Abstract

An all-fiber, micro-pulse and eye-safe high spectral resolution wind lidar (HSRWL) at 1.5 μm is proposed and demonstrated by using a pair of upconversion single-photon detectors and a fiber Fabry-Perot scanning interferometer (FFP-SI). In order to improve the optical detection efficiency, both the transmission spectrum and the reflection spectrum of the FFP-SI are used for spectral analyses of the aerosol backscatter and the reference laser pulse. Taking advantages of high signal-to-noise ratio of the detectors and high spectral resolution of the FFP-SI, the center frequencies and the bandwidths of spectra of the aerosol backscatter are obtained simultaneously. Continuous LOS wind observations are carried out on two days at Hefei (31.843 °N, 117.265 °E), China. The horizontal detection range of 4 km is realized with temporal resolution of 1 minute. The spatial resolution is switched from 30 m to 60 m at distance of 1.8 km. In a comparison experiment, LOS wind measurements from the HSRWL show good agreement with the results from an ultrasonic wind sensor (Vaisala windcap WMT52). An empirical method is adopted to evaluate the precision of the measurements. The standard deviation of the wind speed is 0.76 m/s at 1.8 km. The standard deviation of bandwidth variation is 2.07 MHz at 1.8 km.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Fabry-Perot interferometer based Mie Doppler lidar for low tropospheric wind observation

Haiyun Xia, Dongsong Sun, Yuanhong Yang, Fahua Shen, Jingjing Dong, and Takao Kobayashi
Appl. Opt. 46(29) 7120-7131 (2007)

Iodine-filter-based mobile Doppler lidar to make continuous and full-azimuth-scanned wind measurements: data acquisition and analysis system, data retrieval methods, and error analysis

Zhangjun Wang, Zhishen Liu, Liping Liu, Songhua Wu, Bingyi Liu, Zhigang Li, and Xinzhao Chu
Appl. Opt. 49(36) 6960-6978 (2010)

References

  • View by:
  • |
  • |
  • |

  1. C. J. Grund, R. M. Banta, J. L. George, J. N. Howell, M. J. Post, R. A. Richter, and A. M. Weickmann, “High-resolution Doppler lidar for boundary layer and could research,” J. Atmos. Ocean. Technol. 18(3), 376–393 (2001).
    [Crossref]
  2. N. S. Prasad, A. Tracy, S. Vetorino, R. Higgins, and R. Sibell, “Innovative fiber-laser architecture-based compact wind lidar,” Proc. SPIE 9754, 97540J (2016).
  3. W. L. Eberhard, R. E. Cupp, and K. R. Healy, “Doppler lidar measurement of profiles of turbulence and momentum flux,” J. Atmos. Ocean. Technol. 6(5), 809–819 (1989).
    [Crossref]
  4. I. N. Smalikho, F. Köpp, and S. Rahm, “Measurement of atmospheric turbulence by 2-μm Doppler lidar,” J. Atmos. Ocean. Technol. 22(11), 1733–1747 (2005).
    [Crossref]
  5. S. C. Tucker, C. J. Senff, A. M. Weickmann, W. A. Brewer, R. M. Banta, S. P. Sandberg, D. C. Law, and R. M. Hardesty, “Doppler lidar estimation of mixing height using turbulence, shear and aerosol profiles,” J. Atmos. Ocean. Technol. 26(4), 673–688 (2009).
    [Crossref]
  6. H. Shimizu, K. Noguchi, and C. Y. She, “Atmospheric temperature measurement by a high spectral resolution lidar,” Appl. Opt. 25(9), 1460–1466 (1986).
    [Crossref] [PubMed]
  7. Z. Liu, I. Matsui, and N. Sugimoto, “High-spectral-resolution lidar using an iodine absorption filter for atmospheric measurements,” Opt. Eng. 38(10), 1661–1670 (1999).
    [Crossref]
  8. D. Hua, M. Uchida, and T. Kobayashi, “Ultraviolet Rayleigh-Mie lidar for daytime-temperature profiling of the troposphere,” Appl. Opt. 44(7), 1315–1322 (2005).
    [Crossref] [PubMed]
  9. B. Witschas, C. Lemmerz, and O. Reitebuch, “Daytime measurements of atmospheric temperature profiles (2-15 km) by lidar utilizing Rayleigh-Brillouin scattering,” Opt. Lett. 39(7), 1972–1975 (2014).
    [Crossref] [PubMed]
  10. H. Xia, X. Dou, M. Shangguan, R. Zhao, D. Sun, C. Wang, J. Qiu, Z. Shu, X. Xue, Y. Han, and Y. Han, “Stratospheric temperature measurement with scanning Fabry-Perot interferometer for wind retrieval from mobile Rayleigh Doppler lidar,” Opt. Express 22(18), 21775–21789 (2014).
    [Crossref] [PubMed]
  11. W. Huang, X. Chu, J. Wiig, B. Tan, C. Yamashita, T. Yuan, J. Yue, S. D. Harrell, C. Y. She, B. P. Williams, J. S. Friedman, and R. M. Hardesty, “Field demonstration of simultaneous wind and temperature measurements from 5 to 50 km with a Na double-edge magneto-optic filter in a multi-frequency Doppler lidar,” Opt. Lett. 34(10), 1552–1554 (2009).
    [Crossref] [PubMed]
  12. Z. Cheng, D. Liu, J. Luo, Y. Yang, Y. Zhou, Y. Zhang, L. Duan, L. Su, L. Yang, Y. Shen, K. Wang, and J. Bai, “Field-widened Michelson interferometer for spectral discrimination in high-spectral-resolution lidar: theoretical framework,” Opt. Express 23(9), 12117–12134 (2015).
    [Crossref] [PubMed]
  13. C. Weitkamp, LIDAR Range-Resolved Optical Remote Sensing of the Atmosphere (Springer, 2006).
  14. H. Xia, X. Dou, D. Sun, Z. Shu, X. Xue, Y. Han, D. Hu, Y. Han, and T. Cheng, “Mid-altitude wind measurements with mobile Rayleigh Doppler lidar incorporating system-level optical frequency control method,” Opt. Express 20(14), 15286–15300 (2012).
    [Crossref] [PubMed]
  15. M. Harris, G. N. Pearson, J. M. Vaughan, D. Letalick, and C. J. Karlsson, “The role of laser coherence length in continuous-wave coherent laser radar,” J. Mod. Opt. 45(8), 1567–1581 (1998).
    [Crossref]
  16. M. J. McGill and J. D. Spinhirne, “Comparison of two direct-detection Doppler lidar techniques,” Opt. Eng. 37(10), 2675–2686 (1998).
    [Crossref]
  17. H. Xia, D. Sun, Y. Yang, F. Shen, J. Dong, and T. Kobayashi, “Fabry-Perot interferometer based Mie Doppler lidar for low tropospheric wind observation,” Appl. Opt. 46(29), 7120–7131 (2007).
    [Crossref] [PubMed]
  18. C. Souprayen, A. Garnier, A. Hertzog, A. Hauchecorne, and J. Porteneuve, “Rayleigh-Mie Doppler wind lidar for atmospheric measurements. I. Instrumental setup, validation, and first climatological results,” Appl. Opt. 38(12), 2410–2421 (1999).
    [Crossref] [PubMed]
  19. O. Reitebuch, C. Lemmerz, E. Nagel, U. Paffrath, Y. Durand, M. Endemann, F. Fabre, and M. Chaloupy, “The airborne demonstrator for the direct-detection Doppler wind lidar ALADIN on ADM-Aeolus. Part I: Instrument design and comparison to satellite instrument,” J. Atmos. Ocean. Technol. 26(12), 2501–2515 (2009).
    [Crossref]
  20. American National Standards Institute, American National Standard for the Safe Use of Lasers z136.1 (American National Standards Institute, 2007).
  21. C. L. Korb, B. M. Gentry, and C. Y. Weng, “Edge technique: theory and application to the lidar measurement of atmospheric wind,” Appl. Opt. 31(21), 4202–4213 (1992).
    [Crossref] [PubMed]
  22. H. Xia, G. Shentu, M. Shangguan, X. Xia, X. Jia, C. Wang, J. Zhang, J. S. Pelc, M. M. Fejer, Q. Zhang, X. Dou, and J. W. Pan, “Long-range micro-pulse aerosol lidar at 1.5 μm with an upconversion single-photon detector,” Opt. Lett. 40(7), 1579–1582 (2015).
    [Crossref] [PubMed]
  23. L. Høgstedt, A. Fix, M. Wirth, C. Pedersen, and P. Tidemand-Lichtenberg, “Upconversion-based lidar measurements of atmospheric CO2,” Opt. Express 24(5), 5152–5161 (2016).
    [Crossref]
  24. P. J. Rodrigo and C. Pedersen, “Monostatic coaxial 1.5 μm laser Doppler velocimeter using a scanning Fabry-Perot interferometer,” Opt. Express 21(18), 21105–21112 (2013).
    [Crossref] [PubMed]
  25. P. J. Rodrigo and C. Pedersen, “Direct detection doppler lidar using a scanning fabry-perot interferometer and a single-photon counting module,” in The European Conference on Lasers and Electro-Optics, (Optical Society of America, 2015), paper CH_P_15.
  26. E. Diamanti, C. Langrock, M. M. Fejer, Y. Yamamoto, and H. Takesue, “1.5 µm photon-counting optical time-domain reflectometry with a single-photon detector based on upconversion in a periodically poled lithium niobate waveguide,” Opt. Lett. 31(6), 727–729 (2006).
    [Crossref] [PubMed]
  27. H. Venghaus, Wavelength Filters in Fibre Optics (Springer, 2006).
  28. L. Xin, C. Xuewu, L. Faquan, Y. Yong, W. Kuijun, L. Yajuan, X. Yuan, and G. Shunsheng, “Temperature-insensitive laser frequency stabilization to molecular absorption edge using an acousto-optic modulator,” Opt. Lett. 39(15), 4416–4419 (2014).
    [Crossref] [PubMed]
  29. G. L. Shentu, J. S. Pelc, X. D. Wang, Q. C. Sun, M. Y. Zheng, M. M. Fejer, Q. Zhang, and J. W. Pan, “Ultralow noise up-conversion detector and spectrometer for the telecom band,” Opt. Express 21(12), 13986–13991 (2013).
    [Crossref] [PubMed]

2016 (2)

N. S. Prasad, A. Tracy, S. Vetorino, R. Higgins, and R. Sibell, “Innovative fiber-laser architecture-based compact wind lidar,” Proc. SPIE 9754, 97540J (2016).

L. Høgstedt, A. Fix, M. Wirth, C. Pedersen, and P. Tidemand-Lichtenberg, “Upconversion-based lidar measurements of atmospheric CO2,” Opt. Express 24(5), 5152–5161 (2016).
[Crossref]

2015 (2)

2014 (3)

2013 (2)

2012 (1)

2009 (3)

W. Huang, X. Chu, J. Wiig, B. Tan, C. Yamashita, T. Yuan, J. Yue, S. D. Harrell, C. Y. She, B. P. Williams, J. S. Friedman, and R. M. Hardesty, “Field demonstration of simultaneous wind and temperature measurements from 5 to 50 km with a Na double-edge magneto-optic filter in a multi-frequency Doppler lidar,” Opt. Lett. 34(10), 1552–1554 (2009).
[Crossref] [PubMed]

S. C. Tucker, C. J. Senff, A. M. Weickmann, W. A. Brewer, R. M. Banta, S. P. Sandberg, D. C. Law, and R. M. Hardesty, “Doppler lidar estimation of mixing height using turbulence, shear and aerosol profiles,” J. Atmos. Ocean. Technol. 26(4), 673–688 (2009).
[Crossref]

O. Reitebuch, C. Lemmerz, E. Nagel, U. Paffrath, Y. Durand, M. Endemann, F. Fabre, and M. Chaloupy, “The airborne demonstrator for the direct-detection Doppler wind lidar ALADIN on ADM-Aeolus. Part I: Instrument design and comparison to satellite instrument,” J. Atmos. Ocean. Technol. 26(12), 2501–2515 (2009).
[Crossref]

2007 (1)

2006 (1)

2005 (2)

I. N. Smalikho, F. Köpp, and S. Rahm, “Measurement of atmospheric turbulence by 2-μm Doppler lidar,” J. Atmos. Ocean. Technol. 22(11), 1733–1747 (2005).
[Crossref]

D. Hua, M. Uchida, and T. Kobayashi, “Ultraviolet Rayleigh-Mie lidar for daytime-temperature profiling of the troposphere,” Appl. Opt. 44(7), 1315–1322 (2005).
[Crossref] [PubMed]

2001 (1)

C. J. Grund, R. M. Banta, J. L. George, J. N. Howell, M. J. Post, R. A. Richter, and A. M. Weickmann, “High-resolution Doppler lidar for boundary layer and could research,” J. Atmos. Ocean. Technol. 18(3), 376–393 (2001).
[Crossref]

1999 (2)

1998 (2)

M. Harris, G. N. Pearson, J. M. Vaughan, D. Letalick, and C. J. Karlsson, “The role of laser coherence length in continuous-wave coherent laser radar,” J. Mod. Opt. 45(8), 1567–1581 (1998).
[Crossref]

M. J. McGill and J. D. Spinhirne, “Comparison of two direct-detection Doppler lidar techniques,” Opt. Eng. 37(10), 2675–2686 (1998).
[Crossref]

1992 (1)

1989 (1)

W. L. Eberhard, R. E. Cupp, and K. R. Healy, “Doppler lidar measurement of profiles of turbulence and momentum flux,” J. Atmos. Ocean. Technol. 6(5), 809–819 (1989).
[Crossref]

1986 (1)

Bai, J.

Banta, R. M.

S. C. Tucker, C. J. Senff, A. M. Weickmann, W. A. Brewer, R. M. Banta, S. P. Sandberg, D. C. Law, and R. M. Hardesty, “Doppler lidar estimation of mixing height using turbulence, shear and aerosol profiles,” J. Atmos. Ocean. Technol. 26(4), 673–688 (2009).
[Crossref]

C. J. Grund, R. M. Banta, J. L. George, J. N. Howell, M. J. Post, R. A. Richter, and A. M. Weickmann, “High-resolution Doppler lidar for boundary layer and could research,” J. Atmos. Ocean. Technol. 18(3), 376–393 (2001).
[Crossref]

Brewer, W. A.

S. C. Tucker, C. J. Senff, A. M. Weickmann, W. A. Brewer, R. M. Banta, S. P. Sandberg, D. C. Law, and R. M. Hardesty, “Doppler lidar estimation of mixing height using turbulence, shear and aerosol profiles,” J. Atmos. Ocean. Technol. 26(4), 673–688 (2009).
[Crossref]

Chaloupy, M.

O. Reitebuch, C. Lemmerz, E. Nagel, U. Paffrath, Y. Durand, M. Endemann, F. Fabre, and M. Chaloupy, “The airborne demonstrator for the direct-detection Doppler wind lidar ALADIN on ADM-Aeolus. Part I: Instrument design and comparison to satellite instrument,” J. Atmos. Ocean. Technol. 26(12), 2501–2515 (2009).
[Crossref]

Cheng, T.

Cheng, Z.

Chu, X.

Cupp, R. E.

W. L. Eberhard, R. E. Cupp, and K. R. Healy, “Doppler lidar measurement of profiles of turbulence and momentum flux,” J. Atmos. Ocean. Technol. 6(5), 809–819 (1989).
[Crossref]

Diamanti, E.

Dong, J.

Dou, X.

Duan, L.

Durand, Y.

O. Reitebuch, C. Lemmerz, E. Nagel, U. Paffrath, Y. Durand, M. Endemann, F. Fabre, and M. Chaloupy, “The airborne demonstrator for the direct-detection Doppler wind lidar ALADIN on ADM-Aeolus. Part I: Instrument design and comparison to satellite instrument,” J. Atmos. Ocean. Technol. 26(12), 2501–2515 (2009).
[Crossref]

Eberhard, W. L.

W. L. Eberhard, R. E. Cupp, and K. R. Healy, “Doppler lidar measurement of profiles of turbulence and momentum flux,” J. Atmos. Ocean. Technol. 6(5), 809–819 (1989).
[Crossref]

Endemann, M.

O. Reitebuch, C. Lemmerz, E. Nagel, U. Paffrath, Y. Durand, M. Endemann, F. Fabre, and M. Chaloupy, “The airborne demonstrator for the direct-detection Doppler wind lidar ALADIN on ADM-Aeolus. Part I: Instrument design and comparison to satellite instrument,” J. Atmos. Ocean. Technol. 26(12), 2501–2515 (2009).
[Crossref]

Fabre, F.

O. Reitebuch, C. Lemmerz, E. Nagel, U. Paffrath, Y. Durand, M. Endemann, F. Fabre, and M. Chaloupy, “The airborne demonstrator for the direct-detection Doppler wind lidar ALADIN on ADM-Aeolus. Part I: Instrument design and comparison to satellite instrument,” J. Atmos. Ocean. Technol. 26(12), 2501–2515 (2009).
[Crossref]

Faquan, L.

Fejer, M. M.

Fix, A.

Friedman, J. S.

Garnier, A.

Gentry, B. M.

George, J. L.

C. J. Grund, R. M. Banta, J. L. George, J. N. Howell, M. J. Post, R. A. Richter, and A. M. Weickmann, “High-resolution Doppler lidar for boundary layer and could research,” J. Atmos. Ocean. Technol. 18(3), 376–393 (2001).
[Crossref]

Grund, C. J.

C. J. Grund, R. M. Banta, J. L. George, J. N. Howell, M. J. Post, R. A. Richter, and A. M. Weickmann, “High-resolution Doppler lidar for boundary layer and could research,” J. Atmos. Ocean. Technol. 18(3), 376–393 (2001).
[Crossref]

Han, Y.

Hardesty, R. M.

W. Huang, X. Chu, J. Wiig, B. Tan, C. Yamashita, T. Yuan, J. Yue, S. D. Harrell, C. Y. She, B. P. Williams, J. S. Friedman, and R. M. Hardesty, “Field demonstration of simultaneous wind and temperature measurements from 5 to 50 km with a Na double-edge magneto-optic filter in a multi-frequency Doppler lidar,” Opt. Lett. 34(10), 1552–1554 (2009).
[Crossref] [PubMed]

S. C. Tucker, C. J. Senff, A. M. Weickmann, W. A. Brewer, R. M. Banta, S. P. Sandberg, D. C. Law, and R. M. Hardesty, “Doppler lidar estimation of mixing height using turbulence, shear and aerosol profiles,” J. Atmos. Ocean. Technol. 26(4), 673–688 (2009).
[Crossref]

Harrell, S. D.

Harris, M.

M. Harris, G. N. Pearson, J. M. Vaughan, D. Letalick, and C. J. Karlsson, “The role of laser coherence length in continuous-wave coherent laser radar,” J. Mod. Opt. 45(8), 1567–1581 (1998).
[Crossref]

Hauchecorne, A.

Healy, K. R.

W. L. Eberhard, R. E. Cupp, and K. R. Healy, “Doppler lidar measurement of profiles of turbulence and momentum flux,” J. Atmos. Ocean. Technol. 6(5), 809–819 (1989).
[Crossref]

Hertzog, A.

Higgins, R.

N. S. Prasad, A. Tracy, S. Vetorino, R. Higgins, and R. Sibell, “Innovative fiber-laser architecture-based compact wind lidar,” Proc. SPIE 9754, 97540J (2016).

Høgstedt, L.

Howell, J. N.

C. J. Grund, R. M. Banta, J. L. George, J. N. Howell, M. J. Post, R. A. Richter, and A. M. Weickmann, “High-resolution Doppler lidar for boundary layer and could research,” J. Atmos. Ocean. Technol. 18(3), 376–393 (2001).
[Crossref]

Hu, D.

Hua, D.

Huang, W.

Jia, X.

Karlsson, C. J.

M. Harris, G. N. Pearson, J. M. Vaughan, D. Letalick, and C. J. Karlsson, “The role of laser coherence length in continuous-wave coherent laser radar,” J. Mod. Opt. 45(8), 1567–1581 (1998).
[Crossref]

Kobayashi, T.

Köpp, F.

I. N. Smalikho, F. Köpp, and S. Rahm, “Measurement of atmospheric turbulence by 2-μm Doppler lidar,” J. Atmos. Ocean. Technol. 22(11), 1733–1747 (2005).
[Crossref]

Korb, C. L.

Kuijun, W.

Langrock, C.

Law, D. C.

S. C. Tucker, C. J. Senff, A. M. Weickmann, W. A. Brewer, R. M. Banta, S. P. Sandberg, D. C. Law, and R. M. Hardesty, “Doppler lidar estimation of mixing height using turbulence, shear and aerosol profiles,” J. Atmos. Ocean. Technol. 26(4), 673–688 (2009).
[Crossref]

Lemmerz, C.

B. Witschas, C. Lemmerz, and O. Reitebuch, “Daytime measurements of atmospheric temperature profiles (2-15 km) by lidar utilizing Rayleigh-Brillouin scattering,” Opt. Lett. 39(7), 1972–1975 (2014).
[Crossref] [PubMed]

O. Reitebuch, C. Lemmerz, E. Nagel, U. Paffrath, Y. Durand, M. Endemann, F. Fabre, and M. Chaloupy, “The airborne demonstrator for the direct-detection Doppler wind lidar ALADIN on ADM-Aeolus. Part I: Instrument design and comparison to satellite instrument,” J. Atmos. Ocean. Technol. 26(12), 2501–2515 (2009).
[Crossref]

Letalick, D.

M. Harris, G. N. Pearson, J. M. Vaughan, D. Letalick, and C. J. Karlsson, “The role of laser coherence length in continuous-wave coherent laser radar,” J. Mod. Opt. 45(8), 1567–1581 (1998).
[Crossref]

Liu, D.

Liu, Z.

Z. Liu, I. Matsui, and N. Sugimoto, “High-spectral-resolution lidar using an iodine absorption filter for atmospheric measurements,” Opt. Eng. 38(10), 1661–1670 (1999).
[Crossref]

Luo, J.

Matsui, I.

Z. Liu, I. Matsui, and N. Sugimoto, “High-spectral-resolution lidar using an iodine absorption filter for atmospheric measurements,” Opt. Eng. 38(10), 1661–1670 (1999).
[Crossref]

McGill, M. J.

M. J. McGill and J. D. Spinhirne, “Comparison of two direct-detection Doppler lidar techniques,” Opt. Eng. 37(10), 2675–2686 (1998).
[Crossref]

Nagel, E.

O. Reitebuch, C. Lemmerz, E. Nagel, U. Paffrath, Y. Durand, M. Endemann, F. Fabre, and M. Chaloupy, “The airborne demonstrator for the direct-detection Doppler wind lidar ALADIN on ADM-Aeolus. Part I: Instrument design and comparison to satellite instrument,” J. Atmos. Ocean. Technol. 26(12), 2501–2515 (2009).
[Crossref]

Noguchi, K.

Paffrath, U.

O. Reitebuch, C. Lemmerz, E. Nagel, U. Paffrath, Y. Durand, M. Endemann, F. Fabre, and M. Chaloupy, “The airborne demonstrator for the direct-detection Doppler wind lidar ALADIN on ADM-Aeolus. Part I: Instrument design and comparison to satellite instrument,” J. Atmos. Ocean. Technol. 26(12), 2501–2515 (2009).
[Crossref]

Pan, J. W.

Pearson, G. N.

M. Harris, G. N. Pearson, J. M. Vaughan, D. Letalick, and C. J. Karlsson, “The role of laser coherence length in continuous-wave coherent laser radar,” J. Mod. Opt. 45(8), 1567–1581 (1998).
[Crossref]

Pedersen, C.

Pelc, J. S.

Porteneuve, J.

Post, M. J.

C. J. Grund, R. M. Banta, J. L. George, J. N. Howell, M. J. Post, R. A. Richter, and A. M. Weickmann, “High-resolution Doppler lidar for boundary layer and could research,” J. Atmos. Ocean. Technol. 18(3), 376–393 (2001).
[Crossref]

Prasad, N. S.

N. S. Prasad, A. Tracy, S. Vetorino, R. Higgins, and R. Sibell, “Innovative fiber-laser architecture-based compact wind lidar,” Proc. SPIE 9754, 97540J (2016).

Qiu, J.

Rahm, S.

I. N. Smalikho, F. Köpp, and S. Rahm, “Measurement of atmospheric turbulence by 2-μm Doppler lidar,” J. Atmos. Ocean. Technol. 22(11), 1733–1747 (2005).
[Crossref]

Reitebuch, O.

B. Witschas, C. Lemmerz, and O. Reitebuch, “Daytime measurements of atmospheric temperature profiles (2-15 km) by lidar utilizing Rayleigh-Brillouin scattering,” Opt. Lett. 39(7), 1972–1975 (2014).
[Crossref] [PubMed]

O. Reitebuch, C. Lemmerz, E. Nagel, U. Paffrath, Y. Durand, M. Endemann, F. Fabre, and M. Chaloupy, “The airborne demonstrator for the direct-detection Doppler wind lidar ALADIN on ADM-Aeolus. Part I: Instrument design and comparison to satellite instrument,” J. Atmos. Ocean. Technol. 26(12), 2501–2515 (2009).
[Crossref]

Richter, R. A.

C. J. Grund, R. M. Banta, J. L. George, J. N. Howell, M. J. Post, R. A. Richter, and A. M. Weickmann, “High-resolution Doppler lidar for boundary layer and could research,” J. Atmos. Ocean. Technol. 18(3), 376–393 (2001).
[Crossref]

Rodrigo, P. J.

Sandberg, S. P.

S. C. Tucker, C. J. Senff, A. M. Weickmann, W. A. Brewer, R. M. Banta, S. P. Sandberg, D. C. Law, and R. M. Hardesty, “Doppler lidar estimation of mixing height using turbulence, shear and aerosol profiles,” J. Atmos. Ocean. Technol. 26(4), 673–688 (2009).
[Crossref]

Senff, C. J.

S. C. Tucker, C. J. Senff, A. M. Weickmann, W. A. Brewer, R. M. Banta, S. P. Sandberg, D. C. Law, and R. M. Hardesty, “Doppler lidar estimation of mixing height using turbulence, shear and aerosol profiles,” J. Atmos. Ocean. Technol. 26(4), 673–688 (2009).
[Crossref]

Shangguan, M.

She, C. Y.

Shen, F.

Shen, Y.

Shentu, G.

Shentu, G. L.

Shimizu, H.

Shu, Z.

Shunsheng, G.

Sibell, R.

N. S. Prasad, A. Tracy, S. Vetorino, R. Higgins, and R. Sibell, “Innovative fiber-laser architecture-based compact wind lidar,” Proc. SPIE 9754, 97540J (2016).

Smalikho, I. N.

I. N. Smalikho, F. Köpp, and S. Rahm, “Measurement of atmospheric turbulence by 2-μm Doppler lidar,” J. Atmos. Ocean. Technol. 22(11), 1733–1747 (2005).
[Crossref]

Souprayen, C.

Spinhirne, J. D.

M. J. McGill and J. D. Spinhirne, “Comparison of two direct-detection Doppler lidar techniques,” Opt. Eng. 37(10), 2675–2686 (1998).
[Crossref]

Su, L.

Sugimoto, N.

Z. Liu, I. Matsui, and N. Sugimoto, “High-spectral-resolution lidar using an iodine absorption filter for atmospheric measurements,” Opt. Eng. 38(10), 1661–1670 (1999).
[Crossref]

Sun, D.

Sun, Q. C.

Takesue, H.

Tan, B.

Tidemand-Lichtenberg, P.

Tracy, A.

N. S. Prasad, A. Tracy, S. Vetorino, R. Higgins, and R. Sibell, “Innovative fiber-laser architecture-based compact wind lidar,” Proc. SPIE 9754, 97540J (2016).

Tucker, S. C.

S. C. Tucker, C. J. Senff, A. M. Weickmann, W. A. Brewer, R. M. Banta, S. P. Sandberg, D. C. Law, and R. M. Hardesty, “Doppler lidar estimation of mixing height using turbulence, shear and aerosol profiles,” J. Atmos. Ocean. Technol. 26(4), 673–688 (2009).
[Crossref]

Uchida, M.

Vaughan, J. M.

M. Harris, G. N. Pearson, J. M. Vaughan, D. Letalick, and C. J. Karlsson, “The role of laser coherence length in continuous-wave coherent laser radar,” J. Mod. Opt. 45(8), 1567–1581 (1998).
[Crossref]

Vetorino, S.

N. S. Prasad, A. Tracy, S. Vetorino, R. Higgins, and R. Sibell, “Innovative fiber-laser architecture-based compact wind lidar,” Proc. SPIE 9754, 97540J (2016).

Wang, C.

Wang, K.

Wang, X. D.

Weickmann, A. M.

S. C. Tucker, C. J. Senff, A. M. Weickmann, W. A. Brewer, R. M. Banta, S. P. Sandberg, D. C. Law, and R. M. Hardesty, “Doppler lidar estimation of mixing height using turbulence, shear and aerosol profiles,” J. Atmos. Ocean. Technol. 26(4), 673–688 (2009).
[Crossref]

C. J. Grund, R. M. Banta, J. L. George, J. N. Howell, M. J. Post, R. A. Richter, and A. M. Weickmann, “High-resolution Doppler lidar for boundary layer and could research,” J. Atmos. Ocean. Technol. 18(3), 376–393 (2001).
[Crossref]

Weng, C. Y.

Wiig, J.

Williams, B. P.

Wirth, M.

Witschas, B.

Xia, H.

Xia, X.

Xin, L.

Xue, X.

Xuewu, C.

Yajuan, L.

Yamamoto, Y.

Yamashita, C.

Yang, L.

Yang, Y.

Yong, Y.

Yuan, T.

Yuan, X.

Yue, J.

Zhang, J.

Zhang, Q.

Zhang, Y.

Zhao, R.

Zheng, M. Y.

Zhou, Y.

Appl. Opt. (5)

J. Atmos. Ocean. Technol. (5)

O. Reitebuch, C. Lemmerz, E. Nagel, U. Paffrath, Y. Durand, M. Endemann, F. Fabre, and M. Chaloupy, “The airborne demonstrator for the direct-detection Doppler wind lidar ALADIN on ADM-Aeolus. Part I: Instrument design and comparison to satellite instrument,” J. Atmos. Ocean. Technol. 26(12), 2501–2515 (2009).
[Crossref]

C. J. Grund, R. M. Banta, J. L. George, J. N. Howell, M. J. Post, R. A. Richter, and A. M. Weickmann, “High-resolution Doppler lidar for boundary layer and could research,” J. Atmos. Ocean. Technol. 18(3), 376–393 (2001).
[Crossref]

W. L. Eberhard, R. E. Cupp, and K. R. Healy, “Doppler lidar measurement of profiles of turbulence and momentum flux,” J. Atmos. Ocean. Technol. 6(5), 809–819 (1989).
[Crossref]

I. N. Smalikho, F. Köpp, and S. Rahm, “Measurement of atmospheric turbulence by 2-μm Doppler lidar,” J. Atmos. Ocean. Technol. 22(11), 1733–1747 (2005).
[Crossref]

S. C. Tucker, C. J. Senff, A. M. Weickmann, W. A. Brewer, R. M. Banta, S. P. Sandberg, D. C. Law, and R. M. Hardesty, “Doppler lidar estimation of mixing height using turbulence, shear and aerosol profiles,” J. Atmos. Ocean. Technol. 26(4), 673–688 (2009).
[Crossref]

J. Mod. Opt. (1)

M. Harris, G. N. Pearson, J. M. Vaughan, D. Letalick, and C. J. Karlsson, “The role of laser coherence length in continuous-wave coherent laser radar,” J. Mod. Opt. 45(8), 1567–1581 (1998).
[Crossref]

Opt. Eng. (2)

M. J. McGill and J. D. Spinhirne, “Comparison of two direct-detection Doppler lidar techniques,” Opt. Eng. 37(10), 2675–2686 (1998).
[Crossref]

Z. Liu, I. Matsui, and N. Sugimoto, “High-spectral-resolution lidar using an iodine absorption filter for atmospheric measurements,” Opt. Eng. 38(10), 1661–1670 (1999).
[Crossref]

Opt. Express (6)

H. Xia, X. Dou, M. Shangguan, R. Zhao, D. Sun, C. Wang, J. Qiu, Z. Shu, X. Xue, Y. Han, and Y. Han, “Stratospheric temperature measurement with scanning Fabry-Perot interferometer for wind retrieval from mobile Rayleigh Doppler lidar,” Opt. Express 22(18), 21775–21789 (2014).
[Crossref] [PubMed]

Z. Cheng, D. Liu, J. Luo, Y. Yang, Y. Zhou, Y. Zhang, L. Duan, L. Su, L. Yang, Y. Shen, K. Wang, and J. Bai, “Field-widened Michelson interferometer for spectral discrimination in high-spectral-resolution lidar: theoretical framework,” Opt. Express 23(9), 12117–12134 (2015).
[Crossref] [PubMed]

L. Høgstedt, A. Fix, M. Wirth, C. Pedersen, and P. Tidemand-Lichtenberg, “Upconversion-based lidar measurements of atmospheric CO2,” Opt. Express 24(5), 5152–5161 (2016).
[Crossref]

P. J. Rodrigo and C. Pedersen, “Monostatic coaxial 1.5 μm laser Doppler velocimeter using a scanning Fabry-Perot interferometer,” Opt. Express 21(18), 21105–21112 (2013).
[Crossref] [PubMed]

H. Xia, X. Dou, D. Sun, Z. Shu, X. Xue, Y. Han, D. Hu, Y. Han, and T. Cheng, “Mid-altitude wind measurements with mobile Rayleigh Doppler lidar incorporating system-level optical frequency control method,” Opt. Express 20(14), 15286–15300 (2012).
[Crossref] [PubMed]

G. L. Shentu, J. S. Pelc, X. D. Wang, Q. C. Sun, M. Y. Zheng, M. M. Fejer, Q. Zhang, and J. W. Pan, “Ultralow noise up-conversion detector and spectrometer for the telecom band,” Opt. Express 21(12), 13986–13991 (2013).
[Crossref] [PubMed]

Opt. Lett. (5)

Proc. SPIE (1)

N. S. Prasad, A. Tracy, S. Vetorino, R. Higgins, and R. Sibell, “Innovative fiber-laser architecture-based compact wind lidar,” Proc. SPIE 9754, 97540J (2016).

Other (4)

C. Weitkamp, LIDAR Range-Resolved Optical Remote Sensing of the Atmosphere (Springer, 2006).

American National Standards Institute, American National Standard for the Safe Use of Lasers z136.1 (American National Standards Institute, 2007).

H. Venghaus, Wavelength Filters in Fibre Optics (Springer, 2006).

P. J. Rodrigo and C. Pedersen, “Direct detection doppler lidar using a scanning fabry-perot interferometer and a single-photon counting module,” in The European Conference on Lasers and Electro-Optics, (Optical Society of America, 2015), paper CH_P_15.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

(a) Transmission spectrum (circles) and reflection spectrum (squares) of the monochromatic CW laser through the FFP-SI as the driven voltage increases from 0.3 V to 12.5 V, (b) Zoom-in image of Fig. 1(a), (c) The calculated Q function (circles) and its Lorentzian fitting result (solid line).

Fig. 2
Fig. 2

Optical layout of the system. EOM, electro-optic modulator; PG, pulse generator; VA, variable attenuator; EDFA, erbium doped fiber amplifier; LMAF, large-mode-area fiber; PBS, polarizing beam splitter; PMF, polarization-maintaining fiber; PC, polarization controller; TCC, temperature controlled chamber; FFP-SI, fiber Fabry-Perot scanning interferometer; TDFA, thulium doped fiber amplifier; WDM, wavelength division multiplexer; PPLN-W, periodically poled Lithium niobate waveguide, MMF, multimode fiber; TEC, thermoelectric cooler; IF, interferometer filter.

Fig. 3
Fig. 3

Timing sequence of data acquisition for a single laser pulse.

Fig. 4
Fig. 4

(a) Frequency drift and (b) bandwidth change of the FFP-SI due to temperature fluctuation.

Fig. 5
Fig. 5

Graphical user interface of the temperature controller (temperature stability of ± 0.001 °C in one minutes is realized)

Fig. 6
Fig. 6

Photon counts of transmitted backscatter signal (a), reflected backscatter signal (b) and the corresponding frequency response functions (c).

Fig. 7
Fig. 7

(a): Frequency response functions of the backscatter aerosol at 0.03 km (open circle) and 1.80 km (filled squares) and their fit results (solid line and dashed line), (b): Residual between the raw frequency response functions and its fit results, (c): Profiles of transmitted and reflected backscatter along distance at given frequencies labeled in Fig. 7(a).

Fig. 8
Fig. 8

Photos indicate the pointing of the laser beam

Fig. 9
Fig. 9

Time-distance plots of continuous observation of the LOS wind speed using the HSRWL on Apr. 13. 2016 (top) and on Apr. 14. 2016 (bottom).

Fig. 10
Fig. 10

LOS wind speed measured by the HSRWL (open squares) compared with data measured by the Vaisala windcup (filled circle.) on Apr. 13. 2016 (top) and on Apr. 14. 2016 (bottom).

Fig. 11
Fig. 11

(a): Scatterplot of wind speed from the HSRWL and Vaisala windcup, (b): Histogram distributions of the velocity difference between the two measurements (red line is the Gaussian fit result to the data).

Fig. 12
Fig. 12

Profiles of the LOS wind speed (a) and bandwidth variation (c), and the estimated error (b and d).

Fig. 13
Fig. 13

Statistics of the bandwidth variation: histogram distributions of bandwidth variation from 0 m to 480 m on Apr. 13. 2016(a) and on Apr. 14. 2016(b), solid lines are the Gaussian fit results to the data.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

Δυ / υ 0 = Δl /l ,
T(υ, υ c , υ D ,Δ υ M )=h(υ)I(υ, υ c , υ D ,Δ υ M ),
h(υ)= T 0 /[ 1+ (υ) 2 / (Δ υ FPI /2) 2 ],
T 0 = a t (1 r f ) 2 / (1 a t r f ) 2 ,
I(υ, υ c , υ D ,Δ υ M )= ( π Δ υ M ) 1 exp[ (υ- υ c - υ D ) 2 / Δ υ M 2 ],
R(υ, υ c , υ D ,Δ υ M )=r(υ)I(υ, υ c , υ D ,Δ υ M ),
Q(υ, υ c , υ D ,Δ υ M )= a T(υ, υ c , υ D ,Δ υ M )R(υ, υ c , υ D ,Δ υ M ) a T(υ, υ c , υ D ,Δ υ M )+R(υ, υ c , υ D ,Δ υ M ) ,
σ 2 (X-Y)= σ 2 (X)+ σ 2 (Y).
σ m = σ / 2 .

Metrics