Abstract

A Mach-Zehnder interferometer was used for contactless measurement of the temperature of the gain medium within a static cell of Cs DPAL. The maximum temperature recorded approached 700° C leading to a significant degradation of laser performance. This work also examined lasing and non-lasing heat deposition and has shown that as much as 85% of the heating in a DPAL gain medium can be attributed to quenching.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Measurements of cesium mixing and quenching cross sections in methane gas: understanding sources of heating in cesium vapor lasers

M. Alina Gearba, Philip H. Rich, Lucy A. Zimmerman, Matthew D. Rotondaro, Boris V. Zhdanov, Randall J. Knize, and Jerry F. Sell
Opt. Express 27(7) 9676-9683 (2019)

Real-time measurement of temperature rise in a pulsed diode pumped rubidium vapor laser by potassium tracing atom based absorption spectroscopy

Xiaofan Zhao, Zining Yang, Weihong Hua, Hongyan Wang, and Xiaojun Xu
Opt. Express 25(6) 5841-5851 (2017)

Modeling of time evolution of power and temperature in single-pulse and multi-pulses diode-pumped alkali vapor lasers

Binglin Shen, Jinghua Huang, Xingqi Xu, Chunsheng Xia, and Bailiang Pan
Opt. Express 25(12) 13396-13407 (2017)

References

  • View by:
  • |
  • |
  • |

  1. B. V. Zhdanov and R. J. Knize, “Review of alkali lasers research and development,” Opt. Eng. 52(2), 021010 (2012).
    [Crossref]
  2. B. V. Zhdanov, M. D. Rotondaro, M. K. Shaffer, and R. J. Knize, “Power degradation due to thermal effects in potassium diode pumped alkali laser,” Opt. Commun. 341, 97–100 (2015).
    [Crossref]
  3. B. V. Zhdanov, M. D. Rotondaro, M. K. Shaffer, and R. J. Knize, “Low pressure cesium and potassium diode pumped alkali lasers: pros and cons,” Opt. Eng. 55(2), 026105 (2016).
    [Crossref]
  4. L. O. Quarrie, “The effects of atomic rubidium vapor on the performance of optical windows in Diode Pumped Alkali Lasers (DPALs),” Opt. Mater. 35(5), 843–851 (2013).
    [Crossref]
  5. B. V. Zhdanov and R. J. Knize, “Alkali lasers development at the laser and optics research center of the US Air Force Academy,” Proc. SPIE 7005, 700524 (2008).
    [Crossref]
  6. B. V. Zhdanov, A. Stooke, G. Boyadjian, A. Voci, and R. J. Knize, “Optically pumped cesium-freon laser,” Electron. Lett. 44(12), 735–737 (2008).
    [Crossref]
  7. M. K. Shaffer, T. C. Lilly, B. V. Zhdanov, and R. J. Knize, “In situ non-perturbative temperature measurement in a Cs alkali laser,” Opt. Lett. 40(1), 119–122 (2015).
    [Crossref] [PubMed]
  8. G. A. Pitz, C. D. Fox, and G. P. Perram, “Transfer between the cesium 6 2P1/2 and 6 2P3/2 levels induced by collisions with2, HD, D2, CH4, C2H6, CF4, and C2F6,” Phys. Rev. A 84(3), 032708 (2011).
    [Crossref]
  9. B. V. Zhdanov, T. Ehrenreich, and R. J. Knize, “Highly efficient optically pumped cesium vapor laser,” Opt. Commun. 260(2), 696–698 (2006).
    [Crossref]

2016 (1)

B. V. Zhdanov, M. D. Rotondaro, M. K. Shaffer, and R. J. Knize, “Low pressure cesium and potassium diode pumped alkali lasers: pros and cons,” Opt. Eng. 55(2), 026105 (2016).
[Crossref]

2015 (2)

B. V. Zhdanov, M. D. Rotondaro, M. K. Shaffer, and R. J. Knize, “Power degradation due to thermal effects in potassium diode pumped alkali laser,” Opt. Commun. 341, 97–100 (2015).
[Crossref]

M. K. Shaffer, T. C. Lilly, B. V. Zhdanov, and R. J. Knize, “In situ non-perturbative temperature measurement in a Cs alkali laser,” Opt. Lett. 40(1), 119–122 (2015).
[Crossref] [PubMed]

2013 (1)

L. O. Quarrie, “The effects of atomic rubidium vapor on the performance of optical windows in Diode Pumped Alkali Lasers (DPALs),” Opt. Mater. 35(5), 843–851 (2013).
[Crossref]

2012 (1)

B. V. Zhdanov and R. J. Knize, “Review of alkali lasers research and development,” Opt. Eng. 52(2), 021010 (2012).
[Crossref]

2011 (1)

G. A. Pitz, C. D. Fox, and G. P. Perram, “Transfer between the cesium 6 2P1/2 and 6 2P3/2 levels induced by collisions with2, HD, D2, CH4, C2H6, CF4, and C2F6,” Phys. Rev. A 84(3), 032708 (2011).
[Crossref]

2008 (2)

B. V. Zhdanov and R. J. Knize, “Alkali lasers development at the laser and optics research center of the US Air Force Academy,” Proc. SPIE 7005, 700524 (2008).
[Crossref]

B. V. Zhdanov, A. Stooke, G. Boyadjian, A. Voci, and R. J. Knize, “Optically pumped cesium-freon laser,” Electron. Lett. 44(12), 735–737 (2008).
[Crossref]

2006 (1)

B. V. Zhdanov, T. Ehrenreich, and R. J. Knize, “Highly efficient optically pumped cesium vapor laser,” Opt. Commun. 260(2), 696–698 (2006).
[Crossref]

Boyadjian, G.

B. V. Zhdanov, A. Stooke, G. Boyadjian, A. Voci, and R. J. Knize, “Optically pumped cesium-freon laser,” Electron. Lett. 44(12), 735–737 (2008).
[Crossref]

Ehrenreich, T.

B. V. Zhdanov, T. Ehrenreich, and R. J. Knize, “Highly efficient optically pumped cesium vapor laser,” Opt. Commun. 260(2), 696–698 (2006).
[Crossref]

Fox, C. D.

G. A. Pitz, C. D. Fox, and G. P. Perram, “Transfer between the cesium 6 2P1/2 and 6 2P3/2 levels induced by collisions with2, HD, D2, CH4, C2H6, CF4, and C2F6,” Phys. Rev. A 84(3), 032708 (2011).
[Crossref]

Knize, R. J.

B. V. Zhdanov, M. D. Rotondaro, M. K. Shaffer, and R. J. Knize, “Low pressure cesium and potassium diode pumped alkali lasers: pros and cons,” Opt. Eng. 55(2), 026105 (2016).
[Crossref]

B. V. Zhdanov, M. D. Rotondaro, M. K. Shaffer, and R. J. Knize, “Power degradation due to thermal effects in potassium diode pumped alkali laser,” Opt. Commun. 341, 97–100 (2015).
[Crossref]

M. K. Shaffer, T. C. Lilly, B. V. Zhdanov, and R. J. Knize, “In situ non-perturbative temperature measurement in a Cs alkali laser,” Opt. Lett. 40(1), 119–122 (2015).
[Crossref] [PubMed]

B. V. Zhdanov and R. J. Knize, “Review of alkali lasers research and development,” Opt. Eng. 52(2), 021010 (2012).
[Crossref]

B. V. Zhdanov and R. J. Knize, “Alkali lasers development at the laser and optics research center of the US Air Force Academy,” Proc. SPIE 7005, 700524 (2008).
[Crossref]

B. V. Zhdanov, A. Stooke, G. Boyadjian, A. Voci, and R. J. Knize, “Optically pumped cesium-freon laser,” Electron. Lett. 44(12), 735–737 (2008).
[Crossref]

B. V. Zhdanov, T. Ehrenreich, and R. J. Knize, “Highly efficient optically pumped cesium vapor laser,” Opt. Commun. 260(2), 696–698 (2006).
[Crossref]

Lilly, T. C.

Perram, G. P.

G. A. Pitz, C. D. Fox, and G. P. Perram, “Transfer between the cesium 6 2P1/2 and 6 2P3/2 levels induced by collisions with2, HD, D2, CH4, C2H6, CF4, and C2F6,” Phys. Rev. A 84(3), 032708 (2011).
[Crossref]

Pitz, G. A.

G. A. Pitz, C. D. Fox, and G. P. Perram, “Transfer between the cesium 6 2P1/2 and 6 2P3/2 levels induced by collisions with2, HD, D2, CH4, C2H6, CF4, and C2F6,” Phys. Rev. A 84(3), 032708 (2011).
[Crossref]

Quarrie, L. O.

L. O. Quarrie, “The effects of atomic rubidium vapor on the performance of optical windows in Diode Pumped Alkali Lasers (DPALs),” Opt. Mater. 35(5), 843–851 (2013).
[Crossref]

Rotondaro, M. D.

B. V. Zhdanov, M. D. Rotondaro, M. K. Shaffer, and R. J. Knize, “Low pressure cesium and potassium diode pumped alkali lasers: pros and cons,” Opt. Eng. 55(2), 026105 (2016).
[Crossref]

B. V. Zhdanov, M. D. Rotondaro, M. K. Shaffer, and R. J. Knize, “Power degradation due to thermal effects in potassium diode pumped alkali laser,” Opt. Commun. 341, 97–100 (2015).
[Crossref]

Shaffer, M. K.

B. V. Zhdanov, M. D. Rotondaro, M. K. Shaffer, and R. J. Knize, “Low pressure cesium and potassium diode pumped alkali lasers: pros and cons,” Opt. Eng. 55(2), 026105 (2016).
[Crossref]

B. V. Zhdanov, M. D. Rotondaro, M. K. Shaffer, and R. J. Knize, “Power degradation due to thermal effects in potassium diode pumped alkali laser,” Opt. Commun. 341, 97–100 (2015).
[Crossref]

M. K. Shaffer, T. C. Lilly, B. V. Zhdanov, and R. J. Knize, “In situ non-perturbative temperature measurement in a Cs alkali laser,” Opt. Lett. 40(1), 119–122 (2015).
[Crossref] [PubMed]

Stooke, A.

B. V. Zhdanov, A. Stooke, G. Boyadjian, A. Voci, and R. J. Knize, “Optically pumped cesium-freon laser,” Electron. Lett. 44(12), 735–737 (2008).
[Crossref]

Voci, A.

B. V. Zhdanov, A. Stooke, G. Boyadjian, A. Voci, and R. J. Knize, “Optically pumped cesium-freon laser,” Electron. Lett. 44(12), 735–737 (2008).
[Crossref]

Zhdanov, B. V.

B. V. Zhdanov, M. D. Rotondaro, M. K. Shaffer, and R. J. Knize, “Low pressure cesium and potassium diode pumped alkali lasers: pros and cons,” Opt. Eng. 55(2), 026105 (2016).
[Crossref]

B. V. Zhdanov, M. D. Rotondaro, M. K. Shaffer, and R. J. Knize, “Power degradation due to thermal effects in potassium diode pumped alkali laser,” Opt. Commun. 341, 97–100 (2015).
[Crossref]

M. K. Shaffer, T. C. Lilly, B. V. Zhdanov, and R. J. Knize, “In situ non-perturbative temperature measurement in a Cs alkali laser,” Opt. Lett. 40(1), 119–122 (2015).
[Crossref] [PubMed]

B. V. Zhdanov and R. J. Knize, “Review of alkali lasers research and development,” Opt. Eng. 52(2), 021010 (2012).
[Crossref]

B. V. Zhdanov and R. J. Knize, “Alkali lasers development at the laser and optics research center of the US Air Force Academy,” Proc. SPIE 7005, 700524 (2008).
[Crossref]

B. V. Zhdanov, A. Stooke, G. Boyadjian, A. Voci, and R. J. Knize, “Optically pumped cesium-freon laser,” Electron. Lett. 44(12), 735–737 (2008).
[Crossref]

B. V. Zhdanov, T. Ehrenreich, and R. J. Knize, “Highly efficient optically pumped cesium vapor laser,” Opt. Commun. 260(2), 696–698 (2006).
[Crossref]

Electron. Lett. (1)

B. V. Zhdanov, A. Stooke, G. Boyadjian, A. Voci, and R. J. Knize, “Optically pumped cesium-freon laser,” Electron. Lett. 44(12), 735–737 (2008).
[Crossref]

Opt. Commun. (2)

B. V. Zhdanov, T. Ehrenreich, and R. J. Knize, “Highly efficient optically pumped cesium vapor laser,” Opt. Commun. 260(2), 696–698 (2006).
[Crossref]

B. V. Zhdanov, M. D. Rotondaro, M. K. Shaffer, and R. J. Knize, “Power degradation due to thermal effects in potassium diode pumped alkali laser,” Opt. Commun. 341, 97–100 (2015).
[Crossref]

Opt. Eng. (2)

B. V. Zhdanov, M. D. Rotondaro, M. K. Shaffer, and R. J. Knize, “Low pressure cesium and potassium diode pumped alkali lasers: pros and cons,” Opt. Eng. 55(2), 026105 (2016).
[Crossref]

B. V. Zhdanov and R. J. Knize, “Review of alkali lasers research and development,” Opt. Eng. 52(2), 021010 (2012).
[Crossref]

Opt. Lett. (1)

Opt. Mater. (1)

L. O. Quarrie, “The effects of atomic rubidium vapor on the performance of optical windows in Diode Pumped Alkali Lasers (DPALs),” Opt. Mater. 35(5), 843–851 (2013).
[Crossref]

Phys. Rev. A (1)

G. A. Pitz, C. D. Fox, and G. P. Perram, “Transfer between the cesium 6 2P1/2 and 6 2P3/2 levels induced by collisions with2, HD, D2, CH4, C2H6, CF4, and C2F6,” Phys. Rev. A 84(3), 032708 (2011).
[Crossref]

Proc. SPIE (1)

B. V. Zhdanov and R. J. Knize, “Alkali lasers development at the laser and optics research center of the US Air Force Academy,” Proc. SPIE 7005, 700524 (2008).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Experimental setup.
Fig. 2
Fig. 2 Pump beam FWHM inside the gain cell in two planes – vertical and horizontal.
Fig. 3
Fig. 3 Static Cs DPAL laser pulses for various pump power levels. The pump pulse for each power has rectangular shape and the laser output degrades from the initial peak converging to the CW power level.
Fig. 4
Fig. 4 Gain medium temperature time dependence and the laser pulse for a pump power 370W (a) and details for laser power and temperature changes at turn-on (b). Estimated error for the measured temperatures is about 50 C.
Fig. 5
Fig. 5 Gain medium temperature time dependences for different pump powers. Estimated error for the measured temperatures is about 50 C.
Fig. 6
Fig. 6 Cs DPAL gain medium peak temperature for lasing and no-lasing conditions along with their associated uncertainties.

Tables (3)

Tables Icon

Table 1 Experimentally measured temperature rise for the lasing (ΔTL) and non-lasing (ΔTNL) cases along with the corresponding ratio of these values compared to the expected theoretical values. The uncertainty for the theoretical values was computed using the uncertainty in the quenching cross-section.

Tables Icon

Table 2 Level populations relative to Cs vapor number density NCs for lasing and non-lasing cases. The non-lasing cases were calculated at the peak temperatures shown in Fig. 5.

Tables Icon

Table 3 A comparison of the power deposition for quenching and spin-orbit relaxation for both lasing and non lasing cases.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

P H =V N CH4 σ Q v( N Cs(P1/2) Δ E (S1/2P1/2) + N Cs(P3/2) Δ E (S1/2P3/2) ) +V N CH4 vΔ E (P1/2P3/2) ( N CsP3/2 σ 21 N CsP1/2 σ 12 ),
N CH4 = P( 133.322 ) kT ,
v= 8kT πμ ,
d N 2 dt = N 2 τ N 2 N g σ 21 v N 2 N g σ Q v+ N 1 N g σ 12 v+  Φ P σ SE20 ( g 2 g 0 N 0 N 2 )
d N 1 dt = N 1 τ + N 2 N g σ 21 v N 1 N g σ 12 v N 1 N g σ Q v Φ L σ SE10 ( N 1 N 0 )
N Cs = N 0 + N 1 + N 2
N Cs = N 2 [ 1 N g v σ 21 g 2 g 1 e ΔΕ/kT ( 1 τ + N g v ( σ 21 + σ Q ) )+1.5 ]
N 0 = N Cs 1 4 ,  N 1 = N Cs 1 4 ,  N 2 = N Cs 1 2

Metrics