

Brisset, F.

M. Lancry, B. Poumellec, J. Canning, K. Cook, J. C. Poulin, and F. Brisset, “Ultrafast nanoporous silica formation driven by femtosecond laser irradiation,” Laser Photonics Rev. 7(6), 953–962 (2013).
[Crossref]

Brodeur, A.

C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol. 12(11), 1784–1794 (2001).
[Crossref]

Buividas, R.

R. Buividas, L. Rosa, R. Sliupas, T. Kudrius, G. Slekys, V. Datsyuk, and S. Juodkazis, “Mechanism of fine ripple formation on surfaces of (semi)transparent materials via a half-wavelength cavity feedback,” Nanotechnology 22(5), 055304 (2011).
[Crossref] [PubMed]

Bulgakova, N. M.

I. M. Burakov, N. M. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, A. Rosenfeld, A. Husakou, and I. V. Hertel, “Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses,” J. Appl. Phys. 101(4), 043506 (2007).
[Crossref]

Burakov, I. M.

K. Mishchik, G. Cheng, G. Huo, I. M. Burakov, C. Mauclair, A. Mermillod-Blondin, A. Rosenfeld, Y. Ouerdane, A. Boukenter, O. Parriaux, and R. Stoian, “Nanosize structural modifications with polarization functions in ultrafast laser irradiated bulk fused silica,” Opt. Express 18(24), 24809–24824 (2010).
[Crossref] [PubMed]

I. M. Burakov, N. M. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, A. Rosenfeld, A. Husakou, and I. V. Hertel, “Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses,” J. Appl. Phys. 101(4), 043506 (2007).
[Crossref]

Canning, J.

M. Lancry, B. Poumellec, J. Canning, K. Cook, J. C. Poulin, and F. Brisset, “Ultrafast nanoporous silica formation driven by femtosecond laser irradiation,” Laser Photonics Rev. 7(6), 953–962 (2013).
[Crossref]

Cardinal, T.

A. Zoubir, C. Rivero, R. Grodsky, K. Richardson, M. Richardson, T. Cardinal, and M. Couzi, “Laser-induced defects in fused silica by femtosecond IR irradiation,” Phys. Rev. B 73(22), 224117 (2006).
[Crossref]

Chan, J. W.

Cheng, G.

Cheng, Y.

Y. Liao, J. Ni, L. Qiao, M. Huang, Y. Bellouard, K. Sugioka, and Y. Cheng, “High-fidelity visualization of formation of volume nanogratings in porous glass by femtosecond laser irradiation,” Optica 2(4), 329–334 (2015).
[Crossref]

Y. Liao, W. Pan, Y. Cui, L. Qiao, Y. Bellouard, K. Sugioka, and Y. Cheng, “Formation of in-volume nanogratings with sub-100-nm periods in glass by femtosecond laser irradiation,” Opt. Lett. 40(15), 3623–3626 (2015).
[Crossref] [PubMed]

K. Sugioka and Y. Cheng, “Ultrafast lasers—reliable tools for advanced materials processing,” Light Sci. Appl. 3(4), e149 (2014).
[Crossref]

J. Song, X. Wang, X. Hu, Y. Dai, J. Qiu, Y. Cheng, and Z. Xu, “Formation mechanism of self-organized voids in dielectrics induced by tightly focused femtosecond laser pulses,” Appl. Phys. Lett. 92(9), 092904 (2008).
[Crossref]

H. Y. Sun, J. Song, C. B. Li, J. Xu, X. S. Wang, Y. Cheng, Z. Z. Xu, J. R. Qiu, and T. Q. Jia, “Standing electron plasma wave mechanism of void array formation inside glass by femtosecond laser irradiation,” Appl. Phys., A Mater. Sci. Process. 88(2), 285–288 (2007).
[Crossref]

Chin, S. L.

F. Liang, R. Vallée, and S. L. Chin, “Mechanism of nanograting formation on the surface of fused silica,” Opt. Express 20(4), 4389–4396 (2012).
[Crossref] [PubMed]

W. Liu, O. Kosareva, I. S. Golubtsov, A. Iwasaki, A. Becker, V. P. Kandidov, and S. L. Chin, “Femtosecond laser pulse filamentation versus optical breakdown in H2O,” Appl. Phys. B 76(3), 215–229 (2003).
[Crossref]

Colombier, J.

A. Rudenko, J. Colombier, and T. E. Itina, “From random inhomogeneities to periodic nanostructures induced in bulk silica by ultrashort laser,” Phys. Rev. B 93(7), 075427 (2016).
[Crossref]

Cook, K.

M. Lancry, B. Poumellec, J. Canning, K. Cook, J. C. Poulin, and F. Brisset, “Ultrafast nanoporous silica formation driven by femtosecond laser irradiation,” Laser Photonics Rev. 7(6), 953–962 (2013).
[Crossref]

Corkum, P. B.

P. P. Rajeev, M. Gertsvolf, C. Hnatovsky, E. Simova, R. S. Taylor, P. B. Corkum, D. M. Rayner, and V. R. Bhardwaj, “Transient nanoplasmonics inside dielectrics,” J. Phys. B 40(11), S273–S282 (2007).
[Crossref]

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96(5), 057404 (2006).
[Crossref] [PubMed]

V. R. Bhardwaj, P. B. Corkum, D. M. Rayner, C. Hnatovsky, E. Simova, and R. S. Taylor, “Stress in femtosecond-laser-written waveguides in fused silica,” Opt. Lett. 29(12), 1312–1314 (2004).
[Crossref] [PubMed]

Couairon, A.

A. Couairon, O. G. Kosareva, N. A. Panov, D. E. Shipilo, V. A. Andreeva, V. Jukna, and F. Nesa, “Propagation equation for tight-focusing by a parabolic mirror,” Opt. Express 23(24), 31240–31252 (2015).
[Crossref] [PubMed]

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett. 89(18), 186601 (2002).
[Crossref] [PubMed]

Couzi, M.

A. Zoubir, C. Rivero, R. Grodsky, K. Richardson, M. Richardson, T. Cardinal, and M. Couzi, “Laser-induced defects in fused silica by femtosecond IR irradiation,” Phys. Rev. B 73(22), 224117 (2006).
[Crossref]

Cui, Y.

D’Amico, C.

K. Mishchik, C. D’Amico, P. K. Velpula, C. Mauclair, A. Boukenter, Y. Ouerdane, and R. Stoian, “Ultrafast laser induced electronic and structural modifications in bulk fused silica,” J. Appl. Phys. 114(13), 133502 (2013).
[Crossref]

Dai, Y.

J. Song, X. Wang, X. Hu, Y. Dai, J. Qiu, Y. Cheng, and Z. Xu, “Formation mechanism of self-organized voids in dielectrics induced by tightly focused femtosecond laser pulses,” Appl. Phys. Lett. 92(9), 092904 (2008).
[Crossref]

Datsyuk, V.

R. Buividas, L. Rosa, R. Sliupas, T. Kudrius, G. Slekys, V. Datsyuk, and S. Juodkazis, “Mechanism of fine ripple formation on surfaces of (semi)transparent materials via a half-wavelength cavity feedback,” Nanotechnology 22(5), 055304 (2011).
[Crossref] [PubMed]

Döring, S.

Du, D.

D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, “Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs,” Appl. Phys. Lett. 64(23), 3071–3073 (1994).
[Crossref]

Dubov, M.

A. Okhrimchuk, V. Mezentsev, H. Schmitz, M. Dubov, and I. Bennion, “Cascaded nonlinear absorption of femtosecond laser pulses in dielectrics,” Laser Phys. 19(7), 1415–1422 (2009).
[Crossref]

Franco, M.

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett. 89(18), 186601 (2002).
[Crossref] [PubMed]

Freidank, S.

A. Vogel, N. Linz, S. Freidank, and G. Paltauf, “Femtosecond-laser-induced nanocavitation in water: implications for optical breakdown threshold and cell surgery,” Phys. Rev. Lett. 100(3), 038102 (2008).
[Crossref] [PubMed]

Fujita, K.

S. Kanehira, J. Si, J. Qiu, K. Fujita, and K. Hirao, “Periodic nanovoid structures via femtosecond laser irradiation,” Nano Lett. 5(8), 1591–1595 (2005).
[Crossref] [PubMed]

Gamaly, E. G.

E. G. Gamaly, L. Rapp, V. Roppo, S. Juodkazis, and A. V. Rode, “Generation of high energy density by fs-laser-induced confined microexplosion,” New J. Phys. 15(2), 025018 (2013).
[Crossref]

S. Juodkazis, H. Misawa, T. Hashimoto, E. G. Gamaly, and B. Luther-Davies, “Laser-induced microexplosion confined in a bulk of silica: Formation of nanovoids,” Appl. Phys. Lett. 88(20), 201909 (2006).
[Crossref]

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures,” Phys. Rev. Lett. 96(16), 166101 (2006).
[Crossref] [PubMed]

Gattass, R.

R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

Gecevicius, M.

M. Beresna, M. Gecevičius, M. Lancry, B. Poumellec, and P. G. Kazansky, “Broadband anisotropy of femtosecond laser induced nanogratings in fused silica,” Appl. Phys. Lett. 103(13), 131903 (2013).
[Crossref]

M. Beresna, M. Gecevičius, P. G. Kazansky, T. Taylor, and A. V. Kavokin, “Exciton mediated self-organization in glass driven by ultrashort light pulses,” Appl. Phys. Lett. 101(5), 053120 (2012).
[Crossref]

Gertsvolf, M.

P. P. Rajeev, M. Gertsvolf, C. Hnatovsky, E. Simova, R. S. Taylor, P. B. Corkum, D. M. Rayner, and V. R. Bhardwaj, “Transient nanoplasmonics inside dielectrics,” J. Phys. B 40(11), S273–S282 (2007).
[Crossref]

Glezer, E. N.

E. N. Glezer and E. Mazur, “Ultrafast-laser driven micro-explosions in transparent materials,” Appl. Phys. Lett. 71(7), 882–884 (1997).
[Crossref]

Golubtsov, I. S.

W. Liu, O. Kosareva, I. S. Golubtsov, A. Iwasaki, A. Becker, V. P. Kandidov, and S. L. Chin, “Femtosecond laser pulse filamentation versus optical breakdown in H2O,” Appl. Phys. B 76(3), 215–229 (2003).
[Crossref]

Gong, Q.

Greene, B. I.

P. N. Saeta and B. I. Greene, “Primary relaxation processes at the band edge of SiO2.,” Phys. Rev. Lett. 70(23), 3588–3591 (1993).
[Crossref] [PubMed]

Grodsky, R.

A. Zoubir, C. Rivero, R. Grodsky, K. Richardson, M. Richardson, T. Cardinal, and M. Couzi, “Laser-induced defects in fused silica by femtosecond IR irradiation,” Phys. Rev. B 73(22), 224117 (2006).
[Crossref]

Guo, H.

Hallo, L.

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures,” Phys. Rev. Lett. 96(16), 166101 (2006).
[Crossref] [PubMed]

Hashimoto, T.

S. Juodkazis, H. Misawa, T. Hashimoto, E. G. Gamaly, and B. Luther-Davies, “Laser-induced microexplosion confined in a bulk of silica: Formation of nanovoids,” Appl. Phys. Lett. 88(20), 201909 (2006).
[Crossref]

Heinrich, M.

Hertel, I. V.

C. Mauclair, A. Mermillod-Blondin, S. Landon, N. Huot, A. Rosenfeld, I. V. Hertel, E. Audouard, I. Myiamoto, and R. Stoian, “Single-pulse ultrafast laser imprinting of axial dot arrays in bulk glasses,” Opt. Lett. 36(3), 325–327 (2011).
[Crossref] [PubMed]

I. M. Burakov, N. M. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, A. Rosenfeld, A. Husakou, and I. V. Hertel, “Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses,” J. Appl. Phys. 101(4), 043506 (2007).
[Crossref]

Hirao, K.

S. Kanehira, J. Si, J. Qiu, K. Fujita, and K. Hirao, “Periodic nanovoid structures via femtosecond laser irradiation,” Nano Lett. 5(8), 1591–1595 (2005).
[Crossref] [PubMed]

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[Crossref] [PubMed]

Hnatovsky, C.

R. Taylor, C. Hnatovsky, and E. Simova, “Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica glass,” Laser Photonics Rev. 2(1–2), 26–46 (2008).
[Crossref]

P. P. Rajeev, M. Gertsvolf, C. Hnatovsky, E. Simova, R. S. Taylor, P. B. Corkum, D. M. Rayner, and V. R. Bhardwaj, “Transient nanoplasmonics inside dielectrics,” J. Phys. B 40(11), S273–S282 (2007).
[Crossref]

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96(5), 057404 (2006).
[Crossref] [PubMed]

V. R. Bhardwaj, P. B. Corkum, D. M. Rayner, C. Hnatovsky, E. Simova, and R. S. Taylor, “Stress in femtosecond-laser-written waveguides in fused silica,” Opt. Lett. 29(12), 1312–1314 (2004).
[Crossref] [PubMed]

Höhm, S.

S. Höhm, A. Rosenfeld, J. Krüger, and J. Bonse, “Femtosecond laser-induced periodic surface structures on silica,” J. Appl. Phys. 112(1), 014901 (2012).
[Crossref]

Hu, X.

J. Song, X. Wang, X. Hu, Y. Dai, J. Qiu, Y. Cheng, and Z. Xu, “Formation mechanism of self-organized voids in dielectrics induced by tightly focused femtosecond laser pulses,” Appl. Phys. Lett. 92(9), 092904 (2008).
[Crossref]

Huang, M.

Huo, G.

Huot, N.

Husakou, A.

I. M. Burakov, N. M. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, A. Rosenfeld, A. Husakou, and I. V. Hertel, “Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses,” J. Appl. Phys. 101(4), 043506 (2007).
[Crossref]

Huser, T.

Itina, T. E.

A. Rudenko, J. Colombier, and T. E. Itina, “From random inhomogeneities to periodic nanostructures induced in bulk silica by ultrashort laser,” Phys. Rev. B 93(7), 075427 (2016).
[Crossref]

Iwasaki, A.

W. Liu, O. Kosareva, I. S. Golubtsov, A. Iwasaki, A. Becker, V. P. Kandidov, and S. L. Chin, “Femtosecond laser pulse filamentation versus optical breakdown in H2O,” Appl. Phys. B 76(3), 215–229 (2003).
[Crossref]

Jia, F.

Jia, T. Q.

H. Y. Sun, J. Song, C. B. Li, J. Xu, X. S. Wang, Y. Cheng, Z. Z. Xu, J. R. Qiu, and T. Q. Jia, “Standing electron plasma wave mechanism of void array formation inside glass by femtosecond laser irradiation,” Appl. Phys., A Mater. Sci. Process. 88(2), 285–288 (2007).
[Crossref]

Jiang, H.

Jukna, V.

Juodkazis, S.

E. G. Gamaly, L. Rapp, V. Roppo, S. Juodkazis, and A. V. Rode, “Generation of high energy density by fs-laser-induced confined microexplosion,” New J. Phys. 15(2), 025018 (2013).
[Crossref]

R. Buividas, L. Rosa, R. Sliupas, T. Kudrius, G. Slekys, V. Datsyuk, and S. Juodkazis, “Mechanism of fine ripple formation on surfaces of (semi)transparent materials via a half-wavelength cavity feedback,” Nanotechnology 22(5), 055304 (2011).
[Crossref] [PubMed]

S. Juodkazis, H. Misawa, T. Hashimoto, E. G. Gamaly, and B. Luther-Davies, “Laser-induced microexplosion confined in a bulk of silica: Formation of nanovoids,” Appl. Phys. Lett. 88(20), 201909 (2006).
[Crossref]

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures,” Phys. Rev. Lett. 96(16), 166101 (2006).
[Crossref] [PubMed]

A. Marcinkevičius, V. Mizeikis, S. Juodkazis, S. Matsuo, and H. Misawa, “Effect of refractive index-mismatch on laser microfabrication in silica glass,” Appl. Phys., A Mater. Sci. Process. 76(2), 257–260 (2003).
[Crossref]

Kamata, M.

E. Toratani, M. Kamata, and M. Obara, “Self-fabrication of void array in fused silica by femtosecond laser processing,” Appl. Phys. Lett. 87(17), 171103 (2005).
[Crossref]

Kandidov, V. P.

W. Liu, O. Kosareva, I. S. Golubtsov, A. Iwasaki, A. Becker, V. P. Kandidov, and S. L. Chin, “Femtosecond laser pulse filamentation versus optical breakdown in H2O,” Appl. Phys. B 76(3), 215–229 (2003).
[Crossref]

Kanehira, S.

S. Kanehira, J. Si, J. Qiu, K. Fujita, and K. Hirao, “Periodic nanovoid structures via femtosecond laser irradiation,” Nano Lett. 5(8), 1591–1595 (2005).
[Crossref] [PubMed]

Kapteyn, H.

A.-C. Tien, S. Backus, H. Kapteyn, M. Murnane, and G. Mourou, “Short-pulse laser damage in transparent materials as a function of pulse duration,” Phys. Rev. Lett. 82(19), 3883–3886 (1999).
[Crossref]

Kavokin, A. V.

M. Beresna, M. Gecevičius, P. G. Kazansky, T. Taylor, and A. V. Kavokin, “Exciton mediated self-organization in glass driven by ultrashort light pulses,” Appl. Phys. Lett. 101(5), 053120 (2012).
[Crossref]

Kazansky, P. G.

M. Beresna, M. Gecevičius, M. Lancry, B. Poumellec, and P. G. Kazansky, “Broadband anisotropy of femtosecond laser induced nanogratings in fused silica,” Appl. Phys. Lett. 103(13), 131903 (2013).
[Crossref]

M. Beresna, M. Gecevičius, P. G. Kazansky, T. Taylor, and A. V. Kavokin, “Exciton mediated self-organization in glass driven by ultrashort light pulses,” Appl. Phys. Lett. 101(5), 053120 (2012).
[Crossref]

E. Bricchi and P. G. Kazansky, “Extraordinary stability of anisotropic femtosecond direct-written structures embedded in silica glass,” Appl. Phys. Lett. 88(11), 111119 (2006).
[Crossref]

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[Crossref] [PubMed]

Korn, G.

D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, “Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs,” Appl. Phys. Lett. 64(23), 3071–3073 (1994).
[Crossref]

Kosareva, O.

W. Liu, O. Kosareva, I. S. Golubtsov, A. Iwasaki, A. Becker, V. P. Kandidov, and S. L. Chin, “Femtosecond laser pulse filamentation versus optical breakdown in H2O,” Appl. Phys. B 76(3), 215–229 (2003).
[Crossref]

Kosareva, O. G.

Krol, D. M.

Krüger, J.

S. Höhm, A. Rosenfeld, J. Krüger, and J. Bonse, “Femtosecond laser-induced periodic surface structures on silica,” J. Appl. Phys. 112(1), 014901 (2012).
[Crossref]

Kudrius, T.

R. Buividas, L. Rosa, R. Sliupas, T. Kudrius, G. Slekys, V. Datsyuk, and S. Juodkazis, “Mechanism of fine ripple formation on surfaces of (semi)transparent materials via a half-wavelength cavity feedback,” Nanotechnology 22(5), 055304 (2011).
[Crossref] [PubMed]

Laczik, Z.

Lamouroux, B.

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett. 89(18), 186601 (2002).
[Crossref] [PubMed]

Lancry, M.

M. Beresna, M. Gecevičius, M. Lancry, B. Poumellec, and P. G. Kazansky, “Broadband anisotropy of femtosecond laser induced nanogratings in fused silica,” Appl. Phys. Lett. 103(13), 131903 (2013).
[Crossref]

M. Lancry, B. Poumellec, J. Canning, K. Cook, J. C. Poulin, and F. Brisset, “Ultrafast nanoporous silica formation driven by femtosecond laser irradiation,” Laser Photonics Rev. 7(6), 953–962 (2013).
[Crossref]

Landon, S.

Li, C. B.

H. Y. Sun, J. Song, C. B. Li, J. Xu, X. S. Wang, Y. Cheng, Z. Z. Xu, J. R. Qiu, and T. Q. Jia, “Standing electron plasma wave mechanism of void array formation inside glass by femtosecond laser irradiation,” Appl. Phys., A Mater. Sci. Process. 88(2), 285–288 (2007).
[Crossref]

Liang, F.

Liao, Y.

Linz, N.

A. Vogel, N. Linz, S. Freidank, and G. Paltauf, “Femtosecond-laser-induced nanocavitation in water: implications for optical breakdown threshold and cell surgery,” Phys. Rev. Lett. 100(3), 038102 (2008).
[Crossref] [PubMed]

Liu, W.

W. Liu, O. Kosareva, I. S. Golubtsov, A. Iwasaki, A. Becker, V. P. Kandidov, and S. L. Chin, “Femtosecond laser pulse filamentation versus optical breakdown in H2O,” Appl. Phys. B 76(3), 215–229 (2003).
[Crossref]

Liu, X.

D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, “Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs,” Appl. Phys. Lett. 64(23), 3071–3073 (1994).
[Crossref]

Luo, L.

Luther-Davies, B.

S. Juodkazis, H. Misawa, T. Hashimoto, E. G. Gamaly, and B. Luther-Davies, “Laser-induced microexplosion confined in a bulk of silica: Formation of nanovoids,” Appl. Phys. Lett. 88(20), 201909 (2006).
[Crossref]

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures,” Phys. Rev. Lett. 96(16), 166101 (2006).
[Crossref] [PubMed]

Marburger, J. H.

J. H. Marburger, “Self-focusing: theory,” Prog. Quantum Electron. 4(75), 35–110 (1975).
[Crossref]

Marcinkevicius, A.

A. Marcinkevičius, V. Mizeikis, S. Juodkazis, S. Matsuo, and H. Misawa, “Effect of refractive index-mismatch on laser microfabrication in silica glass,” Appl. Phys., A Mater. Sci. Process. 76(2), 257–260 (2003).
[Crossref]

Matsuo, S.

A. Marcinkevičius, V. Mizeikis, S. Juodkazis, S. Matsuo, and H. Misawa, “Effect of refractive index-mismatch on laser microfabrication in silica glass,” Appl. Phys., A Mater. Sci. Process. 76(2), 257–260 (2003).
[Crossref]

Mauclair, C.

Mazur, E.

R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol. 12(11), 1784–1794 (2001).
[Crossref]

E. N. Glezer and E. Mazur, “Ultrafast-laser driven micro-explosions in transparent materials,” Appl. Phys. Lett. 71(7), 882–884 (1997).
[Crossref]

Mermillod-Blondin, A.

Mezentsev, V.

A. Okhrimchuk, V. Mezentsev, H. Schmitz, M. Dubov, and I. Bennion, “Cascaded nonlinear absorption of femtosecond laser pulses in dielectrics,” Laser Phys. 19(7), 1415–1422 (2009).
[Crossref]

Misawa, H.

S. Juodkazis, H. Misawa, T. Hashimoto, E. G. Gamaly, and B. Luther-Davies, “Laser-induced microexplosion confined in a bulk of silica: Formation of nanovoids,” Appl. Phys. Lett. 88(20), 201909 (2006).
[Crossref]

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures,” Phys. Rev. Lett. 96(16), 166101 (2006).
[Crossref] [PubMed]

A. Marcinkevičius, V. Mizeikis, S. Juodkazis, S. Matsuo, and H. Misawa, “Effect of refractive index-mismatch on laser microfabrication in silica glass,” Appl. Phys., A Mater. Sci. Process. 76(2), 257–260 (2003).
[Crossref]

Mishchik, K.

K. Mishchik, C. D’Amico, P. K. Velpula, C. Mauclair, A. Boukenter, Y. Ouerdane, and R. Stoian, “Ultrafast laser induced electronic and structural modifications in bulk fused silica,” J. Appl. Phys. 114(13), 133502 (2013).
[Crossref]

K. Mishchik, G. Cheng, G. Huo, I. M. Burakov, C. Mauclair, A. Mermillod-Blondin, A. Rosenfeld, Y. Ouerdane, A. Boukenter, O. Parriaux, and R. Stoian, “Nanosize structural modifications with polarization functions in ultrafast laser irradiated bulk fused silica,” Opt. Express 18(24), 24809–24824 (2010).
[Crossref] [PubMed]

Mizeikis, V.

A. Marcinkevičius, V. Mizeikis, S. Juodkazis, S. Matsuo, and H. Misawa, “Effect of refractive index-mismatch on laser microfabrication in silica glass,” Appl. Phys., A Mater. Sci. Process. 76(2), 257–260 (2003).
[Crossref]

Mourou, G.

A.-C. Tien, S. Backus, H. Kapteyn, M. Murnane, and G. Mourou, “Short-pulse laser damage in transparent materials as a function of pulse duration,” Phys. Rev. Lett. 82(19), 3883–3886 (1999).
[Crossref]

D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, “Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs,” Appl. Phys. Lett. 64(23), 3071–3073 (1994).
[Crossref]

Murnane, M.

A.-C. Tien, S. Backus, H. Kapteyn, M. Murnane, and G. Mourou, “Short-pulse laser damage in transparent materials as a function of pulse duration,” Phys. Rev. Lett. 82(19), 3883–3886 (1999).
[Crossref]

Myiamoto, I.

Mysyrowicz, A.

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett. 89(18), 186601 (2002).
[Crossref] [PubMed]

Nesa, F.

Ni, J.

Nicolai, P.

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures,” Phys. Rev. Lett. 96(16), 166101 (2006).
[Crossref] [PubMed]

Nishimura, K.

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures,” Phys. Rev. Lett. 96(16), 166101 (2006).
[Crossref] [PubMed]

Nolte, S.

Obara, M.

E. Toratani, M. Kamata, and M. Obara, “Self-fabrication of void array in fused silica by femtosecond laser processing,” Appl. Phys. Lett. 87(17), 171103 (2005).
[Crossref]

Okhrimchuk, A.

A. Okhrimchuk, V. Mezentsev, H. Schmitz, M. Dubov, and I. Bennion, “Cascaded nonlinear absorption of femtosecond laser pulses in dielectrics,” Laser Phys. 19(7), 1415–1422 (2009).
[Crossref]

Ouerdane, Y.

K. Mishchik, C. D’Amico, P. K. Velpula, C. Mauclair, A. Boukenter, Y. Ouerdane, and R. Stoian, “Ultrafast laser induced electronic and structural modifications in bulk fused silica,” J. Appl. Phys. 114(13), 133502 (2013).
[Crossref]

K. Mishchik, G. Cheng, G. Huo, I. M. Burakov, C. Mauclair, A. Mermillod-Blondin, A. Rosenfeld, Y. Ouerdane, A. Boukenter, O. Parriaux, and R. Stoian, “Nanosize structural modifications with polarization functions in ultrafast laser irradiated bulk fused silica,” Opt. Express 18(24), 24809–24824 (2010).
[Crossref] [PubMed]

Paltauf, G.

A. Vogel, N. Linz, S. Freidank, and G. Paltauf, “Femtosecond-laser-induced nanocavitation in water: implications for optical breakdown threshold and cell surgery,” Phys. Rev. Lett. 100(3), 038102 (2008).
[Crossref] [PubMed]

Pan, W.

Panov, N. A.

Papazoglou, D. G.

Parriaux, O.

Peschel, U.

Poulin, J. C.

M. Lancry, B. Poumellec, J. Canning, K. Cook, J. C. Poulin, and F. Brisset, “Ultrafast nanoporous silica formation driven by femtosecond laser irradiation,” Laser Photonics Rev. 7(6), 953–962 (2013).
[Crossref]

Poumellec, B.

M. Lancry, B. Poumellec, J. Canning, K. Cook, J. C. Poulin, and F. Brisset, “Ultrafast nanoporous silica formation driven by femtosecond laser irradiation,” Laser Photonics Rev. 7(6), 953–962 (2013).
[Crossref]

M. Beresna, M. Gecevičius, M. Lancry, B. Poumellec, and P. G. Kazansky, “Broadband anisotropy of femtosecond laser induced nanogratings in fused silica,” Appl. Phys. Lett. 103(13), 131903 (2013).
[Crossref]

Prade, B.

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett. 89(18), 186601 (2002).
[Crossref] [PubMed]

Qiao, L.

Qiu, J.

J. Song, X. Wang, X. Hu, Y. Dai, J. Qiu, Y. Cheng, and Z. Xu, “Formation mechanism of self-organized voids in dielectrics induced by tightly focused femtosecond laser pulses,” Appl. Phys. Lett. 92(9), 092904 (2008).
[Crossref]

S. Kanehira, J. Si, J. Qiu, K. Fujita, and K. Hirao, “Periodic nanovoid structures via femtosecond laser irradiation,” Nano Lett. 5(8), 1591–1595 (2005).
[Crossref] [PubMed]

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[Crossref] [PubMed]

Qiu, J. R.

H. Y. Sun, J. Song, C. B. Li, J. Xu, X. S. Wang, Y. Cheng, Z. Z. Xu, J. R. Qiu, and T. Q. Jia, “Standing electron plasma wave mechanism of void array formation inside glass by femtosecond laser irradiation,” Appl. Phys., A Mater. Sci. Process. 88(2), 285–288 (2007).
[Crossref]

Rajeev, P. P.

P. P. Rajeev, M. Gertsvolf, C. Hnatovsky, E. Simova, R. S. Taylor, P. B. Corkum, D. M. Rayner, and V. R. Bhardwaj, “Transient nanoplasmonics inside dielectrics,” J. Phys. B 40(11), S273–S282 (2007).
[Crossref]

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96(5), 057404 (2006).
[Crossref] [PubMed]

Rapp, L.

E. G. Gamaly, L. Rapp, V. Roppo, S. Juodkazis, and A. V. Rode, “Generation of high energy density by fs-laser-induced confined microexplosion,” New J. Phys. 15(2), 025018 (2013).
[Crossref]

Rayner, D. M.

P. P. Rajeev, M. Gertsvolf, C. Hnatovsky, E. Simova, R. S. Taylor, P. B. Corkum, D. M. Rayner, and V. R. Bhardwaj, “Transient nanoplasmonics inside dielectrics,” J. Phys. B 40(11), S273–S282 (2007).
[Crossref]

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96(5), 057404 (2006).
[Crossref] [PubMed]

V. R. Bhardwaj, P. B. Corkum, D. M. Rayner, C. Hnatovsky, E. Simova, and R. S. Taylor, “Stress in femtosecond-laser-written waveguides in fused silica,” Opt. Lett. 29(12), 1312–1314 (2004).
[Crossref] [PubMed]

Richardson, K.

A. Zoubir, C. Rivero, R. Grodsky, K. Richardson, M. Richardson, T. Cardinal, and M. Couzi, “Laser-induced defects in fused silica by femtosecond IR irradiation,” Phys. Rev. B 73(22), 224117 (2006).
[Crossref]

Richardson, M.

A. Zoubir, C. Rivero, R. Grodsky, K. Richardson, M. Richardson, T. Cardinal, and M. Couzi, “Laser-induced defects in fused silica by femtosecond IR irradiation,” Phys. Rev. B 73(22), 224117 (2006).
[Crossref]

Richter, S.

Risbud, S.

Rivero, C.

A. Zoubir, C. Rivero, R. Grodsky, K. Richardson, M. Richardson, T. Cardinal, and M. Couzi, “Laser-induced defects in fused silica by femtosecond IR irradiation,” Phys. Rev. B 73(22), 224117 (2006).
[Crossref]

Rode, A. V.

E. G. Gamaly, L. Rapp, V. Roppo, S. Juodkazis, and A. V. Rode, “Generation of high energy density by fs-laser-induced confined microexplosion,” New J. Phys. 15(2), 025018 (2013).
[Crossref]

Roppo, V.

E. G. Gamaly, L. Rapp, V. Roppo, S. Juodkazis, and A. V. Rode, “Generation of high energy density by fs-laser-induced confined microexplosion,” New J. Phys. 15(2), 025018 (2013).
[Crossref]

Rosa, L.

R. Buividas, L. Rosa, R. Sliupas, T. Kudrius, G. Slekys, V. Datsyuk, and S. Juodkazis, “Mechanism of fine ripple formation on surfaces of (semi)transparent materials via a half-wavelength cavity feedback,” Nanotechnology 22(5), 055304 (2011).
[Crossref] [PubMed]

Rosenfeld, A.

S. Höhm, A. Rosenfeld, J. Krüger, and J. Bonse, “Femtosecond laser-induced periodic surface structures on silica,” J. Appl. Phys. 112(1), 014901 (2012).
[Crossref]

C. Mauclair, A. Mermillod-Blondin, S. Landon, N. Huot, A. Rosenfeld, I. V. Hertel, E. Audouard, I. Myiamoto, and R. Stoian, “Single-pulse ultrafast laser imprinting of axial dot arrays in bulk glasses,” Opt. Lett. 36(3), 325–327 (2011).
[Crossref] [PubMed]

K. Mishchik, G. Cheng, G. Huo, I. M. Burakov, C. Mauclair, A. Mermillod-Blondin, A. Rosenfeld, Y. Ouerdane, A. Boukenter, O. Parriaux, and R. Stoian, “Nanosize structural modifications with polarization functions in ultrafast laser irradiated bulk fused silica,” Opt. Express 18(24), 24809–24824 (2010).
[Crossref] [PubMed]

I. M. Burakov, N. M. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, A. Rosenfeld, A. Husakou, and I. V. Hertel, “Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses,” J. Appl. Phys. 101(4), 043506 (2007).
[Crossref]

Rudenko, A.

A. Rudenko, J. Colombier, and T. E. Itina, “From random inhomogeneities to periodic nanostructures induced in bulk silica by ultrashort laser,” Phys. Rev. B 93(7), 075427 (2016).
[Crossref]

Saeta, P. N.

P. N. Saeta and B. I. Greene, “Primary relaxation processes at the band edge of SiO2.,” Phys. Rev. Lett. 70(23), 3588–3591 (1993).
[Crossref] [PubMed]

Schaffer, C. B.

C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol. 12(11), 1784–1794 (2001).
[Crossref]

Schmitz, H.

A. Okhrimchuk, V. Mezentsev, H. Schmitz, M. Dubov, and I. Bennion, “Cascaded nonlinear absorption of femtosecond laser pulses in dielectrics,” Laser Phys. 19(7), 1415–1422 (2009).
[Crossref]

Shimotsuma, Y.

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[Crossref] [PubMed]

Shipilo, D. E.

Si, J.

S. Kanehira, J. Si, J. Qiu, K. Fujita, and K. Hirao, “Periodic nanovoid structures via femtosecond laser irradiation,” Nano Lett. 5(8), 1591–1595 (2005).
[Crossref] [PubMed]

Simova, E.

R. Taylor, C. Hnatovsky, and E. Simova, “Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica glass,” Laser Photonics Rev. 2(1–2), 26–46 (2008).
[Crossref]

P. P. Rajeev, M. Gertsvolf, C. Hnatovsky, E. Simova, R. S. Taylor, P. B. Corkum, D. M. Rayner, and V. R. Bhardwaj, “Transient nanoplasmonics inside dielectrics,” J. Phys. B 40(11), S273–S282 (2007).
[Crossref]

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96(5), 057404 (2006).
[Crossref] [PubMed]

V. R. Bhardwaj, P. B. Corkum, D. M. Rayner, C. Hnatovsky, E. Simova, and R. S. Taylor, “Stress in femtosecond-laser-written waveguides in fused silica,” Opt. Lett. 29(12), 1312–1314 (2004).
[Crossref] [PubMed]

Slekys, G.

R. Buividas, L. Rosa, R. Sliupas, T. Kudrius, G. Slekys, V. Datsyuk, and S. Juodkazis, “Mechanism of fine ripple formation on surfaces of (semi)transparent materials via a half-wavelength cavity feedback,” Nanotechnology 22(5), 055304 (2011).
[Crossref] [PubMed]

Sliupas, R.

R. Buividas, L. Rosa, R. Sliupas, T. Kudrius, G. Slekys, V. Datsyuk, and S. Juodkazis, “Mechanism of fine ripple formation on surfaces of (semi)transparent materials via a half-wavelength cavity feedback,” Nanotechnology 22(5), 055304 (2011).
[Crossref] [PubMed]

Song, J.

J. Song, X. Wang, X. Hu, Y. Dai, J. Qiu, Y. Cheng, and Z. Xu, “Formation mechanism of self-organized voids in dielectrics induced by tightly focused femtosecond laser pulses,” Appl. Phys. Lett. 92(9), 092904 (2008).
[Crossref]

H. Y. Sun, J. Song, C. B. Li, J. Xu, X. S. Wang, Y. Cheng, Z. Z. Xu, J. R. Qiu, and T. Q. Jia, “Standing electron plasma wave mechanism of void array formation inside glass by femtosecond laser irradiation,” Appl. Phys., A Mater. Sci. Process. 88(2), 285–288 (2007).
[Crossref]

Squier, J.

D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, “Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs,” Appl. Phys. Lett. 64(23), 3071–3073 (1994).
[Crossref]

Stoian, R.

K. Mishchik, C. D’Amico, P. K. Velpula, C. Mauclair, A. Boukenter, Y. Ouerdane, and R. Stoian, “Ultrafast laser induced electronic and structural modifications in bulk fused silica,” J. Appl. Phys. 114(13), 133502 (2013).
[Crossref]

C. Mauclair, A. Mermillod-Blondin, S. Landon, N. Huot, A. Rosenfeld, I. V. Hertel, E. Audouard, I. Myiamoto, and R. Stoian, “Single-pulse ultrafast laser imprinting of axial dot arrays in bulk glasses,” Opt. Lett. 36(3), 325–327 (2011).
[Crossref] [PubMed]

K. Mishchik, G. Cheng, G. Huo, I. M. Burakov, C. Mauclair, A. Mermillod-Blondin, A. Rosenfeld, Y. Ouerdane, A. Boukenter, O. Parriaux, and R. Stoian, “Nanosize structural modifications with polarization functions in ultrafast laser irradiated bulk fused silica,” Opt. Express 18(24), 24809–24824 (2010).
[Crossref] [PubMed]

I. M. Burakov, N. M. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, A. Rosenfeld, A. Husakou, and I. V. Hertel, “Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses,” J. Appl. Phys. 101(4), 043506 (2007).
[Crossref]

Streltsov, A. M.

Sudrie, L.

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett. 89(18), 186601 (2002).
[Crossref] [PubMed]

Sugioka, K.

Sun, H. Y.

H. Y. Sun, J. Song, C. B. Li, J. Xu, X. S. Wang, Y. Cheng, Z. Z. Xu, J. R. Qiu, and T. Q. Jia, “Standing electron plasma wave mechanism of void array formation inside glass by femtosecond laser irradiation,” Appl. Phys., A Mater. Sci. Process. 88(2), 285–288 (2007).
[Crossref]

Tanaka, S.

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures,” Phys. Rev. Lett. 96(16), 166101 (2006).
[Crossref] [PubMed]

Taylor, R.

R. Taylor, C. Hnatovsky, and E. Simova, “Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica glass,” Laser Photonics Rev. 2(1–2), 26–46 (2008).
[Crossref]

Taylor, R. S.

P. P. Rajeev, M. Gertsvolf, C. Hnatovsky, E. Simova, R. S. Taylor, P. B. Corkum, D. M. Rayner, and V. R. Bhardwaj, “Transient nanoplasmonics inside dielectrics,” J. Phys. B 40(11), S273–S282 (2007).
[Crossref]

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96(5), 057404 (2006).
[Crossref] [PubMed]

V. R. Bhardwaj, P. B. Corkum, D. M. Rayner, C. Hnatovsky, E. Simova, and R. S. Taylor, “Stress in femtosecond-laser-written waveguides in fused silica,” Opt. Lett. 29(12), 1312–1314 (2004).
[Crossref] [PubMed]

Taylor, T.

M. Beresna, M. Gecevičius, P. G. Kazansky, T. Taylor, and A. V. Kavokin, “Exciton mediated self-organization in glass driven by ultrashort light pulses,” Appl. Phys. Lett. 101(5), 053120 (2012).
[Crossref]

Tien, A.-C.

A.-C. Tien, S. Backus, H. Kapteyn, M. Murnane, and G. Mourou, “Short-pulse laser damage in transparent materials as a function of pulse duration,” Phys. Rev. Lett. 82(19), 3883–3886 (1999).
[Crossref]

Tikhonchuk, V. T.

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures,” Phys. Rev. Lett. 96(16), 166101 (2006).
[Crossref] [PubMed]

Toratani, E.

E. Toratani, M. Kamata, and M. Obara, “Self-fabrication of void array in fused silica by femtosecond laser processing,” Appl. Phys. Lett. 87(17), 171103 (2005).
[Crossref]

Török, P.

Tünnermann, A.

Tzortzakis, S.

Vallée, R.

Varga, P.

Velpula, P. K.

K. Mishchik, C. D’Amico, P. K. Velpula, C. Mauclair, A. Boukenter, Y. Ouerdane, and R. Stoian, “Ultrafast laser induced electronic and structural modifications in bulk fused silica,” J. Appl. Phys. 114(13), 133502 (2013).
[Crossref]

Vogel, A.

A. Vogel, N. Linz, S. Freidank, and G. Paltauf, “Femtosecond-laser-induced nanocavitation in water: implications for optical breakdown threshold and cell surgery,” Phys. Rev. Lett. 100(3), 038102 (2008).
[Crossref] [PubMed]

Wang, X.

J. Song, X. Wang, X. Hu, Y. Dai, J. Qiu, Y. Cheng, and Z. Xu, “Formation mechanism of self-organized voids in dielectrics induced by tightly focused femtosecond laser pulses,” Appl. Phys. Lett. 92(9), 092904 (2008).
[Crossref]

Wang, X. S.

H. Y. Sun, J. Song, C. B. Li, J. Xu, X. S. Wang, Y. Cheng, Z. Z. Xu, J. R. Qiu, and T. Q. Jia, “Standing electron plasma wave mechanism of void array formation inside glass by femtosecond laser irradiation,” Appl. Phys., A Mater. Sci. Process. 88(2), 285–288 (2007).
[Crossref]

Wu, Z.

Xu, J.

H. Y. Sun, J. Song, C. B. Li, J. Xu, X. S. Wang, Y. Cheng, Z. Z. Xu, J. R. Qiu, and T. Q. Jia, “Standing electron plasma wave mechanism of void array formation inside glass by femtosecond laser irradiation,” Appl. Phys., A Mater. Sci. Process. 88(2), 285–288 (2007).
[Crossref]

Xu, Z.

J. Song, X. Wang, X. Hu, Y. Dai, J. Qiu, Y. Cheng, and Z. Xu, “Formation mechanism of self-organized voids in dielectrics induced by tightly focused femtosecond laser pulses,” Appl. Phys. Lett. 92(9), 092904 (2008).
[Crossref]

Xu, Z. Z.

H. Y. Sun, J. Song, C. B. Li, J. Xu, X. S. Wang, Y. Cheng, Z. Z. Xu, J. R. Qiu, and T. Q. Jia, “Standing electron plasma wave mechanism of void array formation inside glass by femtosecond laser irradiation,” Appl. Phys., A Mater. Sci. Process. 88(2), 285–288 (2007).
[Crossref]

Yang, H.

Zergioti, I.

Zoubir, A.

A. Zoubir, C. Rivero, R. Grodsky, K. Richardson, M. Richardson, T. Cardinal, and M. Couzi, “Laser-induced defects in fused silica by femtosecond IR irradiation,” Phys. Rev. B 73(22), 224117 (2006).
[Crossref]

Appl. Phys. B (1)

W. Liu, O. Kosareva, I. S. Golubtsov, A. Iwasaki, A. Becker, V. P. Kandidov, and S. L. Chin, “Femtosecond laser pulse filamentation versus optical breakdown in H2O,” Appl. Phys. B 76(3), 215–229 (2003).
[Crossref]

Appl. Phys. Lett. (8)

E. Bricchi and P. G. Kazansky, “Extraordinary stability of anisotropic femtosecond direct-written structures embedded in silica glass,” Appl. Phys. Lett. 88(11), 111119 (2006).
[Crossref]

D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, “Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs,” Appl. Phys. Lett. 64(23), 3071–3073 (1994).
[Crossref]

E. N. Glezer and E. Mazur, “Ultrafast-laser driven micro-explosions in transparent materials,” Appl. Phys. Lett. 71(7), 882–884 (1997).
[Crossref]

S. Juodkazis, H. Misawa, T. Hashimoto, E. G. Gamaly, and B. Luther-Davies, “Laser-induced microexplosion confined in a bulk of silica: Formation of nanovoids,” Appl. Phys. Lett. 88(20), 201909 (2006).
[Crossref]

E. Toratani, M. Kamata, and M. Obara, “Self-fabrication of void array in fused silica by femtosecond laser processing,” Appl. Phys. Lett. 87(17), 171103 (2005).
[Crossref]

M. Beresna, M. Gecevičius, P. G. Kazansky, T. Taylor, and A. V. Kavokin, “Exciton mediated self-organization in glass driven by ultrashort light pulses,” Appl. Phys. Lett. 101(5), 053120 (2012).
[Crossref]

M. Beresna, M. Gecevičius, M. Lancry, B. Poumellec, and P. G. Kazansky, “Broadband anisotropy of femtosecond laser induced nanogratings in fused silica,” Appl. Phys. Lett. 103(13), 131903 (2013).
[Crossref]

J. Song, X. Wang, X. Hu, Y. Dai, J. Qiu, Y. Cheng, and Z. Xu, “Formation mechanism of self-organized voids in dielectrics induced by tightly focused femtosecond laser pulses,” Appl. Phys. Lett. 92(9), 092904 (2008).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (2)

A. Marcinkevičius, V. Mizeikis, S. Juodkazis, S. Matsuo, and H. Misawa, “Effect of refractive index-mismatch on laser microfabrication in silica glass,” Appl. Phys., A Mater. Sci. Process. 76(2), 257–260 (2003).
[Crossref]

H. Y. Sun, J. Song, C. B. Li, J. Xu, X. S. Wang, Y. Cheng, Z. Z. Xu, J. R. Qiu, and T. Q. Jia, “Standing electron plasma wave mechanism of void array formation inside glass by femtosecond laser irradiation,” Appl. Phys., A Mater. Sci. Process. 88(2), 285–288 (2007).
[Crossref]

J. Appl. Phys. (3)

I. M. Burakov, N. M. Bulgakova, R. Stoian, A. Mermillod-Blondin, E. Audouard, A. Rosenfeld, A. Husakou, and I. V. Hertel, “Spatial distribution of refractive index variations induced in bulk fused silica by single ultrashort and short laser pulses,” J. Appl. Phys. 101(4), 043506 (2007).
[Crossref]

K. Mishchik, C. D’Amico, P. K. Velpula, C. Mauclair, A. Boukenter, Y. Ouerdane, and R. Stoian, “Ultrafast laser induced electronic and structural modifications in bulk fused silica,” J. Appl. Phys. 114(13), 133502 (2013).
[Crossref]

S. Höhm, A. Rosenfeld, J. Krüger, and J. Bonse, “Femtosecond laser-induced periodic surface structures on silica,” J. Appl. Phys. 112(1), 014901 (2012).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

J. Phys. B (1)

P. P. Rajeev, M. Gertsvolf, C. Hnatovsky, E. Simova, R. S. Taylor, P. B. Corkum, D. M. Rayner, and V. R. Bhardwaj, “Transient nanoplasmonics inside dielectrics,” J. Phys. B 40(11), S273–S282 (2007).
[Crossref]

Laser Photonics Rev. (2)

M. Lancry, B. Poumellec, J. Canning, K. Cook, J. C. Poulin, and F. Brisset, “Ultrafast nanoporous silica formation driven by femtosecond laser irradiation,” Laser Photonics Rev. 7(6), 953–962 (2013).
[Crossref]

R. Taylor, C. Hnatovsky, and E. Simova, “Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica glass,” Laser Photonics Rev. 2(1–2), 26–46 (2008).
[Crossref]

Laser Phys. (1)

A. Okhrimchuk, V. Mezentsev, H. Schmitz, M. Dubov, and I. Bennion, “Cascaded nonlinear absorption of femtosecond laser pulses in dielectrics,” Laser Phys. 19(7), 1415–1422 (2009).
[Crossref]

Light Sci. Appl. (1)

K. Sugioka and Y. Cheng, “Ultrafast lasers—reliable tools for advanced materials processing,” Light Sci. Appl. 3(4), e149 (2014).
[Crossref]

Meas. Sci. Technol. (1)

C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol. 12(11), 1784–1794 (2001).
[Crossref]

Nano Lett. (1)

S. Kanehira, J. Si, J. Qiu, K. Fujita, and K. Hirao, “Periodic nanovoid structures via femtosecond laser irradiation,” Nano Lett. 5(8), 1591–1595 (2005).
[Crossref] [PubMed]

Nanotechnology (1)

R. Buividas, L. Rosa, R. Sliupas, T. Kudrius, G. Slekys, V. Datsyuk, and S. Juodkazis, “Mechanism of fine ripple formation on surfaces of (semi)transparent materials via a half-wavelength cavity feedback,” Nanotechnology 22(5), 055304 (2011).
[Crossref] [PubMed]

Nat. Photonics (1)

R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

New J. Phys. (1)

E. G. Gamaly, L. Rapp, V. Roppo, S. Juodkazis, and A. V. Rode, “Generation of high energy density by fs-laser-induced confined microexplosion,” New J. Phys. 15(2), 025018 (2013).
[Crossref]

Opt. Express (3)

Opt. Lett. (7)

S. Richter, F. Jia, M. Heinrich, S. Döring, U. Peschel, A. Tünnermann, and S. Nolte, “The role of self-trapped excitons and defects in the formation of nanogratings in fused silica,” Opt. Lett. 37(4), 482–484 (2012).
[Crossref] [PubMed]

Y. Liao, W. Pan, Y. Cui, L. Qiao, Y. Bellouard, K. Sugioka, and Y. Cheng, “Formation of in-volume nanogratings with sub-100-nm periods in glass by femtosecond laser irradiation,” Opt. Lett. 40(15), 3623–3626 (2015).
[Crossref] [PubMed]

Z. Wu, H. Jiang, L. Luo, H. Guo, H. Yang, and Q. Gong, “Multiple foci and a long filament observed with focused femtosecond pulse propagation in fused silica,” Opt. Lett. 27(6), 448–450 (2002).
[Crossref] [PubMed]

C. Mauclair, A. Mermillod-Blondin, S. Landon, N. Huot, A. Rosenfeld, I. V. Hertel, E. Audouard, I. Myiamoto, and R. Stoian, “Single-pulse ultrafast laser imprinting of axial dot arrays in bulk glasses,” Opt. Lett. 36(3), 325–327 (2011).
[Crossref] [PubMed]

J. W. Chan, T. Huser, S. Risbud, and D. M. Krol, “Structural changes in fused silica after exposure to focused femtosecond laser pulses,” Opt. Lett. 26(21), 1726–1728 (2001).
[Crossref] [PubMed]

V. R. Bhardwaj, P. B. Corkum, D. M. Rayner, C. Hnatovsky, E. Simova, and R. S. Taylor, “Stress in femtosecond-laser-written waveguides in fused silica,” Opt. Lett. 29(12), 1312–1314 (2004).
[Crossref] [PubMed]

D. G. Papazoglou, I. Zergioti, and S. Tzortzakis, “Plasma strings from ultraviolet laser filaments drive permanent structural modifications in fused silica,” Opt. Lett. 32(14), 2055–2057 (2007).
[Crossref] [PubMed]

Opt. Mater. Express (1)

Optica (1)

Phys. Rev. B (2)

A. Rudenko, J. Colombier, and T. E. Itina, “From random inhomogeneities to periodic nanostructures induced in bulk silica by ultrashort laser,” Phys. Rev. B 93(7), 075427 (2016).
[Crossref]

A. Zoubir, C. Rivero, R. Grodsky, K. Richardson, M. Richardson, T. Cardinal, and M. Couzi, “Laser-induced defects in fused silica by femtosecond IR irradiation,” Phys. Rev. B 73(22), 224117 (2006).
[Crossref]

Phys. Rev. Lett. (7)

Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, “Self-organized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91(24), 247405 (2003).
[Crossref] [PubMed]

V. R. Bhardwaj, E. Simova, P. P. Rajeev, C. Hnatovsky, R. S. Taylor, D. M. Rayner, and P. B. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96(5), 057404 (2006).
[Crossref] [PubMed]

A. Vogel, N. Linz, S. Freidank, and G. Paltauf, “Femtosecond-laser-induced nanocavitation in water: implications for optical breakdown threshold and cell surgery,” Phys. Rev. Lett. 100(3), 038102 (2008).
[Crossref] [PubMed]

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: evidence of multimegabar pressures,” Phys. Rev. Lett. 96(16), 166101 (2006).
[Crossref] [PubMed]

L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett. 89(18), 186601 (2002).
[Crossref] [PubMed]

A.-C. Tien, S. Backus, H. Kapteyn, M. Murnane, and G. Mourou, “Short-pulse laser damage in transparent materials as a function of pulse duration,” Phys. Rev. Lett. 82(19), 3883–3886 (1999).
[Crossref]

P. N. Saeta and B. I. Greene, “Primary relaxation processes at the band edge of SiO2.,” Phys. Rev. Lett. 70(23), 3588–3591 (1993).
[Crossref] [PubMed]

Prog. Quantum Electron. (1)

J. H. Marburger, “Self-focusing: theory,” Prog. Quantum Electron. 4(75), 35–110 (1975).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 (a) and (c) Optical images of the dependence of femtosecond laser-induced structures on the input pulse numbers. (b) and (d) Birefringence of the induced structures under cross-polarization illumination. E = 1 μJ (left column) and 2 μJ (right column). As the pulse number increases, the voids formed after the first few pulses transition to birefringence located at the top of the structure, as indicated under cross-polarizers. k represents the laser propagation direction, and the red bar is 10 μm.
Fig. 2
Fig. 2 (a) and (b) Maximum intensity and (c) and (d) laser fluence simulations for a single pulse at 1 and 2 μJ, respectively. Large tear-like distributions with modification occurring before the focus is seen, as observed in experiment. The laser-induced breakdown reaches as high as ~2.5 × 1013 W/cm2 and the laser fluence is larger than the threshold for fused silica of 2-3 J/cm2 (4.45 and 5.35 J/cm2).
Fig. 3
Fig. 3 Electron density simulation for single pulse irradiation for (a) 1 μJ and (b) 2 μJ alongside optical images of the experimental observation. In the regions where the electron density reaches above 1020 cm−3, void formation is observed in the structures printed.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

E z = i 2k E ik" 2 2 E 2 ζ 2 σ 2 ( 1+iω τ c )ρE 1 2 β ( m ) | E | 2m2 E+i k 0 n 2 | E | 2 E
ρ t = 1 n 0 2 σ E g ρ | E | 2 + β ( m ) mω | E | 2m ρ τ c

Metrics