Abstract

Dye doped photocurable cholesteric liquid crystal was used to produce solid Bragg onion omnidirectional lasers. The lasers were produced by dispersing and polymerizing chiral nematic LC with parallel surface anchoring of LC molecules at the interface, extracted and transferred into another medium. Lasing characteristics were studied in carrier medium with different refractive index. The lasing in spherical cholesteric liquid crystal was attributed to two mechanisms, photonic bandedge lasing and lasing of whispering-gallery modes. The latter can be suppressed by using a higher index carrier fluid to prevent total internal reflection on the interface of the spheres. Pulse-to-pulse stability and threshold characteristics were also studied and compared to non-polymerized lasers. The polymerization process greatly increases the lasing stability.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
3D microlasers from self-assembled cholesteric liquid-crystal microdroplets

M. Humar and I. Muševič
Opt. Express 18(26) 26995-27003 (2010)

Magnetic-field tuning of whispering gallery mode lasing from ferromagnetic nematic liquid crystal microdroplets

Maruša Mur, Junaid Ahmad Sofi, Ivan Kvasić, Alenka Mertelj, Darja Lisjak, Vidur Niranjan, Igor Muševič, and Surajit Dhara
Opt. Express 25(2) 1073-1083 (2017)

Electrically tunable Fabry–Perot lasing in nematic liquid crystal cells

Inge Nys, Jeroen Beeckman, and Kristiaan Neyts
J. Opt. Soc. Am. B 31(7) 1516-1524 (2014)

References

  • View by:
  • |
  • |
  • |

  1. I. Muševič, “Liquid-crystal micro-photonics,” Liq. Cryst. Rev. 4, 1–34 (2016).
    [Crossref]
  2. H. Coles and S. Morris, “Liquid-crystal lasers,” Nat. Photonics 4, 676–685 (2010).
    [Crossref]
  3. V. I. Kopp, B. Fan, H. K. M. Vithana, and A. Z. Genack, “Low-threshold lasing at the edge of a photonic stop band in cholesteric liquid crystals,” Opt. Lett. 23, 1707–1709 (1998).
    [Crossref]
  4. M. Ozaki, M. Kasano, D. Ganzke, W. Hasse, and K. Yoshino, “Mirrorless lasing in a dye-doped ferroelectric liquid crystal,” Adv. Mater. 14, 306–309 (2002).
    [Crossref]
  5. W. Cao, A. Munoz, P. Palffy-Muhoray, and B. Taheri, “Lasing in a three-dimensional photonic crystal of the liquid crystal blue phase II,” Nat. Mater. 1, 111–113 (2002).
    [Crossref]
  6. H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater. 1, 64–68 (2002).
    [Crossref]
  7. T. Ohta, M. H. Song, Y. Tsunoda, T. Nagata, K.-C. Shin, F. Araoka, Y. Takanishi, K. Ishkawa, J. Watanabe, S. Nishimura, T. Toyooka, and H. Takezoe, “Monodomain film formation and lasing in dye-doped polymer cholesteric liquid crystals,” Jpn. J. Appl. Phys. 43, 6142–6144 (2004).
    [Crossref]
  8. H. Finkelmann, S. T. Kim, A. Munoz, P. Palffy-Muhoray, and B. Taheri, “Tunable mirrorless lasing in cholesteric liquid crystalline elastomers,” Adv. Mater. 13, 1069–1072 (2001).
    [Crossref]
  9. T. Manabe, K. Sonoyama, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Toward practical application of cholesteric liquid crystals to tunable lasers,” J. Mater. Chem. 18, 3040–3043 (2008).
    [Crossref]
  10. S. M. Morris, A. D. Ford, M. N. Pivnenko, and H. J. Coles, “The effects of reorientation on the emission properties of a photonic band edge liquid crystal laser,” J. Opt. A: Pure Appl. Opt. 7215 (2005).
    [Crossref]
  11. F. Araoka, K.-C. Shin, Y. Takanishi, K. Ishikawa, H. Takezoe, Z. Zhu, and T. M. Swager, “How doping a cholesteric liquid crystal with polymeric dye improves an order parameter and makes possible low threshold lasing,” J. Appl. Phys. 94, 279–283 (2009).
    [Crossref]
  12. J. Schmidtke, W. Stille, H. Finkelmann, and S. T. Kim, “Laser emission in a dye doped cholesteric polymer network,” Adv. Mater. 14, 746–749 (2002).
    [Crossref]
  13. S. M. Jeong, N. Y. Ha, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Defect mode lasing from a double-layered dye-doped polymer cholesteric liquid crystal films with a thin rubbed defect layer,” Appl. Phys. Lett. 90, 261108 (2007).
    [Crossref]
  14. M. Humar, M. Ravnik, S. Pajk, and I. Muševič, “Electrically tunable liquid crystal optical microresonators,” Nat. Photonics 3, 595–600 (2009).
    [Crossref]
  15. M. Humar and I. Muševič, “Surfactant sensing based on whispering-gallery-mode lasing in liquid-crystal micro-droplets,” Opt. Express 19, 19836–19844 (2011).
    [Crossref] [PubMed]
  16. M. Humar and I. Muševič, “3D microlasers from self-assembled cholesteric liquid-crystal microdroplets,” Opt. Express 18, 26995–27003 (2010).
    [Crossref]
  17. P. J. W. Hands, D. J. Gardiner, S. M. Morris, C. Mowatt, T. D. Wilkinson, and H. J. Coles, “Band-edge and random lasing in paintable liquid crystal emulsions,” Appl. Phys. Lett. 98, 141102 (2011).
    [Crossref]
  18. D. J. Gardiner, S. M. Morris, P. J. W. Hands, C. Mowatt, R. Rutledge, T. D. Wilkinson, and H. J. Coles, “Paintable band-edge liquid crystal lasers,” Opt. Express 19, 2432–2439 (2011).
    [Crossref] [PubMed]
  19. G. Cipparrone, A. Mazzulla, A. Pane, R. J. Hernandez, and R. Bartolino, “Chiral self-assembled solid microspheres: a novel multifunctional microphotonic device,” Adv. Mater. 23, 5773 (2011).
    [Crossref] [PubMed]
  20. I. Gourevich, L. M. Field, Z. Wei, C. Paquet, A. Petukhova, A. Alteheld, E. Kumacheva, J. J. Saarinen, and J. E. Sipe, “Polymer multilayer particles: a route to spherical dielectric resonators,” Macromolecules 39, 1449–1454 (2006).
    [Crossref]
  21. Y. Xu, W. Liang, A. Yariv, J. G. Fleming, and S.-Y. Lin, “Modal analysis of Bragg onion resonators,” Opt. Lett. 29, 424–426 (2004).
    [Crossref] [PubMed]
  22. M. G. Donato, J. Hernandez, A. Mazzulla, C. Provenzano, R. Saija, R. Sayed, S. Vasi, A. Magazzu, P. Pagliusi, R. Bartolino, P. G. Gucciardi, O. M. Marago, and G. Cipparrone, “Polarization-dependent optomechanics mediated by chiral microresonators,” Nat. Commun. 5, 3656 (2014).
    [Crossref] [PubMed]
  23. R. J. Hernandez, A. Mazzulla, A. Pane, K. Volke-SepÞlveda, and G. Cipparrone, “Attractive-repulsive dynamics on light-responsive chiral microparticles induced by polarized tweezers,” Lab. Chip. 7, 459–467 (2013).
    [Crossref]
  24. E. Brasselet, N. Murazawa, H. Misawa, and S. Juodkazis, “Optical vortices from liquid crystal droplets,” Phys. Rev. Lett. 103, 103903 (2009).
    [Crossref] [PubMed]
  25. D. Seč, T. Porenta, and M. Ravnik, and S. Žumer, “Geometrical frustration of chiral ordering in cholesteric droplets,” Soft Matter 8, 11982–11988 (2012).
    [Crossref]
  26. G. Posnjak, S. Čopar, and I. Muševič, “Points, skyrmions and torons in chiral nematic droplets,” Sci. Rep. 6, 26361 (2016).
    [Crossref] [PubMed]
  27. K.-C. Shin, F. Araoka, B. Park, Y. Takanishi, K. Ishikawa, Z. Zhu, T. M. Swager, and H. Takezoe, “Advantages of highly ordered polymer-dyes for lasing in chiral nematic liquid crystals,” Jpn. J. Appl. Phys. 43, 631 (2004).
    [Crossref]

2016 (2)

I. Muševič, “Liquid-crystal micro-photonics,” Liq. Cryst. Rev. 4, 1–34 (2016).
[Crossref]

G. Posnjak, S. Čopar, and I. Muševič, “Points, skyrmions and torons in chiral nematic droplets,” Sci. Rep. 6, 26361 (2016).
[Crossref] [PubMed]

2014 (1)

M. G. Donato, J. Hernandez, A. Mazzulla, C. Provenzano, R. Saija, R. Sayed, S. Vasi, A. Magazzu, P. Pagliusi, R. Bartolino, P. G. Gucciardi, O. M. Marago, and G. Cipparrone, “Polarization-dependent optomechanics mediated by chiral microresonators,” Nat. Commun. 5, 3656 (2014).
[Crossref] [PubMed]

2013 (1)

R. J. Hernandez, A. Mazzulla, A. Pane, K. Volke-SepÞlveda, and G. Cipparrone, “Attractive-repulsive dynamics on light-responsive chiral microparticles induced by polarized tweezers,” Lab. Chip. 7, 459–467 (2013).
[Crossref]

2012 (1)

D. Seč, T. Porenta, and M. Ravnik, and S. Žumer, “Geometrical frustration of chiral ordering in cholesteric droplets,” Soft Matter 8, 11982–11988 (2012).
[Crossref]

2011 (4)

M. Humar and I. Muševič, “Surfactant sensing based on whispering-gallery-mode lasing in liquid-crystal micro-droplets,” Opt. Express 19, 19836–19844 (2011).
[Crossref] [PubMed]

P. J. W. Hands, D. J. Gardiner, S. M. Morris, C. Mowatt, T. D. Wilkinson, and H. J. Coles, “Band-edge and random lasing in paintable liquid crystal emulsions,” Appl. Phys. Lett. 98, 141102 (2011).
[Crossref]

D. J. Gardiner, S. M. Morris, P. J. W. Hands, C. Mowatt, R. Rutledge, T. D. Wilkinson, and H. J. Coles, “Paintable band-edge liquid crystal lasers,” Opt. Express 19, 2432–2439 (2011).
[Crossref] [PubMed]

G. Cipparrone, A. Mazzulla, A. Pane, R. J. Hernandez, and R. Bartolino, “Chiral self-assembled solid microspheres: a novel multifunctional microphotonic device,” Adv. Mater. 23, 5773 (2011).
[Crossref] [PubMed]

2010 (2)

2009 (3)

E. Brasselet, N. Murazawa, H. Misawa, and S. Juodkazis, “Optical vortices from liquid crystal droplets,” Phys. Rev. Lett. 103, 103903 (2009).
[Crossref] [PubMed]

F. Araoka, K.-C. Shin, Y. Takanishi, K. Ishikawa, H. Takezoe, Z. Zhu, and T. M. Swager, “How doping a cholesteric liquid crystal with polymeric dye improves an order parameter and makes possible low threshold lasing,” J. Appl. Phys. 94, 279–283 (2009).
[Crossref]

M. Humar, M. Ravnik, S. Pajk, and I. Muševič, “Electrically tunable liquid crystal optical microresonators,” Nat. Photonics 3, 595–600 (2009).
[Crossref]

2008 (1)

T. Manabe, K. Sonoyama, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Toward practical application of cholesteric liquid crystals to tunable lasers,” J. Mater. Chem. 18, 3040–3043 (2008).
[Crossref]

2007 (1)

S. M. Jeong, N. Y. Ha, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Defect mode lasing from a double-layered dye-doped polymer cholesteric liquid crystal films with a thin rubbed defect layer,” Appl. Phys. Lett. 90, 261108 (2007).
[Crossref]

2006 (1)

I. Gourevich, L. M. Field, Z. Wei, C. Paquet, A. Petukhova, A. Alteheld, E. Kumacheva, J. J. Saarinen, and J. E. Sipe, “Polymer multilayer particles: a route to spherical dielectric resonators,” Macromolecules 39, 1449–1454 (2006).
[Crossref]

2005 (1)

S. M. Morris, A. D. Ford, M. N. Pivnenko, and H. J. Coles, “The effects of reorientation on the emission properties of a photonic band edge liquid crystal laser,” J. Opt. A: Pure Appl. Opt. 7215 (2005).
[Crossref]

2004 (3)

T. Ohta, M. H. Song, Y. Tsunoda, T. Nagata, K.-C. Shin, F. Araoka, Y. Takanishi, K. Ishkawa, J. Watanabe, S. Nishimura, T. Toyooka, and H. Takezoe, “Monodomain film formation and lasing in dye-doped polymer cholesteric liquid crystals,” Jpn. J. Appl. Phys. 43, 6142–6144 (2004).
[Crossref]

Y. Xu, W. Liang, A. Yariv, J. G. Fleming, and S.-Y. Lin, “Modal analysis of Bragg onion resonators,” Opt. Lett. 29, 424–426 (2004).
[Crossref] [PubMed]

K.-C. Shin, F. Araoka, B. Park, Y. Takanishi, K. Ishikawa, Z. Zhu, T. M. Swager, and H. Takezoe, “Advantages of highly ordered polymer-dyes for lasing in chiral nematic liquid crystals,” Jpn. J. Appl. Phys. 43, 631 (2004).
[Crossref]

2002 (4)

J. Schmidtke, W. Stille, H. Finkelmann, and S. T. Kim, “Laser emission in a dye doped cholesteric polymer network,” Adv. Mater. 14, 746–749 (2002).
[Crossref]

M. Ozaki, M. Kasano, D. Ganzke, W. Hasse, and K. Yoshino, “Mirrorless lasing in a dye-doped ferroelectric liquid crystal,” Adv. Mater. 14, 306–309 (2002).
[Crossref]

W. Cao, A. Munoz, P. Palffy-Muhoray, and B. Taheri, “Lasing in a three-dimensional photonic crystal of the liquid crystal blue phase II,” Nat. Mater. 1, 111–113 (2002).
[Crossref]

H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater. 1, 64–68 (2002).
[Crossref]

2001 (1)

H. Finkelmann, S. T. Kim, A. Munoz, P. Palffy-Muhoray, and B. Taheri, “Tunable mirrorless lasing in cholesteric liquid crystalline elastomers,” Adv. Mater. 13, 1069–1072 (2001).
[Crossref]

1998 (1)

Alteheld, A.

I. Gourevich, L. M. Field, Z. Wei, C. Paquet, A. Petukhova, A. Alteheld, E. Kumacheva, J. J. Saarinen, and J. E. Sipe, “Polymer multilayer particles: a route to spherical dielectric resonators,” Macromolecules 39, 1449–1454 (2006).
[Crossref]

Araoka, F.

F. Araoka, K.-C. Shin, Y. Takanishi, K. Ishikawa, H. Takezoe, Z. Zhu, and T. M. Swager, “How doping a cholesteric liquid crystal with polymeric dye improves an order parameter and makes possible low threshold lasing,” J. Appl. Phys. 94, 279–283 (2009).
[Crossref]

T. Ohta, M. H. Song, Y. Tsunoda, T. Nagata, K.-C. Shin, F. Araoka, Y. Takanishi, K. Ishkawa, J. Watanabe, S. Nishimura, T. Toyooka, and H. Takezoe, “Monodomain film formation and lasing in dye-doped polymer cholesteric liquid crystals,” Jpn. J. Appl. Phys. 43, 6142–6144 (2004).
[Crossref]

K.-C. Shin, F. Araoka, B. Park, Y. Takanishi, K. Ishikawa, Z. Zhu, T. M. Swager, and H. Takezoe, “Advantages of highly ordered polymer-dyes for lasing in chiral nematic liquid crystals,” Jpn. J. Appl. Phys. 43, 631 (2004).
[Crossref]

Bartolino, R.

M. G. Donato, J. Hernandez, A. Mazzulla, C. Provenzano, R. Saija, R. Sayed, S. Vasi, A. Magazzu, P. Pagliusi, R. Bartolino, P. G. Gucciardi, O. M. Marago, and G. Cipparrone, “Polarization-dependent optomechanics mediated by chiral microresonators,” Nat. Commun. 5, 3656 (2014).
[Crossref] [PubMed]

G. Cipparrone, A. Mazzulla, A. Pane, R. J. Hernandez, and R. Bartolino, “Chiral self-assembled solid microspheres: a novel multifunctional microphotonic device,” Adv. Mater. 23, 5773 (2011).
[Crossref] [PubMed]

Brasselet, E.

E. Brasselet, N. Murazawa, H. Misawa, and S. Juodkazis, “Optical vortices from liquid crystal droplets,” Phys. Rev. Lett. 103, 103903 (2009).
[Crossref] [PubMed]

Cao, W.

W. Cao, A. Munoz, P. Palffy-Muhoray, and B. Taheri, “Lasing in a three-dimensional photonic crystal of the liquid crystal blue phase II,” Nat. Mater. 1, 111–113 (2002).
[Crossref]

Cipparrone, G.

M. G. Donato, J. Hernandez, A. Mazzulla, C. Provenzano, R. Saija, R. Sayed, S. Vasi, A. Magazzu, P. Pagliusi, R. Bartolino, P. G. Gucciardi, O. M. Marago, and G. Cipparrone, “Polarization-dependent optomechanics mediated by chiral microresonators,” Nat. Commun. 5, 3656 (2014).
[Crossref] [PubMed]

R. J. Hernandez, A. Mazzulla, A. Pane, K. Volke-SepÞlveda, and G. Cipparrone, “Attractive-repulsive dynamics on light-responsive chiral microparticles induced by polarized tweezers,” Lab. Chip. 7, 459–467 (2013).
[Crossref]

G. Cipparrone, A. Mazzulla, A. Pane, R. J. Hernandez, and R. Bartolino, “Chiral self-assembled solid microspheres: a novel multifunctional microphotonic device,” Adv. Mater. 23, 5773 (2011).
[Crossref] [PubMed]

Coles, H.

H. Coles and S. Morris, “Liquid-crystal lasers,” Nat. Photonics 4, 676–685 (2010).
[Crossref]

Coles, H. J.

P. J. W. Hands, D. J. Gardiner, S. M. Morris, C. Mowatt, T. D. Wilkinson, and H. J. Coles, “Band-edge and random lasing in paintable liquid crystal emulsions,” Appl. Phys. Lett. 98, 141102 (2011).
[Crossref]

D. J. Gardiner, S. M. Morris, P. J. W. Hands, C. Mowatt, R. Rutledge, T. D. Wilkinson, and H. J. Coles, “Paintable band-edge liquid crystal lasers,” Opt. Express 19, 2432–2439 (2011).
[Crossref] [PubMed]

S. M. Morris, A. D. Ford, M. N. Pivnenko, and H. J. Coles, “The effects of reorientation on the emission properties of a photonic band edge liquid crystal laser,” J. Opt. A: Pure Appl. Opt. 7215 (2005).
[Crossref]

Copar, S.

G. Posnjak, S. Čopar, and I. Muševič, “Points, skyrmions and torons in chiral nematic droplets,” Sci. Rep. 6, 26361 (2016).
[Crossref] [PubMed]

Donato, M. G.

M. G. Donato, J. Hernandez, A. Mazzulla, C. Provenzano, R. Saija, R. Sayed, S. Vasi, A. Magazzu, P. Pagliusi, R. Bartolino, P. G. Gucciardi, O. M. Marago, and G. Cipparrone, “Polarization-dependent optomechanics mediated by chiral microresonators,” Nat. Commun. 5, 3656 (2014).
[Crossref] [PubMed]

Fan, B.

Field, L. M.

I. Gourevich, L. M. Field, Z. Wei, C. Paquet, A. Petukhova, A. Alteheld, E. Kumacheva, J. J. Saarinen, and J. E. Sipe, “Polymer multilayer particles: a route to spherical dielectric resonators,” Macromolecules 39, 1449–1454 (2006).
[Crossref]

Finkelmann, H.

J. Schmidtke, W. Stille, H. Finkelmann, and S. T. Kim, “Laser emission in a dye doped cholesteric polymer network,” Adv. Mater. 14, 746–749 (2002).
[Crossref]

H. Finkelmann, S. T. Kim, A. Munoz, P. Palffy-Muhoray, and B. Taheri, “Tunable mirrorless lasing in cholesteric liquid crystalline elastomers,” Adv. Mater. 13, 1069–1072 (2001).
[Crossref]

Fleming, J. G.

Ford, A. D.

S. M. Morris, A. D. Ford, M. N. Pivnenko, and H. J. Coles, “The effects of reorientation on the emission properties of a photonic band edge liquid crystal laser,” J. Opt. A: Pure Appl. Opt. 7215 (2005).
[Crossref]

Ganzke, D.

M. Ozaki, M. Kasano, D. Ganzke, W. Hasse, and K. Yoshino, “Mirrorless lasing in a dye-doped ferroelectric liquid crystal,” Adv. Mater. 14, 306–309 (2002).
[Crossref]

Gardiner, D. J.

D. J. Gardiner, S. M. Morris, P. J. W. Hands, C. Mowatt, R. Rutledge, T. D. Wilkinson, and H. J. Coles, “Paintable band-edge liquid crystal lasers,” Opt. Express 19, 2432–2439 (2011).
[Crossref] [PubMed]

P. J. W. Hands, D. J. Gardiner, S. M. Morris, C. Mowatt, T. D. Wilkinson, and H. J. Coles, “Band-edge and random lasing in paintable liquid crystal emulsions,” Appl. Phys. Lett. 98, 141102 (2011).
[Crossref]

Genack, A. Z.

Gourevich, I.

I. Gourevich, L. M. Field, Z. Wei, C. Paquet, A. Petukhova, A. Alteheld, E. Kumacheva, J. J. Saarinen, and J. E. Sipe, “Polymer multilayer particles: a route to spherical dielectric resonators,” Macromolecules 39, 1449–1454 (2006).
[Crossref]

Gucciardi, P. G.

M. G. Donato, J. Hernandez, A. Mazzulla, C. Provenzano, R. Saija, R. Sayed, S. Vasi, A. Magazzu, P. Pagliusi, R. Bartolino, P. G. Gucciardi, O. M. Marago, and G. Cipparrone, “Polarization-dependent optomechanics mediated by chiral microresonators,” Nat. Commun. 5, 3656 (2014).
[Crossref] [PubMed]

Ha, N. Y.

S. M. Jeong, N. Y. Ha, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Defect mode lasing from a double-layered dye-doped polymer cholesteric liquid crystal films with a thin rubbed defect layer,” Appl. Phys. Lett. 90, 261108 (2007).
[Crossref]

Hands, P. J. W.

P. J. W. Hands, D. J. Gardiner, S. M. Morris, C. Mowatt, T. D. Wilkinson, and H. J. Coles, “Band-edge and random lasing in paintable liquid crystal emulsions,” Appl. Phys. Lett. 98, 141102 (2011).
[Crossref]

D. J. Gardiner, S. M. Morris, P. J. W. Hands, C. Mowatt, R. Rutledge, T. D. Wilkinson, and H. J. Coles, “Paintable band-edge liquid crystal lasers,” Opt. Express 19, 2432–2439 (2011).
[Crossref] [PubMed]

Hasse, W.

M. Ozaki, M. Kasano, D. Ganzke, W. Hasse, and K. Yoshino, “Mirrorless lasing in a dye-doped ferroelectric liquid crystal,” Adv. Mater. 14, 306–309 (2002).
[Crossref]

Hernandez, J.

M. G. Donato, J. Hernandez, A. Mazzulla, C. Provenzano, R. Saija, R. Sayed, S. Vasi, A. Magazzu, P. Pagliusi, R. Bartolino, P. G. Gucciardi, O. M. Marago, and G. Cipparrone, “Polarization-dependent optomechanics mediated by chiral microresonators,” Nat. Commun. 5, 3656 (2014).
[Crossref] [PubMed]

Hernandez, R. J.

R. J. Hernandez, A. Mazzulla, A. Pane, K. Volke-SepÞlveda, and G. Cipparrone, “Attractive-repulsive dynamics on light-responsive chiral microparticles induced by polarized tweezers,” Lab. Chip. 7, 459–467 (2013).
[Crossref]

G. Cipparrone, A. Mazzulla, A. Pane, R. J. Hernandez, and R. Bartolino, “Chiral self-assembled solid microspheres: a novel multifunctional microphotonic device,” Adv. Mater. 23, 5773 (2011).
[Crossref] [PubMed]

Hisakado, Y.

H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater. 1, 64–68 (2002).
[Crossref]

Humar, M.

Ishikawa, K.

F. Araoka, K.-C. Shin, Y. Takanishi, K. Ishikawa, H. Takezoe, Z. Zhu, and T. M. Swager, “How doping a cholesteric liquid crystal with polymeric dye improves an order parameter and makes possible low threshold lasing,” J. Appl. Phys. 94, 279–283 (2009).
[Crossref]

T. Manabe, K. Sonoyama, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Toward practical application of cholesteric liquid crystals to tunable lasers,” J. Mater. Chem. 18, 3040–3043 (2008).
[Crossref]

S. M. Jeong, N. Y. Ha, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Defect mode lasing from a double-layered dye-doped polymer cholesteric liquid crystal films with a thin rubbed defect layer,” Appl. Phys. Lett. 90, 261108 (2007).
[Crossref]

K.-C. Shin, F. Araoka, B. Park, Y. Takanishi, K. Ishikawa, Z. Zhu, T. M. Swager, and H. Takezoe, “Advantages of highly ordered polymer-dyes for lasing in chiral nematic liquid crystals,” Jpn. J. Appl. Phys. 43, 631 (2004).
[Crossref]

Ishkawa, K.

T. Ohta, M. H. Song, Y. Tsunoda, T. Nagata, K.-C. Shin, F. Araoka, Y. Takanishi, K. Ishkawa, J. Watanabe, S. Nishimura, T. Toyooka, and H. Takezoe, “Monodomain film formation and lasing in dye-doped polymer cholesteric liquid crystals,” Jpn. J. Appl. Phys. 43, 6142–6144 (2004).
[Crossref]

Jeong, S. M.

S. M. Jeong, N. Y. Ha, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Defect mode lasing from a double-layered dye-doped polymer cholesteric liquid crystal films with a thin rubbed defect layer,” Appl. Phys. Lett. 90, 261108 (2007).
[Crossref]

Juodkazis, S.

E. Brasselet, N. Murazawa, H. Misawa, and S. Juodkazis, “Optical vortices from liquid crystal droplets,” Phys. Rev. Lett. 103, 103903 (2009).
[Crossref] [PubMed]

Kajiyama, T.

H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater. 1, 64–68 (2002).
[Crossref]

Kasano, M.

M. Ozaki, M. Kasano, D. Ganzke, W. Hasse, and K. Yoshino, “Mirrorless lasing in a dye-doped ferroelectric liquid crystal,” Adv. Mater. 14, 306–309 (2002).
[Crossref]

Kikuchi, H.

H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater. 1, 64–68 (2002).
[Crossref]

Kim, S. T.

J. Schmidtke, W. Stille, H. Finkelmann, and S. T. Kim, “Laser emission in a dye doped cholesteric polymer network,” Adv. Mater. 14, 746–749 (2002).
[Crossref]

H. Finkelmann, S. T. Kim, A. Munoz, P. Palffy-Muhoray, and B. Taheri, “Tunable mirrorless lasing in cholesteric liquid crystalline elastomers,” Adv. Mater. 13, 1069–1072 (2001).
[Crossref]

Kopp, V. I.

Kumacheva, E.

I. Gourevich, L. M. Field, Z. Wei, C. Paquet, A. Petukhova, A. Alteheld, E. Kumacheva, J. J. Saarinen, and J. E. Sipe, “Polymer multilayer particles: a route to spherical dielectric resonators,” Macromolecules 39, 1449–1454 (2006).
[Crossref]

Liang, W.

Lin, S.-Y.

Magazzu, A.

M. G. Donato, J. Hernandez, A. Mazzulla, C. Provenzano, R. Saija, R. Sayed, S. Vasi, A. Magazzu, P. Pagliusi, R. Bartolino, P. G. Gucciardi, O. M. Marago, and G. Cipparrone, “Polarization-dependent optomechanics mediated by chiral microresonators,” Nat. Commun. 5, 3656 (2014).
[Crossref] [PubMed]

Manabe, T.

T. Manabe, K. Sonoyama, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Toward practical application of cholesteric liquid crystals to tunable lasers,” J. Mater. Chem. 18, 3040–3043 (2008).
[Crossref]

Marago, O. M.

M. G. Donato, J. Hernandez, A. Mazzulla, C. Provenzano, R. Saija, R. Sayed, S. Vasi, A. Magazzu, P. Pagliusi, R. Bartolino, P. G. Gucciardi, O. M. Marago, and G. Cipparrone, “Polarization-dependent optomechanics mediated by chiral microresonators,” Nat. Commun. 5, 3656 (2014).
[Crossref] [PubMed]

Mazzulla, A.

M. G. Donato, J. Hernandez, A. Mazzulla, C. Provenzano, R. Saija, R. Sayed, S. Vasi, A. Magazzu, P. Pagliusi, R. Bartolino, P. G. Gucciardi, O. M. Marago, and G. Cipparrone, “Polarization-dependent optomechanics mediated by chiral microresonators,” Nat. Commun. 5, 3656 (2014).
[Crossref] [PubMed]

R. J. Hernandez, A. Mazzulla, A. Pane, K. Volke-SepÞlveda, and G. Cipparrone, “Attractive-repulsive dynamics on light-responsive chiral microparticles induced by polarized tweezers,” Lab. Chip. 7, 459–467 (2013).
[Crossref]

G. Cipparrone, A. Mazzulla, A. Pane, R. J. Hernandez, and R. Bartolino, “Chiral self-assembled solid microspheres: a novel multifunctional microphotonic device,” Adv. Mater. 23, 5773 (2011).
[Crossref] [PubMed]

Misawa, H.

E. Brasselet, N. Murazawa, H. Misawa, and S. Juodkazis, “Optical vortices from liquid crystal droplets,” Phys. Rev. Lett. 103, 103903 (2009).
[Crossref] [PubMed]

Morris, S.

H. Coles and S. Morris, “Liquid-crystal lasers,” Nat. Photonics 4, 676–685 (2010).
[Crossref]

Morris, S. M.

P. J. W. Hands, D. J. Gardiner, S. M. Morris, C. Mowatt, T. D. Wilkinson, and H. J. Coles, “Band-edge and random lasing in paintable liquid crystal emulsions,” Appl. Phys. Lett. 98, 141102 (2011).
[Crossref]

D. J. Gardiner, S. M. Morris, P. J. W. Hands, C. Mowatt, R. Rutledge, T. D. Wilkinson, and H. J. Coles, “Paintable band-edge liquid crystal lasers,” Opt. Express 19, 2432–2439 (2011).
[Crossref] [PubMed]

S. M. Morris, A. D. Ford, M. N. Pivnenko, and H. J. Coles, “The effects of reorientation on the emission properties of a photonic band edge liquid crystal laser,” J. Opt. A: Pure Appl. Opt. 7215 (2005).
[Crossref]

Mowatt, C.

D. J. Gardiner, S. M. Morris, P. J. W. Hands, C. Mowatt, R. Rutledge, T. D. Wilkinson, and H. J. Coles, “Paintable band-edge liquid crystal lasers,” Opt. Express 19, 2432–2439 (2011).
[Crossref] [PubMed]

P. J. W. Hands, D. J. Gardiner, S. M. Morris, C. Mowatt, T. D. Wilkinson, and H. J. Coles, “Band-edge and random lasing in paintable liquid crystal emulsions,” Appl. Phys. Lett. 98, 141102 (2011).
[Crossref]

Munoz, A.

W. Cao, A. Munoz, P. Palffy-Muhoray, and B. Taheri, “Lasing in a three-dimensional photonic crystal of the liquid crystal blue phase II,” Nat. Mater. 1, 111–113 (2002).
[Crossref]

H. Finkelmann, S. T. Kim, A. Munoz, P. Palffy-Muhoray, and B. Taheri, “Tunable mirrorless lasing in cholesteric liquid crystalline elastomers,” Adv. Mater. 13, 1069–1072 (2001).
[Crossref]

Murazawa, N.

E. Brasselet, N. Murazawa, H. Misawa, and S. Juodkazis, “Optical vortices from liquid crystal droplets,” Phys. Rev. Lett. 103, 103903 (2009).
[Crossref] [PubMed]

Muševic, I.

G. Posnjak, S. Čopar, and I. Muševič, “Points, skyrmions and torons in chiral nematic droplets,” Sci. Rep. 6, 26361 (2016).
[Crossref] [PubMed]

I. Muševič, “Liquid-crystal micro-photonics,” Liq. Cryst. Rev. 4, 1–34 (2016).
[Crossref]

M. Humar and I. Muševič, “Surfactant sensing based on whispering-gallery-mode lasing in liquid-crystal micro-droplets,” Opt. Express 19, 19836–19844 (2011).
[Crossref] [PubMed]

M. Humar and I. Muševič, “3D microlasers from self-assembled cholesteric liquid-crystal microdroplets,” Opt. Express 18, 26995–27003 (2010).
[Crossref]

M. Humar, M. Ravnik, S. Pajk, and I. Muševič, “Electrically tunable liquid crystal optical microresonators,” Nat. Photonics 3, 595–600 (2009).
[Crossref]

Nagata, T.

T. Ohta, M. H. Song, Y. Tsunoda, T. Nagata, K.-C. Shin, F. Araoka, Y. Takanishi, K. Ishkawa, J. Watanabe, S. Nishimura, T. Toyooka, and H. Takezoe, “Monodomain film formation and lasing in dye-doped polymer cholesteric liquid crystals,” Jpn. J. Appl. Phys. 43, 6142–6144 (2004).
[Crossref]

Nishimura, S.

T. Ohta, M. H. Song, Y. Tsunoda, T. Nagata, K.-C. Shin, F. Araoka, Y. Takanishi, K. Ishkawa, J. Watanabe, S. Nishimura, T. Toyooka, and H. Takezoe, “Monodomain film formation and lasing in dye-doped polymer cholesteric liquid crystals,” Jpn. J. Appl. Phys. 43, 6142–6144 (2004).
[Crossref]

Ohta, T.

T. Ohta, M. H. Song, Y. Tsunoda, T. Nagata, K.-C. Shin, F. Araoka, Y. Takanishi, K. Ishkawa, J. Watanabe, S. Nishimura, T. Toyooka, and H. Takezoe, “Monodomain film formation and lasing in dye-doped polymer cholesteric liquid crystals,” Jpn. J. Appl. Phys. 43, 6142–6144 (2004).
[Crossref]

Ozaki, M.

M. Ozaki, M. Kasano, D. Ganzke, W. Hasse, and K. Yoshino, “Mirrorless lasing in a dye-doped ferroelectric liquid crystal,” Adv. Mater. 14, 306–309 (2002).
[Crossref]

Pagliusi, P.

M. G. Donato, J. Hernandez, A. Mazzulla, C. Provenzano, R. Saija, R. Sayed, S. Vasi, A. Magazzu, P. Pagliusi, R. Bartolino, P. G. Gucciardi, O. M. Marago, and G. Cipparrone, “Polarization-dependent optomechanics mediated by chiral microresonators,” Nat. Commun. 5, 3656 (2014).
[Crossref] [PubMed]

Pajk, S.

M. Humar, M. Ravnik, S. Pajk, and I. Muševič, “Electrically tunable liquid crystal optical microresonators,” Nat. Photonics 3, 595–600 (2009).
[Crossref]

Palffy-Muhoray, P.

W. Cao, A. Munoz, P. Palffy-Muhoray, and B. Taheri, “Lasing in a three-dimensional photonic crystal of the liquid crystal blue phase II,” Nat. Mater. 1, 111–113 (2002).
[Crossref]

H. Finkelmann, S. T. Kim, A. Munoz, P. Palffy-Muhoray, and B. Taheri, “Tunable mirrorless lasing in cholesteric liquid crystalline elastomers,” Adv. Mater. 13, 1069–1072 (2001).
[Crossref]

Pane, A.

R. J. Hernandez, A. Mazzulla, A. Pane, K. Volke-SepÞlveda, and G. Cipparrone, “Attractive-repulsive dynamics on light-responsive chiral microparticles induced by polarized tweezers,” Lab. Chip. 7, 459–467 (2013).
[Crossref]

G. Cipparrone, A. Mazzulla, A. Pane, R. J. Hernandez, and R. Bartolino, “Chiral self-assembled solid microspheres: a novel multifunctional microphotonic device,” Adv. Mater. 23, 5773 (2011).
[Crossref] [PubMed]

Paquet, C.

I. Gourevich, L. M. Field, Z. Wei, C. Paquet, A. Petukhova, A. Alteheld, E. Kumacheva, J. J. Saarinen, and J. E. Sipe, “Polymer multilayer particles: a route to spherical dielectric resonators,” Macromolecules 39, 1449–1454 (2006).
[Crossref]

Park, B.

K.-C. Shin, F. Araoka, B. Park, Y. Takanishi, K. Ishikawa, Z. Zhu, T. M. Swager, and H. Takezoe, “Advantages of highly ordered polymer-dyes for lasing in chiral nematic liquid crystals,” Jpn. J. Appl. Phys. 43, 631 (2004).
[Crossref]

Petukhova, A.

I. Gourevich, L. M. Field, Z. Wei, C. Paquet, A. Petukhova, A. Alteheld, E. Kumacheva, J. J. Saarinen, and J. E. Sipe, “Polymer multilayer particles: a route to spherical dielectric resonators,” Macromolecules 39, 1449–1454 (2006).
[Crossref]

Pivnenko, M. N.

S. M. Morris, A. D. Ford, M. N. Pivnenko, and H. J. Coles, “The effects of reorientation on the emission properties of a photonic band edge liquid crystal laser,” J. Opt. A: Pure Appl. Opt. 7215 (2005).
[Crossref]

Porenta, T.

D. Seč, T. Porenta, and M. Ravnik, and S. Žumer, “Geometrical frustration of chiral ordering in cholesteric droplets,” Soft Matter 8, 11982–11988 (2012).
[Crossref]

Posnjak, G.

G. Posnjak, S. Čopar, and I. Muševič, “Points, skyrmions and torons in chiral nematic droplets,” Sci. Rep. 6, 26361 (2016).
[Crossref] [PubMed]

Provenzano, C.

M. G. Donato, J. Hernandez, A. Mazzulla, C. Provenzano, R. Saija, R. Sayed, S. Vasi, A. Magazzu, P. Pagliusi, R. Bartolino, P. G. Gucciardi, O. M. Marago, and G. Cipparrone, “Polarization-dependent optomechanics mediated by chiral microresonators,” Nat. Commun. 5, 3656 (2014).
[Crossref] [PubMed]

Ravnik, M.

D. Seč, T. Porenta, and M. Ravnik, and S. Žumer, “Geometrical frustration of chiral ordering in cholesteric droplets,” Soft Matter 8, 11982–11988 (2012).
[Crossref]

M. Humar, M. Ravnik, S. Pajk, and I. Muševič, “Electrically tunable liquid crystal optical microresonators,” Nat. Photonics 3, 595–600 (2009).
[Crossref]

Rutledge, R.

Saarinen, J. J.

I. Gourevich, L. M. Field, Z. Wei, C. Paquet, A. Petukhova, A. Alteheld, E. Kumacheva, J. J. Saarinen, and J. E. Sipe, “Polymer multilayer particles: a route to spherical dielectric resonators,” Macromolecules 39, 1449–1454 (2006).
[Crossref]

Saija, R.

M. G. Donato, J. Hernandez, A. Mazzulla, C. Provenzano, R. Saija, R. Sayed, S. Vasi, A. Magazzu, P. Pagliusi, R. Bartolino, P. G. Gucciardi, O. M. Marago, and G. Cipparrone, “Polarization-dependent optomechanics mediated by chiral microresonators,” Nat. Commun. 5, 3656 (2014).
[Crossref] [PubMed]

Sayed, R.

M. G. Donato, J. Hernandez, A. Mazzulla, C. Provenzano, R. Saija, R. Sayed, S. Vasi, A. Magazzu, P. Pagliusi, R. Bartolino, P. G. Gucciardi, O. M. Marago, and G. Cipparrone, “Polarization-dependent optomechanics mediated by chiral microresonators,” Nat. Commun. 5, 3656 (2014).
[Crossref] [PubMed]

Schmidtke, J.

J. Schmidtke, W. Stille, H. Finkelmann, and S. T. Kim, “Laser emission in a dye doped cholesteric polymer network,” Adv. Mater. 14, 746–749 (2002).
[Crossref]

Sec, D.

D. Seč, T. Porenta, and M. Ravnik, and S. Žumer, “Geometrical frustration of chiral ordering in cholesteric droplets,” Soft Matter 8, 11982–11988 (2012).
[Crossref]

Shin, K.-C.

F. Araoka, K.-C. Shin, Y. Takanishi, K. Ishikawa, H. Takezoe, Z. Zhu, and T. M. Swager, “How doping a cholesteric liquid crystal with polymeric dye improves an order parameter and makes possible low threshold lasing,” J. Appl. Phys. 94, 279–283 (2009).
[Crossref]

T. Ohta, M. H. Song, Y. Tsunoda, T. Nagata, K.-C. Shin, F. Araoka, Y. Takanishi, K. Ishkawa, J. Watanabe, S. Nishimura, T. Toyooka, and H. Takezoe, “Monodomain film formation and lasing in dye-doped polymer cholesteric liquid crystals,” Jpn. J. Appl. Phys. 43, 6142–6144 (2004).
[Crossref]

K.-C. Shin, F. Araoka, B. Park, Y. Takanishi, K. Ishikawa, Z. Zhu, T. M. Swager, and H. Takezoe, “Advantages of highly ordered polymer-dyes for lasing in chiral nematic liquid crystals,” Jpn. J. Appl. Phys. 43, 631 (2004).
[Crossref]

Sipe, J. E.

I. Gourevich, L. M. Field, Z. Wei, C. Paquet, A. Petukhova, A. Alteheld, E. Kumacheva, J. J. Saarinen, and J. E. Sipe, “Polymer multilayer particles: a route to spherical dielectric resonators,” Macromolecules 39, 1449–1454 (2006).
[Crossref]

Song, M. H.

T. Ohta, M. H. Song, Y. Tsunoda, T. Nagata, K.-C. Shin, F. Araoka, Y. Takanishi, K. Ishkawa, J. Watanabe, S. Nishimura, T. Toyooka, and H. Takezoe, “Monodomain film formation and lasing in dye-doped polymer cholesteric liquid crystals,” Jpn. J. Appl. Phys. 43, 6142–6144 (2004).
[Crossref]

Sonoyama, K.

T. Manabe, K. Sonoyama, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Toward practical application of cholesteric liquid crystals to tunable lasers,” J. Mater. Chem. 18, 3040–3043 (2008).
[Crossref]

Stille, W.

J. Schmidtke, W. Stille, H. Finkelmann, and S. T. Kim, “Laser emission in a dye doped cholesteric polymer network,” Adv. Mater. 14, 746–749 (2002).
[Crossref]

Swager, T. M.

F. Araoka, K.-C. Shin, Y. Takanishi, K. Ishikawa, H. Takezoe, Z. Zhu, and T. M. Swager, “How doping a cholesteric liquid crystal with polymeric dye improves an order parameter and makes possible low threshold lasing,” J. Appl. Phys. 94, 279–283 (2009).
[Crossref]

K.-C. Shin, F. Araoka, B. Park, Y. Takanishi, K. Ishikawa, Z. Zhu, T. M. Swager, and H. Takezoe, “Advantages of highly ordered polymer-dyes for lasing in chiral nematic liquid crystals,” Jpn. J. Appl. Phys. 43, 631 (2004).
[Crossref]

Taheri, B.

W. Cao, A. Munoz, P. Palffy-Muhoray, and B. Taheri, “Lasing in a three-dimensional photonic crystal of the liquid crystal blue phase II,” Nat. Mater. 1, 111–113 (2002).
[Crossref]

H. Finkelmann, S. T. Kim, A. Munoz, P. Palffy-Muhoray, and B. Taheri, “Tunable mirrorless lasing in cholesteric liquid crystalline elastomers,” Adv. Mater. 13, 1069–1072 (2001).
[Crossref]

Takanishi, Y.

F. Araoka, K.-C. Shin, Y. Takanishi, K. Ishikawa, H. Takezoe, Z. Zhu, and T. M. Swager, “How doping a cholesteric liquid crystal with polymeric dye improves an order parameter and makes possible low threshold lasing,” J. Appl. Phys. 94, 279–283 (2009).
[Crossref]

T. Manabe, K. Sonoyama, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Toward practical application of cholesteric liquid crystals to tunable lasers,” J. Mater. Chem. 18, 3040–3043 (2008).
[Crossref]

S. M. Jeong, N. Y. Ha, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Defect mode lasing from a double-layered dye-doped polymer cholesteric liquid crystal films with a thin rubbed defect layer,” Appl. Phys. Lett. 90, 261108 (2007).
[Crossref]

T. Ohta, M. H. Song, Y. Tsunoda, T. Nagata, K.-C. Shin, F. Araoka, Y. Takanishi, K. Ishkawa, J. Watanabe, S. Nishimura, T. Toyooka, and H. Takezoe, “Monodomain film formation and lasing in dye-doped polymer cholesteric liquid crystals,” Jpn. J. Appl. Phys. 43, 6142–6144 (2004).
[Crossref]

K.-C. Shin, F. Araoka, B. Park, Y. Takanishi, K. Ishikawa, Z. Zhu, T. M. Swager, and H. Takezoe, “Advantages of highly ordered polymer-dyes for lasing in chiral nematic liquid crystals,” Jpn. J. Appl. Phys. 43, 631 (2004).
[Crossref]

Takezoe, H.

F. Araoka, K.-C. Shin, Y. Takanishi, K. Ishikawa, H. Takezoe, Z. Zhu, and T. M. Swager, “How doping a cholesteric liquid crystal with polymeric dye improves an order parameter and makes possible low threshold lasing,” J. Appl. Phys. 94, 279–283 (2009).
[Crossref]

T. Manabe, K. Sonoyama, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Toward practical application of cholesteric liquid crystals to tunable lasers,” J. Mater. Chem. 18, 3040–3043 (2008).
[Crossref]

S. M. Jeong, N. Y. Ha, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Defect mode lasing from a double-layered dye-doped polymer cholesteric liquid crystal films with a thin rubbed defect layer,” Appl. Phys. Lett. 90, 261108 (2007).
[Crossref]

T. Ohta, M. H. Song, Y. Tsunoda, T. Nagata, K.-C. Shin, F. Araoka, Y. Takanishi, K. Ishkawa, J. Watanabe, S. Nishimura, T. Toyooka, and H. Takezoe, “Monodomain film formation and lasing in dye-doped polymer cholesteric liquid crystals,” Jpn. J. Appl. Phys. 43, 6142–6144 (2004).
[Crossref]

K.-C. Shin, F. Araoka, B. Park, Y. Takanishi, K. Ishikawa, Z. Zhu, T. M. Swager, and H. Takezoe, “Advantages of highly ordered polymer-dyes for lasing in chiral nematic liquid crystals,” Jpn. J. Appl. Phys. 43, 631 (2004).
[Crossref]

Toyooka, T.

T. Ohta, M. H. Song, Y. Tsunoda, T. Nagata, K.-C. Shin, F. Araoka, Y. Takanishi, K. Ishkawa, J. Watanabe, S. Nishimura, T. Toyooka, and H. Takezoe, “Monodomain film formation and lasing in dye-doped polymer cholesteric liquid crystals,” Jpn. J. Appl. Phys. 43, 6142–6144 (2004).
[Crossref]

Tsunoda, Y.

T. Ohta, M. H. Song, Y. Tsunoda, T. Nagata, K.-C. Shin, F. Araoka, Y. Takanishi, K. Ishkawa, J. Watanabe, S. Nishimura, T. Toyooka, and H. Takezoe, “Monodomain film formation and lasing in dye-doped polymer cholesteric liquid crystals,” Jpn. J. Appl. Phys. 43, 6142–6144 (2004).
[Crossref]

Vasi, S.

M. G. Donato, J. Hernandez, A. Mazzulla, C. Provenzano, R. Saija, R. Sayed, S. Vasi, A. Magazzu, P. Pagliusi, R. Bartolino, P. G. Gucciardi, O. M. Marago, and G. Cipparrone, “Polarization-dependent optomechanics mediated by chiral microresonators,” Nat. Commun. 5, 3656 (2014).
[Crossref] [PubMed]

Vithana, H. K. M.

Volke-SepÞlveda, K.

R. J. Hernandez, A. Mazzulla, A. Pane, K. Volke-SepÞlveda, and G. Cipparrone, “Attractive-repulsive dynamics on light-responsive chiral microparticles induced by polarized tweezers,” Lab. Chip. 7, 459–467 (2013).
[Crossref]

Watanabe, J.

T. Ohta, M. H. Song, Y. Tsunoda, T. Nagata, K.-C. Shin, F. Araoka, Y. Takanishi, K. Ishkawa, J. Watanabe, S. Nishimura, T. Toyooka, and H. Takezoe, “Monodomain film formation and lasing in dye-doped polymer cholesteric liquid crystals,” Jpn. J. Appl. Phys. 43, 6142–6144 (2004).
[Crossref]

Wei, Z.

I. Gourevich, L. M. Field, Z. Wei, C. Paquet, A. Petukhova, A. Alteheld, E. Kumacheva, J. J. Saarinen, and J. E. Sipe, “Polymer multilayer particles: a route to spherical dielectric resonators,” Macromolecules 39, 1449–1454 (2006).
[Crossref]

Wilkinson, T. D.

P. J. W. Hands, D. J. Gardiner, S. M. Morris, C. Mowatt, T. D. Wilkinson, and H. J. Coles, “Band-edge and random lasing in paintable liquid crystal emulsions,” Appl. Phys. Lett. 98, 141102 (2011).
[Crossref]

D. J. Gardiner, S. M. Morris, P. J. W. Hands, C. Mowatt, R. Rutledge, T. D. Wilkinson, and H. J. Coles, “Paintable band-edge liquid crystal lasers,” Opt. Express 19, 2432–2439 (2011).
[Crossref] [PubMed]

Xu, Y.

Yang, H.

H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater. 1, 64–68 (2002).
[Crossref]

Yariv, A.

Yokota, M.

H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater. 1, 64–68 (2002).
[Crossref]

Yoshino, K.

M. Ozaki, M. Kasano, D. Ganzke, W. Hasse, and K. Yoshino, “Mirrorless lasing in a dye-doped ferroelectric liquid crystal,” Adv. Mater. 14, 306–309 (2002).
[Crossref]

Zhu, Z.

F. Araoka, K.-C. Shin, Y. Takanishi, K. Ishikawa, H. Takezoe, Z. Zhu, and T. M. Swager, “How doping a cholesteric liquid crystal with polymeric dye improves an order parameter and makes possible low threshold lasing,” J. Appl. Phys. 94, 279–283 (2009).
[Crossref]

K.-C. Shin, F. Araoka, B. Park, Y. Takanishi, K. Ishikawa, Z. Zhu, T. M. Swager, and H. Takezoe, “Advantages of highly ordered polymer-dyes for lasing in chiral nematic liquid crystals,” Jpn. J. Appl. Phys. 43, 631 (2004).
[Crossref]

Adv. Mater. (4)

M. Ozaki, M. Kasano, D. Ganzke, W. Hasse, and K. Yoshino, “Mirrorless lasing in a dye-doped ferroelectric liquid crystal,” Adv. Mater. 14, 306–309 (2002).
[Crossref]

H. Finkelmann, S. T. Kim, A. Munoz, P. Palffy-Muhoray, and B. Taheri, “Tunable mirrorless lasing in cholesteric liquid crystalline elastomers,” Adv. Mater. 13, 1069–1072 (2001).
[Crossref]

J. Schmidtke, W. Stille, H. Finkelmann, and S. T. Kim, “Laser emission in a dye doped cholesteric polymer network,” Adv. Mater. 14, 746–749 (2002).
[Crossref]

G. Cipparrone, A. Mazzulla, A. Pane, R. J. Hernandez, and R. Bartolino, “Chiral self-assembled solid microspheres: a novel multifunctional microphotonic device,” Adv. Mater. 23, 5773 (2011).
[Crossref] [PubMed]

Appl. Phys. Lett. (2)

P. J. W. Hands, D. J. Gardiner, S. M. Morris, C. Mowatt, T. D. Wilkinson, and H. J. Coles, “Band-edge and random lasing in paintable liquid crystal emulsions,” Appl. Phys. Lett. 98, 141102 (2011).
[Crossref]

S. M. Jeong, N. Y. Ha, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Defect mode lasing from a double-layered dye-doped polymer cholesteric liquid crystal films with a thin rubbed defect layer,” Appl. Phys. Lett. 90, 261108 (2007).
[Crossref]

J. Appl. Phys. (1)

F. Araoka, K.-C. Shin, Y. Takanishi, K. Ishikawa, H. Takezoe, Z. Zhu, and T. M. Swager, “How doping a cholesteric liquid crystal with polymeric dye improves an order parameter and makes possible low threshold lasing,” J. Appl. Phys. 94, 279–283 (2009).
[Crossref]

J. Mater. Chem. (1)

T. Manabe, K. Sonoyama, Y. Takanishi, K. Ishikawa, and H. Takezoe, “Toward practical application of cholesteric liquid crystals to tunable lasers,” J. Mater. Chem. 18, 3040–3043 (2008).
[Crossref]

J. Opt. A: Pure Appl. Opt. (1)

S. M. Morris, A. D. Ford, M. N. Pivnenko, and H. J. Coles, “The effects of reorientation on the emission properties of a photonic band edge liquid crystal laser,” J. Opt. A: Pure Appl. Opt. 7215 (2005).
[Crossref]

Jpn. J. Appl. Phys. (2)

T. Ohta, M. H. Song, Y. Tsunoda, T. Nagata, K.-C. Shin, F. Araoka, Y. Takanishi, K. Ishkawa, J. Watanabe, S. Nishimura, T. Toyooka, and H. Takezoe, “Monodomain film formation and lasing in dye-doped polymer cholesteric liquid crystals,” Jpn. J. Appl. Phys. 43, 6142–6144 (2004).
[Crossref]

K.-C. Shin, F. Araoka, B. Park, Y. Takanishi, K. Ishikawa, Z. Zhu, T. M. Swager, and H. Takezoe, “Advantages of highly ordered polymer-dyes for lasing in chiral nematic liquid crystals,” Jpn. J. Appl. Phys. 43, 631 (2004).
[Crossref]

Lab. Chip. (1)

R. J. Hernandez, A. Mazzulla, A. Pane, K. Volke-SepÞlveda, and G. Cipparrone, “Attractive-repulsive dynamics on light-responsive chiral microparticles induced by polarized tweezers,” Lab. Chip. 7, 459–467 (2013).
[Crossref]

Liq. Cryst. Rev. (1)

I. Muševič, “Liquid-crystal micro-photonics,” Liq. Cryst. Rev. 4, 1–34 (2016).
[Crossref]

Macromolecules (1)

I. Gourevich, L. M. Field, Z. Wei, C. Paquet, A. Petukhova, A. Alteheld, E. Kumacheva, J. J. Saarinen, and J. E. Sipe, “Polymer multilayer particles: a route to spherical dielectric resonators,” Macromolecules 39, 1449–1454 (2006).
[Crossref]

Nat. Commun. (1)

M. G. Donato, J. Hernandez, A. Mazzulla, C. Provenzano, R. Saija, R. Sayed, S. Vasi, A. Magazzu, P. Pagliusi, R. Bartolino, P. G. Gucciardi, O. M. Marago, and G. Cipparrone, “Polarization-dependent optomechanics mediated by chiral microresonators,” Nat. Commun. 5, 3656 (2014).
[Crossref] [PubMed]

Nat. Mater. (2)

W. Cao, A. Munoz, P. Palffy-Muhoray, and B. Taheri, “Lasing in a three-dimensional photonic crystal of the liquid crystal blue phase II,” Nat. Mater. 1, 111–113 (2002).
[Crossref]

H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, “Polymer-stabilized liquid crystal blue phases,” Nat. Mater. 1, 64–68 (2002).
[Crossref]

Nat. Photonics (2)

H. Coles and S. Morris, “Liquid-crystal lasers,” Nat. Photonics 4, 676–685 (2010).
[Crossref]

M. Humar, M. Ravnik, S. Pajk, and I. Muševič, “Electrically tunable liquid crystal optical microresonators,” Nat. Photonics 3, 595–600 (2009).
[Crossref]

Opt. Express (3)

Opt. Lett. (2)

Phys. Rev. Lett. (1)

E. Brasselet, N. Murazawa, H. Misawa, and S. Juodkazis, “Optical vortices from liquid crystal droplets,” Phys. Rev. Lett. 103, 103903 (2009).
[Crossref] [PubMed]

Sci. Rep. (1)

G. Posnjak, S. Čopar, and I. Muševič, “Points, skyrmions and torons in chiral nematic droplets,” Sci. Rep. 6, 26361 (2016).
[Crossref] [PubMed]

Soft Matter (1)

D. Seč, T. Porenta, and M. Ravnik, and S. Žumer, “Geometrical frustration of chiral ordering in cholesteric droplets,” Soft Matter 8, 11982–11988 (2012).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Dispersion of polymerized CLC droplets in glycerol. Their red color is due to DCM fluorescent dye. Larger droplets do not have a perfect spherulite structure and may contain several defects. (b) A single CLC droplet (15 µm) with a defect at the center and (c) the same droplet under crossed polarizers. (d) SEM image of a cluster of polymerized dried spheres.

Fig. 2
Fig. 2

The lasing spectrum from a 20 µm diameter laser in glycerol. The broader equally spaced spectral peaks correspond to WGM lasing and the sharper highest peak corresponds to Bragg lasing. The upper left inset shows the reflectance measurement of a thin layer of undoped polymerized CLC mixture. The upper right inset shows unpolarized micrograph of the floating droplet. The bottom right inset shows lasing droplet without background illumination. The bright spot in the center corresponds to 3D Bragg lasing and the bright rim corresponds to the WGM lasing.

Fig. 3
Fig. 3

Spatially resolved spectrum of the same droplet as in Fig. 2. The slit was positioned across the center of the droplet as depicted in the inset. The x-axis represents the wavelength and the y-axis represents the position along the slit. WGM lasing is seen as vertical lines across the whole diameter of the particle with maximum intensity at the edge. WGMs are easily distinguishable from the Bragg lasing that is identified as a single peak that is localized in spatial position and in wavelength (marked by a red circle).

Fig. 4
Fig. 4

The lasing spectrum from a 16 µm diameter CLC microdroplet (inset) in high refractive index fluid (n = 1.52). The lasing from WMGs is suppressed because of lower index difference between the interior and the exterior of the particle and only a single spectral line is observed, which corresponds to 3D Bragg lasing.

Fig. 5
Fig. 5

(a) Output energy distribution from a single 16 µm diameter CLC polymerized laser as the function of the input pulse energy. Each point represents a single pulse. The threshold is clearly visible at approximately 0.6 mJ/cm2. (b) The lasing characteristics for a 31 µm microlaser made from the non-polymerizable CLC mixture shows much more scattered points. The threshold is also not so sharply defined as for the polymerized laser.

Metrics